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ABSTRACT 

Telomeres are repetitive parts of the genome that act as a protective end cap to the 

chromosomes. Telomeres are critical to the integrity and stability of the genome, 

therefore, ensuring that their sequence is maintained, even after damage, is crucial. Much 

of the pioneering work responsible for explaining telomeres has been conducted in 

ciliates, specifically in Tetrahymena thermophila. Telomeres in T. thermophila have a 

high amount of tandem thymine repeats (GGGGTT) and, thus, are susceptible to 

ultraviolet light (UV) induced lesions called pyrimidine dimers, which must be repaired 

by nucleotide excision repair (NER). In humans, Xeroderma Pigmentosum C (XPC) is a 

protein that helps recognize DNA damage in NER. The Tetrahymena thermophila 

homolog to XPC (RAD4) showed strong evolutionary conservation to higher level 

eukaryotes making it an ideal model organism. RAD4 expression was depleted by cloning 

and expressing a short hairpin RNA gene that will target RAD4. After both UV and 

hydrogen peroxide treatment, Rad4 depleted cells had reduced survivability. Moreover, a 

DIG-labeled detection assay was developed for detection of telomere length, without the 

use of radioactivity. Telomere length increased in the absence of Rad4 which reveals its 

role in telomere maintenance. This work ultimately provides two new resources to the 

fields of NER and telomeres by means of Rad4 knockdown T. thermophila strains, and 

DIG-labeled telomere detection assay.  
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INTRODUCTION 

 

Telomeres 

Each cell in the human body contains approximately seven billion base pairs of 

deoxyribose nucleic acid (DNA) (Gillooly et al., 2015). This DNA contains all of the 

genetic information, and encodes all components of life (Watson and Crick, 1953). 

Genomic DNA is organized around a complex of proteins called histones that ultimately 

form nucleosomes that organize themselves into linear chromosomes. At the terminus of 

these chromosomes, there is a critical and unique structure called the telomere that is 

critical for the stability and integrity of the genome. 

Both the sequence and structure of telomeres assist in genome protection (Figure 

1A). Telomeric sequence across organisms is a simple sequence, repeated one hundred to 

one thousand times. The human telomeric repeat sequence is 5`-TTAGGG-3` (Moyzis et 

al., 1988). The sequence can vary, based on the organism, but it is typically G-rich which 

allows for the formation of G-quadruplexes. The formation of a G-quadraplex is 

stabilized based on the ability for guanines to bond to one another. This G-quandruplex 

has been hypothesized to play an important role in the capping and protecting function of 

telomeres (Henderson et al., 1987). Another unique component to the structure of 

telomeric sequence is the 3` single stranded G-rich overhang. This overhang is present 

due the inability of the replication machinery to fully replicate the linear chromosome to 

its terminus, leaving a shortened 5’ end (Henderson and Blackburn, 1989). The 3` single 

stranded end of the telomere invades the upstream DNA duplex, base-pairing with the  
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Figure 1. Telomere Structure and Associated Proteins. (A) Model of mammalian 

telomere structure and shelterin. The top of this figure shows the secondary structure 

that is created to protect its single stranded 3` overhang. The lower portion of the 

figure shows the six mammalian shelterin proteins (TRF1, TRF2, POT1, RAP1, 

TIN2, and TPP1) that associate with the telomeres to create the secondary structure 

and to further protect the ends of the chromosomes. (B) Model of Tetrahymena 

thermophila telomere structure and associated proteins. The sequence of T. 

thermophila is 5`-CCCCAA-3`, and it contains a 14-21 3` G-overhang. It is 

associated with the four shelterin-like proteins Pat1, Tpt1, Pot1a, and Pat2. Pat2 

helps Teb1 (Telomerase in T. thermophila) associate with the telomere. (Adapted 

from Lazzerini-Denchi and Sfeir, 2016) 

 

A 

 

B 
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homologous telomere sequence and creating a structure called a T-loop (Griffith et al., 

1999). 

Telomeres have three widely conserved functions across organisms (Riethman, 

2008). First, this sequence protects the ends of the chromosomes from degradation and 

being recognized as damage. Second, telomeres help organize chromosomes during 

meiosis to facilitate appropriate chromosome recombination and segregation (Bass et al., 

1997). The third conserved function is reliant on the ability for the telomeric sequence to 

be extended by a ribonucleoprotein reverse transcriptase called telomerase (Greider and 

Blackburn, 1985). Without this unique DNA polymerase-independent extension 

mechanism, each round of replication would lead to telomere shortening, and threaten 

exposure of critical portions of the genome. Shortening of the telomeres will also lead to 

cellular senescence (Olovnikov, 1973).  

 

Telomere and Telomerase Discovery 

The discovery of telomeres and telomerase has a rich and collaborative history 

that involved a variety of model organisms and scientists. Originally theorized by 

McClintock, telomeres were named after their Latin origin telo (end) and mere (part) 

(McClintock, 1931; Mullner, 1938). Much of the pioneering work in telomere research 

has been conducted in the ciliate Tetrahymena thermophila. Due to its complex genome, 

it has a high number of chromosomes which in turn yields a large amount of telomeric 

DNA. Furthermore, this ciliate has nuclear dimorphism that splits the genetic information 

into a transcriptionally silent nucleus (micronucleus) and transcriptionally active nucleus 

(macronucleus) with 250 to 300 45N small chromosomes (Yao et al., 1981). Telomere 
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sequences specific to T. thermophila (5`-CCCCAA-3’) are found at the end of 

chromosomes in the macronucleus and micronucleus (Blackburn and Gall, 1978). The 

macronuclear DNA of T. thermophila undergoes a fragmentation step which results in 

minichromosomes. These minichromsomes were observed to have telomeric sequence 

added to them, but the mechanism for the addition was unclear (Blackburn et al., 1983). 

The repetitive telomeric sequence was originally found on ribosomal DNA (rDNA), 

which is contained within approximately 9000 of minichromsomes (Figure 1; Yao et al., 

1979). 

Similar identification and characterization of telomeric sequence were found in a 

wide variety of ciliates (Katzen et al., 1981; Klobutcher et al., 1981; Boswell et al., 

1982). Blackburn and Szostak studied the telomeric sequence of Saccharomyces 

cerevisae to ensure the translation of the original findings in T. thermophila and other 

ciliates translated to other organisms (Shampay et al., 1984). There are particular portions 

of the S. cerevisae genome that are circular, and highly unstable when linearized. Upon 

the experimental addition of the rDNA sequence from T. thermophila these linear 

segments were stable. This reinforced the hypothesis of the stabilizing properties of the 

telomeric sequence (Szostak and Blackburn, 1982).  

Telomeric DNA is added to the termini of the telomeres of T. thermophila by a 

terminal transferase named telomerase. Because telomerase was first discovered in 

Tetrahymena, its telomerase is one of the best characterized telomerase ribonucleoprotein 

(Greider and Blackburn, 1985). Telomerase has two subunits that contribute to the 

functional structure; one is the RNA portion serving as a template sequence and the other 

is the catalytically active facilitating the addition of sequence. In 2009 Blackburn, 
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Greider, and Szostak were awarded the Nobel Prize in physiology or medicine for this 

discovery. 

             Telomerase functions in three main steps; binding, polymerization, and 

translocation (Riethman, 2008). It uses the 3`G-rich overhang to allow base pairing with 

the RNA subunit of telomerase called TERC (Telomerase RNA Component) in humans 

(Morin, 1989; Shippen-Lent and Blackburn, 1990). The RNA component contains 

complementary base pairs to the overhang, and positions the enzyme to the 3` OH. The 

3’-OH of the telomere is then extended by the TERT (TElomerase Reverse Transcriptase) 

subunit of telomerase. This polymerization continues until the end of the RNA template. 

Telomerase translocates to the new 3` end or dissociates.  

 

Shelterin Proteins 

Proteins associated with the telomeres are essential in protecting and sheltering 

the telomeres from being detected by DNA surveillance proteins as DNA damage, and 

preventing DNA repair mechanisms recognizing the single strand of the telomeres and 

unnecessarily repairing this DNA (Palm and de Lange, 2008). This protective complex of 

proteins associated with telomeres is commonly referred to as shelterin. In mammals 

shelterin is a six protein complex, and each protein has unique functions that aid the 

telomere secondary structure (Figure 2A). These six proteins are TRF1, TRF2 (Telomere 

Repeat binding Factor 1 and 2), RAP1 (the human ortholog of the yeast 

Repressor/Activator Protein 1), TIN2 (Trf2- and Trf1-Interaction Nuclear protein), TPP1 

(formerly known as Tint1, Ptop, or Pip1), and POT1 (Protection Of the Telomeres 1). 

TRF1 and TRF2 bind the double stranded portion of the telomeric sequence via their 
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Figure 2. Shelterin Proteins. (A) The six shelterin proteins in vertebrates are 

POT1, RAP1, TIN2, TPP1, TRF1, and TRF2. (B) The six shelterin proteins in 

Schizo-saccharomyces pombe (S. pombe) are Ccq1, Pot1, Poz1, Rap1, Taz1, and 

Tpz1 with additional associated proteins Stn1 and Ten1. (C) The six shelterin 

proteins in Saccharomyces cerevisase (S. cerevisiae) are Cdc13, Rap1, Rif1, Rif2, 

Stn1, and Ten1. (D) The two shelterin proteins in Oxytricha nova are TEBPa and 

TEBPb (Palm and de Lange, 2008). 
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Myb binding motif, forming homodimers (Bianchi et al., 1997; Broccoli et al., 1997). 

RAP1 binds to TRF2 in the shelterin complex (Li et al., 2000). Without TRF2, RAP1 is 

highly unstable protein, and cannot localize to telomeric DNA (Celli and de Lange, 

2005). TIN2 is a critical scaffold to the overall integrity of the shelterin complex, binding 

TRF1, TRF2, and TPP1 (Ye et al., 2004). TPP1 connects TIN2 and POT1, and is a direct 

positive regulator of telomerase activity (Xin et al., 2007). POT1 binds to the G-rich 

strand of the single stranded portion of the telomere, and protects it from degradation by 

nucleases (Lei et al., 2004). POT1 also functions as a negative regulator of telomerase 

activity (Kelleher et al., 2005). POT1 was initially identified due to its sequence 

homology to TEBP alpha and beta (Telomere End Binding protein alpha and beta) in 

Oxytricha nova (Figure 2D). Of the six shelterin proteins, it holds the highest amount of 

sequence similarity across model organisms (Baumann and Cech, 2001).  

Schizosaccharomyces pombe has six shelterin proteins that have a very similar 

functional and structural architecture to vertebrate shelterin: Taz1 (Telomere-Associated 

in Schizosaccharomyces pombe), Rap1 (Repressor/Activator site binding Protein 1), Poz1 

(Pot1-associated in Schizosaccharomyces pombe), Tpz1 (TPP1 homolog in 

Schizosaccharomyces pombe), Ccq1 (Coiled-Coil protein Quantitatively enriched), and 

Pot1 (Protection of Telomeres 1) (Figure 2B). Taz1 has similar characteristics to TRF1/2, 

and binds double stranded telomere repeat as a homodimer (Cooper et al., 1997). Rap1 

resembles the functionality of Rap1 and serves as a bridge from Taz1 to Poz1 (Kanoh and 

Ishikawa, 2001). Poz1, Tpz1, and Ccq1 serve as a bridge between Taz1 and Pot1. Ccq1 

has been associated with regulation in meiotic division and plays a role in the recruitment 

of telomerase (Flory et al., 2004; Tomita and Cooper, 2008). Pot1 was originally 
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discovered is S. pombe due to its sequence homology to the previously discovered TEBP 

alpha and beta (Telomere End Binding Protein) in Oxytricha nova. This telomere protein 

in S. pombe also binds to 3` G overhang, and possess similar regulatory functions as 

POT1 in vertebrates (Baumann and Cech, 2001).  

Although shelterin proteins typically do not have close sequence homology, 

shelterin complex of proteins in other organisms have shown to possess functional 

homology. In Saccharomyces cerevisiae, three proteins associate with the G-rich single 

stranded overhang: Cdc13 (Cell Division Cycle 13), Stn1 (Suppressor of cdc ThirteeN 1), 

and Ten1 (TElomeric Pathways with STn 1) (Gao et al., 2007) (Figure 2C). Cdc13 assists 

in the recruitment of telomerase, while Stn1 inhibits the binding of telomerase to the 

telomeres (Pennock et al., 2001; Puglisi et al., 2008). Rap1 (Repressor/ Activator site 

binding Protein 1) binds directly to the double stranded portion of the S. cerevisae 

telomere. Rap1 has the binding partners Rif1 and 2 (Rap1 Interaction Factor 1 and 2) 

which directly regulate telomere length (Marcand et al., 1997). As the binding of Rif1 

and Rif2 increase association to Rap1, this complex inhibits the ability of telomerase to 

access the telomeres (Hirano et al., 2009). 

