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ABSTRACT 

Multiferroic heterostructures (MHS) consisting of at least two materials with ferroic 

properties have been a major focus for researchers recently due to its immense potential 

in device applications. Almost all MHS use ferromagnetic layers making it a very 

important research area. In this thesis the magnetic properties of different ferromagnetic 

heterostructures have been investigated. Different bilayers of hard ferromagnet cobalt 

ferrite (CFO)-soft ferromagnet lanthanum strontium manganese oxide (LSMO) and hard 

ferromagnet CFO-antiferromagnet nickel oxide (NiO) were fabricated. Pulsed laser 

deposition technique was used to deposit the thin films on LAO and sapphire substrates.  

Purpose of using a hard ferromagnetic CFO thin film on top of soft ferromagnetic LSMO 

and antiferromagnetic NiO was to enhance the multiferroic effects. X-ray diffraction 

(XRD) analysis on different samples establishes the epitaxial growth of the thin films. 

Transmission electron microscope (TEM) and scanning electron microscope (SEM) 

analysis provide the structural and elemental composition of the heterostructure. 

Superconducting quantum interference device (SQUID) magnetometer was used to 

perform temperature and field-dependent magnetic properties. At room temperature, 

ferromagnetic hysteresis loop is observed in all MHS. Presence of CFO increases the 

coercivity of the LSMO thin film which was one of the goals. In addition, I examined the 

zero field cooled (ZFC) and field cooled (FC) hysteresis curve for the CFO/NiO bilayer 

and a shift in the FC curve from the ZFC curve is observed. Studies of these different 

MHS may guide the development of many novel devices such as actuators, transducers 

and storage devices.   

 

KEYWORDS:  ferromagnetism, heterostructures, epitaxial growth, field-dependent 

magnetic characterization, coercivity. 
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OVERVIEW 

 

Multiferroic heterostructures (MHS) have been a major focus for researchers in 

the recent times. MHS consist of at least two materials with ferroic properties such as 

ferromagnetism, ferroelectricity, and ferroelasticity. For the last couple of decades 

ferroelectric-ferromagnetic coupling and ferromagnetic-antiferromagnetic exchange 

biasing have been the focus of intense research on multiferroics. Magnetoelectric (ME) 

and multiferroics (MF) possess simultaneously ferroelectric and ferromagnetic properties 

in the same phase and exhibit linear coupling between them. In such materials the 

spontaneous magnetization can be switched by an applied electric field and the 

spontaneous electrical polarization can be switched by an applied magnetic field, due to 

the cross coupling between ferroelectric (FE) and ferromagnetic (FM) orderings. These 

structures still maintain all the properties from their respective FE and FM materials, but 

in addition they offer bifunctional properties. Main advantage of these structures is 

controlling of charges by applied magnetic fields and spins by applied voltages and using 

these properties to construct new forms of multifunctional devices [1,2]. The advantage 

of having both magnetization and electric polarization is used in designing novel devices 

such as actuators, transducers and storage devices. These types of structures can also be 

used in multiple-state memory elements by storing information through electric and the 

magnetic polarizations. Other potential application could be novel memory media which 

might allow writing of the ferroelectric data bit, and reading of the magnetic field 

generated by association. [3] 
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In order to properly utilize different properties of MHS, magnetic behavior of 

different materials needs to be properly understood. Almost all MHS use a ferromagnetic 

material making it an immense topic for researchers. Ferromagnetic materials can be 

sorted into main two types: soft ferromagnet and hard ferromagnet. The definition of 

these types depends on their coercivity. For hard ferromagnetic materials coercivity is 

much higher than soft ferromagnetic materials. Depending on the applications different 

structures used different ferromagnetic materials [4]. On the other hand, some MHS 

utilize the unique properties of antiferromagnetic materials. In materials that exhibit 

antiferromagnetism, the magnetic moments of molecules align in a regular pattern with 

neighboring spins pointing in opposite directions resulting in net zero magnetization in 

absence of a magnetic field. Generally, antiferromagnetic order may exist at sufficiently 

low temperatures. Above a particular temperature, called Neel temperature, 

antiferromagnetic behavior vanishes [5]. Antiferromagnetic materials occur commonly 

among transition metal compounds, especially oxides. Antiferromagnetic materials can 

couple to ferromagnetic materials through a mechanism known as exchange bias. 

Exchange bias between a ferromagnetic material and an antiferromagnetic heterostructure 

is an important phenomenon for applications in magnetic random-access memory 

(MRAM), spin valves, and other spintronic devices [6-7]. 

In recent years, cobalt ferrite, CoFe2O4 (CFO) has been one of the most dominant 

research material due to its properties as magnetic nanocrystals and magnetostrictive 

material. Bulk CFO has high saturation magnetization, high coercivity, high anisotropy, 

and high magnetostriction [8-12]. CFO thin films maintains most of its bulk properties 

along with having a high Curie temperature around 800 K [13]. Along with these 
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properties it is also inexpensive and easy to produce, making it a suitable material for 

many novel devices such as actuator, sensors, data storage [14-16]. CFO can operate in 

the tensile regime without losing magnetic properties due to its anisotropic ability in 

stress and field annealing [11-12]. It also has good mechanical hardness which makes it 

more suitable magnetic material than conventional piezo-ceramics and other known 

magnetostrictives. CFO exhibits the highest magnetostriction among all 3-d element 

based spinal ferrites. Spinal ferrites are ferrimagnetic oxides with a general formula of 

MFe2O4 (Iron is ferric Fe3+ and M is a transition metal cation such as Mg2+, Mn2+, Co2+, 

Ni2+) [17]. Spinal ferrites are widely used in soft high-frequency magnetic materials. 

