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ABSTRACT 

Grapevine vein clearing virus (GVCV) is a recently discovered virus belonging to the 

Badnavirus genus. Characteristic to its name, the virus is associated with a disease where 

symptoms manifest as pronounced vein-clearing, resulting in severe berry deformation 

and vine decline in susceptible grape varieties. Sustainable production of wine is 

dependent on healthy plants. The associated disease is mainly found in Midwest 

vineyards.  Attempts were made in this thesis to provide evidence of causality of the virus 

to the associated disease and to infer the historical path and migration pattern of GVCV. 

Conclusions and discussions will provide grape producers with the latest information in 

designing management strategies to prevent the disease.  The results support that GVCV 

is likely a native endemic virus, which has recently cultivated grapevines. This evidence 

is crucial in establishing quarantine protocols to prevent the spread of GVCV into new 

territories and to avoid pandemic in grape-growing regions worldwide. 
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LITERATURE REVIEW 

 

Wine industry  

Wine has had a profound impact on the cultural development of the world. 

Evidence from archaeological findings suggest civilizations began producing wine at 

least 8,000 years ago (1, 2). “As a medicine, social lubricant, mind-altering substance, 

and highly valued commodity, wine became the focus of religious cults, pharmacopoeias, 

cuisines, economies, and society in the ancient Near East” (3). It is difficult to determine 

the influence wine has had on society, but it has left an impact that reverberates through 

many western cultures exemplified by the incorporation of wine into religious rituals 

such as the cults of Dionysus of ancient Greece and the eucharist of the Christian 

tradition. Today Vitis vinifera, or grapevine, is still a globally important crop. The fruit of 

the plant is consumed in the form of fresh fruit, dried fruit, juice, and wine. In 2016, the 

total global production of grapes was75.8 million tons, of which over 47% was used to 

make wine. Wine alone had a global economic import value of $32.85 billion and an 

export value of $34.02 billion. The United States exports $1.64 billion worth of wine 

while importing $5.87 billion and consumes the most per capita of any other nation(4). 

The economic and cultural significance of wine will likely continue into the future due to 

the increase in global wine consumption.  

Historically, Missouri has played an important role in the global wine and grape 

industry. In 2011 the total economic value of grapes grown in Missouri totaled $2.88 

billion (5). Wine contributes a large share to the economic value of Missouri-grown 
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grapes, with $1.76 billion coming from the wine industry (6). While Missouri does not 

currently produce as much wine as many other states, the historical impact Missouri has 

had on the wine industry is significant. Before prohibition, Missouri commanded the 

largest market share of wine produced in the United States. Stone Hill Winery in Herman, 

MO, was the third largest winery in the world, producing world-renowned wines. While 

the economic impact of grapes and wine were and are significant, the contribution of 

Missouri to this industry goes beyond production. During the Great French Wine Blight, 

which destroyed over 40% of France’s vines, Missouri’s state entomologist, Charles 

Valentine Riley, proposed European vinifera varieties be grafted onto American 

varieties’ rootstock (7). The American varieties were resistant to Grape Phylloxera, an 

insect which feeds on the roots and leaves of grapevines and causes serious economic 

damage. Missouri institutions continue to provide global support to the development of 

grapes, developing cultivars that are economically practical for a variety of reasons. 

Missouri State University is one of five national universities that are part of the National 

Clean Plant Network of Grapes. Alongside Cornell University, University of California-

Davis, Washington State University, and Florida A&M, Missouri State University 

provides producers with certified disease free grape plants that can be used in vineyards 

(8).  

Protecting the sustainability of the grape and wine industry is one goal of research 

institutions that focus on understanding horticulturally relevant traits in Vitis spp. Cold 

hardiness, root and branch architecture, and disease resistance are some of the primary 

traits under investigation to enhance the efficiency of vineyards. Grapevines are a 

perennial species that can live over 100 years, so understanding the genetic mechanisms 
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of these traits is necessary to help develop breeding programs that increase the efficiency 

of vineyards and reduce the amount of input costs required to return a profit. Disease 

resistance is communicated by vineyard owners to be of great importance as disease can 

have serious implications on the production of grapes and on the quality of wines. 

Disease causing organisms are divided into fungal pathogens, bacterial pathogens, and 

viral pathogens. Diseases resulting from fungal and bacterial pathogens are responsible 

for most loss of yield in grapevines annually, but these diseases can be treated with 

chemical inhibitors. Viral symptoms may be slow onset, but as there are no cures for 

viruses in plants the economic impacts can be quite severe to vineyards that may become 

infected with a virus.  

Currently there are 64 known grapevine viruses that can infect Vitis spp. (9). 

Since virus-infected plants cannot be treated they are typically removed from a vineyard; 

prevention of viral spread into vineyards is the primary management strategy. Growers 

are advised to plant both resistant varieties and varieties that have been tested to be free 

of viral pathogens. These testing services can be provided by the National Clean Plant 

Network; positive economic impacts have been predicted to be $50 million annually in 

the North Coast region of California (10) and could be in excess of $16,014 per acre over 

a 25 year period in the Finger Lake region of New York (11). Viruses that escape 

detection in a vineyard become a reservoir of viral particles that can then infect other 

vines in a vineyard. The proximity of vines to one another can quickly cause an epidemic 

in a region where the only treatment is removal of infected individuals at a substantial 

economic cost. 
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Emerging viruses pose a unique threat to the sustainability of perennial crops. The 

long-lived nature of perennial plants allows for the potential accumulation of many 

viruses. Plants native to regions have natural immunities to endemic pathogens due to the 

historical co-evolution between the two organisms, but may still host these organisms. 

These endemic viral repositories act as a source of viral particles to infect agriculturally 

relevant crops that lack the resistance conferred by shared evolutionary history (12, 13). 

Emergent viruses are usually endemic to areas that escape detection until they jump into 

agriculturally important crops that the virus can use as an alternative host. Grapevine 

Vein Clearing Virus (GVCV) is an emergent virus that was first discovered in a vineyard 

of Missouri. The native Vitaceae vines act as a source of viral infection to the introduced 

Vitis vinifera vines which presumably lack a natural immunity.  

 

Epidemiology 

The disease triangle is an often-described model for the determinants of disease. 

There are three points to the triangle: the right host, the right pathogen, and the right 

environment. When all three conditions are met, a disease will flourish (14). 

Epidemiologists study a variety of methods using these three points. Methods can include 

disease causality, disease monitoring, disease transmission, and disease outbreak 

determinants. The primary goal of the epidemiologist is to study the spatial and temporal 

aspects of a disease moving through a population (15). These goals are shared by those 

who study plant epidemics (16). The eradication of disease is not a goal easily obtained 

when applied to plants. For humans, antibiotics, anti-fungals, and vaccines have led to a 

world where the leading cause of death in developed countries is heart disease. Viral 
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pathogens, such as small pox, have all but been eradicated from human populations 

through the use of vaccines and the concept of herd immunity. Plant diseases pose 

drastically different scenarios with the diversity of plant life that humans are reliant on 

for civilization. From the basics of food, to more abstract concepts of ecological carrying 

capacity, human civilization is dependent upon plants. Viral diseases in plants have no 

vaccines and there are not broad range antibiotics for plants, so tracking of disease and 

finding ways to limit spread are of major concern to agricultural producers. Once a plant 

contracts a virus, it has the virus until the death of the plant. 

Plant epidemiology takes many of the tools used by those human disease 

researchers and applies them to plants. J. E. Vanderplanck is credited as a huge influence 

on the application of epidemiology towards plant diseases and outlined the foundations of 

the subject in his work, Plant Diseases: Epidemics and Control. Main concepts in his 

book include mathematical models of how outbreaks increase with time, how a rate of 

infection can be determined, definition and determination of a disease latency period, and 

how to properly control for disease (17).  

The physiology is drastically different between plants and mammals, but the 

diseases are often similar bacteria, fungi, and viruses all attack both plants and mammals. 

The severity of diseases of plants are often a human concern. Agricultural commodities 

are often described in monetary value, but historically diseases can have a much higher 

value. Phytopthera infestans is the causative fungi of late potato blight. This disease 

caused the Irish Potato Famine and led to the starvation of over a million people. 

Cryphonectria parasitica, the causative agent of chestnut blight, ravaged the northeastern 

landscape of the United States by nearly driving the American Chestnut to extinction. 
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The disease saw over 8.8 million acres of canopy trees disappear in less than 50 years 

after the disease’s emergence (18). The disease had a huge impact on not only local 

economies, but on the ecological community of a wide range of Appalachia. The loss of 

the American Chestnut led to the extinction of at least seven species of moth (19). Viral 

diseases have a range of symptoms and severity. While some viral pathogens slightly 

decrease yields, others can lead to total crop loss (20). Cassava mosaic virus is a 

Begomovirus that infects the cassava plant and is transmitted by whiteflies. Cassava is an 

important staple crop in the developing world and the disease has led to famine (21).The 

disease was relatively harmless until recently, when two of the dominant strains infected 

a single plant and recombined their genomes to produce a hyper virulent strain (21). The 

quick mutation rate of viruses and their ability to recombine, alter host genomes, transfer 

genes horizontally, and lack of treatment provide epidemiologists with a significant 

hurdle to overcome.  

Bacteria and fungi were relatively well understood in their role of plant disease 

before viruses were discovered. Bacterial and fungal molds can be seen with the naked 

eye and their complex structures can be observed with an optical lens. The idea of 

infectious agents being responsible for disease has been around since at least 1546, but it 

did not take off until the late 1800’s with pioneers like Robert Koch and Louis Pasteur 

taking the lead. Viruses escaped detection because of their small size; only the largest of 

the viruses can be detected with an optical lens, and then usually only when they are 

grouped together. It wasn’t until it was shown that the tobacco mosaic disease could be 

transmitted after bacteria were filtered out, that the idea of the existence of smaller 

infectious agents was proposed. Soon after, the discovery of the electron microscope in 
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1931 led to the imaging of the first viral particles and the burgeoning field of virology 

took off. Virology was furthered with the boom of molecular biology in the 1980’s.   

 

Plant immunity 

Pathogenic organisms are ubiquitous. The majority of life on the planet is in the 

form of viral, bacterial, and fungal organisms, most of which are microscopic. The close 

ecological history of these organisms with their host species has led to the evolution of 

defense mechanisms by plants (13, 22). While plants lack an adaptive immune system 

such as ours, their immune systems are innate and coded within their genetic makeup. 

The most widely accepted model is a system of plant immunity that has two basic levels. 