 

Telomere Proteins in Tetrahymena thermophila 

T. thermophila expresses four proteins that consistently associate with telomeric 

sequence and makes up its shelterin: Pot1a (protection of the telomeres 1a), Tpt1 

(TPP1/Tpz1 in Tetrahymena thermophila 1), Pat1 (Pot1a associated Tetrahymena 

thermophila 1), and Pat2 (Pot1a associated Tetrahymena thermophila 2), (Figure 1B). 

Pot1a binds directly to the 3` overhand of the telomeres, and when knocked out has a 
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resulting phenotype of cell cycle arrest, telomere elongation, and an inability to protect 

the telomeres from degradation. It has also been implicated DNA damage surveillance, 

and overall cell signaling through ATM (ataxia-telangiectasia mutated) and ATR (ataxia 

telangiectasia and Rad3-related protein) (Jacob et al., 2007). Pot1b (later renamed Pot2) 

does not bind to telomeric DNA despite its extremely similar structure and sequence to 

Pot1a, but localizes to chromosomal breakage sites. Through chromatin 

immunoprecipitation analysis, Pot1b has been shown to have no interaction with other 

shelterin proteins (Cranert et al., 2014). Pot1a directly interacts with the single stranded 

DNA, and the shelterin proteins Tpt1 and Pat1. When Tpt1 expression is knocked down, 

longer telomeres are synthesized. Tpt1 has also been implication as a regulator in cell 

cycle checkpoint. Pat1 positively affects telomere length, but has no direct interaction 

with Tpt1 (Linger et. al., 2011). Pat2 is the main facilitator in telomerase telomere 

interaction. When Pat2 expression is knocked down, gradual shortening of telomeres 

occurs. Pat2 has not been demonstrated to interact directly with Pot1, Tpt1, or Pat1 

(Premkumar et al., 2014). 

 

Telomere Dysregulation 

Telomeric dysregulation occurs when telomeres are lengthened, shortened, or 

their structure is perturbed. Dysregulation can be the result of both genetic changes and 

genotoxic stressors. Many times genetic changes can occur in the enzyme telomerase, 

leading to irregular sequence amount or content addition. Genetic changes can also cause 

differences in the shelterin protein composition. Improper association of shelterin to the 

telomeres can lead to aberrant telomere structure, and can also cause the dysregulation of 
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telomerase. Genotoxic stressors can damage the actual sequence of the DNA, causing 

single stranded or double stranded breaks, or lesions to individual bases.  

Dysregulation that causes lengthened or shortened telomeres is associated with 

human disease and overall cellular dysfunction. One of the first diseases shown to be 

associated with short telomeres was dyskeratosis congenital due to a mutation in the 

transcriptional processing of telomerase. (Mitchell et al., 1999). Dyskeratosis patients 

have a higher propensity to develop cancer in comparison to the rest of the population 

(Alter et al., 2009). Shortened telomeres in all tissues are commonly associated with 

various types of lung diseases including pulmonary fibrosis and emphysema (Armanios, 

2012; Stanley et al., 2015). These patients have an increased incidence of organ failure 

that accounts for about 90% of the deaths in this population (Dokal, 2000). Patients with 

longer telomeres are also predisposed to a variety of diseases including melanoma and 

glioma. Mutations in the POT1, TPP1, and RAP1 genes, which encode components of 

the shelterin complex, have also been associated with these types of cancers (Robles-

Espinoza et al., 2014; 6, Kocak et al., 2014). 

The inability to repair telomeric sequence after damage can also lead to aberrant 

telomeres. Because of the unique secondary structure and sequence of telomeres, damage 

is often processed differently at the telomeres in comparison to other parts of the genome. 

Typically, DNA repair machinery must interact with histones, but at the telomeres the 

repair machinery must also interact with shelterin proteins. An additional structural 

difference is the T-loop formed by the single stranded DNA invading upstream 

homologous double stranded DNA. Usually, DNA damage surveillance protein would 

recognize the single stranded 3’ end as DNA damage, but to maintain the integrity of the 
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telomere structure this should not be recognized as damage at this location of the 

genome.  

If telomeres become critically short, this can induce non-homologous end joining. 

This is the only in the most dire of situations when cells are in distress. This can result in 

telomere-telomere fusions and ultimately overall genome instability (Stewart et al., 

2012). Telomeres can also combat shortening through a telomerase independent method 

called alternative lengthening of the telomeres. Telomeric sequence undergoes 

homologous recombination of neighboring sequence to increase the overall length of the 

telomeres (Cesare and Reddel, 2010). Additionally, the three types of DNA excision 

repair (base excision repair, mismatch repair, and nucleotide excision repair) have been 

observed and studied at the telomeres (Jia et al., 2015). Nucleotide excision repair is 

particularly necessary because of the composition of telomere sequence, yet is 

understudied at this site of the genome. 

 

Nucleotide Excision Repair 

Nucleotide excision repair (NER) recognizes and repairs damage that occurs to a 

single strand of DNA due to physical and chemical mutagens in the environment and 

inside of the cell. UV light is a typical exogenous, physical mutagen that induces damage, 

generating both cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4) pyrimidone 

photoproducts (6-4PP), that are repaired by NER (Figure 3). Adducts caused by 

environmental, chemical mutagens are benzo[α]pyrene and various aromatic amines, and 

are also repaired by NER (Szymkowski et al., 1993). All types of damage listed above 

typically have one major characteristic in common; interaction with DNA distorts the  
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Figure 3. Nucleotide Excision Repair Pathway. The two nucleotide excision repair 

pathways are global genome NER (GGR; left) and transcription coupled NER (TCR; 

right). Global genome NER commences with the recognition of the damaged strand 

(shown with a red star) with the binding of XPC-Rad23b-Cent2 and UV-DDB. 

Transcription coupled NER starts with the stalling of RNA polymerase which signals 

the recruitment of CSB, UVSSA, and USP7. These two pathways converge and 

TFIIH, XPA, and RPA are recruited and unwind the helicase. XPF-ERCC1 and XPG 

make incisions on either side of the damage. The new strand is synthesized with 

DNA polymerase using the nondamaged strand as template, and sealed with ligase 

(van Belle, 2015). 
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double helix and thermodynamically destabilize DNA duplexes (Sugasawa et al., 2001). 

Because the recognition proteins in the NER pathway detect this helical distortion rather 

than the actual damaged base, NER is able to recognize a wide range of damage. This is a 

unique quality in comparison to other DNA damage repair pathways, which typically 

recognize the irregular structure and damage of the DNA. Along with this unique 

recognition characteristic, the discovery of the proteins within the NER pathway is 

different from other DNA repair pathways. Many of the proteins within the nucleotide 

excision repair pathway were discovered through studies of patients with Xeroderma 

Pigmentosum.  

Xeroderma Pigmentosum patients cannot perform nucleotide excision repair 

(NER) due to a lack of one of the XP repair proteins. Researchers study these patients to 

better understand the overall pathway of NER and the pathobiology of Xeroderma 

Pigmentosum both clinically and through cellular culture (Cleaver, 1968). The hallmark 

phenotypic characteristic of this genetic disorder is extreme sensitivity to sunlight. 

Patients can have over a 2000-fold increase in the risk of skin cancer (DiGiovanna and 

Kramer, 2012). Many times, patients also have developmental delay, neurological 

damage, and overall increased risk of cancer (Cleaver, 2005). This phenotypic 

manifestation is likely due to the accumulation of DNA damage due to the inability for 

the damage to either be recognized or repaired by NER. In addition to Xeroderma 

Pigmentosum, mutations in various specific XP proteins can lead to Cockayne syndrome 

and trichothiodystrophy (Lehmann, 2003). Studies with XP patients have made great 

headway into understanding the NER pathway. 
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There are two types of nucleotide excision repair processes: global genome and 

transcription coupled repair. Transcription coupled repair as the name implies, focuses on 

repairing genes undergoing active transcription (Hanawalt and Spivak, 2008). Global 

genome repair is responsible for repairing both transcriptionally active and inactive parts 

of the genome (Gillet and Schärer, 2006). The primary difference between these two 

types of repair is the damage recognition step. Transcription coupled repaired responds 

largely to the RNA polymerase stalled at a site of damage in an actively transcribed 

portion of the genome (Figure 3; TCR pathway). The recognition factors specific to TCR 

are CSB (Cockayne Syndrome group B), UVSSA (UV-Stimulated Scaffold protein A), 

and USP7 (Ubiquitin-Specific-Processing protease 7). 

Global genome repair begins with specific recognition factors of XPC-RAD23B 

(Xeroderma Pigmentosum C, RADiation sensitive 23B) and if necessary UV-DDB 

(Ultraviolet-Damaged DNA B) that recognize thermodynamically destabilized duplexes 

(Evans et al., 1997; Sugasawa et al., 2001) (Figure 3 GGR pathway). XPC, known as 

RAD4 (RADiation sensitive 4) in both yeast and Tetrahymena thermophila, contains two 

key functional domains: transglutamase homology domain (TGD) and Beta-hairpin 

domains 1-3 (BHD 1-3) (Figure 4). Both TGD and BHD1 anchor XPC and RAD23 to the 

DNA at the site of damage. BHD2 and 3 bind the undamaged strand encircling the two 

nucleotides across from the damage. This ability to bind the undamaged strand allows 

XPC-RAD23B to recognize a large variety of DNA damages (Min and Pavletich, 2007). 

While the domains of XPC assist in physically binding DNA, the main function of a large 

amount of helical destabilization. The recognition of CPD damage is facilitated by UV-

DDB complex (Tang et al., 2000). DDB2 creates a significant kink in the DNA duplex,  
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Figure 4. Structure of XPC/RAD23B. Ribbon diagram of XPC (pink and blue) and 

a portion of RAD23B (yellow). XPC is binding the strand opposite of the damage. 

The blue strand is the transglutaminase and beta hair pin 1 domain. The pink strand 

is the beta hair pin 2 and 3 domain (Schärer, 2013). 
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and this distortion is more recognizable to XPC-RAD23B (Scrima et al., 2008). 

For both global and transcription coupled NER, the pathways converge once the 

damage is recognized, and initial protein complexes are stabilized. The next step required 

is the recruitment of the pre-incision complex. The pre-incision initiates with TFIIH, 

which is recruited to the site of damage by the presence of the recognition proteins. The 

TFIIH complex has a total of 10 subunits, with its catalytic proteins XPB and XPD which 

perform helicase activity (Evans, 1997; Tapias et al., 2004). The XPB functions to pry 

open the DNA duplex with the facilitation of XPC that allows loading of THIIH (Coin et 

al., 2008). XPD translocates along the single stranded DNA opening it, and stalls at the 

location of the damage (Sugasawa et al., 2009). This stalling causes the rest of the pre-

incision complex to assemble, which includes XPA, RPA, and XPG; (Wakasugi and 

Sancar, 1998; Volker et al., 2001). Once these proteins are recruited the XPC-RAD23B 

complex dissociates, XPA then plays a key role in the placement and positioning of many 

of the nucleotide excision repair proteins including ERCC1-XPF, TFIIH, XPC-RAD23B 

complex, DDB2, and PCNA (Li et al., 1994; Park et al., 1995; Bunick et al., 2006; 

Wakasugi et al., 2009; Gilljam et al., 2012). RPA binds to and coats the ssDNA on the 

opposite side of the damage for a span of about 30 nucleotides, which is about the size of 

the damaged strand that will be removed (Fan and Pavletich, 2012). The placement of the 

RPA proteins helps to position ERCC1-XPF and XPG to allow for a dual incision to 

remove the damaged sequence (de Laat et al., 1998). ERCC1-XPF are recruited to this 

complex via XPA, and creates the first incision at the 5` end of the sequence (Li et al., 

1994). This first incision is required at the 5` end before the second incision can be 

performed. XPG will only bind when a ssDNA stretch at the 3` end is present which is 
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created by this first incision (Hohl et al., 2003). The second incision at the 3` end is made 

by XPG (Fagbemi et al., 2011).  

The incision made by ERCC1-XPF create a 3` hydroxyl group that can be used by 

DNA polymerase to fill in the gap created. There are three polymerases that have been 

associated with NER: Polymerase ĸ, Ɛ, and δ. Pol ĸ which is typically associated with 

translesion synthesis has been shown to be involved in NER (Ogi and Lehmann, 2006). 

When Pol Ɛ and δ expression is knocked down, there is a 50% reduction of repair 

synthesis. Each polymerase has specific proteins that facilitate the polymerase association 

to the DNA strand (Ogi et al., 2010). The 5` phosphate created by XPG will be ligated to 

the newly extended DNA fragment by DNA ligase I or DNA ligase IIIα to seal the 

backbone. DNA ligase IIIα is active in both dormant and actively replicating cells, while 

DNA ligase I is active in replicating cells (Moser et al., 2007).  