They all have high Curie temperature (Tc) except Fe3O4. Structure of CFO is shown in 

figure 1 where the red ions are oxygen, green ions are Fe3+ and brown ions are Co2+ 

[18]. In the CoFe2O4 spinel structure, half of the Fe3+ occupy the Td sites, and eight Co2+ 

ions and eight Fe3+ ions occupy the Oh sites. The Oh and Td sites are represented by 

brown and green atoms, respectively. Co2+ and Fe3+ ions occupying the Oh sites 

 

Figure 1. The unit cell of CFO where Fe3+ atoms occupy both the octahedral (Oh) and 

tetrahedral (Td) sites. The octahedral sites are also occupied by Fe2+, which are replaced 

by Co2+ in CFO 
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align parallel to an external magnetic field, and Fe3+ ions in the Td sites of the FCC-

packed oxygen lattice sites are aligned antiparallel to the field [19]. The total magnetic 

moment of (Fe3+)Td(Co2+Fe3+)OhO4, thus, arises from the high spin state of Co2+ in the 

Oh state as the spin of the Fe3+ (Oh) and Fe3+ (Td) ions cancel out. CFO has the highest 

magnetostriction among all of them which makes it a very unique material for magnetic 

structures. This high magnetostriction property is due to the orbital contribution coming 

from the presence of Co2+ ions in the spinal lattice. The value of the magnetostriction 

depends strongly on the stoichiometry and synthesis method of the CFO material [20]. In 

this work a commercially purchased CFO target was used to deposit CFO thin films with 

varying thickness using a physical vapor deposition technique called pulsed laser 

deposition (PLD).  

On the other hand, LSMO is a perovskite manganite that have stimulated intense 

study due to their colossal magnetoresistance (CMR) effect and half-metallic 

ferromagnetism [21-22]. Figure 2 shows the unit cell of an LSMO structure where the   

        

Figure 2. Unit cell of LSMO where the ferromagnetism comes from ferromagnetically 

aligned Mn-O-Mn chain 
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yellow atoms are oxygen, blue atoms are manganese and red atoms are the mixed phase 

of La1-xSrx. The ferromagnetic behavior comes from ferromagnetically aligned Mn-O-Mn 

chain [23]. LSMO has a general formula of La1−xSrxMnO3, where x describes the doping 

level. In lanthanum manganese oxides (LaMnO3), lanthanum ions (La3+) are partially 

substituted with strontium ion (Sr2+) by doping which creates a mixed valence state of 

Mn3+ and Mn4+. This leads in changing magnetic properties from paramagnetic to 

ferromagnetic and electrical properties from insulating to metal. These transition 

characteristics can be tuned by controlling the doping concentration of strontium. Due to 

its half-metallic ferromagnetism and high curie temperature compared to other oxide 

based magnetic materials LSMO is a very attractive material for spintronics devices [24]. 

Due to its high-spin polarization arising from conducting electrons LSMO has been 

widely used for efficient spin injection in organic spin valves, data transfer in magnetic 

recording systems, read heads in hard disk drives [25-27].  

LSMO thin films can be grown in many ways, but PLD technique has been found 

to be the most suitable synthesis method.  The intriguing magnetic and electric transport 

properties of LSMO are strongly related to the spin-lattice-charge couplings, which are 

sensitive to the growth conditions of the thin films such as oxygen pressure [28-29].  It is 

also very sensitive to the strain effect. LSMO grown on different perovskites such as 

STO, LAO, NdGaO3 has shown different magnetic properties. For example, LSMO 

grown on LAO substrates exhibits out of plane magnetic anisotropy [30-33]. 

Additionally, the magnetic and electric transport properties of LSMO also depend on the 

thickness of the thin films. So, for high quality thin films optimum growth conditions are 
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essential. For the first part of the thesis a magnetic heterostructure of CFO and LSMO 

was synthesized and characterized to observe the effect of CFO on LSMO properties.  

For the second part of the thesis we investigated the exchange bias effect between 

the ferromagnetic material CFO and antiferromagnetic material NiO. NiO is a well-

known antiferromagnetic with high Neel temperature of 525 K.  There are many 

fundamental issues related to the metal oxides grown on different substrates regarding 

their electronic and magnetic properties, which are still being researched now. Figure 3 

shows the unit cell of NiO which adopts the NaCl structure. In the figure the adjacent 

(111) planes are highlighted and, Ni  ions occupying the planes are antiparallel and 

cancels each other magnetic moment [34]. Nickel oxide is an attractive material due to its 

excellent chemical stability,    

            

Figure 3. Unit cell of NiO where (111) planes shows that how adjacent Ni ions 

antiparallelly cancels the magnetic moment  

 

antiferromagnetism, and electron correlations in narrow band systems [35]. It has high 

magnetic ordering temperature of 520K, a large band gap of 4 eV, and high thermal 

stability. These properties make NiO a very appealing material for device applications 

[36].  
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Multiferroic single phase and nanostructure thin films have been produced using a 

wide variety of grown techniques including sputtering, spin coating, metal-organic 

chemical vapor deposition (MOCVD), sol-gel process, pulsed laser deposition (PLD), 

and molecular beam epitaxy (MBE) [37-38]. In this thesis, thin film heterostructures of 

CFO/LSMO/LAO and CFO/NiO/Al2O3 were fabricated using PLD technique. A further 

heterostructure of CFO/NiS/ Al2O3 was grown where the NiS layer was created through 

exchanging oxygen to sulfer of some of the NiO layer using hydrothermal technique.  