The first level is called pathogen associated molecular pattern (PAMP) triggered 

immunity (PTI). The second level of defense is termed effector triggered immunity (ETI). 

The zig zag imagery is used to explain the struggle between plants and their pathogenic 

organisms as they fight for survival. As PTI is overcome by pathogen effectors, the 

plant’s second line of defense, ETI, kicks in until the pathogen overcomes the new 

immune response or is able to escape detection (22).  

Pattern recognition receptors (PRRs) on the extracellular surface of plant walls 

recognize PAMPs structures or motifs. These structures are non-specific to pathogen 

species, but act as a basal defense against recognized pathogens. Common PAMPs 

include structures such as bacterial flagella and fungal haustoria. On recognition of 

PAMPs, PRRs send a signal cascade to express genes that confer broad range resistance 

to most invading pathogens. However, certain pathogens can overcome PTI, by using 

pathogen encoded components. Effectors are pathogen components that can provide 
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escape from PTI in a number of functional ways, but most contribute to the suppression 

of one or more components of PTI, named type III effectors. Type III effectors are gene 

products which allow the pathogen to overcome PTI and establish an infection (23).  

Plants that share a common evolutionary history with pathogens that can 

overcome PTI have adapted a means of detecting effectors. Plants encode resistance 

genes (R-genes) which are able to recognize pathogen effectors, many of which encode 

nucleotide-binding leucine rich repeat (NB-LRR) proteins (22–24). Recognized effectors 

are called avirulence (Avr) proteins, and once detected send a signal cascade like that of 

PTI. The NB-LRR proteins can also indirectly recognize effectors by recognizing a 

change in the host protein that effectors target: ‘pathogen-induced modified self’ 

molecular pattern. This new response, ETI, often leads to cell death of the infected cell(s) 

by providing a hypersensitivity response (HR). ETI also induces production of signaling 

hormones, such as salicylic acid (SA) and jasmonic acid (JA), to signal neighbor cells of 

invasion to provide a systemic acquired resistance (SAR). This signaling also affects 

gene expression through transcription factors of the WRKY and TGA families to confer a 

more aggressive resistance to the invading foreign pathogen (22–24). Small RNA 

(sRNA) have been shown to also act as signaling molecules to control transcription in 

distant parts of the plant (25, 26). Continual selection pressure placed on pathogenic 

organisms by ETI eventually leads to the evolution of pathogens who are able to escape 

detection by ETI, or produce yet another set of effectors to limit the ETI response. The 

proximity of the pathogens and hosts in an area over time give rise to these complex co-

evolutionary forces in a struggle for survival.  



 

9 

The PTI/ETI model of plant defense is not easily applied to viral pathogens. Few 

viral proteins or structures have been identified as PAMPs, instead plant immunity to 

viruses uses a different pathway. Plant RNA silencing pathways use small interfering 

RNA (siRNA) and micro RNA (miRNA) to confer resistance to viral pathogens. The 

siRNA pathway is triggered upon viral infection of a cell, and has been equated to PTI 

(27, 28). Most viruses in some stage of their lifecycle have a dsRNA component, and are 

recognized by the host cell machinery. This recognition of viral dsRNA is why the plant 

response it is equated to PTI. The dsRNA is recognized and cleaved by a host 

ribonuclease, Dicer (27, 28). Dicer like proteins (DCL) cut the RNA into siRNA 

consisting of between 20-25 nucleotides, and these siRNA are subsequently used to target 

other viral molecules by complementation with loading proteins called ARGONAUTEs 

(AGOs). The AGO, siRNA, and DICER form a complex called the RNA induced 

silencing complex (RISC). RISC recognizes any template for which the siRNA binds to 

with perfect matching of base pairs, and results in cleavage into more siRNAs creating a 

feedback loop (27–30). siRNA can also be used in a transcriptional gene silencing 

pathway, the RNA induced transcriptional silencing (RITS). RITS loads siRNA onto 

complementary RNAs, but instead of cleavage, it methylates DNA and prevents 

transcription (31). While siRNA mediated RISC is a response to invading nucleic acids 

and the template for RISC is exogenous, miRNA are endogenous to the host and encoded 

in the genome. Similar in size, ~22 nt, miRNA have a different mechanism of silencing. 

miRNA can bind with incomplete complementarity and once bound, can either cleave the 

RNA, or prevent translation (31–33).miRNAs have a functional role outside of viral 
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suppression and immunity; they are complex transcriptional and translational control 

agents and can drastically alter the expression of genes within a cell (34, 35).  

As bacteria and fungi have adapted effectors, viruses have adapted ways to 

mitigate the RISC. Viral silencing suppressors (VSRs) have adopted a variety of 

mechanisms to escape cleavage by DICER. Identified VSR’s are numerous. with 

functions ranging from binding AGO proteins, sequestering siRNA, blocking DICER 

proteins, preventing methylation of DNA, or using RNA decoys to prevent maturation of 

siRNA (31). As efficient cellular parasites, viruses hijack cellular machinery to undergo 

their life cycle; they have demonstrated the production of  their own miRNAs to alter 

host gene expression (32) and have demonstrated the hijacking of host miRNA to alter 

viral gene expression and replicative efficiency in a beneficial way (33). 

 

Viral taxonomy and classification 

Viruses are small organisms that are obligate parasites. They require a host cell to 

undergo replication and do not metabolize energy on their own and therefore contain 

genetic elements to remodel a host cell and genome (36). An individual viral unit is 

called a virion, and the structures of all virions have similarities. They all contain a capsid 

of a crystalline protein that encapisdates the genome and other necessary proteins and can 

conform into a variety of different shapes. Viruses can either be surrounded by a lipid 

membrane (enveloped) or can have a naked capsid shell (naked). The genome can either 

be RNA or DNA. Viral genomes range from 1000 bps to over 2,000,000 bps (37), so 

viruses employ a diverse range of efficient strategies to contain the necessary elements 

for host cell remodeling, genome replication, and virion assembly. Strategies include 
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polycistronic genes, genes in overlapping reading frames, ribosomal shunting and leaky 

scanning, and RNA modification. These strategies help ensure that the virus has all the 

necessary elements to infect and reprogram the host cell. 

While viruses are undeniably similar, viral lineages are difficult to establish and 

their place on the evolutionary tree of life is debated (38).There are many hypotheses on 

the origin of viruses, resulting in an unclear understanding of where they belong on the 

tree of life (37, 38). Three dominant hypotheses persist: the virus-first hypothesis, the 

reduction hypothesis, and the escape hypothesis. As the name suggests, the virus first 

hypothesis proposes that viruses appeared before cells and the organism that became the 

Last Universal Common Ancestor (LUCA) (38, 39). The reduction hypothesis posits that 

early viruses were proto cells which were parasites of larger cells (38, 39), while the 

escape hypothesis states that viruses evolved from DNA or RNA that came from the 

genome of an organism (38, 39). All three hypotheses have problems that have not been 

resolved. Considering viruses are obligate parasites that need a plant cell to survive, the 

Virus-first hypothesis has doubters. If viruses were proto-cells, some scientists believe 

that we would find evidence of similar cells today and no such example exists. Viruses 

have capsids and other structures that are not found in any other domain of life, and the 

escape hypothesis cannot explain why these do not exist in any form in the three 

domains.  

Historically, viruses have been classified by way of Baltimore classification. The 

Baltimore system groups viruses based on the arrangement of their genomes. There are 

seven groups: group I are dsDNA viruses, II include ssDNA viruses, III are dsRNA 

viruses, IV are (+)ssRNA viruses, V are (-)ssRNA viruses, VI contain ssRNA-RT 
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viruses, and group seven are the dsRNA-RT viruses. Recently, the International 

Committee on Taxonomy of Viruses (ICTV) has made an attempt to use the 

accumulation of molecular sequence data to group viruses into phylogenetically related 

families (40). Difficulty in resolving all of the relationships arises from the differing 

mutation rates of viruses from the same lineage (41, 42), the high rate of recombination 

(43, 44), genome reorganization and shuffling (45–47), and large, highly genetically 

variable population sizes (48–50). These problems in resolving phylogenomic relatedness 

of viral species have led to the use of protein folding analysis to place the viruses on the 

tree of life. This analysis is uniquely equipped to relate species of all domains of life, as it 

uses the similarities in the folding structures of proteins without needing amino acid or 

nucleic acid similarity. It posits that these proteins with similar folding structures are 

grouped into fold families (FF) and that these families can be placed into fold super 

families (FSF) (51). Grouping the genes of viruses into families and comparing them with 

other domains of life (archaea, prokaryote, eukaryote) has led to the discovery of 

common homology of some of these proteins and suggests viruses be placed on the tree 

of life into a fourth domain (51). This analysis has led researchers to view viruses as 

entities that branched off from the other three domains before ancient cells developed the 

machinery for metabolism (ribosomes) and became parasites of the other domains of life. 

This reasoning furthers that viruses branched off before the three domains of life because 

of their ubiquity in infecting all domains of life (38, 51). 

 Three further delineations exist in viruses from the traditional taxonomic 

nomenclature. Strain further separates viruses into a category segregating recognizably 

different phenotypic characteristics that remain stable in the population (52). A viral 
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variant is a virus of the same strain that has similar genetic sequences but no observed 

phenotypic variation (52, 53), and it has been proposed that a sequence that is <10% 

divergent be considered a new variant (54). At the base level, isolate is used to describe 

any particular viral genome that has been isolated from a host (54).  

 

Viral lifecycle and cellular remodeling  

Viruses lack the ability to penetrate the cell wall of a plant on their own and need 

a way of entering a plant cell. This can be biotic or abiotic. Biotic vectors include insects, 

bacteria, fungi, and nematodes. Abiotic vectors include human cultural practices such as 

graft transmission and unsterile equipment for maintenance. All viruses, plant or other, 

behave similarly once inside the cell, but the mode of transmission can differ greatly.  

Once inside the cell, the virus un-coats from its protein capsid. Some viruses are 

packaged with proteins that help in the beginning stages of viral infection, such as 

nuclear import of viral genomes (55). Once the viral nucleic acid is free of the protein 

coat, import into the host nucleus is achieved by a variety of strategies (56, 57), or the 

genome is localized to an area to begin its lifecycle. Inside the nucleus, the genome is 

processed by host machinery in the case of some RNA viruses (58), or begins its 

replicative and transcriptional lifecycle (59). 