Once the DNA has been successfully repaired, NER proteins dissociate, and the 

cell is able to resume its regular function. This is critical to both actively transcribed and 

silent portions of the genome. If NER does not occur in areas that are being actively 

transcribed this could lead to a point mutation, or the inability of RNA polymerase to be 

able to transcribe the gene successfully. In silent portions of the genome, this repair is 

critical because remaining damage could be passed to the next generation of cells. These 

mutations can cause phenotypic difference and overall genome instability. One silent 

portion of the gnome that is critical to genome stability is the telomeres. NER is 

important to maintain telomeric DNA, but thus far has been understudied. 
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Nucleotide Excision Repair at the Telomeres 

Limited studies have been conducted with nucleotide excision repair at the 

telomeres. CPDs occur seven-fold higher at telomeres than the bulk genome in human 

fibroblast cells (Rochette and Brash, 2010). CPDs are removed 1.5-fold faster at the 

telomeres over genomic DNA, suggesting that NER at the telomeres is unique and 

efficient (Parikh et al., 2015). However, contradictory data has been published currently 

call into question if repair is due to nucleotide excision repair pathways or to other repair 

pathways (Parikh et al., 2015; Rochette and Brash, 2010). For example, primary mouse 

fibroblasts deficient in XPB and chronically exposed to low amounts of hydrogen 

peroxide, an agent that induces base excision repair (BER), have shorter telomeres and 

higher amounts of telomere degradation (Ting et al., 2010). A similar phenotype has been 

observed in XPB/XPD deficient lymphoblastoids treated with hydrogen peroxide 

(Gopalakrishnan et al., 2010). It is possible that these BER-related phenotypes may 

actually be related to NER since NER proteins can play a role in the BER pathway (Melis 

et al., 2013).  

NER proteins are also directly involved in telomere maintenance via shelterin. 

XPF and the shelterin protein TRF2 have an intricate interaction; when XPF is over 

expressed, shorter telomere fragments occur, and less TRF2 interaction with the telomere 

is observed (Wu et al., 2008). Additionally, ERCC1/XPF is one of the endonucleases 

responsible for removing the 3` overhang of telomeres if left uncapped. TRF2 serves as 

the protector against the ERCC1/XPF endonuclease activity in regularly capped 

telomeres (Zhu et al., 2003).  
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NER proteins may also help regulate telomerase itself. Xpc-/- knock out Mus 

musculus have chronically longer telomeres, while double knock out M. musculus of Xpc 

and Terc (catalytic subunit of telomerase) show lengthened telomeres. This surprising 

lengthening of telomeres with the Xpc-/-G1-G3-/- is likely due to alternative lengthening of 

the telomeres (ALT) (Stout and Blasco, 2013).  

Currently, still much about the UV response and XPC activity at the telomere is 

unknown. Due to the unique structure, sequence, and critical role of telomeres (Figure 1), 

it is likely that the repair pathways are very individualistic to this part of the genome in 

comparison to typical genomic sequence. Thus far no nucleotide repair studies at the 

telomere have ever been conducted in Tetrahymena thermophila but it is an extremely 

well characterized model organism in telomere biology studies, and will allow DNA 

repair at this are of the genome to be addressed.  

 

Purpose Statement 

The major goal of this research project was to understand the behavior of RAD4, 

the homolog of XPC in T. thermophila, both generally in the genome as well as at the 

telomeres. RAD4 is a critical DNA damage recognition protein in the nucleotide excision 

repair pathway in the global genome pathway. The process of nucleotide excision repair 

at the telomeres is not well known, yet is intriguing because of the telomeres unique 

architecture and sequence. The telomere sequence in T. thermophila (3`-GGGGTT-5`) is 

especially prone to UV damage due to the frequency of thymine dinucleotides that may 

undergo UV-induced dimerization, which is typically repaired by nucleotide excision 

repair. Similarly, the mammalian telomeric sequence (TTAGGG) is also susceptible to 
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damage repaired by NER due to its dipyrimidine sequence. Thus, the integrity of 

telomeres may be affected if the nucleotide excision repair pathway is disrupted.  

To begin these studies, XPC and RAD4 sequences were analyzed by a variety of 

bioinformatics tools to define their homology. RAD4 expression levels were observed 

after T. thermophila exposure to mutagens, including UV, hydrogen peroxide, and MMS, 

to induce DNA damage recognized and repaired by nucleotide excision repair, base 

excision repair, and double stranded break repair, respectively. To further characterize 

RAD4, a RAD4 knock down was established via short hairpin RNA. Cellular growth after 

UV light and hydrogen peroxide exposure was measured to determine how RAD4 

depletion affects the ability to recognize damaged DNA. Finally, telomere length and 

integrity were measured in the wild type and RAD4 depleted cells, before and after UV 

treatment via a unique DIG-labeled probe telomere detection assay. It was anticipated 

that the nucleotide excision repair pathway will be further characterized in the model 

organism, T. thermophila, providing further understanding of how nucleotide excision 

repair helps to maintain telomeres. 
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EXPERIMENTAL PROCEDURES 

 

Bioinformatics – Phylogenetic Tree Design and shRNA Primer Design  

 

RAD4 nucleotide sequence, amino acid sequence, exon and intron predictions, 

and paralogs were collected from Tetrahymena Genome Database (TGD; Stover et al., 

2012). The paralog obtained from TGD was RAD4 (TTHERM_00825460; Altschul et al., 

1997). Orthologs were obtained using National Center for Biotechnology Information 

Basic Local Alignment Search Tool (NCBI BLAST; Altschul et al., 1997) search from 

RAD4. The following proteins were obtained as the top ortholog hits: NP_001460.1 

(Homo sapiens), NP_034377.2 (Mus musculus), ABI54461.1 (Danio rerio), BAA76953.1 

(Xenopus laevis), NP_504491.1 (Caenorhabditis elegans), AGA18917.1 (Drosophila 

melanogaster), XP_637925.1 (Dictyostelium discoideum), AJS88329.1 (Saccharomyces 

cerevisiae), NP_587828.1 (Schizosaccharomyces pombe) NP_564012.1 (Arabidopsis 

thaliana), XP_002267875.1 (Vitis vinifera), and ABN13872.1 (Aspergillus niger).  

Domain analysis was performed on these amino acid sequences with InterPro 

(Finn et al., 2017). Additionally, sequences were analyzed for evolutionary conservation 

with Multiple Sequence Alignment-CLUSTALW (Li et al., 2015), and Molecular 

Evolutionary Genetic Analysis 7.0 (MEGA7; Kumar et al., 2016). MEGA 7.0 was used 

to create a maximum likelihood tree using bootstrap consensus with 500 replicates. 

Sequences were analyzed with Tree-based Consistency Objective Function For alignment 

Evaluation (TCOFFEE; Notredame et al., 2000) to determine the appropriate location for 

knock down primer design (data not shown). Primers (shRNA) were analyzed using 

Integrate DNA Technologies OligoAnalyzer 3.1 (https://www.idtdna.com/calc/analyzer). 
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Domain analysis was performed on the shelterin proteins with InterPro of Homo 

sapiens, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Tetrahymena 

thermophila. The following proteins were analyzed for Homo sapiens: POT1 

(NP_056265.2),  RAP1 (ABA64473.1), TIN2 (AAF18439.1), TPP1 (NP_001075955.1) 

TRF1 (NP_059523.2), and TRF2 (NP_059523.2); Saccharomyces cerevisiae: CDC13 

(NP_010061.1), RAP1 (NP_014183.1), RIF1 (NP_009834.4), RIF2 (NP_013558.3); 

Schizosaccharomyces pombe: CCQ1 (NP_588210.1), POT1 (NP_594453.1), POZ1 

(NP_594428.1), RAP1 (NP_596285.1), TAZ1 (NP_594047.1), and TPZ1 

(NP_001342857.1); Tetrahymena thermophila: POT1 (TTHERM_000378989), TPT1 

(TTHERM_00523050), PAT1 (TTHERM_00013120), and PAT2 

(TTHERM_00049470). 

 

shRNA Plasmid Construction  

The appropriate pBT1-YFG  vector (from the work of Kyle Cottrell in 2012) was 

combined with the specific RAD4 sense and antisense primers to construct a theoretical 

plasmid with Gene Construction Kit 3.0 (textco biosoftware). To phosphorylate the 

shRNA oligos, 200 pmol of the sense and antisense RAD4 oligos (Table 1), 10 units of 

T4-PNK (New England Biolabs), 1X PNK buffer (New England Biolabs), and 1 mM 

ATP were combined and brought to a final volume of 50 µL. The reaction was incubated 

at 37°C for 60 minutes, and then 70°C for ten minutes, 10 µL of this phosphorylation 

reaction was combined with 1XSSC and brought to a final volume of 25 µL. To anneal  

these oligos, this reaction was heated at 75°C for five minutes, and cooled in a 23°C  
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Table 1. Primer Sequences. 

 

Target Primer Sequence (5` to 3`) 

ACT1 Forward: TGAATTAAAGGCTTACAAGGAATC 

Reverse: CACACTTCATGATAGAGTTGAAGG 

DIG-ACT1 /5DigN/TGAATTAAAGGCTTACAAGGAATC 

DIG-Telomere /5DigN/CCCCAACCCCAACCCCAACCCCAACCCCAA 

HHP1 Forward: TTAGCAATGATAAACCTTAGAC 

Reverse: TGTGTAAAGAGATTTTCCATC 

RAD4 qRT-PCR Forward: AGAGCTGCACGTTTTTCAGATATG (1032F) 

Reverse: TGACAGCATTTGGTCAAATAAATCA (1271R) 

shRNA 

Confirmation 

Forward: ATGAATGATATAAATGAAGAGTGGC  

Reverse: TGTTATGTGAATGAAGTTAATTGGG 
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annealed RAD4 oligos at 1:5 and 2:5 (vector:insert) molar ratios. These ligation reactions 

contained 1X T4 DNA ligase buffer (New England Biolabs) and 400 units T4 DNA 

ligase (New England Biolabs). Ligation reactions were incubated at 14°C overnight, and 

kept in at -20°C for long term storage. 

 

Electroporation of DH10B Escherichia coli with pBT1-shRNA:RAD4 

DH10B E. coli cells were combined with 1 µL of the pBT1-RAD4shRNA ligation 

reaction, and transferred to a 2-mm electroporation cuvette (Fisher) taking care to avoid 

the introduction of any bubbles. Samples were placed in the electroporation chamber 

(Bio-Rad Gene Pulser II Electroporation System) and electroporated at 2.5kV, 200 ohms, 

25 µF. Samples were recovered in 1 mL of SOC media (Invitrogen) at 37°C for 60 

minutes, and 100 µL of each sample was plated on a LB+AMP plates (1% bacto tryptone, 

0.5% yeast extract, 1% NaCl, 1.5% bacterial agar with 100 µg/µL ampicillin), and 

incubated at 37°C for 12-20 hours.  

 

Lysozyme Boil Plasmid Isolation and Ethanol Precipitation 

Plasmid-containing bacteria were grown on LB+AMP plates (1% bacto tryptone, 

0.5% yeast extract, 1% NaCl, 1.5% bacterial agar with 100 µg/µL ampicillin). Two 

milliliter (miniprep) and 25 mL (midiprep) cultures were grown in LB+AMP liquid 

media (1% bacto tryptone, 0.5% yeast extract, 1% NaCl, with 100 µg/µL ampicillin), and 

incubated overnight at 37°C in at 220 rpm. Cultures were centrifuged for two minutes 

(Sorvall Legend X1 Centrifuge, Thermo Fisher Scientific) at 13300 rpm (miniprep) or 

6000 rpm (midiprep) for ten minutes. The remaining media was removed. Cellular pellet 
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was resuspended in 350 µL or 3.5 mL sucrose lysis buffer (8% sucrose, 0.5% Trion X-

100, 50 mM EDTA, 10 mM Tris-pH 8) and 10 mg/mL lysozyme (Fisher Scientific). 

Samples were transferred to 1.5 mL microcentrifuge tubes, incubated at room 

temperature for five minutes, and boiled for one minute. Samples were spun at maximum 

speed for 15 minutes, and cellular debris was removed. To precipitate DNA, 220 µL of 

isopropanol and 40 µL 3 M sodium acetate were added and incubated for five minutes. 

Plasmid isolates were spun at maximum speed for 5 minutes, and washed with 70% 

ethanol. Samples were combined and resuspended in 50 µL (miniprep) or 300 µL 

(midiprep) TE (10 mM Tris-HCl, 1 mM EDTA-pH 8). 

Midipreps were incubated with 10 mg/mL RNase A (AppliChem Panreac) at 

37°C for 3 hours. Samples then underwent a phenol chloroform extraction. Purified 

samples were combined with 1/10th 3 M sodium acetate and 2.5 times 100% chilled 

ethanol, and incubated at -20°C overnight. Samples were centrifuged at maximum speed 

for 10 minutes and the supernatant was poured off. The pellet was washed with 70% 

ethanol, and centrifuged for 10 minutes at maximum speed. The supernatant was 

discarded, and carefully removed. The plasmid was resuspended in 150 µL double 

distilled water.  