Structural properties were investigated using XRD, TEM and SEM. XRD was performed 

to analyze the materials in the heterostructures. Multiferroic properties were investigated 

using a SQUID magnetometer and the effect of the bilayers was analyzed.  
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SYNTHESIS AND MAGNETIC CHARACTERIAZATION OF CFO/LSMO/LAO 

HETEROSTRUCTURES USING PULSED LASER DEPOSITION 

 

 

 
Abstract        

 

I have investigated magnetic properties of CFO/LSMO/LAO hetero-structures. 

Pulsed laser deposition technique was used to deposit all thin films of the heterostructure. 

High purity LSMO and CFO targets were used to grow the films. Purpose of using a CFO 

thin film on a ferromagnetic LSMO was to enhance the multiferroic effects between 

them. XRD analysis on different samples establishes the epitaxial growth of the thin 

films. Furthermore, rocking curve analysis along the 002-peak of LAO with XRD was 

done which indicates out-of-plane alignment and phi-scan analysis confirms the in-plane 

orientation. TEM and SEM-EDS analysis provide the structural and elemental 

composition of the hetero-structure. Superconducting quantum interference device 

(SQUID) magnetometer was used to perform temperature and field-dependent magnetic 

characterization. At room temperature, ferromagnetic hysteresis loop was observed. 

Presence of CFO increases the coercivity of the LSMO thin film. In addition, we examine 

the effect of thickness of CFO thin films on the ferromagnetism of LSMO.  

 

Introduction  
                 

Multiferroic heterostructures or shortly known as MHS consist of at least two 

materials with ferroic properties such as ferromagnetism, ferroelectricity, ferroelasticity. 

In recent times research on many MHS has been done by researchers throughout the 

world. Most of the research on MF materials are concentrated on YMnO3, TbMnO3, 

DyMnO3, and hexaferrites. These materials show promising MF characteristics but they 
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have some drawbacks related to them. Low coercivity, high leakage current, and weak 

magnetism at room temperature are major difficulties faced by researchers. Currently, 

researchers have shifted their focus on LSMO. LSMO is a ferromagnetic conductor. It is 

widely being used on Pb based magnetoelectric heterostructures such as PZT/LSMO. 

However, one of the main drawbacks of using LSMO is its relatively low coercivity. On 

the other hand, CFO has been one of the most dominant research material due to its 

unique properties as magnetic nanocrystalline and magnetostrictive material. Bulk CFO 

has high saturation magnetization, high coercivity, high magneto-crystalline anisotropy 

and high magnetostriction coefficient [8-12]. CFO thin films maintain most of its bulk 

properties along with having a high Curie temperature around 800 K [13].  In this study, a 

thin layer of CFO was used to enhance the coercivity of LSMO thin films to improve its 

ferromagnetic properties. We varied the thickness of CFO layer to see the effect on the 

ferromagnetism of LSMO. Details of the structural-property correlation of CFO/LSMO/ 

LAO will subsequently be discussed in the result and discussion section. 

 

Experimental 

 

CFO/LSMO heterostructure were grown on single crystal LAO substrates using 

PLD technique. High purity dense ceramic targets of LSMO and CFO were purchased 

from Kurt J. Lesker Company. The LSMO target was 99.9% pure, 1.00" diameter × 

0.250" thick, +/-0.010" AL. The CFO target was 99.9% pure, 0.70" diameter×0.11" thick. 

A CMP polished highly oriented (001) LAO substrate (2" dia +/- 0.5 mm × 0.5 thickness 

+/-0.05 mm) was purchased from MTI Corporation. A solid state compact pulsed 

Nd:YAG laser from Q-smart company was used. It had a wavelength of 266nm, 

frequency of 10 Hz and energy density of 3-4 J/cm2. Target to substrate distance was 
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fixed at 4 cm. In the optimized synthesis process, an initial layer of LSMO (40000 laser 

shots at 10 Hz rate) was deposited on LAO substrate at 750 °C. For reactive deposition 

O2 gas was maintained in the chamber and the chamber pressure was 2 x 10-1 mbar. On 

top of LSMO, CFO was deposited at a temperature of 750 °C with oxygen ambient 

pressure being 2 x 10-2 mbar. Total number of shots of CFO was varied to get different 

thickness of CFO. After the desired number of PLD shot, the deposited film was cooled 

down to room temperature maintaining the oxygen pressure at 110 mbar. The average 

film thickness of LSMO and CFO thin films were measured by Veeco, Dektak 150.  

Different samples were prepared by varying the number of laser shots. 

The crystallinity and crystallographic orientations in the heterostructures were 

characterized by X ray diffractometer (Bruker AXS D8) equipped with 

high-resolution Lynx Eye position-sensitive detector using Cu-Kα source with the 

wavelength of 1.5405Å) using θ-2θ scan in the range of 20° to 80° maintaining the 

Bragg−Brentano reflection geometry. The data were analyzed through Origin Pro 8.5.1 

software.  