Viral proteins are transcribed by host ribosomes and the immediate remodeling of 

the cell begins to favor the assembly and maturation of virions. Systemic remodeling is 

achieved by mechanisms including viral and host protein interactions for formation of 

inclusion bodies (36, 60–62), expressional control of viral encoded miRNA (32), and 

hijacking of host miRNA for expressional control (33). Many of the remodeling 
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processes target host cell membranes and organelles to form miniature “virus factories” 

(36, 61, 62). Altered host organelles include golgi apparatus, mitochondria, endoplasmic 

reticulum, and chloroplasts (36). It is believed that these inclusion bodies or cellular 

localizations are strategies to bring the components of viral replication, assembly, and 

maturation into proximity. It is also believed that the localization and 

compartmentalization are a way to escape the host cell’s innate defenses (36).  

Movement from cell to cell does not require an insect vector. Many viruses 

encode movement proteins (MP) that allow for efficient movement into adjacent cells to 

eventually establish a systemic infection. Most MP’s form complexes with plant 

plasmodesmata to widen the channel to allow for viral passage (63, 64). While some 

viruses pass as individual virions, others pass as “mobile viral factories”, transporting 

remodeled organelles with many virions to the next cell (62, 65). 

Transport to other plants requires a vector; the majority of plant viruses are 

vectored by insects, including aphids and whiteflies which represent the transmission of 

the highest percentage (66). Many of these insect-vectored viruses have structural motifs 

which allow for efficient transmission by the associated vector, usually part of the viral 

coat protein (CP) (66). Insects can acquire and transmit viruses in four methods, 

circulative-persistent, circulative-propagative, non-circulative semi-persistent, and non-

persistent (66). Insects vary in their uptake of viral particles based on the method of 

acquisition. Once transmitted to a new plant, the virus goes through the same cycle as 

above. This is how viruses spread through a region and establish epidemics.   
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Evolution of viruses 

Viruses exist as quasispecies in their obligate host. Quasispecies are closely 

related viral genomes that oscillate around a consensus genome and continually undergo 

processes involved with genetic variation, competition between generated variants, and 

selection for the most fit variants in the host environment (67, 68). The quick molecular 

evolution rate of viral genomes and the short generation cycle lead to diverse populations 

where individuals compete to establish themselves in their host (69). Mechanisms of viral 

evolution that lead to high genetic variability include two main types: mutation and 

recombination (48, 49). Other processes include acquisition of host genetic elements (70) 

and re-assortment of genomes (48, 49). These processes give rise to a highly 

heterogenous population of viruses both within the host and geographically.  

Viral mutation is a result of polymerase error. Viral genomes can either be RNA 

or DNA, as previously detailed, and are replicated by three classes of polymerase. The 

three polymerases introduce errors at different rates. RNA polymerases (RNAP) lack 

proofreading ability and introduce errors at the highest rate. DNA polymerases (DNAP) 

have proofreading ability to correct introduced errors, and have the lowest mutation rate. 

Reverse Transcriptase (RT) replicates by using an RNA template to synthesize a DNA 

strand, and introduces error rates like that of RNAPs due to the lack of proofreading 

machinery.  RNA viruses mutate on the order of 10-3-10-5 changes per base per 

replication cycle, or about one error per round of replication (48, 49, 71–73). DNA 

viruses mutate on the order of 10-8 changes per base per replication cycle, or about 0.003 
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errors per round of replication (49, 74). Retroviruses and pararetroviruses which replicate 

by RT have similar rates to RNA viruses (49, 75).  

Recombination results when segments of genomes from different genomes are 

switched during replication, and it can occur between variants from a quasispecies, or can 

occur from mixed infections of viral populations from different hosts meeting in a new 

host plant. The number of viral genomes that infect a cell is called the multiplicity of 

infection (MOI) (76), and the MOI of mixed infections can lead to recombination of 

evolutionarily distant variants. Current estimates place the MOI of viruses as a dynamic 

quantity that eventually reaches equilibrium, with values ranging from 2-13 genomes per 

cell (76). Rates of recombination also vary, depending on the family of virus. RNA virus 

recombination rates have been shown to be on the order of 10-5 recombination events per 

site per generation (77). Cauliflower mosaic virus (CaMV) is a pararetrovirus that 

replicates through RT, and it has been shown to have 10-4 to 10-5 recombination events 

per site per generation (78). It was also noted that all parts of the genome are equally 

likely to undergo a recombination event (78, 79). 

 Changes that occur to a viral genome eventually become distributed in a 

population through evolutionary processes that determine genetic structure. Two main 

processes drive the distribution of viral variants into the population, genetic drift and 

selection (80, 81). Genetic drift are the stochastic changes that determine the frequency of 

genetic alleles in a population. Selection is the process that some virologists argue is the 

driving factor behind genetic structure of viral populations. Selection can be broken down 

into two main types: positive and negative selection. Positive selection is when a 

mutation gives an organism an increase in fitness and the organism has a greater chance 
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of reproduction, therefore the frequency of the mutation is greater in the next generation. 

Negative selection, or purifying selection, results when a mutation decreases the fitness 

of an organism and the frequency of the mutation is less in the next generation. There is 

much evidence that viral pathogens have a surprising amount of purifying selection 

driving the population structure. As viral genomes are relatively small and condensed 

(73), it is reasonable to assume that mutational changes could be detrimental to fitness, 

even lethal. Coat proteins (CP) are highly conserved regions in most viruses (48, 49, 82–

84), suggesting that changes severely impact viral fitness. Other gene products are also 

highly conserved (48, 49), and even non-coding regions in viruses remain conserved (85, 

86), further validating the efficiency in packaging of genetic elements that are only 

necessary for the viral lifecycle.  

The non-random nature of selection allows for the environment, the host, the 

vector, and other viral isolates to put evolutionary pressure on new replicated variants. 

The host can influence viral genomes through the interaction of the innate immunity and 

the RISC. Viruses that adapt to evade the plant defense will obviously have a higher 

number of progeny in the next generations. Adaptation of VSR’s will be passed on to the 

next generation. The host range of the virus also directs the evolutionary flow of viral 

populations. Mutations that allow for an increase in host range will increase the viral 

population into a new host population. A vector’s influence on the population structure 

comes from selecting only variants that have the necessary motifs, or gene products for 

successful acquisition and transition by the vector. The vector also stochastically acquires 

viral particles depending on their feeding pattern, and the population spreads into new 

plants from the few viral particles that were acquired (87).  
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It is worth mentioning that even variants that have lethal mutations can survive in 

mixed populations within a single host. Complementation occurs in a viral population 

when a variant that is evolutionarily fit provides a necessary gene product to the lethal 

mutant in trans. This allows for a larger population and population diversity in the host 

plant (88, 89). However, the large population size within a host is not representative of 

the allelic frequency in subsequent generations. The population will only have a small 

subgroup that determines the frequency of mutations in the future generations and this 

small number is termed the effective population size (Ne). The Ne of viruses is often 

many magnitudes smaller than the actual population size. HIV is a well-studied virus, and 

the actual population size in a host is predicted at 107-108, while the Ne is estimated to be 

between 103-105 (90–92). These small sub-populations are the main determinants of 

population structure in the proceeding generations. 

The high mutation and recombination rate, coupled with the processes of genetic 

drift and selection results in the quasispecies nature of viruses within a host. The host is a 

microcosm of geographic regions that each shape the population of the virus within. The 

population of viruses within a single plant can be highly variable from branch to branch 

in a large perennial plant. A single inoculation of Plum pox virus (PPV) into a Prunus 

spp. was observed over 13 years, and it was found that the viral populations segregated 

into distinct populations in different branches on the plant (93). Each sub-population 

evolved independently as they infected new tissues and organs (93). Population 

variability increases at each instance of infection with different viral genomes, and the 

junctions of where viral populations meet are areas of recombination between variants 

from different populations (48, 49, 76, 78, 79, 93).  
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Population bottlenecks occur quite frequently as a result of the random acquisition 

and transmission of viral isolates, selective sweeps in a host, mutation leading to a new 

species becoming a host, and the introduction into a new geographic region (12, 13, 48, 

49). The resulting diminishment of populations leads to ‘founder effects’ and increases 

the population variability within the new host or region (94–97). 

Populations within regions can be highly variable because of the aforementioned 

processes. Examples of high diversity with no geographic segregation are numerous, 

especially in Badnavirus (98–103). Other examples of high genetic diversity between 

populations where populations segregate based on geographic location also exist (104, 

105). Host specificity of viruses also leads to diversity and divergence. Certain viral 

strains may prefer one host over another which will lead to further segregation of 

populations. This may eventually result in speciation. Examples in the literature suggest 

that viral populations are highly variable, but the genetic stability of the population does 

not change from year to year (106, 107). In summary, the distribution of allelic 

frequency, or haplotypes, of viruses tend to remain stable over many years, even though 

the variability of genomes is high. Populations can segregate based on geographic 

proximity or host specificity, or be well mixed with no host specificity. 

 

Endemic, emergence, epidemic, and pandemic 

Endemic viruses are the viral populations naturalized to a given region, where 

reservoirs of viral populations exist in indigenous plants. The ancient ecological 

relationship between endemic viruses and native plant populations has lead to the 

evolution of reduced disease severity and little harm to indigenous plant communities 
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(12). Reduced disease severity is thought to be attributed to three main mechanisms. 

First, isolation of a host plant that is intermixed with other non-host plants in an 

ecosystem prevents a rapid spread of viral pathogens. Second, the interaction of vector 

insects with their predators in naturalized ecosystems leads to reduced transmission of 

viral pathogens. Lastly, the ancient relationship of viral pathogen with indigenous host 

plants lead to the evolution of a naturalized resistance as part of the innate immunity (13, 

108). 

Emergence of a virus occurs when an endemic virus increases host range, 

increases pathogenesis, and/or increases geographic distribution (13, 109). Emergence is 

usually noted when a new disease is observed on an agriculturally relevant crop. It has 

been calculated that 47% of emergent diseases are attributed to viral pathogens (13, 109). 

Epidemics of emerging diseases can result from changing agricultural practices or from 

altered viral biology. Agricultural practices that enhance the probability of emergence of 

indigenous viruses include agricultural intensification into native ecosystems, habitat 

fragmentation of indigenous ecosystems, loss of genetic diversity of crops (13, 110), and 

introduction of susceptible crop species to new regions (12, 13, 108–111). Biological 

changes that enhance the probability of emergence include expansion of natural host 

range (13, 112), founder events (13, 110, 113), new mutations (113, 114), and 

recombination or re-assortment (110, 113, 114).  