 

Restriction Enzyme Digest Confirmation of pBT1-shRNA:RAD4 

The isolated plasmid was digested with SacI (New England Biolabs) and XhoI 

(New England Biolabs) overnight at 37°C. Samples were electrophoresed on a 1.0% 

agarose gel in TAE at 120V for 30 minutes, and visualized with the KODAK Gel Logic 

200 Imaging System. The strain considered positive for pBT1-shRNA:RAD4 after 
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analysis was grown up in a 2 mL culture in LB+AMP liquid media (1% bacto tryptone, 

0.5% yeast extract, 1% NaCl, with 100 µg/µL ampicillin). For long term storage, glycerol 

stocks were made by combining culture and 10% glycerol in a 1:1 ratio, and stored at -

80°C. 

 

Linearization of pBT1-shRNA:RAD4 for Biolistic Transformation 

Gene Construction Kit 3.0 was used find the best restriction enzymes to linearize 

the knock down plasmid after the E. coli transformation. A 200 µL sample was prepared 

with 1X SmartCut Buffer (NEB), 2.5 µL XhoI, 2.5 µL SacI, and 100 µg plasmid DNA 

and incubated over night at 37°C. The sample was centrifuged at maximum speed for 15 

minutes. The precipitate was washed with 70% ethanol, and centrifuged for five minutes. 

Ethanol was removed, and sample was allowed to dry at room temperature. Sample was 

quantified on the NanoDrop spectrometer (NanoDrop 2000 Spectrophotometer, Thermo 

Fisher Scientific), and sample was adjusted to 2.0 µg/µL in water. One µL sample was 

run on a 1.0% agarose gel in TAE at 120V for 30 minutes, and visualized with the 

KODAK Gel Logic 200 Imaging System to ensure proper digestion sizes before biolistic 

transformation.  

 

Cell Culture Maintenance and Strains Used 

Tetrahymena thermophila were grown in 2% PPY media (0.02 g/mL protease 

peptone, 0.002 g/mL yeast extract) and 1XPSF (100 µg/mL penicillin, 100 µg/mL 

streptomycin, 0.25 µg/mL amphotericin B, Thermo Fisher Scientific). Cultures grown in 

plates (96-, 48-, and 24-well plates) were incubated in humidity chambers at 30°C. 
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Cultures grown in larger quantities for RNA isolation, survivability assay, gDNA 

isolations, and any other experiments were grown at 30°C at 100 rpm. Concentrations of 

cells throughout experimentation were estimated via a hemocytometer. Stock cultures 

were either continued or established in 1% PPY+10 mM Tris and 1XPSF. Stock cultures 

were maintained approximately every 4-6 months by transferring 100 µL of the original 

stock to a new 1% PPY+10 mM Tris and 1XPSF. All strains used during the course of 

this project are described in Table 2. Strains designated with a “CU” indicate that the 

strain was obtained from the Tetrahymena Stock Center located at Cornell University. 

 

Biolistic Transformation of Tetrahymena thermophila 

The gold beads were prepared by weighing out 30 mg of Au particles, and 70% 

ethanol was added. The beads were vortexed for three to five minutes, centrifuged at 

maximum speed for five seconds and the supernatant was discarded. These steps were 

repeated three times.  

To prepare the cells, a culture was started by inoculating 25 mL culture of 2% 

PPY media (0.02 g/mL protease peptone, 0.002 g/mL yeast extract and 1XPSF (100 

µg/mL penicillin, 100 µg/mL streptomycin, 0.25 µg/mL amphotericin B, Thermo Fisher 

Scientific) culture with a 0.5 mL of stock culture of either CU428, CU522, or CU725 

(Table 2). The next day a culture was diluted to a final concentration of 1 to 

3x105cell/mL at the time of the transformation. The next day the culture was centrifuged 

at 3000 rpm for three minutes (Sorvall Legend X1 Centrifuge, Thermo Fisher Scientific). 

The supernatant was decantated and the pellet resuspended in 10 mM Tris and  
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Table 2. Tetrahymena thermophila Strains. 
 

Name Genotype Phenotype Description 

CU428 MIC: mrp1-1/mrp1-1 6-methylpurine 

resistance 
Used as wild type strain 

in all experimentation 

unless otherwise stated 
 

CU522 MIC: mpr1-1/mpr1-1, 

btu1-1::btu1-

1M350K/btu1-1::btu1-

1M350K.  

MAC: btu1-1::btu1-

1M350K 

 

Paclitaxel 

sensitive 
Vinblastine 

resistant 

BTU1 mutant used for 

transformation of knock 

down constructs 
 

CU725 MIC: chx1-1/chx1-1 btu1-

1::btu1-1M350K/btu1-

1::btu1-1M350K   

MAC: btu1-1::btu1-

1M350K 

Cyclohexamide, 

paclitaxel 

sensitive, 

vinblastine 

resistant 
 

BTU1 mutant used for 

transformation of knock 

down constructs 

shRNA 
RAD4 
(Clone 1, 

Clone 10) 

MAC: btu1-1M350K :: 

shRNA-RAD4 
Paclitaxel 

resistance 
Knockdown of RAD4 by 

short-hairpin RNA, 

recombined in BTU1 

locus, Modification of 

CU522 
 

shRNA 
RAD4 
(Clone 11)  

MAC: btu1-1M350K :: 

shRNA-RAD4 
Paclitaxel 

resistance 
Knockdown of RAD4 by 

short-hairpin RNA, 

recombined in BTU1 

locus, Modification of 

CU725 
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centrifuged again for 3 minutes. The 10 mM Tris was decanted, and the cell pellet was  

resuspended in 10 mM Tris pH. Cultures were then placed in 30°C without shaking for  

14 to 20 hours. Media was pre-warmed at 30°C for transformations. 

The gold beads had 5 µg of the linearized knock down plasmid, 25 µL 2.5 M 

calcium chloride, and 10 µL 100 mM spermidine added. The mixture was vortexed for 30 

minutes at 4°C. The mixture was centrifuged, the supernatant was removed, and 70% 

ethanol was added; this was repeated with 100% ethanol. The steel macrocarrier holder, 

plastic macrocarrier, plastic cap, and metal stopping screens were sterilized by dipping in 

100% ethanol. The rupture disks were sterilized by dipping in 100% isopropanol.  

Prepared gold samples were added to the macrocarrier. Ten mM HEPES was 

placed on a filter and 1x107 of cells were added. The gene gun (Bio-Rad PDS-

1000/HeTM Biolistic Particle Delivery System) was set up the as follows: rupture disk 

(1100 PSI for 900 PSI) has a 3/8 inch gap to the macrocarrier assembly,stopping screen 

was in the third position, and was placed in the macrocarrier assembly, and cell plate 

station was in the bottom most position. The vacuum pump was turned on and a vacuum 

was created and pressure to 25-26 mmHg, and then shot. Cell were allowed to recover in 

2% PPY media (0.02 g/mL protease peptone, 0.002 g/mL yeast extract) for seven hours 

at 30°C, and subsequently plated in 96-well plates. Cells were selected with 20 µM 

Paclitaxel (Fisher Scientific). After three to seven days, surviving Tetrahymena were 

placed in 24-well plates with 40 µM Paclitaxel.  

 

Knock Down Confirmation via Whole-Cell PCR  

Both CU428 and shRNA-RAD4 Tetrahymena thermophila strains were grown in 



 

30 

24-well plates and treated with 20 µM Paclitaxel for 2-3 days. PCR reactions were made 

by adding 3 µL of growing cells to 1X GoTaq MasterMix (Promega), 10 pmol shRNA 

forward and reverse confirmation primers to a final reaction volume of 25 µL. A similar 

reaction was performed for the positive control but in place of the growing cells a 1:200 

dilution of the linearized shRNA-RAD4 plasmid was used. Samples were heated to 95°C 

for 2 minutes and then cycled through amplification 32 times at 95°C for 45 seconds, 

60.6°C for 45 second, and 72°C for 1 minute 45 seconds. The samples are left at 72°C for 

5 minutes, and the temperature was lowered to 4°C (MJ Mini Personal Thermocycler, 

Bio Rad). Products were run on a 1.5% agarose gel in TAE at 120V for 30 minutes and 

visualized with the KODAK Gel Logic 200 Imaging System.  

 

Total RNA Isolations  

Tetrahymena thermophila cultures (CU428 and shRNA-RAD4 knock down 

strains) were grown to 1x105cell/mL. Cells were centrifuged for 3 minutes at 3000 rpm 

(Sorvall Legend X1 Centrifuge, Thermo Fisher Scientific), and washed with 10 mM Tris. 

Cells that necessitated UV treatment were resuspended in 10 mL of 10 mM Tris and 

treated with 100 J/m2 UV, and were allowed to recover for two hours. Total RNA was 

isolated with the Qaigen RNeasy mini kit according to the manufacturers 

recommendations. Briefly, cells were thoroughly resuspended in 600 µL RLT Buffer 

with 143 mM β-mercaptoethanol. One thousand µL 70% Ethanol was added and the 

solution was transferred to RNeasy spin column. Column was centrifuged at maximum 

speed for 15 seconds. The flow through was discarded, and 350 µL Buffer RW1 and 

centrifuged at maximum speed for 15 seconds. Then 80 µL of RDD solution with 30 U 
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RNase-free DNase I (Qiagen). This sample was incubated on the column at room 

temperature for 15 minutes, and 350 µL Buffer RW1 was added and centrifuge at 

maximum speed for 15 seconds. Then 500 µL of Buffer RPE was added and centrifuged 

at maximum speed for 15 seconds. Flow through was discarded and 500 µL of Buffer 

RPE was added and centrifuged at maximum speed for 2 minutes. The column is 

transferred to a new collection tube and 50 µL of RNase free water (Qiagen). RNA 

samples were quantified (NanoDrop 2000 Spectrophotometer, Thermo Fisher Scientific), 

and samples were stored at -80°C.  

 

Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR)  

cDNA was created by combining 1X AMV Buffer (Promega), 5 mM MgCl2, 2 µL 

10 mM dNTPs (Promega), 1 µL RNasin-RNase Inhibitor (Thermo Fisher Scientific), 7.5 

units AMV Reverse Transcriptase (Promega), and 5 µM Oligo dTVN (IDT), and then 2 

µg of Total RNA isolation was added to aliquoted master mix and incubated at 42°C for 

25 minutes, 99°C for 5 minutes, and 4°C for 5 minutes.  

Quantitate Reverse Transcriptase polymerase chain reactions were created by 

adding 1X SsoFast EvaGreen (Bio Rad), 10 µM of forward and reverse primer (qRT-

PCR RAD4, shRNA Confirmation, HHP1 or ACT1; Table 1) were added to 1 µL cDNA, 

water or gDNA. These samples were placed in the Bio Rad CFX Connect Real-Time 

Detection System. They were heated to 95°C for 2 minutes and then the following three 

steps 32 times: 95°C for 45 seconds, 54°C for 45 second, and 72°C for 1 minute 45 

seconds. The samples are left at 72°C for 5 minutes, and allowed to heat to their full 

melting temperatures. The Bio Rad CFX Connect Real-Time Detection Software 
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determines the Starting Quantities (SQ) of qRT-PCR products on the basis of the gDNA 

dilutions with the ACT1 primers. The samples were then normalized to the HHP1 

expression levels for the respective treatments, and made relative to either no treatment or 

wild type cells. 

 

Survivability Assay of Rad4 Knock Down Strains in T. thermophila 

Tetrahymena thermophila cultures (CU428 and shRNARAD4 knock down 

strains) were grown to 1x105cells/mL, and the treated with various levels of UVC 

treatment (0, 25, 50, 75, and 100 J/m2). Treatment occurred in 10 mM Tris in the CL-

1000 Ultraviolet Crosslinker, UVP, and one mL of treated cells was added to 9 mL 10 

mM Tris, and vortexed. This process was repeated, and 0.6 mL of this dilution was added 

to 29.4 mL 2% PPY+1XPSF. Cells were plated in 96-well plates and incubated in 

humidity chambers at 30°C for 7 days. After 7 days, wells with significant growth were 

counted. No UV treatment (0 J/m2) was considered 100% survivability.  

 

T. thermophila Genomic DNA Isolation 

Tetrahymena thermophila cultures (CU428 and shRNA-RAD4 knock down 

strains) were grown to 1x105cells/mL. Cells were centrifuged for 3 minutes at 3000 rpm 

(Sorvall Legend X1 Centrifuge, Thermo Fisher Scientific), and were washed with 10 mM 

Tris. Samples treated with UV in the CL-1000 Ultraviolet Crosslinker, UVP with 100 

J/m2 UVC. Samples were isolated from untreated, 0, 1, 2, 3, and 4 hours after UV 

treatment. After samples are centrifuge for 3 minutes at 3000 rpm (Sorvall Legend X1 

Centrifuge, Thermo Fisher Scientific). The pellet was washed with 10 mM Tris then 
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lysed with 3.5 mL Urea Lysis Buffer. 700 µL of the lysate was aliquoted to 1.5 mL 

microcentrifuge tubes and DNA was phenol chloroform extracted twice. Aqueous 

samples were frozen overnight at -20°C. Samples were thawed and 0.88 M NaCl, and 

equal volumes of isopropanol were added. Samples were centrifuged (Spectrafuge 24D 

Digital Microcentrifuge) at maximum speed for 10 minutes. Supernatant was decanted 

and 500 µL of the pellet was washed with 70% ethanol at room temperature for two 

minutes. Samples were centrifuged for three minutes at maximum speed, the supernatant 

decanted and the DNA pellet was dried. Fifty µL of Tris-EDTA (100 mM Tris-HCl, 10 

mM EDTA) buffer was added to each DNA pellet, and all samples containing the same 

treatment and strain are combined. Genomic DNA (gDNA) samples were incubated with 

10 mg/mL RNase A (AppliChem Panreac) at 37°C for 3 hours. Samples were quantified 

with a NanoDrop spectrometer (NanoDrop 2000 Spectrophotometer, Thermo Fisher 

Scientific).  