The surface morphologies were observed using a scanning electron microscope 

(FEI Quanta 200) and with a transmission electron microscope (FEI Talos). The sample 

for cross-sectional TEM analysis was prepared by milling a 5 μm × 10 μm rectangular 

strip that was 100 nm in thickness from the film surface using a focused ion beam (FIB) 

(JOEL 4500 FIB/SEM) and Pt welding it to a Cu TEM grid. Prior to FIB milling a 

protective Pt layer was deposited on the film surface to preserve the underlying structures 

during cross-sectional TEM sample preparation. In both cases, Energy Dispersive X-Ray 



 

11 

Spectroscopy (EDS) analysis was performed to further investigate the structural 

properties.  

Temperature and magnetic field dependent magnetization of the films were 

measured by a SQUID magnetometer (Quantum Design, MPMS 5XL) equipped with 

MultiVu software. The temperature was varied from 5K to 350K. The M-H hysteresis 

loop of the sample was collected by varying magnetic field from -50000 Oe to +50000 

Oe. The sensitivity of the magnetometer was 10-9 emu. All the data were analyzed 

through Origin Pro 8.5.1 software. 

 

Result and Discussion 

4 different samples were prepared by varying the number laser shots. Table 1 shows 

the summary of all samples. 

 

Table1. No. of samples prepared by varying the no. of CFO shots and their thickness. 

Sample name LSMO shots LSMO 

Thickness 

CFO shots CFO 

Thickness  

A                             40000 100 nm 000 0 nm 

B                             40000 100 nm 500 2 nm 

C                             40000 100 nm 2000 10 nm 

D                             40000 100 nm 10000 40 nm 
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Figure 4. Schematic of a CFO/LSMO/LAO heterostructure  

 

Figure 4 shows the schematic of the CFO/LSMO/CFO heterostructure. XRD data 

for the sample A and C are shown in Figure 5. It gives an evidence for an epitaxial 

growth of LSMO thin films. Presence of LSMO (100) and LSMO (200) peaks suggests 

that the layer is epitaxial with the substrate LAO. In both cases diffraction peaks of 

pseudocubic perovskite LSMO are observed. It is evident that no secondary phase is 

observable within the resolution limits of XRD [39-40]. In case of CFO, no definite peaks 

are observed although a small CFO can be seen in both samples for CFO (400) peak. 

Figure 6 shows the XRD data for the sample D in which we used 1000 laser shots on 

CFO.  A clear (400) peak of the face-centered cubic (fcc) CFO phase is observed from 

the XRD data. [41-43]. Another diffraction peak (620) of CFO is observed which 

indicates another phase with the increased shots, although the intensity of that peak is 

very weak compared to the (400) peak.  
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Figure 5. XRD data for a) sample A and b) sample B. Both cases epitaxial LSMO is 

observed but no definite CFO peaks can be found 



 

14 

20 30 40 50 60 70 80

1000

10000

100000

1000000

1E7

 

 

 L
A

O
 3

0
0

 L
A

O
 2

0
0

 L
A

O
 1

0
0

In
te

n
s
it
y
 (

a
.u

.)

2 Theta

 C
F

O
 0

0
4

 L
S

M
O

 0
1
2

 L
S

M
O

 0
2

4

 C
F

O
 6

2
0

 
Figure 6. XRD data for sample D. Epitaxial LSMO and CFO peaks can be found 

 

 

In addition to the XRD analysis we performed the energy dispersive X-Ray 

spectroscopy (EDS) analysis using scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM). Figure 7 show the EDS spectrum using the 

SEM. Spectrum confirms all the elements in the heterostructure. A further detailed EDS 

analysis was done using the TEM. The sample for cross-sectional TEM analysis was 

prepared by milling a 5 μm x 10 μm rectangular strip that was 100 nm in thickness from 

the film surface using a focused ion beam (FIB) (JOEL 4500 FIB/SEM) and Pt welding it 

to a Cu TEM grid. Prior to FIB milling a protective Pt layer was deposited on the film 

surface to preserve the underlying structures during cross-sectional TEM sample 

preparation. 
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Figure 7. EDS spectrum using SEM. a) Sample C spectrum which had 2000 CFO shots 

and b) Sample D spectrum which had 10000 CFO shots 

 

 

Figure 8 shows the EDS spectra of the heterostructure. From the spectra all the 

elements can be confirmed and the stoichiometry of the heterostructure can be found. 

This morphology is observable in the HAADF image. The thickness of the individual 

layers was also measured and they were consistent with the Dektak data.    
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Figure 8. A high magnification EDS spectrum using TEM analysis for sample C and the 

HAADF image.  
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Figure 9 shows the magnetic hysteresis loop data for sample A containing only 

the LSMO/LAO thin films. M-H curve was measured with the field applied parallel to 

the film plane at low temperature. The magnetization was calculated after subtraction of a 

diamagnetic background from the substrate. A well behaved ferromagnetic M-H curve 

was obtained for the LSMO thin film. The magnetization increases until it reaches its 

saturation value around 500 Oe magnetic field. Coercivity of the LSMO thin film was 

measured to be 170 Oe. The observed saturation of magnetization value Msat and  
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Figure 9. a) M-H hysteresis loop for Sample A of LSMO/LAO. b) Magnified figure for 

low magnetic field data 

 