Epidemics can quickly establish in crops that have little to no innate resistance 

due to lack of evolutionary history with the virus, and loss of resistance due to breeding 

programs focused on commercial qualities. As a result, viral populations can explode due 

to little selective constraint (13). The spread of a virus in susceptible crops is enhanced 
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due to the genetic uniformity of monoculture-style agriculture. Proximity of crops, lack 

of evolutionary history of resistance, and genetic uniformity can cause viral diseases to 

spread quickly amongst cropping systems. The economic impacts of viral diseases have 

varying effects from minor yield loss to total crop loss (20). For particularly severe viral 

diseases, epidemics can cause huge crop losses in a region (21). 

Pandemics occur mostly from human spread of pathogen-infected vegetative 

material to other parts of the world (13, 115). Once a viral pathogen makes the jump into 

a new host, the quick evolution of the virus allows it to adapt to the new host, and the 

lack of innate immunity of the new host to the pathogen results in severe economic 

impacts. Bi-directional spread of viruses from infected crops to the indigenous plants of 

the new region can have profound impacts on ecology, as well as serving as a reservoir of 

viral pathogens to spread into other cropping systems (13). An example of quick spread 

of an indigenous virus into introduced crops, eventually leading to pandemic, can be seen 

in Tomato yellow leaf curl (TYLCV). TYLCV is an indigenous virus of the 

Mediterranean region and jumped into introduced tomatoes. A severe epidemic spread 

into the region causing serious losses to the countries of the Mediterranean. After 

vegetative material was spread internationally, TYLCV became a pandemic on the world 

stage (13, 116–118). 

Studying the emergence of viral pathogens into agricultural systems is important 

to prevent crops losses, stop the establishment of epidemics, and prevent a global 

pandemic. Careful monitoring of agricultural systems of introduced crops to new areas of 

agricultural intensification can prevent the spread of unknown viruses into the global 

cropping system.  
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Badnaviruses 

Grapevine vein clearing virus (GVCV) is a plant pararetrovirus belonging to the 

genus Badnavirus in the family Caulimoviridae. To date, 32 badnaviruses have been 

characterized across all continents excluding Antartica (115). Most badnaviruses have a 

narrow host range, but overall badnaviruses can infect both monocots and dicots, with a 

majority infecting perennial plant species of temperate and tropic regions (119, 120). 

Symptoms in a plant can include but are not limited to: chlorotic spots, chlorotic streaks, 

yellow mosaic, deformed leaves, and vein clearing of the leaves (100). Tissues infected 

include parts from the entire plant. Transmissions of the viruses are primarily human and 

insect mediated, while a few species can transmit through seeds. Insects in the families 

Aleyrodidae, Aphididae, Cicadellidae, and Pseudococcidae are known Badnavirus 

vectors, with the majority borne by Pseudococcidae (mealybugs) (115).  Humans are by 

far the most prolific vector of these viruses through agricultural practices, such as 

vegetative propagation and grafting (100).  

Badnaviruses contain a circular double stranded DNA (dsDNA) genome that 

varies between 7200-9200 base pairs (bps). They replicate using an RNA intermediate 

from a viral encoded reverse transcriptase (RT), and in this way, resemble retroviruses. 

The genome is organized with as few as three open reading frames (ORFs) and as many 

as seven. The majority contain three (I-III) and are arranged without intergenic regions 

between them. ORF I is in a different frame as ORF II and III. ORF I ranges from 399 to 

927 bps, ORF II ranges from 312 to 561 bps, and ORF III is much larger as it is a 

polyprotein, ranging from 5100 to 6000 bps. Upstream of the weak ORF I AUG start 

codon are multiple short ORFs (sORFs) (115, 121, 122). These sORFs are used in 
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formation of RNA secondary structures which brings a stronger AUG start codon within 

10 nts of ORF I and drive translation through ribosomal shunting (123, 124). Several of 

the viruses with additional ORFs include ORFs on the minus (-) strand (115, 125, 126). 

Many of the functions of the ORFs remain elusive. ORF I is associated with the virion in 

ComYMV (127), ORF II has been shown to be nucleic acid binding in CSSV (128) and 

capsid binding in ComYMV (127, 129), and ORF III cleaves into four or five products 

including: a capsid protein, reverse transcriptase, aspartate protease, RNase H, and a 

protein thought to help in cell to cell movement. (115, 126, 129–131).  

The lifecycle of badnaviruses is considered similar to Cauliflower mosaic virus 

(CaMV), the type virus of Caulimoviridae. From an active infection, a minichromosome 

of viral DNA is used for transcription of a polycistronic longer than full genome length 

terminally redundant RNA inside the host nucleus (132). This RNA is then exported into 

the cytoplasm where it is translated into the associated gene products of the ORFs 

through ribosomal shunting and leaky scanning (121, 123, 124). An inclusion body is 

formed inside the cytoplasm of the cell where the gene products are gathered. Assembly 

of the viral capsid occurs in this inclusion body where gene products are packaged into 

the capsid along with the longer than full length RNA (133). Reverse transcription 

produces a relaxed dsDNA circular genome of three discontinuous regions (132).  

Because of these gaps there is a propensity for recombination by template switching at 

this stage (134–136), adding to a higher virus population diversity (134, 137, 138). From 

here, the dsDNA is unencapsidated and imported into the nucleus of the host cell where 

the host’s DNA polymerases close the nicks in the relaxed circular dsDNA genome and a 

minichromosome forms with host proteins to begin the cycle anew (132). While within 
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the nucleus of the host, the genome of the Caulimoviruses can become endogenized into 

the host genome without the machinery for active placement, thought to be due to the 

dsDNA genome (99, 139). It is believed that endogenization events for Caulimoviridae 

occur once every one million years (139). Badnaviruses include many examples of 

species becoming endogenized into host genomes that can escape detection until abiotic 

stressors allow for a badnavirus to become episomal, increasing the rate of infections (99, 

140–142). This poses a significant problem for agriculturally relevant crops. 

 

Grapevine vein clearing virus 

Grapevine vein clearing virus (GVCV) was discovered by Dr. Wenping Qiu 

while working for the Center for Grapevine Biotechnology at the Missouri State Fruit 

Experiment Station in Mountain Grove.  In 2004, a vineyard manager contacted Dr. Qiu 

when he was experiencing a severe disease on many of his ‘Chardonel’ grapevines. Dr. 

Qiu recognized the symptoms as virus-like and brought samples from diseased 

‘Chardonel’ vines to his lab to test for pathogens. After initial tests showed negative for 

known viruses, his lab group extracted total RNA from the plant. The RNA was isolated 

to include only small RNAs (sRNA), and adapters were ligated to the RNA to form a 

library for next generation sequencing (NGS). The sequences of all sRNAs were 

compiled into a database and assembled into contigs, or short overlapping regions. These 

assembled contigs were then subjected to a viral BLAST search to look for any similar 

sequences that belonged to the NCBI GENBANK database. The BLAST search brought 

up numerous matches to viruses that belonged to the Badnavirus genus of the 

Caulimoviridae family and it was believed to be a new virus that was associated with the 
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disease in the vineyard (143, 144). In 2009, after the unknown sequence was discovered 

to belong to the Badnavirus genus, Dr. Qiu’s lab group began designing degenerate 

primers that would work on conserved regions of the putative virus’s genome. Through 

trial and error, primers were discovered to work and an entire genome was assembled 

through primer walking and Sanger sequencing (143).  This genome was published in 

2011 as the reference genome (NCBI Reference Sequence: NC_015784.2), named 

GVCV-CHA. At this point, the disease associated with the virus had only been reported 

in vineyards in Illinois, Indiana, and Missouri (143). Phenotypic characterization of the 

virus-associated symptoms include: translucent chlorotic veins, shoots that develop with 

shortened zig-zagging internodes, maturation of symptomatic leaves results in 

deformation and stunting, mosaic patterns on older leaves, and in later stages the vines 

become dwarfed with a reduced fruit yield and berry deformation (143). 

 The idea of a new virus emerging into the vineyards of the Midwest led 

researchers to look for a reservoir of the virus in native Vitaceae spp (Figures 1-6). In 

2013 the virus was detected in two Vitis rupestris. Figure 2 shows the county distribution 

of this native plant. A year later, the second GVCV isolate genome was published in 

GENBANK (NCBI Accession: KJ725346.1), named GVCV-VRU 1 (103, 145). 

Concurrently in 2014, the relative amounts of GVCV particles in host tissue was 

determined through quantitative polymerase chain reaction (qPCR), and the host 

specificity was examined through graft transmission assays. It was found that GVCV 

accumulates in the petioles and that the cultivars ‘Chambourcin’ and ‘Norton’ could not 

acquire GVCV from grafting, whereas the native V. riparia could (146). In the same 

study it was shown that a phylogy based on conserved regions of the RT and zinc finger 
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(ZF) domains of ORF III of 13 isolates was not concordant with either geography or host 

species (146). The following year, 2015, a second GVCV genome was published from V. 

rupestris (NCBI Accession: KT907478.1), named GVCV-VRU 2. This same year, 

researchers at the University of Missouri characterized the promoter region that would 

drive transcription of a pre-genomic RNA for GVCV and delineated it somewhere 

between nucleotides (nts) 7332 and 7672 of the GVCV-CHA reference genome, with 

transcription starting at nt position 7571 (147). In 2016 they used this knowledge to 

design a clone of GVCV-CHA to attempt to provide evidence of causality of the virus to 

the associated disease and for use in downstream applications (121). Back at Missouri 

State, the analysis of phenotypic and genetic variation from isolates GVCV-VRU 1 and 

GVCV-VRU 2 showed that symptoms can progress to necrosis in V. rupestris, isolates 

GVCV VRU 1 and 2 can produce mild mottle and leaf distortion when infecting 

‘Chardonnel’, and that ORF II is the most divergent region of the genome with the 

presence or absence of an indel (103). The variation of ORF II was proposed to be used 

as a marker for distinguishing isolates due to the variability between 12-17% difference 

(103).  While investigating native V. spp. in 2016, Qiu’s group noticed an unknown 

symptomatic vine growing in close proximity to native vines. A sample was taken and 

analyzed for the presence of GVCV and it was found to test positive. The plant was 

identified as Ampelopsis cordata of the Vitaceae family, and the new phenotypic 

symptoms of slight vein clearing and asymptomatic tissues were observed (148). Focus 

was shifted from sampling V. rupestris to A. cordata due to the low incidence rate of 

sampled Vitis. Collection and sequencing of four more genomes occurred in 2017. 