 

DIG-Labeled Telomere Probe Detection Assay  

gDNA (5 µg) were digested overnight at 37°C with HindIII-HF (NEB) in 1X 

SmartCut Buffer. Digests were electrophoresed on a 1.5% agarose gel for 3 hours (or 

until migrated three-fourths down the gel for maximum separation) at 70V, then stained 

with 10 mg/mL ethidium bromide for 5 to 10 minutes, and visualized with the KODAK 

Gel Logic 200 Imaging System. Any gel not containing sample is removed, and gel is 

destained for 15 minutes in water and then depurinated in 0.125 N HCl for 20 minutes, 

and rinsed with water. Gel was washed in denaturing solution (1.5 M NaCl, 0.5 NaOH) 

for 20 minutes, and rinsed with water. Gel was washed in neutralizing solution (1.5 M 
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NaCl, 0.5 M Tris base) for 20 minutes, and rinsed. The agarose gel was placed in a Pyrex 

dish with 10X SSC (3.0 M NaCl, 0.3 M Sodium Citrate, pH adjusted to 7.0 with 1 N 

HCl) on top of the wick (made from stacked chromatography paper, Whatman and paper 

towels), then topped with a piece of prewet nitrocellulose membrane (Whatman Nytran 

SuPerCharge Membrane), two pieces of chromatography paper, 3 inches of paper towels, 

and a glass weight. This transfer apparatus was left overnight for approximately 12 hours. 

The next day, the nitrocellulose membrane was UV cross linked (CL-1000 Ultraviolet 

Crosslinker, UVP) at 1200 J/m2 twice, and stored at 4°C.  

All incubation of the nitrocellulose membrane occurred in a rotating hybridization 

oven at the specified temperature. The membrane was washed in 0.1X SSC/0.1% SDS for 

one hour at 65°C. Membrane was prehybridized with 10X Denhardt’s Solution, 

(ThermoFisher Scientific), 6X SSC, 0.1% SDS for an hour at 40°C. The Digoxygenin 

(DIG)-Telomere and Digoxygenin (DIG)-ACT1 telomere probes (Table 1) at 100 µM 

was added and allowed to hybridize for approximately 12 to 15 hours. The hybridization 

solution was removes and the membrane was washed with three times with 6X 

SSC/0.1%SDS at 42°C for two minutes, ten minutes, and another ten minutes. The 

membrane was washed at 45°C in 6X SSC/0.1%SDS for twenty minutes.  

The membrane was blocked in 0.5% milk in TBST with 0.002% Tween 20 

(Biorad) for one hour, and then incubated for 1.5 hours in TBST with 1:1000 anti-Dig 

antibody (Anti-Dig-POD, Fab fragments Roche). The membrane was washed in new 

TBST for five minutes, 15 minutes, and another 15 minutes, and finally for 15 minutes in 

TBS. To visualize the restriction fragment lengths, the membrane was covered in a one to 

one ratio of SuperSignal West Dura Stable Peroxide Buffer and SuperSignal West Dura 
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Lumino/Enhancer Solution (Thermo Scientific). The membrane was visualized using 

both the LI-COR Odyssey FC (5 and 15 minutes exposures) and the Agfa CP1000 

Automatic Film Processor (10 seconds, 30 seconds, 1 minute, 5 minutes, and 30 minutes 

exposure). 

 

Statistical Analysis  

For statistical analysis of the qRT-PCR data, a One-Way ANOVA was performed 

with IMB SPSS 20.0. To test the differences between untreated expression levels and 0, 

1, 2, 3, and 4 hours after treatment a Tukey’s HSDs were calculated. Error bars were 

calculated by plotting plus or minus the standard error of the mean. 

For statistical analysis of the survivability assays, a One-Way ANOVA was 

performed with IMB SPSS 20.0. To test the difference between no treatment and the 

various condition types and between the same treatments a Tukey’s HSDs was 

conducted. Error bars were calculated by plotting plus or minus the standard error of the 

mean. The effect size was calculated with a t-test assuming equal variances with the 

equation (t2-1)/(t2+df+1). 

For statistical analysis of the knock down confirmation qRT-PCR, a One-way 

ANOVA was performed with IMB SPSS 20.0. To test the difference between wild type 

and knock down strains treated and untreated a Tukey’s HSDs was conducted. 
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RESULTS 

 

Conservation of Shelterin and XPC/RAD4 Proteins 

Shelterin proteins from Tetrahymena thermophila, Homo sapiens, Saccharomyces 

cerevisiae, and Schizosaccharomyces pombe were analyzed for the presence of predicted 

domains and sites using InterPro (Table 3). Upon analysis many of the shelterin protein 

sequences did not contain any identifiable domains (data not shown). The most conserved 

domains amongst the shelterin proteins were found in the POT1 proteins and POT1 

associated proteins. Outside of those domains there was large divergence in type and 

position of domains in these proteins between model organisms. Even though many of 

the functions are conserved, it is sometimes difficult to find homologs based on amino 

acid sequence in other organisms.  

Rad4 (TTHERM_00825460) amino acid sequence in T. thermophila was 

analyzed with BLAST to find homologous amino acid sequences in frequently studied 

model organisms. There was a conservation in domain type and position in all the model 

organisms studied (see Bioinformatics in Experimental Procedures). Because of this 

quality, any research conclusions of RAD4 in Tetrahymena thermophila can be more 

readily applied across organisms rather than shelterin, which diverges significantly. Ras4 

(XPC) homologs were acquired from Homo sapiens, Mus musculus, Danio rerio, 

Xenopus laevis, Caenorhabditis elegans, Drosophila melanogaster, Dictyostelium 

discoideum, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Zea mays, 

Arabidopsis thaliana, Vitis vinifera, and Aspergillus niger (Table 4). All identified 

homologs contain four characteristic domains of Rad4 proteins: transglutaminase-like  
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Table 3. Shelterin Proteins InterPro Domain Analysis 

1SSDBD,POT1/Cdc13: single stranded DNA binding domain, POT1/Cdc13; EFH: EF-

Hand; TRBF, Dim: Telomere Repeat Binding Factor, Dimerization; RBD: Rap1 Binding 

Domain; BRCT: BRCA1 C Terminus; DBD: DNA binding domain 

Gene Diagram Size (aa)

Schizosaccharomyces 

pombe
RAP1 693

BRCT: 81-105                 

DBD: 495-602

Schizosaccharomyces 

pombe
TRF1 663

TRBF,Dim: 125-351                 

RBD: 452-496                                

Myb: 557-612

Saccharomyces 

cerevisiae
RIF1 1916 Rif1: 234-649

Schizosaccharomyces 

pombe
CCQ1 555

SSDBD,POT1/ Cdc13: 27-

171                   

SSDBD,POT1: 203-338

Saccharomyces 

cerevisiae
CDC13 924

Cdc13: 16-241                   

SSDBD,POT1/ Cdc13: 

448-579

Saccharomyces 

cerevisiae
RAP1 827

BRCT: 121-208                  

Myb: 355-415                                

RBD: 490-543              

TRF2/RBD: 551-626

Homo sapiens RAP1 399
BRCT: 18-100                 

Myb: 132-195                                

TRF2/RBD 322-397

Homo sapiens TIN2 354 TRF1 BD: 20-201                 

Homo sapiens TRF1 439
TRBF,Dim: 77-269                  

Myb: 375-432 

Homo sapiens TRF2 542
TRBF,Dim: 77-269                 

TRBF2,RBD: 317-358                                

Myb: 484-541

Tetrahymena 

thermophila
TPT1 992

EFH: 34-105, 157-192, 

193-228, 794-865, 919-

990

Homo sapiens POT1 634
SSDBD,POT1/ Cdc13: 11-

141                   

SSDBD,POT1: 152-296

Species
Domain 

Locations

Tetrahymena 

thermophila
POT1 576

SSDBD,POT1/ Cdc13: 

111-218

1 

1 
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Table 4. XPC/Rad4 InterPro Domain Analysis

 
1Blue: protozoa, Red: metazoa, Green: helminth, Purple: fungi, Yellow: plants 
2TGF: transglutaminase-like fold, β-Hairpin Domain 1-3, TG: Transglutaminase 

Gene Diagram Size (aa)

TGF: 495-618                  

βHD1: 623-675                                

βHD2: 677-737              

βHD3:744-818

930XPCMus musculus

Tetrahymena 

thermophila
RAD4 934

Xenopus laevis XPC 1063

Drosophila 

melanogaster
XPC 1293

Saccharomyces 

cerevisiae
RAD4

TGF: 542-622                  

βHD1: 707-759                                

βHD2: 707-759              

βHD3:815-889

Homo sapiens XPC 872

TGF: 433-557                  

βHD1: 562-614                                

βHD2: 616-676              

βHD3:683-757

TGF: 651-753                  

βHD1: 758-810                                

βHD2: 812-872              

βHD3: 879-953

Danio rerio XPC 879

TGF: 430-561                  

βHD1: 566-618                                

βHD2: 620-679              

βHD3: 686-760

TGF: 689-822                       

βHD1: 827-881                                

βHD2: 883-938              

βHD3: 945-1091

Caenorhabditis 

elegans
XPC 1119

TGF: 689-822                       

βHD1: 827-881                                

βHD2: 883-938              

βHD3: 945-1091

754

TGF: 285-425                  

βHD1: 430-488                                

βHD2: 490-543              

βHD3: 551-626

Dictyostelium 

discoideum
RAD4 967

TGF: 689-822                  

βHD1: 827-881                                

βHD2: 883-938              

βHD3: 945-1091

Zea mays RAD4 862

TG: 198-262                   

TGF: 435-545                  

βHD1: 550-601                                

βHD2: 603-665              

βHD3: 672-746

Schizosaccharomyces 

pombe
RHP42 686

TGF: 289-436                  

βHD1: 440-499                                

βHD2: 501-564              

βHD3: 571-645

Vitis vinifera RAD4 952

TG: 231-297                 

TGF: 466-622                  

βHD1: 627-678                                

βHD2: 680-743              

βHD3: 750-824

Arabidopsis 

thailana
RAD4 865

TG: 191-254                

TGF: 379-538                  

βHD1: 543-594                                

βHD2: 596-659              

βHD3: 666-740

Aspergillus niger RAD4 945

TGF: 356-508                  

βHD1: 519-576                                

βHD2: 578-641              

βHD3: 648-722

Species
Domain 

Locations

1 

1 2 

2 
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fold (TGF), Beta-hairpin loop 1 (βHD1), βHD2, and βHD 3 (Table 4). An additional 

transglutaminase domain was present near the N-terminus in the three plant species 

analyzed (Zea mays, Arabidopsis thaliana, and Vitis vinifera).  

To further analyze the evolutionary conservation of Rad4 homologs and reinforce 

the validity of Tetrahymena thermophila as a effective model organism for studying 

RAD4, these same protein sequences were organized by phylogeny with MEGA 7.0 

(Figure 5). There are two large initial diverges that occurred in evolution: one clade 

contains metazoa, plants, helminth, and protozoa, and the other clade contains fungi. The 

metazoa (H. sapiens, M. musculus, X. laevis, D. rerio, and D. melanogaster) grouped 

together. The only helminth, C. elegans, grouped alone. The two protozoa D. discoideum 

and T. thermophila diverged together off of the first clade. The three fungi in the other 

clade contained A. niger, S. pombe, and S. cerevisiae. Because the T. thermophila is 

diverging in the first clade with metazoa, plants, and helminth, its sequence is more 

evolutionarily conserved than the sequence of the fungi Rad4 proteins. 

 

Quantification of Tetrahymena thermophila RAD4 Expression Levels Before and 

After Damage 

To more completely understand the role of RAD4 in DNA repair, RAD4 

expression levels were measured by qRT-PCR after three different genotoxic stressors 

that lead to different type of DNA damage, repaired by different mechanisms: UV light 

causes pyrimidine dimers that are repaired by nucleotide excision repair. Hydrogen 

peroxide treatment causes oxidation of the nucleotide bases and hydrolysis of the 

phosphodiester that is repaired by base excision repair. Methyl methanesulfonate (MMS)  
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Figure 5. Maximum Likelihood Phylogenetic Tree of XPC/Rad4. The domains of 

commonly studied model organisms were analyzed against Rad4 amino acid 

sequence in Tetrahymena thermophila. This evolutionary comparison was inferred 

through the maximum likelihood method with a bootstrap consensus taken from 

1000 replicates using MEGA 7.0. The model organism’s abbreviations are T.t. 