 

coercivity Hc for the film are in good agreement with those previously reported for 

epitaxial LSMO thin films [44-45].  It is worth noting that the magnetic disorder at the 

surface has been suggested to be considerably larger than in the bulk. In perovskite 

material, the cubic symmetry lacks at surfaces and charge is transferred from the bulk to 
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the surface layers, leading to the formation of Mn3+ [46]. The purpose of using a layer of 

CFO thin film was to enhance the coercivity of the LSMO thin films as this can lead to 

better multiferroic structures. For sample B where we had 500 CFO shots (2nm 

thickness) M-H hysteresis loop was almost like the sample A which led us to believe that 

such thin layer of CFO could not really affect the overall magnetic response of the 

heterostructure. Figure 10 shows the magnetic hysteresis loop data for sample C where 

we deposited 2000 CFO shots yielding 10 nm thickness of CFO. M-H curve was 

measured with the field applied parallel to the film plane at low temperature. The 

magnetization was calculated after subtraction of a diamagnetic background from the 

substrate. A well behaved ferromagnetic M-H curve was obtained. Coercivity of the 
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Figure 10. a) M-H hysteresis loop for Sample C of CFO/LSMO/LAO. b) Magnified 

figure for low magnetic field data 
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CFO/LSMO heterostructure was measured to be 360 Oe which is a sharp increase from 

the value obtained from the previous data. Presence of CFO did increase the coercivity of 

the structure. CFO is a ferromagnetic insulator which is known for its very high 

magnetostriction coefficient [47]. The strong development of coercivity with CFO layer 

thickness is expected based on the increase in total hard magnetic volume in the 

heterostructure.  
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Figure 11. a) M-H hysteresis loop for Sample D of CFO/LSMO/LAO. b) Magnified 

figure for low magnetic field data 

 

M-H curve for sample D where we deposited the highest number of CFO shots of 

10000 is shown in figure 11. It can be seen that coercivity further increased but not by 

much. The observed value of the coercivity is 392 Oe. With all the values obtained from 

the M-H curves for different thickness it can be concluded that with increasing thickness 
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we were able to increase the overall coercivity of the heterostructure. Optimum thickness 

can be determined around 40 nm.  
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Figure 12. M-H hysteresis loop for Sample D of CFO/LSMO/LAO at room temperature 

(300K) 

 

 

Figure 12 shows the M-H hysteresis loop for sample D at room 

temperature(300K). For this measurement high magnetic field data were ignored due to 

noise and background diamagnetic data were not able to subtract. At room temperature 

multiferroic effects between CFO and LSMO thin films dominates. A smoothing function 

was used in ORIGIN to reduce the noise on the data.  

M-H curve was also measured without the LSMO layer in CFO/LAO thin film. 

Figure 13 shows the magnetic hysteresis loop for a CFO/LAO thin film structure where 
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10000 CFO shots were deposited. It can be seen that at low temperature the diamagnetic 

properties of LAO thin film dominate.   
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Figure 13. M-H hysteresis loop for CFO/LAO at low temperature (5K) 

 

 

Conclusions 

 

We successfully deposited epitaxial LSMO thin films on LAO substrates. On top 

of LSMO highly oriented CFO thin films of varying thickness were also grown using 

PLD under oxygen ambient. The XRD data confirm the crystallinity and crystallographic 

orientations in the heterostructures. The morphology of the structure is confirmed with 

EDS analysis using SEM and TEM. The well-behaved M-H hysteresis loop at low 

temperature confirms the ferromagnetic nature of the LSMO thin film with a relatively 

low coercivity. To overcome the low coercivity of LSMO, CFO was primarily used and 

the presence of CFO thin films contributes to increase in coercivity of the heterostructure. 
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It was confirmed with M-H hysteresis data obtained from different CFO/LSMO 

heterostructures. From the magnetic data it was confirmed that with increased thickness 

of the CFO thin films the coercivity continued to increase and optimum coercivity was 

recorded at 40nm thickness of CFO. However, for room temperature magnetic analysis 

there were too much noise in the M-H hysteresis loop for high magnetic field. The strong 

development of coercivity with CFO layer thickness is confirmed based on the increase 

in total hard magnetic volume in the heterostructure.  
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SYNTHESIS AND MAGNETIC CHARACTERIAZATION OF CFO/NiO 

HETEROSTRUCTURE USING PULSED LASER DEPOSTION 

 

 

 

 

Abstract        

 

We have investigated the magnetic interaction at the interface in CFO/NiO 

hetero-structures. PLD was used to deposit the thin films on sapphire substrates. 

Magnetic interaction between a ferromagnetic layer and an antiferromagnetic layer is an 

important property for giant magnetoresistance which can be used for applications in spin 

valves, magnetic sensors, and magnetic random access memory. High purity NiO and 

CFO targets were used. XRD analysis on different samples establishes the epitaxial 

growth of the thin films. SEM-EDS analysis provided structural and elemental 

composition of the hetero-structure. SQUID magnetometer was used to perform 

temperature and field-dependent magnetic properties. To better understand magnetic 

properties of the heterostructure, zero field cool (ZFC) and field cool (FC) magnetization 

data were analyzed.  At low temperature, ferromagnetic hysteresis loop was observed. A 

shift in the M-H hysteresis curve was observed for the FC data from the ZFC data which 

may indicate the presence of exchange bias effect. In addition, we have examined the 

effect of antiferromagnetic NiS thin films on ferromagnetism of CFO.  