GVCV-AMP 1 and GVCV-AMP 2 (NCBI Accession: KX610316.1 and NCBI 
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Accession: KX610317.1) were isolated and sequenced from two wild A. cordata (148), 

while GVCV-AMP 3 and GVCV-CHA-2 were isolated and sequenced from a wild A. 

cordata and a cultivated V. vinifera ‘Chardonel’(Awaiting submission) that were within 

10 feet of one another (122). Analysis of the 7 genomes, thus far sequenced, provided 

information on the secondary structure of the 5’ region of the pre-genomic RNA, and the 

highly conserved secondary structure of the intergenic region (IGR) between the seven 

isolates. The analysis indicates that a sORF is indeed in proximity to the start codon of 

ORF I, as is with other Badnavirus (121, 122). In the same study, a phylogenomic 

analysis of the seven genomes indicates that isolates GVCV-VRU 1 and 2 branch off 

from the other isolates to form a distinct clade (122). To determine in-host viral 

population variation and differences between viral populations of same host species from 

different spatial regions, three genomes were assembled using viral small RNAs 

(vsRNAs) in 2017. The results show that variation in a host is within 2% at the nucleotide 

level, and that populations between hosts more closely resemble each other based on 

spatial proximity, rather than host species (149). 

Summarizing the information currently available, we see that GVCV exists as a 

diverse population that has a broad host range with the ability to infect V. vinifera, V. 

rupestris, V. riparia, and A. cordata. Phenotypic characteristics of disease symptoms vary 

among the hosts, and variation of isolates within a plant can be up to 2%. The isolates 

that have been phylogenetically analyzed do not seem to suggest common ancestry either 

within host species or within a spatial region, further indicating a diverse population. 

Phylogenomic analysis separates isolates in two distinct groups: those infecting A. 

cordata and V. vinifera, and those infecting V. rupestris.  Attempts at providing 
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information for causality of the associated disease have been partially successful, and a 

pattern of population structure has not been observed.  

 

Rationale  

The following chapters contain two research projects that attempt to resolve some 

unanswered epidemiological questions for GVCV. First, is GVCV the sole causative 

agent for the progression of the disease complex? Does GVCV alone cause the disease 

noticed in vineyards, or is there a second pathogen that is required for the disease to 

progress? Second, do isolates of GVCV cluster in a geographic pattern, and what is the 

route of transmission into vineyards? Is the virus historically endemic to the region, 

recently jumping into vineyards where it is causing serious economic loss, or has the 

virus been introduced into our region and spread into the wild plants from the vineyards? 

Both questions, when answered, will provide invaluable knowledge to grape producers in 

the region. 

 Looking back at the disease triangle of epidemiology, one cornerstone is the 

pathogen. Correct identification of the pathogen is paramount in developing strategies to 

mitigate damage in a vineyard. Successful treatment and prevention are not possible if the 

pathogen is miss-identified.  To answer this question, Koch’s postulates are used to 

determine a link of causality between the disease and the virus. Infectious clone 

construction of GVCV and inoculation of clean plants using Agrobacterium mediated 

transfection into disease-free grapevines was the method used to provide evidence of 

causality. Construction of this clone will also allow future researchers the ability to 
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answer further questions dealing with the virus’s phenotype, genome structure, and 

pathology.  

Determining the contemporary distribution of GVCV in the region will help 

provide insight into the historical movement of GVCV. This can help answer questions 

relating to the origin of the epidemic in the region, prediction of the rate of spread into 

other regions, and establishing the predicted Ne population size. This information will 

allow growers to reduce the incidence and spread of GVCV into their vineyards. 

Furthermore, if GVCV is found to be endemic in the region, quarantine of plants from 

this region into other regions will prevent economic losses in more intensive wine 

producing regions, such as California or France. Clean vine testing services such as the 

National Clean Plant Network should be utilized to prevent the spread of infected plant 

tissues to other regions. 
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CHAPTER 1: EPIDEMIOLOGICAL PATTERNS OF GVCV  

 

Introduction 

Molecular evolutionary analyses rely on mathematical models to predict the 

probability that two given nucleotide sequences are related. Simply enough, it uses the 

proportion of different nucleotides to the number of nucleotides that are the same to 

determine the number of differences between two related nucleotide sequences, known as 

the Hamming distance (150–152). The inferences that can be made using molecular 

sequence data are numerous, including estimation of effective population sizes, 

prediction of emerging disease epidemics, inferring past migration events, and most 

notably, resolving ancestry between two organisms. 

The Wright- Fisher model assumes an idealized population that allows for a 

number of methods to be applied to population genetics and phylogenetic inference (80, 

81, 150–154). The idealized population of the Wright-Fisher model can be summed into 

three simplified assumptions: the population in question has a constant population size, 

there are discrete generations between ancestors and progeny, and there is a random and 

complete mixing of alleles (80, 81, 152, 153). The model traditionally deals with the 

frequency of allelic genes in a diploid population, but it can be adapted for use of haploid 

organisms, such as viruses (92, 152, 153). From hence forward, alleles will refer to the 

alternative copies of nucleotides:  adenine, thymine, cytosine, and guanine (A,T,C,G).  

Allelic frequencies can be determined in a population by sampling individuals in a 

population and the inferences of population structure can be estimated by applying 

models of sequence evolution.  Sequences evolution is caused by mutational change to 
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genes (such as point mutations, recombination, indels, and gene duplication) combined 

with migration, natural selection, and genetic drift (80, 81, 150–152). Current theories of 

sequence evolution attribute a stronger affect to genetic drift as the driving factor in 

evolution than selection (92, 150–153), but selection does play a role, especially in 

determining fit variants of viral population (48, 49).  

Genetic drift is the stochastic changes in allele frequencies in a population over 

time (80, 81, 150, 151, 153). The strength of genetic drift is inversely proportional to the 

effective size of the population (Ne). Ne is the population size equivalent to the 

mathematical quantity that works in an idealized model which predicts the same value of 

a particular trait as the observed natural population (92, 150, 154), more simply it can be 

thought of as the number of individuals that attribute genetic diversity to the overall 

population. Ne is often much smaller than an actual population size as the number of 

individuals that contribute to offspring for the next generation is a subset of the whole 

population. As Ne increases, the strength of genetic drift decreases, and it takes longer for 

an allele to become fixed in the population, increasing allelic diversity (155, 156). 

Some processes of evolution behave in a regular pattern that can be observed in a 

population of the same species. Mutational changes in viruses, such as nucleotide 

substitutions, occur as a result of the error of polymerases during genome replication. The 

changes are observable and can be estimated as changes to a genome per generation. 

Applying discrete generations to calendar times, we can get a molecular clock which is 

the change of nucleotides per site per year(151, 157). This task is easier for haploid 

organisms such as viruses, when it is likely that the generations are discrete and it can 

satisfy more appropriately the assumption of the Wright-Fisher model.  
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Adding the mutational rate to the process of genetic drift, we constantly have 

additions of new alleles to the population. Small Ne sizes with a slow mutation rate have 

a low allelic diversity, whereas large Ne with a high mutation rate have a high allelic 

diversity. Due to the mutation rate constantly substituting nucleotides, the allelic diversity 

is always changing. As a consequence of genetic drift fixing alleles over time, large 

populations with a high mutation rate are adding alleles to the population before drift can 

fix them. This results in high allelic diversity, or genetic variation within a population.  

Evolutionary nucleotide substitutions do not occur with the same frequency at 

every nucleotide position. DNA sequences are not all coding and can include non-coding 

regions, repetitive elements, exons, or introns. Functional constraint is placed more 

heavily on coding regions, as these regions are the instructions for the amino acid 

sequence in proteins. A change to this region has the potential to be fatal to an organism 

if the mutation causes an amino acid change. Furthermore, the position of the nucleotide 

in a coding region has different rates of evolution. The first and second position of a 

codon add more functional constraint to the codon than the third codon because of the 

degeneracy in the DNA code, and because of this degeneracy a mutation may be silent or 

non-silent. A silent mutation is a change to a nucleic acid, but the change results in the 

same amino acid. Non-silent mutations are changes to the nucleic acid results in a 

different amino acid. Purifying selection results in the survival of organisms who have 

not changed the function of their proteins by changes to their amino acids. Further 

complicating the situation, a change to an amino acid may not change the function of the 

protein as some amino acids have similar function. Selection only purifies those changes 
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which are lethal or result in significantly diminished fitness to an organism (150–152, 

157)  

Neutral mutation, combined with genetic drift, has been shown to have a stronger 

effect on sequence diversity than selection (150, 151, 157–159). However, pure neutral 

mutation is rarely the case. Instead, mutations lead to a slight decrease in fitness of an 

organism. Genetic drift and the accumulation of mutational alleles that add a slightly 

deleterious effect to the population leads to a process known as Muller’s Ratchet. 

Muller’s Ratchet is the accumulation of deleterious mutations in a population as the result 

of drift and it leads to extinction or less fit populations over time (160). The concept was 

initially introduced as a way to explain the evolution of sex as a means to introduce 

recombination and have the re-assortment of alleles introduced back into the population 

(160). Muller’s ratchet has been observed for viruses in vitro where serial transmissions 

in a laboratory lead to loss of fitness (161–163).  

Molecular phylogenetics attempts to resolve the ancestry or relatedness of 

observed sequences. There are multiple models that deal with sequence evolution and 

distance between two related species, but most evolutionary models are a modification of 

the neutral theory and mutational changes of two related sequences (150–153, 157). 

These substitution models utilize transitional rate matrices to determine the probability 

that a nucleotide will change from one state to another (i.e. A to T), and are a 

sophistication from a simple proportion of nucleotide sites that are different. Some 

models apply a uniform probability to substitution rates (159), others consider the 

transition/transversion bias (164), and more complex models account for the 

transition/transversion bias and the GC content bias (158). Further complexity is added 
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when one considers that the evolutionary rate from site to site is not the same, as is the 

case in the first and second nucleotide of a codon. This can be modelled by changing the 

shape parameter of the probability distribution to the gamma distribution (150, 151, 165). 

The phylogenetic tree is a fundamental graph for the imaging and study of 

evolutionary relationships. Trees can either be rooted, or unrooted. Rooted trees show a 

direction of evolution between the related sequences while unrooted trees only show the 

relationship between sequences. Methods used to build trees include distance methods, 

maximum parsimony methods, and maximum likliehood methods. Distance methods 

draw trees based on the genetic distance between related sequences, maximum parsimony 

methods compare four or more sequences and the topology of the tree is picked for the 

minimum amount of evolutionary changes to the sequences, and maximum likelihood 

methods maximize the likelihood of observing a given set of sequences for specific 

substitution models for each possible topology of the tree and the most likely topology is 

selected (150).  