Tetrahymena thermophila, H.s. Homo sapiens, M.m. Mus musculus, D.d Danio 

rerio, X.l. Xenopus laevis, C.e. Caenorhabditis elegans, D.r. Drosophila 

melanogaster, D.d Dictyostelium discoideum, S.c. Saccharomyces cerevisiae, S.p. 

Schizosaccharomyces pombe, Z.m. Zea mays, A.t. Arabidopsis thaliana, V.v. Vitis 

vinifera, and A.n. Aspergillus niger. 
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adds methyl groups to DNA strands that ultimately leads to double stranded breaks 

repaired by homologous recombination or nonhomologous end joining (Weeden and 

Asselin-Labat, 2018).  

To analyze the qRT-PCR data, an amplification curve, melt peak, and agarose gel 

visualizing a set of the qRT-PCR RAD4 (Figure 6A, 7A, 8A) and HHP1 (H1/HP1-like; 

Figure 6C, 7C, and 8C) products. The analysis of HHP1 was included as a housekeeping 

gene which maintains expression levels before and after genotoxic stressors. This allowed 

for later data normalization. An amplification curve measures the relative florescent units 

(RFU) during each cycle of amplification. In all treatments the amplification curves show 

a variety of RAD4 expression levels. HHP1 showed relatively consistent amount of 

amplification amongst treatments. Additionally, in these curves, actin amplification 

curves are included (colored in red). This creates a standard curve using 1000 ng, 100 ng, 

10 ng, and 1 ng of genomic DNA with actin primers. 

Melt peaks were analyzed for both the RAD4 and HHP1 as indicator of a singular 

product. One peak indicates that a single product is in the reaction that is melting or 

dissociating at a specific temperature. The melt peaks showed specific peaks representing 

RAD4 (Figure 6B, 7B, and 8B) and HHP1 (Figure 6D, 7D, and 8D) in one peak and 

ACT1 control in the other, indicating that there was specific amplification of the 

appropriate products during qRT-PCR. 

The products of both RAD4 and HHP1 were also separated by agarose gel 

electrophoresis. A single band at the expected length with RAD4 (186 base pairs) and 

HHP1 (216 base pairs) was observed on the gel (Figure 6E,7E, 8E), further suggesting 

specific amplification of RAD4 and HHP1 products by qRT-PCR. Also, both the RAD4  
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Figure 6. Quantification of RAD4 Expression After Ultraviolet (UV) Treatment. 

(A) Amplification curve of the amount of RAD4 (green) and ACT1 (red) during each 

cycle of qRT-PCR amplification. (B) Melt peak of qRT-PCR products with primers 

to RAD4 (green) and ACT1 (red). (C) Amplification curve of HHP1 control (blue) 

and ACT1 (red). (D) Melt peak of qRT-PCR products with HHP1 (blue) and ACT1 

(red). In both the RAD4 and HHP1 amplification curves and melt peaks show no 

treatment (U; line), 0 hours after treatment (0; cross), 1 hour after treatment (1; 

circle), 2 hours after treatment (2; triangle), 3 hours after treatment (3; diamond), and 

4 hours after treatment (4; square). ACT1 standards (red) were used to establish a 

standard curve with 1000 ng genomic DNA (circle), 100 ng genomic DNA 

(triangle), 10 ng genomic DNA (diamond), and 1 ng genomic DNA (square). (E) 

Agarose gel (1.5% in TAE) of a representative set of RAD4 and HHP1 products as a 

result of qRT-PCR. 
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Figure 7. Quantification of RAD4 Expression After Hydrogen Peroxide (H2O2) 

Treatment. (A) Amplification curve of the amount of RAD4 (green) and ACT1 (red) 

during each cycle of qRT-PCR amplification. (B) Melt peak of qRT-PCR products 

with primers to RAD4 (green) and ACT1 (red). (C) Amplification curve of HHP1 

control (blue) and ACT1 (red). (D) Melt peak of qRT-PCR products with HHP1 

(blue) and ACT1 (red). In both the RAD4 and HHP1 amplification curves and melt 

peaks show no treatment (U; line), 0 hours after treatment (0; cross), 1 hour after 

treatment (1; circle), 2 hours after treatment (2; triangle), 3 hours after treatment (3; 

diamond), and 4 hours after treatment (4; square). ACT1 standards (red) were used to 

establish a standard curve with 1000 ng genomic DNA (circle), 100 ng genomic 

DNA (triangle), 10 ng genomic DNA (diamond), and 1 ng genomic DNA (square). 

(E) Agarose gel (1.5% in TAE) of a representative set of RAD4 and HHP1 products 

as a result of qRT-PCR. 
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Figure 8. Quantification of RAD4 Expression After Methyl Methanesulfonate 

(MMS) Treatment. (A) Amplification curve of the amount of RAD4 (green) and 

ACT1 (red) during each cycle of qRT-PCR amplification. (B) Melt peak of qRT-

PCR products with primers to RAD4 (green) and ACT1 (red). (C) Amplification 

curve of HHP1 control (blue) and ACT1 (red). (D) Melt peak of qRT-PCR products 

with HHP1 (blue) and ACT1 (red). In both the RAD4 and HHP1 amplification 

curves and melt peaks show no treatment (U; line), 0 hours after treatment (0; 

cross), 1 hour after treatment (1; circle), 2 hours after treatment (2; triangle), 3 hours 

after treatment (3; diamond), and 4 hours after treatment (4; square). ACT1 

standards (red) were used to establish a standard curve with 1000 ng genomic DNA 

(circle), 100 ng genomic DNA (triangle), 10 ng genomic DNA (diamond), and 1 ng 

genomic DNA (square). (E) Agarose gel (1.5% in TAE) of a representative set of 

RAD4 and HHP1 products as a result of qRT-PCR. 
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an HHP1 qRT-PCR primers spanned introns, so a band of significantly larger size would 

have been present if genomic DNA was contaminating the RNA sample. 

The RAD4 expression levels were quantified and normalized to HHP1. RAD4 

expression increased 129-, 161-, and 93-fold following two, three, and four hours after a 

100 J/m2 UV, respectively (Figure 9A). These changes indicate that RAD4 expression 

was induced by DNA damage, consistent with proteins involved in nucleotide excision 

repair (Figure 9A and 9D). After a one hour period of hydrogen peroxide treatment there 

is a significant increase RAD4 expression (108-fold) at one hour with a gradual decrease 

after this peek (Figure 9B and 9D). This pattern of expression implicates RAD4 in DNA 

repair. MMS treatment yields one increase in RAD4 expression, but the other increases 

cycle up and down. It is likely that there was no involvement of RAD4 in double stranded 

break repair (Figure 9C and 9D). Overall, we conclude that RAD4 plays a prominent role 

in nucleotide excision repair and base excision repair.  

 

Established Rad4 Knock Down Strains in T. thermophila 

To further understand the role of RAD4, strains of T. thermophila where Rad4 

expression was depleted were established. A plasmid was designed that will knock down 

expression of Rad4 by RNA interference (pBT1-shRNA:RAD4). Primers that contained 

the sense and antisense strands of a short-hairpin RNA (shRNA) gene were incorporated 

into pBT1-shRNA:RAD4 (Figure 10A, represented in red). When transcribed, the sense 

and antisense strands formed a stem loop structure which has a ΔG of -24.45 kcal·mole-1 

(Figure 10B). The plasmid contains a beta-tubulin recombination site that will serve as 

recombination arms at the native beta-tubulin 1 (BTU1) site during biolistic  
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Figure 9. RAD4 Expression Quantification After Hydrogen Peroxide, Methyl 

Methanesulfonate, and Ultraviolet Light Treatment. RAD4 expression was 

measured via quantitative reverse transcriptase PCR following exposure to (A) 100 

J/m2 UV light, (B) 0.5 mM H2O2, and (C) 5.0 mM MMS. Expression was normalized 

to HHP1. Error bars represent +/- standard error of mean. *p value <0.05, **p value 

<0.01, ***p value <0.005 which were determined by a One-Way ANOVA with 

Tukey’s HSDs. (D) Data were combined and set relative to no treatment. n3. 
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Figure 10. Construction of pBT1-shRNA:RAD4. (A) pBT1-shRNA:RAD4 

plasmid map containing a red segment with RAD4 sense and antisense primers, light 

blue segment in the beta-tubulin 1 (BTU1) recombination site, and various restriction 

enzyme sites. (B) Stem-loop representation of the Rad4 hairpin structure (21 

nucleotides). The ΔG is -24.45 kcal·mole-1. (C) Sequence and diagram representation 

of stem-loop sequence. Purple represents the linker region. Green represents the 

Rad4 sense sequence and red represents the Rad4 antisense sequence. Yellow 

represents the loop portion and XhoI restriction enzyme site. 
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transformation into T. thermophila. (Figure 10A, represented in light blue). When 

transformed into DH10B cells, pBT1-shRNA:RAD4 produced 1 CFU with 10 ng of  

plasmid, and 14 CFUs with 50 ng of plasmid. Negative controls were analyzed; pBT1-

YFG with no insert and no ligase produced 2 CFUs with 10 ng of plasmid, and 9 CFUs 

with 50 ng of plasmid.  

DNA was isolated from DH10B containing pBT1-shRNA:RAD4 and cloning was 

confirmed by restriction digest. The shRNA insertion has a unique XhoI cut site (Figure 

10C), therefore, digestion with XhoI, and a restriction enzyme that uniquely cuts within 

the backbone (SacI) will produce unique fragments. The predicted products of the 

XhoI/SacI digest are 1070 and 4214 base pairs. Only one clone contained the expected 

products (Figure 11, clone 4), and was selected for further use. The shRNA plasmid DNA 

was linearized with KpnI and SacI (data not shown). This linearized product was then 

transformed and selected in T. thermophila via paclitaxel. Whole-cell PCR was 

performed to confirm the presence of pBT1-shRNA:RAD4 (Figure 12). Samples not 

transformed were expected to amplify only the BTU1 (native) locus (1750 bp), while 

cells that successfully incorporated the Rad4 shRNA knock down will amplify a 500 bp 

region containing the shRNA insert. Products corresponding to amplification of the 

shRNA were most intensely amplified in the digested plasmid (positive control), and 

CU522 clone 1 and 10 and CU725 clone 11. These clones were selected as Rad4 

knockdowns subjected to further analysis. 

 

Verification of Rad4 Knock Down in T. thermophila 

To verify that expression of RAD4 is affected by introduction of the Rad4 shRNA,   
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Figure 11. Digest of pBT1-shRNA:RAD4. Agarose gel (1.5% in TAE) of purified 

plasmid DNA digested with XhoI and SacI. Lane L has a 1 kilobase ladder with 

sizes indicated to the left (KB). Lanes marked 1 to 6 contain clones from pBT1-

shRNA:RAD4 cloning attempt. The expected band sizes for pBT1-shRNA:RAD4 

are 4214 and 1070 base pairs. 
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Figure 12. Knock Down Confirmation via Whole-Cell PCR. Whole-cell PCR was 

conducted on four possible T. thermophila transformants with pBT1-shRNA:RAD4. 

The primers amplify either the native Beta-tubulin 1 locus creating an approximate 

1750 base pair product (top). The primers should amplify a 500 base pair product in 

strains containing the shRNA (bottom). The negative control lanes (Neg) contain 

untransformed cells. The positive control (Pos) contains undigested pBT1-

shRNA:RAD4 and will amplify only the shRNA.  
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Figure 13. Quantification of RAD4 Expression in the Rad4 Knock Down 

Strains. (A) Amplification curve of RAD4 during each cycle of qRT-PCR 

amplification. (B) Melt peak of qRT-PCR products with primers to RAD4 and 

ACT1. Samples were treated with UV (orange), and untreated (green). (C) 

Amplification curve of HHP1 control. (D) Melt peak of qRT-PCR products with 

primers to HHP1 and ACT1. Samples were treated with UV (blue), and untreated 

(purple). Wild type (circle), Rad4 knock down clone 1 (triangle), Rad4 knock down 

clone 10 (Square). ACT1 standards (red) were used to establish a standard curve 

with 1000 ng genomic DNA (circle), 100 ng genomic DNA (triangle), 10 ng 

genomic DNA (diamond), and 1 ng genomic DNA (square). (E) Agarose gel (1.5% 

in TAE) of a representative set of RAD4 and HHP1 qRT-PCR products. WT (4), 

knock down clone 1 (5.1) and knockdown clone 10 (5.10) were either untreated (-), 

or treated with 100 J/m2 UV treatment and were allowed to recover for two hours 

after treatment (+).  
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qRT-PCR was performed on wild type and RAD4 knock down clones 1 and 10. Based on 

phenotypic results, qRT-PCR analysis was not performed on CU725 clone 11. In all 

treatments the amplification curves showed a variety of RAD4 expression  

levels. (Figure 13A). The HHP1 house keeping genes showed tightly grouped 

amplification regardless of the treatment, (blue: UV, purple: no UV) as expected (Figure 

13C). Actin 1 was amplified from defined amounts of genomic DNA to provide a 

standard curve for detection (Figure 13, red). Isolated melt peaks appear for RAD4, 

HHP1, and ACT1, indicating specific products for each (Figure 13B and 13D). 