 

Introduction  

 

Multiferroic structures have been a major focus for researchers in the recent 

times. Multiferroic structure or shortly known as MF structure consists of at least two 

materials with ferroic properties such as ferromagnetism, ferroelectricity and 

ferroelasticity. For the last couple of decades ferroelectric-ferromagnetic coupling and 
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ferromagnetic-antiferromagnetic biasing have been the focus of researchers. In materials 

that exhibit antiferromagnetism, the magnetic moments of molecules align in a regular 

pattern with neighboring spins pointing in opposite directions resulting in net zero 

magnetization in absence of a magnetic field. Generally, antiferromagnetic order may 

exist at sufficiently low temperatures. Above a particular temperature (Neel temperature) 

antiferromagnetic behavior vanishes [4]. Antiferromagnetic materials occur commonly 

among transition metal compounds, especially oxides. Antiferromagnetic (AFM) 

materials can couple to ferromagnetic (FM) materials through a mechanism known as 

exchange bias. The hard magnetization behavior of an antiferromagnetic thin film causes 

a shift in the soft magnetization curve of a ferromagnetic film, thereby acting as a 

reference layer in a magnetic device. This technologically important effect is still poorly 

understood because of the inability of traditional techniques to spatially determine the 

microscopic magnetic structure of the AFM thin film. Exchange bias between a 

ferromagnetic material and an antiferromagnetic heterostructure is an important 

phenomenon for applications in magnetic random-access memory (MRAM), spin valves 

and other spintronic devices [5-6]. In this thesis, a thin layer of a ferromagnetic CFO was 

deposited on top of anti-ferromagnetic NiO to investigate the exchange bias effects 

between them. We also synthesized NiS and deposited CFO on top of that to make 

another heterostructure CFO/NiS to see what kind of different exchange bias effect we 

can have. Details of the structural and magnetic property correlation of CFO/NiO and 

CFO/NiS will subsequently be discussed in the result and discussion section. 
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Experimental 

 

CFO/NiO heterostructures were grown on a sapphire substrate using PLD. High 

purity dense target of CFO was purchased from Kurt J. Lesker Company. The CFO target 

was 99.9% pure, 0.70" diameter×0.11" thick. NiO target was made from nickel (II) oxide 

(NiO) powder of 98.0% purity. The powder was first grounded for 2 hours. Polyvinyl 

alcohol (PVA) was added to prevent agglomeration of the powder particles. The mixture 

was then pressed at a 10 ton pressure with a ‘hydraulic press’ to form the target. The 

prepared target was then sintered at a 1000 temperature °C for 24 hours. The rocksalt 

structure of NiO was confirmed using x-ray diffraction (XRD). A CMP polished highly 

oriented (0001) sapphire substrate (2" dia +/- 0.5 mm × 0.4 thickness +/-0.05 mm) was 

purchased from MTI Corporation. A solid state compact pulsed Nd:YAG laser from Q-

smart company was used. It had a wavelength of 266nm, frequency of 10 Hz and energy 

density of 3-4 J/cm2. Target to substrate distance was fixed at 4 cm. In the optimized 

synthesis process, an initial layer of NiO (25000 laser shots at 10 Hz rate) was deposited 

on sapphire substrates at 600 °C. For reactive deposition O2 gas was maintained in the 

chamber and the chamber pressure was 2x 10-1 mbar. On top of NiO, CFO (10000 laser 

shots at 10 Hz rate) was deposited at a temperature of 750 °C with oxygen ambient 

pressure of 2 x 10-2 mbar. After the desired number of PLD shots, the deposited film was 

cooled down to room temperature maintaining the oxygen pressure at 110 mbar.  

Hydrothermal technique was used to synthesize the NiS film. First NiO (25000 

laser shots at 10 Hz rate) was grown on sapphire substrates. Then a thiourea (CH4N2S) 

solution was used with the grown NiO thin film and it was put in the hydrothermal 

chamber for 24 hours at a temperature of 180 °C. NiS thin film was confirmed through 
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EDS analysis and then CFO was deposited (10000 laser shots at 10 Hz rate) on top to 

obtain the CFO/NiS/Al2O3 heterostructure.   

The crystallinity and crystallographic orientations in the heterostructures were 

characterized by XRD (Bruker AXS D8 diffractometer) equipped with 

high-resolution Lynx Eye position-sensitive detector using Cu-Kα source with the 

wavelength of 1.5405Å using θ-2θ scan in the range of 20° to 80° maintaining the 

Bragg−Brentano reflection geometry. The data were analyzed through Origin Pro 8.5.1 

software. The surface morphologies were observed using s SEM (FEI Quanta 200). 

Energy Dispersive X-Ray Spectroscopy (EDS) analysis was performed to further 

investigate the structural properties.  

Temperature and magnetic field dependent magnetization of the films were 

measured by a SQUID magnetometer (Quantum Design, MPMS 5XL) equipped with 

MultiVu software. The maximum sensitivity of the magnetometer was 10-9 emu. The M-

H hysteresis loop of the sample in field cool (FC) and zero field cool (ZFC) was observed 

by varying magnetic field from -50000 Oe to +50000 Oe. For FC hysteresis curve, the 

thin film was cooled form 350K to 5K in a constant 5000 Oe magnetic field. Temperature 

dependent magnetization data were taken by varying the temperature form 5K to 350K. 

The data were analyzed through Origin Pro 8.5.1 software.  