Rooted trees made by any of the methods can be used to infer time trees, or trees 

where branch lengths correspond to units of calendar time (152). For large population 

sizes (N), the Wright-Fisher model gives rise to a distribution of time trees, called the 

coalescent tree distribution (152–154). Coalescent theory attempts to resolve past 

evolutionary processes that affect a population from contemporary sequence data (153, 

154). The coalescent distribution is the distribution of probabilities that two random 

members of a current generation from a population share a common ancestor (152–154).  

The probability can then be determined for the number of discrete generations it took for 

the sequences to diverge from their common ancestor common ancestor (153, 154). 
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Establishment of the time to most recent common ancestor (TMRCA) is a powerful tool 

that coalescent theory can infer from contemporaneous sequence data.  

Phylogeography is an approach that merges phylogenetics and biogeography 

(166), and has become more popular with advances in the models of coalescent theory 

and computation (167). Phylogeography can address questions of geographical origins 

and expansions and the effect of complex factors such as climate change and human 

involvement on geographic dispersal (152). For fast-evolving pathogens, such as viruses, 

a ‘mugration’ model of Phylogeography can be adopted. Mugration is the modeling of 

the migration processes using a substitution model of analyzed sequences (168, 169). 

Locations of where the sequences were collected are used to estimate the migration rates 

between pairs of locations (152). This approach has been used on a variety of quickly 

evolving viruses, such as influenze A H5N1, to determine the origin and paths of global 

spread (170). It has also been implemented for dog rabies (171), Rice ellow mottle virus 

(RYMV) (172), and Potato Virus Y (PVY) (173). While the majority of examples of 

phylogeographic methods are used in studying human or mammalian viruses, the 

adoption into the study of plant viruses is burgeoning.  

Grapevine vein clearing virus (GVCV) is thought to be a recently emerging virus 

in the Badnavirus genus of the Caulimoviridae family which severely impacts the 

sustainability of grape production in the Midwest (122, 143, 145, 146, 148). Previous 

studies have found alternative hosts for GVCV in the native Vitaceae of the Midwest 

(145, 148). Phylogeographic models were implemented to address the question of the 

effective population size, if GVCV is endemic to the region, and the historical pattern of 

spread of GVCV. Taken together, we can predict the Ne of GVCV by estimating the 
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mutation rate, resolving the phylogenetic relationship of organisms, and working 

backward to determine how many generations it would take to find a common ancestor 

for the sampled isolates. In essence, the allelic diversity of the sequences analyzed will be 

used to predict the Ne by determining the discrete generations that took place to get the 

observed sequence variation. Applying the estimated molecular clock will convert 

generations to calendar time, the discrete geographic coordinates of the sampled isolates 

will be fixed points in a continuous landscape, the resolution of phylogenetic relationship 

between the isolates sampled from the discrete positions will give the likely route and 

rate of spread through the region. A diffusion model based on a modified Brownian 

motion will predict the areas, where it is likely the virus can be found. If the TMRCA is 

sufficiently old, it is likely the virus is endemic to the region. This information is crucial 

for stakeholders, as it will allow them to predict patterns of spread into their vineyards 

from the wild populations of Vitaceae, and can potentially help prevent a pandemic 

scenario into other wine producing regions where GVCV has not been detected. 

 

Materials and Methods 

Brief synopsis. Inference of the historical spread of Grapevine vein clearing virus 

(GVCV) from the wine producing regions of Missouri and Arkansas was attempted using 

a tip-dated Bayesian phylogeographic approach. ORF II was proposed to be used for 

phylogenetic analysis because of the high sequence divergence for providing higher 

resolution between isolates (103, 122). The summary of methods used were to sample 

from wild Vitaceae populations, test for GVCV, build a dataset of non-recombining 

sequences, determine the best substitution model for phylogenetic analysis, set up tip-
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dating analysis by testing evolutionary change and determining the molecular clock, 

perform Bayesian evolutionary analysis, determine effective population size (Ne) and 

time to MRCA, and finally overlay evolutionary changes onto a continuous landscape to 

infer historical spread of GVCV through the region. 

Samples were collected from native Vitaceae plants for two years, and previous 

samples collected by former researchers were also incorporated into the data set. Samples 

were collected without regard to symptoms from pre-designated regions in proximity to 

wine producing regions, and in regions remote from wine production. Plants were 

identified visually in the field, samples were collected, and discrete geographic 

coordinates were recorded on mapping software. Tissue samples were brought back to 

the lab where a portion was used for DNA extraction, and the remainder frozen for long 

term storage. An Excel file containing all samples with geographic coordinates was 

created. Polymerase chain reaction (PCR) detection of GVCV nucleic acids was 

performed on all samples. Positive samples were selected to PCR amplify the open 

reading frame (ORF) II region. Amplified products were extracted and sequenced. 

Sequences were aligned to the reference genome GVCV-CHA’s ORF II and compiled 

into a FASTA file. All sequences were aligned in MEGA 7 and an alignment file was 

exported to RDP4 to test for recombination. Recombinant sequences were removed from 

the FASTA file. The new FASTA file was aligned in MEGA 7 and a neighbor joining 

tree without bootstrap values was inferred. The tree was uploaded to TEMPEST to 

determine if sequences fit a clocklike behavior to calculate a molecular clock rate. The 

FASTA file containing all sequences was compiled and uploaded with the molecular 

clock rate to the program BEAUti to set evolutionary model parameters. The generated 
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file was uploaded to the program BEAST to perform a Bayesian evolutionary analysis 

using a continuous time Markov Chain Monte Carlo (MCMC) method. The generated file 

was uploaded into TreeAnnotator and DensiTree, and a maximum clade credibility 

(MCC) tree was visualized and trimmed. The tree was uploaded into the program 

SPREAD along with geographic coordinates of each sample. The diffusion of GVCV 

through the region was imaged on Google Earth using the SPREAD algorithm.  

Collection of samples. Sampling from Ampelopsis cordata was preferentially 

chosen due to the previously sampled incidence rate (148). County maps for native 

Vitaceae plants were consultated for sampling from appropriate locations (Figures 1-5). 

Young shoots were collected from observed plants and placed in pre-labeled plastic bags 

containing a moist paper towel to prevent desiccation of leaves. Naming convention 

started with year sampled, followed by genus, and ending with a four-digit numerical 

code (i.e. 16AMP0001). A discrete geographic coordinate point using Decimal Degrees 

was marked and stored on the iPhone app, GaiaGPS. Samples were stored on ice in the 

field until they were brought back to the lab for long term storage. Three replicates of 

samples were weighed in amounts of ~45mg of fresh tissue, flash frozen in liquid 

nitrogen, and stored in -80°C until extraction.  

DNA extraction and PCR detection of GVCV. DNA was extracted from the 

samples by using the Synergy™ 2.0 disruption tubes, BeadBug™, and silica columns 

according to the Synergy™ manufacturer protocol. DNA concentration and quality were 

analyzed on the Thermofisher 2100 Nanodrop. DNA concentration was diluted to 10 

ng/µl and all samples were stored at -20°C.  
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PCR was performed using a triplex primer set containing two GVCV primer sets 

and one plant specific primer set for a DNA positive internal control. Primer sets used 

were 1101 F and 1935 R, 4363F and 4804 R, and 16s F and 16s R; a list of primer 

sequences is located in Table 2. Samples showing a band for either GVCV primer set 

were determined to have the virus.  

ORF II amplification and Sanger sequencing. GVCV primers flanking the 

ORF II region, 963 F and 1634 R (Table 2), were used to amplify the gene sequence of 

all positive samples. PCR amplicons were extracted from 1% agarose gel using the 

MinElute™ DNA Purification kit supplied by Qiagen. DNA quality and quantity were 

analyzed on the Thermofisher 2100 Nanodrop. 

DNA samples were prepared with primers 963 F and 1634 R and sent to Nevada 

Genomics for Sanger sequencing. Sequences were provided by Nevada Genomics in the 

form of a chromatograph that includes the nucleotide sequence and a phred quality score 

of the likelihood the correct base was called. The chromat file was imported to the 

CodonCode Aligner software package and the sequences were aligned to the GVCV-

CHA genome (GenBank Accession: KX610317.1). Only sequences where phred scores 

were above 20 were kept, corresponding to a 99% accuracy of base-calling. All gene 

sequences were compiled into a FASTA file. 

Sequence alignment and recombination detection. The FASTA file of all 

compiled sequences was imported to MEGA 7 (174). Alignment of all the sequences was 

performed using the default parameters of the CLUSTAL W algorithm (175). Manual 

inspection of the alignment output was performed to correct any discrepancies from the 

reference genome. The alignment file was saved as a Nexus file. 
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The alignment file was imported to RDP4, a recombination detection program 

(176). Recombination algorithms were used to detect potential recombination events. 

Sequences were considered recombinant if five of the algorithms detected a 

recombination event. Recombination sequences were removed from the positive 

sequence file, due to the confounding effects of recombinant sequences on accurate 

phylogenetic analysis (177).  

Neighbor joining tree and molecular clock estimation. The new FASTA file 

was uploaded to MEGA 7 and the alignment was performed as previously described. A 

phylogenetic analysis of the aligned sequences was performed by using a neighbor-

joining distance tree under the prior assumptions of a Timura-Nei substitution model 

using a gamma distributed rate variation with a five-shape parameter. The tree was 

exported as a Newick tree and saved to a file. This process was repeated for all GVCV 

genomes currently sequenced and for 56 Badnavirus genomes acquired from Genbank. 

The Newick tree files were imported into TempEst to estimate the molecular 

clock rate. The program estimates the clock rate by regressing the branch lengths of the 

Newick tree on the dates of the collection of the sampled sequences (178). The mutation 

rate is the number of mutations per nucleotide site, per year for the given sequence data.  

Test of selection. The aligned ORF II sequences were tested for evidence of 

purifying or positive selection at each codon by using the adaptive Branch-Site Random 

Effects Likelihood (aBSREL) method in MEGA 7 (179).  

Test of suitability of ORF II as a candidate for phylogenetic reconstruction. 

The aligned ORF II sequences with the removed recombination sequences were used to 

construct a Maximum Likelihood tree with 1000 bootstrap replicates to test for 
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phylogenetic signal form the ORF II region. The Tamura-Nei substitution model and a 

uniform rate between sites were the parameters used to reconstruct phylogeny. 