Furthermore, electrophoresis of the qRT-PCR products of both RAD4 and HHP1 showed 

a single amplicon at the appropriate size for each product (186 and 278 bp, respectively; 

Figure 13E). Both the specific melt peak, and the singular amplicon on the agarose gel 

suggest specific amplification of RAD4 and HHP1 products by qRT-PCR.  

RAD4 expression levels in the knock down strains were quantified, and 

normalized to HHP1 (Figure 14). Rad4 knock down clone 1 showed 50% reduction in 

expression after UV exposure (p = 0.001), when compared to wild type, indicating 

successful knockdown of RAD4 expression by the shRNA. This difference in expression 

was seen more drastically following UV treatment because there was a larger fold 

difference. After UV treatment, clone 10 did not show a reduction that was significant. 

This was likely due to the variance between the amplification that occurred in the 

samples during qRT-PCR. Because this strain had inconclusive results, phenotypic 

characterization of this strain was still conducted. Overall, Clone 1 was considered the 

most effective knock down strain. 
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Figure 14. Quantification of RAD4 Expression in the Knock Down Strains. 

RAD4 expression was measured by qRT-PCR in wild type (WT; CU428), CU522 

knock down clone 1, and CU522 knock down clone 10 either without UV 

exposure or following a two hour recovery after 100 J/m2 UV light. Expression 

was normalized to HHP1, and made relative to wild type. Error bars represent +/- 

standard error of mean. *p value <0.05, **p value <0.01, ***p value <0.005 

which were determined by a One-Way ANOVA with Tukey’s HSDs. n=4. 
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Effect of UV and Hydrogen Peroxide on Rad4 Knock Down Survivability 

To begin examining the consequences of knocking down Rad4, the survival of 

these strains was measured after UV and hydrogen peroxide treatment. Comparing 

survival rates to wild type cells allowed for a measurement of how critical RAD4 is when 

responding to genotoxic stressors. After UV treatment both knock down clones had 

decreased survival in comparison to wild type cells. Clone 1 had 56.66% and 26.76% 

reduced survival compared to wild-type after 75 and 100 J/m2 UV treatments, 

respectively (Figure 15A). In clone 10, no significant differences in survival were 

detected, but for 50 and 100 J/m2 UV an effect size was measured (Figure 15B). Based on 

the effect size, 92% after 50 J/m2 and 78% after 100 J/m2 UV treatment are due to the 

differences between the wild type and knock down strains. Overall, these results indicate 

that RAD4 is involved in DNA repair mechanisms that allows for cell survival after UV 

damage.  

Hydrogen peroxide treatment, which induces damage repaired by BER, was next 

used as a mutagenic agent to test RAD4 activity. Clone 10 had a striking 94% decrease 

compared to wild type in survival after 0.5 mM hydrogen peroxide treatment (Figure 16). 

The decreases in survivability after both UV and hydrogen peroxide indicate the 

involvement of RAD4 in both nucleotide excision repair and base excision repair. 

 

Experimental Design and Optimization of DIG-labeled Telomere Probe Detection 

Assay 

Probes against telomeric or sub-telomeric sequence often incorporate radioactive 

isotopes to detect telomere length in T. thermophila and other model organisms. An   



 

55 

  

 
Figure 15. Effects of Rad4 Knock Down on Survival After UV treatment. 

Survivability assay of three different possible Rad4 knock down clones: (A) Clone 1, 

and (B) clone 10 were analyzed after various levels of UV treatment and compared 

to wild type. Samples were plated at approximately two cells per well in 96-well 

plates, and visualized for growth seven days later. 0 J/m2 UV was considered 100% 

survival. Error bars represent +/- standard error of mean. ES indicates the effect size 

percentage. *p value <0.05, **p value <0.01, ***p value <0.005, determined by one-

way ANOVA comparing untreated to each hour after treatment (orange: UV treated 

wild type; blue: UV treated knockdown), and comparing the same treatments (red). 

n=3. 
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Figure 16. Effects of Rad4 Knock Down on Survival after H2O2 Treatment. 

Survivability assays of Rad4 knock down clone 10 were analyzed after various 

levels of hydrogen peroxide treatment (X-axis) and compared to wild type. Samples 

were plated at approximately two cells per well in 96-well plates, and visualized for 

growth seven days later. No hydrogen peroxide (0 mM) was considered 100% 

survival. Error bars represent +/- standard error of mean. *p value <0.05, **p value 

<0.01, ***p value <0.005 determined by one-way ANOVA comparing untreated to 

each hour after treatment (orange: UV treated wild type; blue: UV treated 

knockdown), and comparing the same treatments (red). n=3. 
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alternative probe used here contains telomeric sequence specific to T. thermophila but is 

conjugated to digoxigenin (DIG), which was then detected with a DIG specific antibody 

and eliminated the need for radioactive isotopes. Although DIG-labeling has been used in 

a wide variety of model organisms to detect telomere sequence, it has not been used in T. 

thermophila. Therefore, a novel assay was developed using DIG to detect telomere 

sequences (Figure 17A). 

First, an efficient genomic DNA (gDNA) isolation protocol for T. thermophila 

was investigated. The traditional protocol lyses the cells with urea lysis buffer, two 

phenol chloroform extractions, and the DNA is precipitated through salt and isopropyl 

alcohol. Three variations of this traditional protocol were tested for efficiency. The first 

variation, “all”, follows the traditional isolation process, but the entire protocol is 

conducted seamlessly in the same day. The second variation, “phenol”, involved 

incubating the samples at -20°C overnight after the phenol extraction steps. The third 

variation, “pellet”, involved removing the media from pelleted cells and incubating the 

pellet at 20°C overnight, and the remainder of the procedure was conducted the following 

day (Figure 18). Equal volumes of DNA isolated from each of the three methods were 

run on an agarose gel to compare the efficiency of DNA extraction from each method. 

More gDNA appeared to be isolated form the “phenol” method, than from “all” or 

“pellet”, indicating that the phenol method was the most effective. All subsequence 

experiments were performed using the “phenol” method for gDNA extraction.  

After the gDNA is isolated, the gDNA was fragmented and separated by agarose 

gel electrophoresis to prepare for blotting. The gDNA samples were digested with 

HindIII to release the telomeric sequence from the rest of the gDNA. The gDNA was  
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Figure 17. Development and Optimization of DIG-Labeled Telomere Probe 

Detection Assay. (A) This experimental schematic was developed to detect 

telomeric sequence without the use of a radioactive labeled probe. (B) A probe 

designed specifically for telomeric sequence in T. thermophila (GGGGTT) was 

conjugated to the digoxigenin (DIG) to be detected by a horseradish peroxidase 

(HRP) conjugated anti-DIG antibody. The antibody when reacted with hydrogen 

peroxide releases a chemiluminescent product which is detected on the blot 

(Sambrook and Russell, 2001). 
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Figure 18. Optimization of gDNA Isolations for DIG-Labeled Telomere Probe 

Detection Assay. Digested genomic DNA samples from strains CU522 and CU725 

were run on a 1.5% agarose gel in TBE. The samples were isolated with three 

protocol variation. “All” lanes contain samples isolated without any halt to the 

typical protocol. “Phenol” lanes contain samples stored at -20°C overnight after the 

two phenol extractions, and then the isolation was completed. “Pellet” lanes contain 

samples that the cells were pelleted and then stored at -20°C overnight before 

continuing the isolation. The experiment was done in duplicate to allow for more 

conditions to be tested for optimization. 
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 separated by agarose gel electrophoresis at a low voltage (70 V) over three to four hours, 

to maximize separation. An agarose gel was loaded with one, two, and three µg of DNA, 

and at least three µg was used in subsequent gels. The initial test showed more intensity 

than subsequent experiments (data not shown). The predicted issue with this was the use 

of different Nanodrop spectrophotometers. The Nanodrop 2000 gave consistently higher 

readings than the ImplenNanoPhotometer NP80, therefore, less DNA was digested and 

ran on the gel when read with the Nanodrop 2000. This issue was resolved by use of the 

ImplenNanoPhotometer NP80 for sample analysis, and five µg of DNA. 

To prepare the blot, the agarose gels were transferred to nitrocellulose membrane 

and crosslinked. The gels were stained with ethidium bromide prior to transfer, in order 

to estimate amounts of DNA per lane. The blot was prepared for hybridization by a pre-

hybridization incubation that prevents non-specific binding of the probe to the membrane. 

The DIG-labeled telomeric probe was hybridized to the blot overnight by incubating at a 

temperature at least 42°C. After hybridization, the blot was washed to remove non-

specifically bound probe from the membrane. Different wash temperatures were tested 

(42, 45, and 50°C) and optimal signal was detected at 45°C, therefore, this temperature 

was used in future assays (Figure 19).  

Next, the blot was blocked, then incubated with the anti-DIG antibody (Figure 

17B). Optimization of antibody detection occurred by varying blocking agents and 

antibody concentration. Li-cor blocking agent and 0.5% milk in TBST were tested for 

their blocking ability. 0.5% milk in TBST allowed optimal signal and thus was used in 

future assays (Figure 19). The anti-DIG antibody conjugated to horseradish peroxidase 

was added in 1:500 and 1:1000 dilutions. The 1:1000 dilution showed an optimal signal, 
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Figure 19. Optimization of Blotting Conditions for DIG-Labeled Telomere 

Probe Detection Assay. Strips of membrane with digested genomic DNA were 

treated with a variety of conditions to find the optimal combination for future assays. 

The values listed above the nitrocellulose membranes are the varying temperatures 

used for the wash directly following overnight probe hybridization at 42°C. Li-Cor 

blocking agent (LC) and 0.5% Milk in TBST (Milk) served as antibody blocking 

agents. The 1:500 and 1:1000 indicate the anti-DIG antibody dilutions. 
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Figure 20. Telomere Detection in Wild Type and Rad4 Knock Down Strains. 
Digested samples of genomic DNA isolated from wild type cells (WT; CU428) and 

Rad4 knock down clone 1 (KD). Both samples were treated with 100 J/m2 UV and 

were allowed to recover for four hours. Samples were isolated before treatment (U), 

immediately after treatment (0), one to four hours after treatment (1-4). Lane L 

contains a 1KB ladder. (A) Samples were first run on 1.5% agarose TAE gel. (B) 

Then samples were blotted to the nitrocellulose membrane and the DIG probe 

conjugated to T. thermophila telomere sequence. Red star indicates band quantified 

for telomere length analysis. 
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and was used in future assays (Figure 17B and Figure 19). The membrane was then 

exposed to SuperSignal West Dura Stable Peroxide Buffer and SuperSignal West Dura 

Lumino/Enhancer Solution, and was visualized using both the LI-COR Odyssey FC and 

the Agfa CP1000 Automatic Film Processor. Although the LI-COR required a longer 

amount of exposure to acquire comparable images to the film processor (data not shown), 

the LI-COR images were able to achieve a quality image (Figure 19 and 20). 

 

Telomere Length in Rad4 Knock Down Strain  

The optimized DIG-labeled telomere probe detection assay was used to 

characterize the differences in telomere composition between wild type (WT) and a Rad4 

knock down strain (RAD4 KD). Telomeres from both untreated and UV treated samples 

from wild type cells and Rad4 knock down clone 1 were analyzed. UV treated cells were 

exposed to 100 J/m2 UV, and allowed to recover for four hours. Genomic DNA (5 µg) 

was loaded onto an agarose gel and electrophoresed (Figure 20A).  

After samples were transferred to a nitrocellulose membrane, telomeres were 

visualized with the anti-DIG antibody. As expected, multiple bands show a 

heterogeneous mixture of telomere sizes. Probing of this blot for actin 1 as a loading 

control was also attempted. Unfortunately, it appears that more optimal probe design or 

conditions need to be made for this probe as no detection was possible (data not shown). 