 

Results and Discussion 

Figure 14 shows the XRD data for the NiO thin film on a sapphire substrate.  

Substrate peaks for sapphire (0001) are denoted by the asterisk mark. It can be seen form 

the XRD plot that NiO thin films were crystalline in nature consisting of a cubic phase. It 
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has a strong reflection along the (111) plane. It can be speculated that no secondary phase 

formations are observable within the resolution limits of XRD [48-49], although a weak 

reflection along (222) plane could be present but for this sample it was not seen. The ‘d’ 

values of the XRD reflections were confirmed with the standard values [50]. Good 

agreement between the observed and standard ‘d’ values confirms that the thin film 

deposited is NiO with a cubic crystal structure.  
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Figure 14. XRD data for the NiO/Al2O3 bilayer. Strong NiO peak can be found for the 

(111) plane 

 

 

Figure 15 shows the XRD pattern of the CFO/NiO/ Al2O3 heterostructure. Again 

the substrate peaks are denoted by the asterisk mark. In this case, crystalline NiO (111) 

and (222) peaks are found. The peak for (222) plane can be seen here in the shoulder of 

the substrate peak around 80 degree which was not visible in the first XRD pattern. It is 
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found that clear (511) peak of the face-centered cubic (fcc) CFO phase can be found [51-

53].  
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Figure 15. XRD data for the CFO/NiO/Al2O3. Strong NiO peak can be found for the 

(111) plane and (222) plane. CFO (511) peaks can be seen 

 

 

 In addition to the XRD studies we performed the energy dispersive X-Ray 

spectroscopy (EDS) analysis using SEM. For better imaging and data collection gold 

(Au) was deposited on top of the thin films using DC sputtering for 10 seconds. Figure 16 

shows the SEM-EDS spectra for the CFO/Al2O3 and the CFO/ NiO/Al2O3 structures. It 

can be seen from the spectra that all the elements are present for their respective thin 

films. Au counts from the spectrum was removed.  

 

(a) 
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(b) 

     

Figure 16. EDS spectrum using SEM. a) Sample with CFO/Al2O3 structure b) Sample 

with CFO/NiO/Al2O3 structure 

 

EDS analysis was done for the CFO/NiS/ Al2O3 heterostructures. It is shown in 

figure 17. Sulfur (S) counts was minimal in the first spectrum as it was performed in the 5 

micro meter region. A further analysis done in a broader region yielded a more definite 

sulfur counts.  

Figure 18 shows the raw magnetization-field data for the CFO/NiS/ Al2O3 

heterostructures. The magnetization data for the zero field cool (ZFC) is shown by the red 

curve and for the field cool (FC) is shown by the black curve. In order to observe the  

(a) 
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(b) 

         

Figure 17. EDS spectrum using SEM. a) Sample with CFO/NiS2/ Al2O3 structure in the 5 

micrometer region b) Sample with CFO/NiS2/ Al2O3 structure in the 200 micrometer 

region 

 

magnetic data for the CFO/NiO bilayer background magnetic data for just the sapphire  

substrate was measured and then subtracted. The rest of the magnetic figures are all 

obtained in the same manner. 

Figure 19 shows the M-H curve for the CFO/NiO heterostructure with the field 

applied parallel to the film. The magnetic hysteresis loop for the ZFC is shown by the red 

curve and for the FC is shown by the black curve. Both of them were measured in low 
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Figure 18. M-H hysteresis loop for CFO/NiO/ Al2O3 heterostructure 

 

temperature (5K). The field applied for the FC data is 5000 Oe. The magnetization was 

calculated after subtracting the diamagnetic background coming from the substrate 

sapphire [54]. Figure 19 (b) shows the magnified curve in the low magnetic field region. 

From the M-H plot it can be seen that there is a shift of coercivity in the FC curve from 

the ZFC curve to the left of the hysteresis loop. In the negative field region almost 1500 

Oe of shift is observed but for the positive field only 300 Oe shift is present. The 

observed coercivity is around 15 kOe. This shift in the M-H curve may be due to the 

effect of the exchange bias in the interface of the heterostructure. The exchange bias 

observed in the thin film is low compared to expected value due to the Neel 
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Figure 19. a) M-H hysteresis loop for CFO/NiO. b) Magnified figure for low magnetic 

field data 

 

temperature of NiO being very high [55].    
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Figure 20. a) M-H hysteresis loop for CFO/NiO at room temperature. b) Magnified figure 

for low magnetic field data 

 

M-H hysteresis curve for room temperature (300K) is shown in the figure 20. 

There was a lot of noise the high magnetic field region, so the curve is fitted from -10000 
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Oe to 10000 Oe field and was reformed using a smoothing function. A ferromagnetic 

hysteresis curve can be seen. The magnetic hysteresis loop for the ZFC is shown by the 

red curve and for the FC is shown by the black curve. Even at room temperature, a slight 

shift in the curve of FC is observed compared to the ZFC to the left. In the negative field 

region almost 150 Oe of shift is observed but for the positive field only 50 Oe shift is 

present. Coercivity is measured to be around 2.5 kOe.  