BEAUti and the BEAST. The Nexus files of all alignments (ORF II, GVCV, 

Badnavirus) were imported into BEAUti (180). The years of collection were set as the tip 

dates. A trait partition was imported to use discrete geographic coordinates in a 

continuous landscape and linked to each sample for the ORF II sequence data. The 

substitution model used a general time reversible (GTR) transition rate matrix (181) using 

rate heterogeneity set to a five-parameter gamma probability distribution for each site 

(1+2+3) with unlinked substitution rates. The location traits were set to determine routes 

of historical transmission using a Brownian random walk model for the ORF II sequence 

data. The clock model used was an uncorrelated relaxed lognormal clock, using the 

estimated clock rate from Tempest. A coalescent constant population size was used to 

determine the tree shape parameters. Ancestral states were reconstructed for the location 

partitions to simulate the geographic spread of GVCV. The Markov Chain Monte Carlo 

(MCMC) tree construction was set to 10 million itterations and tree samples were taken 

every 10,000 iterations. A BEAST file was generated using these parameters. BEAST 

performed the Bayesian evolutionary analysis through sampling trees (BEAST) from the 

generated file, and built two files for analysis (180). 

The data were analyzed on Tracer to determine the 95% highest posterior density 

(HPD) interval and the effective sample size (ESS) values for each dataset. The tree data 

were uploaded to FigTree and used to find the tree with the highest posterior probability 

and build a Maximum clade credibility (MCC) tree. The MCC was imaged on DensiTree 
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to determine relative divergence dates between isolates, and to image the direction of the 

evolutionary relationship. 

SPREAD. The MCC of the ORF II sequences linked to traits of physical 

locations was uploaded to SPREAD (182). Visualization attributes will be set to image 

the predicted transmission history of GVCV on a continuous landscape. A kmz file was 

created and uploaded to Google Earth (http://earth.google.com) and a time-lapse of 

GVCV movement through the region will be created. 

 

Results 

Viral detection and clock rate estimation. A total of 488 wild plants were 

sampled and 134 tested positive for GVCV. The number of samples and those that tested 

positive for GVCV are listed in Table 1. In this study, two new Vitis spp., Vitis cinerea 

and Vitis vulpina, were found to be natural hosts of GVCV., An example of the triplex 

PCR for detecting GVCV is presented in Figure 7. Distributions of natural boundaries of 

each species are shown in Figures 4 and 5. A list of positive samples with geographic 

coordinates is in Appendix A, and a map of all GVCV-positive vines is presented in 

Figure 8. The ORF II regions of all 134 GVCV isolates were sequenced and were 

compiled into a FASTA file along with the ORF II sequences previously determined. A 

total of 143 sequences were aligned without a root and imported to RDP4. 

Recombination events were detected in 7 sequences by five of the algorithms in RDP4 

and were removed from the sequence file. The 56 Badnavirus sequences from Genbank 

were compiled into a FASTA file without a root and aligned. The seven sequenced 

genomes from GVCV were also compiled into a FASTA file and aligned. The Neighbor-

http://earth.google.com/
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Joining trees are presented in Figures 9-11. The Neighbor-Joining trees of each dataset 

were imported to TEMPEST and the molecular clock rate was estimated by regressing tip 

dates to genetic distance. Screenshots of the linear regression of samples evolutionary 

distance to sampling dates can be found in Figures 12-14. The clock rates and R2 values 

are listed in Table 3. The slope of the line is the molecular clock rate that was used in 

subsequent analysis.  

Test of selection. The analysis of selection for each codon of ORF II showed that 

18 codons out of 114 went through purifying selection with the majority being under no 

selective constraint. This suggests that ORF II is not a conserved region, as the literature 

suggests, and that it’s structure and function can be widely adaptable. A table of the 

dN/dS ratio with P-values can be found in Appendix B.   

Test of phylogeny. Gooseberry vein banding associated virus (GVBaV) 

(GenBank Accession: NC_018105.1) was added to the non-recombinant ORF II 

sequences and used as a root to provide a direction of evolution. Phylogenetic analysis 

using a Maximum Likelihood tree showed evidence of an unresolved tree with many 

polytomies coming from the central branch. Figure 15 shows the lack of resolution of the 

phylogenetic relationship.  Phylogeographic analysis was pursued even though there was 

a lack of supported phylogenetic relationship to provide future researchers with a look 

into the methods used for a more suited molecular sequence. 

Phylogeographic analysis. The sequence file was further trimmed to include the 

125 non-recombinant sequences from 2016 and 2017 for the phylogeographic analysis. 

Highest posterior density (HPD) ranges and effective sample size values (ESS) were low 

for phylogenetic reconstruction and the uncorrelated-relaxed clock rate, and high for the 
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substitution model used. An example can be seen in Figures 16 and 17. Continuation of 

the analysis was conducted to provide a method for future researchers to follow with a 

better suited molecular sequence dataset. All results from here will be statistically 

unsupported but are relevant for future researchers.  

The estimated time to the most recent common ancestor (TMRCA) of GVCV and 

GBVBaV based on ORF II sequences is approximately 270 years ago. The TMRCA of 

GVCV isolates occurs at a population explosion event occurring between 15-30 years 

ago, where the relative effective population size (Ne) jumped by order of a magnitude.  A 

graph showing the estimated historical Ne changing through time is shown in Figure 18.  

The Maximum clade credibility tree of GVCV and ORF II is shown in Figure 19. 

A common haplotype in GVCV is the presence or absence of a 9-bp indel in ORF II, a 

common genomic feature of GVCV; 35 out of 125 sequences contained the indel. Figure 

20 highlights the isolates with the indel and shows the relative geographic positions and 

placement on the tree. Figure 21 highlights the isolates from Vitis spp. on the MCC tree. 

Augusta and Herman, MO were two of the most heavily sampled areas. Figure 22 shows 

their relative positions on the MCC. All highlighted samples show their relative 

geographic locations in their real world. Inference of the transmission history of GVCV 

was unsuccessful, but future attempts will be made to resolve some key issues. 

 

Discussion 

Sampling and incidence suggest endemic nature. The sampling of native plants 

in the Vitaceae family revealed two new hosts for GVCV, V. cinerea and V. vulpina. 

There are now five known wild hosts to GVCV. A. cordata has a higher incidence rate of 
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GVCV than Vitis spp. Approximately 33% of sampled A. cordata test positive for 

GVCV, whereas 14% of sampled Vitis spp. were infected with GVCV (Table 1). As 

mentioned in the literature review, it is common for a naturalized wild host of a virus to 

have mild or absent symptoms due to the co-evolutionary relationship of the pathogen 

with the plant (12, 13, 112–114). We rarely observe distinct GVCV-associated symptoms 

on A. cordata, they are usually very mild. Conversely, the GVCV associated disease 

progresses from vein clearing to necrotic spots in the leaves of V. rupestris (103, 145). It 

is likely that GVCV is endemic to the region and has evolved to infect Vitis spp. as a new 

host, first in wild plants, and then into cultivated Vitis spp. The distribution of A. cordata 

overlaps with many Vitis spp. in the Midwest (Figures 1 to 5). If GVCV is endemic to the 

region and is recently emergent, it is imperative to establish the borders of the virus in 

wild populations, and to investigate potential alternative hosts. Figure 6 shows the range 

of all Vitis spp. in North America. There is a logical route of migration for GVCV to 

spread into alternative hosts, and discovery of the insect vector will help predict the rate 

of spread, as sequence data could not resolve issues of past demographics.  

 

Implications of the 9bp-Indel. The 9bp-indel in ORF II at nt position 262 is 

likely a deletion. It is interesting to note that isolates from both V. spp. and A. cordata 

have the 9bp-indel, further suggesting that GVCV is not host specific in the Vitaceae 

family. Viral genetic diversity is known to be large, but generally stable from year to year 

if looking at number of haplotypes in the population (48, 49, 117). If the indel is used as a 

haplotype, then we can see that 19 out of 40 sequences (47.5%) sampled from 2016 

contain the indel, while 19 out of 86 sequences (22%) from 2017 contain the indel. This 
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does not fit the haplotype population stability from year to year as is suggested (48, 49, 

117). Perhaps this could be due to the difference in sampling regions from the two years. 

2016 had the majority of samples from Arkansas and southern Missouri, while 2017 

primarily focused on central and northern Missouri. This could provide evidence of a 

historical movement of the virus from the south, as the indel seems to be a deletion. This 

is, however, speculation. Further sampling from the boundaries of the A. cordata range 

could provide insight into the segregation of isolates based on geography. 

 

Molecular clock. The molecular clock rates were estimated for ORF II, GVCV 

genomes, and Badnavirus genomes by linear regression of tip-dates (sample dates) to 

evolutionary distance between sequences. This is a simplistic method to estimate a rate, 

but it proves to be fairly accurate (183). It is worth noting the clock rates determined that 

the older sequences were more divergent from the root, suggesting that the virus is de-

evolving over time. This is shown by the negative slope of the line generated in 

TEMPEST. The clock rates are shown in Table 3. GVCV and Badnavirus genomes were 

used to determine if the magnitude of the clock was correct, as the evolutionary 

relationship between whole genomes can be resolved easily. All clock rates were of the 

same magnitude, so the clock rate used for the analysis was ORF II. The R2 values were 

low for the Badnavirus and ORF II clock estimate, but were the same magnitude as the 

GVCV genome rate (47, 71, 72). Interestingly, the rates predicted fit more closely with 

the mutation rate of RNA viruses, rather than DNA viruses. This is not surprising as 

Badnaviruses replicate through the RNA intermediate using reverse transcriptase (RT).  
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Purifying selection. Purifying selection was found to act on only 18 out of 114 

codons of ORF II, starting at codon 63 and increasing in density. The test of positive 

selection showed no signal. It is likely that the putative protein has great adaptability in 

function as little constraint is placed on this gene sequence, not surprising considering it 

is the most variable region. As discussed earlier, the ORF II of Badnaviruses has been 

shown to be nucleic acid binding and capsid binding in two species (128, 129). The 

function of GVCV’s ORF II is unknown, but it is likely multi-functional, as viral proteins 

usually serve multiple purposes (73).  

 

Maximum Likelihood phylogenetic analysis.  Before a phylogeographic 

approach could be attempted, it was necessary to test if the sequence data could 

accurately resolve the phylogenetic relationship between isolates. A maximum likelihood 

(ML) tree was constructed with 1000 bootstrap sampling. The tree could not be 

satisfactorily resolved. When the bootstrap cutoff value was set to 70, there were very 

few resolved clades and the tree had many polytomies. The tree took a characteristic star 

shape, and is indicative of a population explosion in coalescent theory, or suggests low 

phylogenetic information in the data set (152–154). Population explosion would make 

sense, if the endemic virus recently evolved to broaden its host range and increased its 

reproductive fitness (12, 13, 109, 110, 118).  