In place of this loading control, gDNA streak intensity was quantified and used for 

normalization (Figure 20A). The intensity of the lowest band on the nitrocellulose 

membrane, likely representative of the telomeres on rDNA minichromosomes, was  
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Figure 21. Telomere Quantification in Wild Type and RAD4 Knock Down 

Strains. Quantification of the intensity of rDNA minichromosome band on 

nitrocellulose membrane (marked with red star Figure 20B). Samples were 

normalized to genomic streak intensity on the agarose gel (Figure 20A), and made 

relative to untreated (UT). n=1. 
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measured as a representative telomere length for the cell (Figure 20B, indicated with a 

red star). The intensity of this band indicates the number of telomeric repeats of rDNA  

minichromosomes (Figure 21). After UV treatment, the telomeres in the wild type 

gradually decrease in size after UV treatment, while the Rad4 knock down strain 

telomeres increase in size after UV treatment. At the end of the time course a 0.35 

relative decrease and 1.68 relative increase respectively occurred in telomere length. This 

indicated that RAD4 regulates telomere length in T. thermophila.   
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DISCUSSION 

 

The Role of RAD4 in NER and BER 

The overall purpose of this research is to understand the role of RAD4 in DNA 

repair and its interplay with telomeres in Tetrahymena thermophila. It was anticipated 

that, due to telomeres unique structure, nucleotide excision repair would occur differently 

than in other areas of the genome. Analysis of the proteins associated with telomeres 

(shelterin) revealed that overall shelterin proteins did not possess a large amount of 

sequence conservation between organisms (Table 3). This lack of conservation makes it 

challenging to find translatable results between organisms. The only detectable common 

domains in the shelterin proteins in T. thermophila are Pot1a and Tpt1. However, 

XPC/Rad4 proteins have strong conservation of the beta hair pin domain 1-3 and 

transglutaminase domain, and are an attractive point of study between T. thermophila and 

more complex model organisms (Table 4, Figure 5).  

RAD4 expression levels in T. thermophila were measured after exposure to DNA 

damaging agents (UV, H2O2 and MMS) to determine the involvement of Rad4 in DNA 

repair (Figure 9). RAD4 expression significantly increases after both UV and hydrogen 

peroxide treatment then gradually decreases, a typical expression pattern for DNA repair 

genes, which expression spikes in response to the damage and then begins to return to 

basal levels (Ramsey et al., 2004; Joshua Smith, unpublished data; Figure 9D). 

Previously RAD4 has been implicated in the recognition of damage in global genome 

nucleotide excision repair in response to UV damage (Evans et al., 1997). Rad4 also 

plays a role in base excision repair by binding Ogg1, the base excision repair damage 
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recognition protein, and increasing the affinity of Ogg1 to damage (Melis et al., 2013). At 

their peaks, RAD4 expression levels after UV and hydrogen peroxide treatment rose 129- 

and 108-fold, respectively. These drastic increases in RAD4 expression in response to UV 

and oxidative damage are likely related to its role in nucleotide excision repair (NER) and 

base excision repair (BER) in T. thermophila. These findings validate T. thermophila as a 

model organism in the study of NER and BER. 

 

Rad4 Knock Down Reveals Important Role in NER and BER 

Rad4 levels were depleted in Tetrahymena to further characterize its role in NER 

and BER through stable short hair pin RNA construct (Figure 10). Knock down of Rad4 

was confirmed in these strains through measurement of RAD4 expression levels by qRT-

PCR (Figure 14). There was a significant reduction (51%) in Rad4 transcription levels in 

clone 1, indicating successful knock down of Rad4 by the shRNA. Although not 

significant, there was an apparent reduction in expression levels in clone 10. The lack of 

significance is likely due to the variances between the amplification of samples during 

qRT-PCR. 

Survivability after mutagenic treatment was used to measure the ability of T. 

thermophila to repair the DNA damage, rather than enter apoptosis. UV treatment 

decreased survivability upon Rad4 depletion, indicating that T. thermophila are not able 

to repair UV-induced DNA damage with NER (Figure 15A). Clone 10 showed 

insignificant results in both expression reduction and UV treatment. Interestingly, 

survivability appeared to be dose dependent, as knock down clone 1 had more reduction 

in survivability than clone 10, where Rad4 knock down and survivability after UV was 
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reduced, but not significant. Knock down clone 10 had significantly decreased 

survivability after hydrogen peroxide treatment (Figure 16), indicating that even subtle 

Rad4 depletion has dramatic impacts on the BER pathway. Altogether, T. thermophila 

Rad4 likely contributes to the ability of NER and BER system to recognize damage and 

recruit the additional proteins needed to repair the damage. When Rad4 is absent, the 

damage accumulates, and the cells enter apoptosis. 

 

Development of a DIG-Labeled Telomere Probe Detection Assay 

The establishment of an assay to measure telomere length via a DIG-labeled 

telomere-specific probe was a cornerstone of this project (Figure 17). The ability to work 

with radioactive isotopes is limited to institutions or scientists with the facilities, 

equipment, clearance and training to do so, therefore the ability to detect telomeres 

without radioactive labeled probes should open telomere biology studies to a wider range 

of institutions and laboratories.  

The design of DIG-based telomere detection required the collaboration of many 

resources and scientists. Dr. Benjamin Linger was consulted on the length and possible 

sequence of the probe, and telomere isolation techniques. The blotting and probing 

protocol was combined from different resources, including those contributed by Dr. 

Smith, Dr. Ulbricht, and a variety of biotechnical companies that have DIG labeling 

products. Time and effort was devoted to understanding current radiolabeled methods of 

telomere detection in T. thermophila previous work of from Dr. Carolyn Price and Dr. 

Linger. Considerations from these sources helped develop the ideal conditions for probe 
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design, gDNA isolation, hybridization, blotting, probe detection, and interpretation of the 

results from the telomere detection assay.  

While designing the DIG-based telomere detection assay, steps of the protocol 

were identified as potential targets of optimization as the procedure was refined. Three 

different gDNA isolation conditions were attempted, and the technique with the most 

intense gDNA streak on an agarose gel after HindIII digestion was selected (Figure 18). 

Phenol chloroform extraction and ethanol precipitation in one day from freshly isolated 

cells or those pelleted frozen overnight was inferior to performing two consecutive 

phenol chloroform extractions on freshly isolated cells and freezing the aqueous layer 

overnight before precipitation the next day. The key difference between these protocols is 

likely the freeze-thaw step that may increase the solubility of DNA.  

After optimization of the gDNA isolation procedure, multiple hybridization and 

blotting conditions for probing and detection were considered (Figure 19). The wash 

temperatures after hybridization of the probe were varied from 42°C to 50°C. The most 

distinctive telomeric banding was seen at 45°C, suggesting that this temperature allows 

optimal removal of background, without disrupting interaction between the probe and 

gDNA. Detection of the DIG-labeled probe was optimized by varying the blocking agent 

and anti-DIG antibody concentration (Figure 19). Li-cor blocking solution seemed to be 

ineffective since the image of the blot was completely dark at all washing temperatures 

and antibody concentrations, with no distinct bands. Blocking in 0.5% milk in TBST 

allowed distinct bands to appear in lanes with gDNA, indicating that this condition is 

optimal for allowing binding of the anti-DIG antibody to the DIG-labeled probe, but 

preventing non-specific binding of the antibody to the blot. Incubation of the blot in 



 

70 

1:1000 anti-DIG antibody resulted in clearer bands on the blot than in a 1:500 dilution of 

the antibody, suggesting that incubation of the blot in the more dilute concentration of 

antibody is optimal for probe detection. Altogether, the washing step at 45°C, the 

antibody in a 1:1000 dilution, and the blocking buffer of 0.5% milk in TBST made 

optimal conditions for probe washing and detection.  

 

The Effect of RAD4 on Telomeres 

 With the DIG-labeled telomere probe detection assay optimized, telomeres from 

wild type and Rad4 knock down T. thermophila were analyzed to determine the effects of 

depleted Rad4 levels on telomere composition (Figure 20 and 21). In tandem with 

telomere detection, a actin probe was designed to be used, providing an internal control 

for the amount of gDNA in each lane. Unfortunately, the actin probe had no discernable 

bands, indicating that probe design, hybridization, or washing conditions need to be 

further optimized. Instead, an alternative loading control was developed where gDNA 

amount was quantified from ethidium bromide stains of each gel, prior to blotting (Figure 

20A). Telomeres on rDNA minichromsome were selected for quantification by 

measuring the intensity of the band, which is an indication of the amount of telomere 

repeats (indicated by a red star; Figure 20B). After UV exposure, the Rad4 knock down 

clone 1 has longer telomeres than wild type strain (Figure 21). This is consistent with 

previous literature which showed that XPC knock outs resulted in longer telomeres after 

UV exposure in Mus musculus (Stout and Blasco, 2013). In wild type cells, UV exposure 

leads to shortened telomeres, whereas cells that are deficient in XPC, which are also 
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deficient in NER and BER, actually extend telomeres after UV exposure, which has also 

been supported in the literature (Ramírez et al., 2002). 

The Rad4 depletion in T. thermophila potentially stresses the cells stimulating 

alternative lengthening of the telomeres. This mechanism helps to add telomeric sequence 

when the cells are under duress. Alternatively, the presence of unrepaired pyrimidine 

dimers could be hypothesized to cause shelterin proteins to not bind as effectively to the 

damaged DNA. Since shelterin proteins block telomerase access to the telomeres, 

disrupting their binding leads to aberrant lengthening of telomeres (Palm and de Lange, 

2008). It is evident that Rad4 in T. thermophila plays a critical role in length regulation 

and telomere maintenance. 

 

Future Directions 

This work contributes a significant step forward in our understanding of the 

interactions of Rad4, and more generally DNA repair, and telomere regulation. 

Moreover, the work opens a wide-range of avenues for future studies. To more 

completely verify Rad4 knock down clone 1 and 10 are depleting the protein as well as 

the transcript after UV and hydrogen peroxide treatments, GFP or RFP tagged RAD4 

could be transformed in the rlp29 locus and visualized. Additionally, creating a complete 

knock out of RAD4 would allow for clear characterization of cells without the function in 

NER and telomere repair. 

Further phenotypic characterization of Rad4 knock downs may clarify the 

conclusions made here or provide additional information. Specifically, hydrogen 

peroxide treatment of the most significantly affected Rad4 knock down (clone 1) is 
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expected to produce an even more pronounced reduction in survivability after hydrogen 

peroxide treatment. Also, an increase in the amount of UV survivability assays will 

increase the power of the experiment and determine if the interesting, yet not statistically 

significant, observed effects between the wild type and Rad4 knock downs were due to 

variability in the assay or sample, or due to subtle effects of the inefficient Rad4 knock 

down. 

Only one telomere assay was able to be performed since a large amount of time 

and resources were spent on development of the assay. Additional trials of this telomere 

detection assay will allow statistical analysis of the telomere length and strengthen the 

conclusions made in this one impressive experiment. It would also be interesting to 

compare telomere lengths in both clone 1 and clone 10, to see if the knock down 

efficiency effects telomere length. Since this study consistently shows Rad4-dependent 

BER phenotypes, it would be interesting to see the effects on telomere composition after 

hydrogen peroxide treatment. Previous studies have shown that telomeres shorten after 

hydrogen peroxide treatment (Ting et al., 2010). After hydrogen peroxide treatment, it is 

possible we would observe a very similar phenotype after UV treatment, but if there is a 

lack of change it would show NER specificity. Also, it would be advantageous to extend 

the time course for the gDNA isolations until telomere lengths return to untreated levels. 

Importantly, this study provides Missouri State University and other institutions 

with the ability to study telomeres without radioactive labeled probes. An interesting 

augmentation to this protocol could be using a probe to the subtelomeric region, rather 

than the telomere repeat. These studies have been performed by the Price lab with 

forward and reverse radioactive labeled probes specific to the subtelomeric sequence of 
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specific telomeres in T. thermophila (Jacob et al., 2004). The advantage of this design is a 

potentially cleaner blot, showing specific telomere length, instead of a heterogeneous 

mixture of telomeres. An internal rDNA probe on the minichromosome could be used for 

normalization. Additionally, the optimization of the actin probe would be another 

effective loading control that could be optimized as an appropriate loading control.     

At the genesis of this project, there were hopes of obtaining a variety of tagged 

strains from the Price lab. The particular strains of interest we would have liked to have 

studied. The likely most important is the TERT knockout construct and strain (Linger et 

al., 2011). This would serve as an excellent control for cells that would have shorter 

telomeres. The overall ultimate goal of this research is to find a potential shelterin 

binding partner to RAD4. Because this is a recognition protein that would be the first to 

interact with damaged telomeric DNA, a binding partner could be expected (Jia et al., 

2015). To study this interaction there are two possible approaches, co-

immunopercipitation of tagged Rad4 or tagged shelterin proteins. Currently the Price lab 

has POT2-HA, POT1-TAP, and TPT1-TAP (Cranert et al., 2014; Jacob et al., 2007; 

Linger et al., 2011). Because currently tagging Rad4 has proven problematic (Emily 

Nischwitz and Rachel Mullner unpublished data), it would be beneficial to acquire those 

tagged strains for further studies. Additionally, knockout strains of POT2, POT1, and 

TPT1 also have shown interesting length phenotypes that could be studied with the newly 

establish DIG-labeled probe telomere detection assay (Cranert et al., 2014; Jacob et al., 

2007; Linger et al., 2011). 

Overall, this project added resources to the scientific community to be able to 

study DNA repair and telomere biology. The establishment of characterized Rad4 knock 
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down strains allow researchers to continuing the study of NER in T. thermophila within 

the macronucleus and micronucleus. Additionally, the newly established DIG-labeled 

telomere probe detection assay allows for Tetrahymena labs to be able to study telomere 

length and composition in the context of DNA repair and any other field.  

 

.   
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