Figure 21 shows the M-H hysteresis curve for the CFO thin film. The 

magnetization was calculated after subtracting the M-H curve obtained from CFO/Al2O3 

thin film. A well-formed ferromagnetic curve can be seen with a high coercivity. The 

observed coercivity is in good agreement with previously published data [56-57]. The 

magnetic hysteresis loop for the ZFC is shown by the red curve and for the FC is shown 

by the black curve. It can be observed that there is a shift in hysteresis curve from the 

ZFC to FC curve to the left. In the negative field region almost 2000 Oe of shift is 

observed but for the positive field only 500 Oe shift is present. Coercivity was measured 

to be around 20 kOe. This inherent shift is usually evident in the CFO thin films at low 

temperatures [58].  The reason is due to the presence of irregular domain patterns in these 

films which are commonly observed in materials with strong perpendicular anisotropy 

and high domain wall coercivity [59].  

M-H curve for the CFO/NiS/Al2O3 structure was also measured using the SQUID 

magnetometer. Figure 22 shows hysteresis curve for the heterostructure. A well-behaved 

ferromagnetism was observed with a high coercivity at low temperature. The 

magnetization was calculated after subtracting the diamagnetic background coming from 
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Figure 21. a) M-H hysteresis loop for CFO at low temperature. b) Magnified figure for 

low magnetic field data 

the substrate sapphire [54].  The magnetic hysteresis loop for the ZFC is shown by the 

red curve and for FC is shown by the black curve. From the figure 21 (b) there is a shift 
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Figure 22. a) M-H hysteresis loop for CFO/NiS heterostructure at low temperature. b) 

Magnified figure for low magnetic field data 

in hysteresis curve from the ZFC to FC curve to the left. In the negative field region 

almost 1200 Oe of shift is observed but for the positive field only 150 Oe shift is present. 
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Coercivity was measured to be around 13 KOe The Neel temperature of NiS (160K) 

smaller than that of NiO (Tn =520 K) [57]. So, the thin film with NiO can’t be field 

cooled under the Neel temperature. For that reason, it is difficult to obtain the full extent 

of the magnetic interaction between CFO/NiO bilayer. Table 2 shows the different 

magnetic parameters that was observed from different structures.  

Table2. Saturation magnetization and coercive fields for different samples with different 

structures for FC data 

Sample  +HC (Oe) -HC (Oe) Coercivity(Oe) Msat (e.m.u.) 

CFO                            9067 -12044 21111 0.0006 

CFO/NiO                         7170 -9384 16554 0.0008 

CFO/NiS                            7410 -9413 16823 0.0005 

   

Conclusions 

 

We have successfully deposited epitaxial NiO thin films on sapphire substrates. 

Hydrothermal process was successfully used to grow NiS films on the sapphire 

substrates.  On top of NiO and NiS highly oriented CFO thin films were grown using 

PLD under oxygen ambient. The theta-2theta scan of the XRD confirms the crystallinity 

and crystallographic orientations of the heterostructures. The morphology of the structure 

was confirmed with EDS analysis using SEM. The well-behaved M-H hysteresis loop at 

low temperature shows a shift in the FC curve from the ZFC curve. So magnetic 

interaction between the FM and AFM is evident there. A shift in the hysteresis curve in 

the CFO/NiO bilayer may lead to the possibility of exchange bias effect. CFO/NiO 

bilayer also exhibits a ferromagnetic hysteresis loop at room temperature with a presence 

of slight divergence in the FC curve from the ZFC curve. M-H curve analysis also 
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provides evidence of magnetic interaction at the interface in the CFO/NiS bilayer. These 

interactions between the ferromagnetic and antiferromagnetic layers can be useful in 

designing MF heterostructures for different novel devices like magnetic random-access 

memory (MRAM), spin valves, and other spintronic devices.   
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CONCLUSIONS 

 

Magnetic analysis of different ferromagnetic bilayers is an important step for 

designing good multiferroic heterostructures. In this thesis we have successfully 

fabricated and characterized a hard ferromagnetic-soft ferromagnetic heterostructure and 

a ferromagnetic-antiferromagnetic heterostructure. Epitaxial LSMO thin films on LAO 

substrates were successfully deposited. On top of LSMO highly oriented CFO thin films 

of varying thickness were also grown using PLD under oxygen ambient. The theta-2theta 

scan of the XRD confirmed the crystallinity and crystallographic orientations in the 

heterostructures. The morphology of the structure was confirmed with EDS analysis 

using SEM and TEM. The well-behaved M-H hysteresis loop at low temperature 

confirms the ferromagnetic nature of the LSMO thin film with a relatively low coercivity. 

To enhance the coercivity of LSMO, CFO layer was primarily used, and the presence of 

CFO thin films contributes to the increase in coercivity of the heterostructure. 

Ferromagnetism has been established through M-H hysteresis loop obtained from 

different CFO/LSMO heterostructures. Furthermore, it has been confirmed that with 

increased thickness of the CFO thin films the coercivity continued to increase and 

optimum coercivity has been found  at 40nm thickness of CFO. Hard ferromagnetic CFO 

was also successfully deposited on top of the antiferromagnetic NiO layer on Al2O3 

substrates using PLD. The theta-2theta scan of the XRD confirms the crystallinity and 

crystallographic orientations of the heterostructures. The morphology of the structure was 

confirmed with EDS analysis using SEM. Magnetic analysis provides that there is shift in 

the M-H hysteresis curve for the FC data from the ZFC data. The presence of this shift of 
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the hysteresis loop could indicate the presence of exchange bias effect. Studies of these 

different heterostructures may guide the development of many novel devices such as 

actuators, transducers, and storage devices.   
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