Unfortunately, this lack of phylogenetic reconstruction prevents the accurate 

inferences that the analysis was attempted to address. However, the analysis still provided 

researchers with a method if more data were collected, and perhaps find a path through a 

complicated task.  
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Phylogenetic problems. The only clear conclusion from this data set is that ORF 

II is an unsuitable gene candidate to determine phylogenetic relationships of the sampled 

isolates. The test of selection showed that the majority of the mutations to the dataset 

occurred from neutral mutations and that there was minimal selective constraint on the 

gene region, suggesting that the use of substitution models should resolve the phylogeny. 

The gene sequence contains 384-393 nts and is the most highly variable region in the 

GVCV genome (103, 122, 145). It is generally accepted that 200 nts is the lowest value 

for giving confidence values that can completely resolve the phylogenetic relationship 

between isolates (184). It is likely that the high variability in the gene sequence and the 

low amount of genetic characters, prevent the current models from resolving the 

relationship between the isolates. There are a number of explanations beyond this 

rationale that could hinder accurate analysis in the future and that will also be discussed. 

Recombination events have a drastic detriment to the inference of phylogenies 

and can make the phylogeny difficult to resolve even with a few sequences in a large 

dataset (177, 185). Caulimovirus as a family are known to be highly recombinant, as is 

described in the literature review, which is why the program RDP4 was used to remove 

recombinant sequences. The software could have missed detection of recombinant 

sequences and could cause problems. 

Badnavirus species have been shown to endogenize in their hosts genome (99, 

140–142). Endogenized viral elements (EVE) will have the potential to have the same or 

similar sequences as episomal forms, but will mutate at a much slower rate (139, 186, 

187). The magnitude of Badnaviruses molecular clock was estimated to be in the 
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magnitude of 10-3, while the host plant can range from 10-8-10-12, depending on the where 

the EVE is located (150, 151). If GVCV is endogenized, it could be an extinct variant 

that is an ancestor to the extant species. This would cause many problems in phylogenetic 

reconstruction.  

 Time tree imbalances can come from incomplete sampling and oversampling 

from one year when using heterochronous data. When using a tip-dated phylogenetic 

analysis, imbalances in sampling areas and lack of significant heterochronous separation 

can lead to biases in the estimation of past timescales (188, 189). This is likely a problem 

that occurred for the Bayesian tip-dated analysis. The speciation event of 300 years that 

was predicted between GVBaV and GVCV is likely grossly underestimated, as GVBaV 

is considered endemic to Europe (190). Further evidence imbalances causing problems 

for this analysis is the estimated time to the population explosion of GVCV between 15-

30 years ago. The area covered in sampling is large and the sequence diversity is high, so 

this is likely also grossly underestimated as a time of origin for the diversity we see 

today.   

The sequence likely lacks the length of characters that models need to resolve the 

phylogeny, especially considering the observed variability in the region. Whole genome 

sequences, more discerning sampling times (days, month, year), and continued sampling 

from other regions would likely resolve any issues with the analysis. If whole genome 

sequences were not used, then it would benefit to use a less diverse region of the genome 

along with ORF II for phylogenetic analysis, most likely a region that undergoes 

significant purifying selection and is therefore conserved between isolates. The RT region 

would be an excellent candidate of this as it has been shown to undergo selective 



 

50 

constraint (146), and is used by the ICTV for taxonomic purposes of new Badnavirus 

species (40). Further confounding the temporal analysis is the use of years, and not more 

discerning sampling times. More complete sampling using days, months, years may help 

more accurately resolve the timescales of ancestor states at nodes. A more thorough 

sampling of regions, extending to the boundaries of the known distribution of A. cordata 

could provide a better picture of geographic division between haplotypes.  

 

Genetic diversity, host diversity, geographic diversity. From the analysis so 

far, it seems that GVCV isolates are not segregated by preference of host. There are six 

examples where isolates from Vitis spp. are closely related to isolates from A. cordata; 

five of the isolates have complete identity between their ORF II sequences. Figure 15 

shows the ML tree with related isolates. Two complete sequences were isolated from a V. 

vinifera ‘Chardonel’ and an A. cordata that were 6 meters away from each other and their 

genomes were 99.8% similar (122), suggesting that the isolates came from the same 

ancestor. If one were to look at the phylogeographic analysis (that is not statistically 

supported), it seems that the population is highly mixed in the regions sampled and there 

are no discernible delineations of populations segregating into distinct geographic 

regions. Figures 19-21 show a few noteworthy categories of viral isolates related to the 

geographic landscape: 9-bp indel, Vitis spp., and the regions of Herman and Augusta.   

 

Summary 

The discovery of the disease in vineyards in 2009 was prompted by the unique 

and severe symptoms on a hybrid grape ’Chardonel’. It is unlikely that the disease was 
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unnoticed in vineyards in Missouri before, as Midwest has a 150-year history of 

viticulture. It is also unlikely that the disease was unnoticed if it came from another 

region such as California or France, where the viticulture is well developed. The fact that 

there is no evidence of these symptoms appearing in the literature before the recent 

emergence further suggests this is a newly emergent disease. The incidence of GVCV in 

A. cordata and the asymptomatic nature of the disease makes it likely that the virus is 

endemic to the Midwest. Wild isolates were found in Missouri, Oklahoma, and Arkansas 

for this sampling period, and cultivated isolates were found in the vineyards of Illinois 

and Indiana by previous researchers (143, 146). The broad-range of GVCV indicates that 

the virus has been established in the region for some time, and the presence of GVCV in 

vineyards of Illinois and Indiana suggests spreading of the virus. Unfortunately, the 

accurate inference of the historical rate of spread was unsuccessful. If stakeholders 

believe it to be of importance, future researchers should address the problems with the 

current analysis and use more robust sampling techniques, longer and more conserved 

molecular sequences, and a more specific date for tip-date phylogenies.   

Surprisingly, GVCV has been found in Brazil, likely arriving in the country from 

rootstocks from the Midwest region (191). It is known that humans are a notorious vector 

of viral diseases and can establish pandemics by transporting infected plants globally (12, 

13, 109, 116, 117). It would be a sound management practice to understand the natural 

boundaries of GVCV to establish an effective quarantine protocol in afflicted regions. 

This would prevent the virus from spreading into more intensive grape producing regions 

and could mitigate future outbreaks. Vitis vinifera is the preferred grape for wine 

production in most of the world for its superior berry flavor. The virus induces a strong 
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response and the disease progression is severe in this species. Death of a vine can occur 

within seven years (143). Regions such as California and France overwhelmingly 

produce wine made from V. vinifera could potentially be devastated by the virus.  

Identification of the vector or potential vectors of GVCV is important in 

understanding how it spreads into vineyards without the aid of humans. The rate of 

spread of GVCV is dependent on the migration pattern of the vector. Vector transmission 

is likely as the virus spreads naturally in the wild without human interference. There have 

been five identified Vitaceae species that have been found to host GVCV in the wild. The 

range of all Vitis spp. can be seen in Figure 6. It is also important to determine the 

potential alternative hosts of GVCV to see if the virus can migrate into other regions 

without human involvement. Inference of the historical spread would be important for 

stakeholders in other regions to predict how the virus may spread across the continent. 

Unfortunately, the phylogeographic analysis of historical transmission was unsuccessful, 

so it is unknown how the virus has spread through the region naturally, although it is 

likely that human involvement has mixed the populations as GVCV was only detected in 

2009. 
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CHAPTER 2: CONSTRUCTION OF A GRAPEVINE VEIN CLEARING 

VIRUS CLONE 

 

Introduction 

Grapevine vein clearing virus (GVCV) was isolated from a grapevine that was 

affected by an associated disease of vein clearing and vine decline. Transmission studies 

using vegetative grafting of infected vines onto clean vines, and sRNA sequencing and 

genome reconstruction provide evidence  that GVCV is  associated with the disease (149, 

192). However, evidence of definitive causality of GVCV as the sole infectious agent of 

the associated disease is lacking. To provide evidence of causality of infectious agents to 

associated diseases, pathologists employ Koch’s postulates. 

Koch’s Postulates are four criteria that must be met before an organism can be 

declared as the causative agent of a disease. These criteria are: the organism is observed 

in all cases of the disease, the organism can be isolated from a diseased host and a pure 

culture can be obtained, a pure culture of the organism introduced to a healthy host will 

produce disease symptoms, and the isolation of the organism from the inoculated host 

must be the same organism as the original inoculum (193). This task is relatively simple 

when studying diseases caused by fungi or bacteria, as the cultures can be isolated on 

growth media. Viruses are considerably more difficult, as they are obligate parasites and 

need a host cell to undergo a full life cycle. The small size of viruses adds to this 

difficulty. Molecular techniques have made isolation of pure viral particles easier and has 

facilitated the explosion in research on viral pathogens.  
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Viral genomes must be reconstructed at the molecular level to construct a clone of 

a virus that satisfies the requirement of a pure culture. This is done in a variety of ways. 

Polymerase chain reaction (PCR) is used to amplify entire viral genomes and these are 

inserted directly into transfection vectors (194), viral genomes fragments are amplified by 

PCR and assembled into transfection vectors (195), and  viral genomes are assembled 

piecewise and blasted into cells using particle bombardment (196). These are three of the 

most common ways to introduce pure viral cultures into healthy hosts.  

Viral clones are said to be infectious if the clone undergoes a full replication life 

cycle and virions can be observed in infected tissues. The clone must contain all 

necessary components of the genome to undergo successful replication, independent of 

components from sources not found in the wild-type virus. If the clone is infectious, the 

disease symptoms appear on healthy plants which have been transfected, virions are 

observed, and then Koch’s postulates are said to be fulfilled for a viral organism.  

GVCV is a double stranded DNA virus that replicates through a terminally 

redundant, longer than full length genome RNA intermediate (121, 147). The DNA is 

thought to begin replication from the RNA intermediate at the first tRNAmet binding site 

and then the reverse transcriptase (RT) switches template to the second tRNAmet  to make 

the DNA molecule (130, 132). Once the DNA template strand is synthesized, host DNA 

polymerase replicates the second strand (123, 132). As a member of the Badnavirus 

genus, there are numerous examples of successful cloning techniques. Many techniques 

utilize a terminally redundant longer than full length DNA construct introduced by 

Agrobacterium spp. (197–199). These protocols use 1.4 genome lengths of viral DNA to 

construct their clone to provide terminally redundant ends for the switching of the RT to 
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the redundant tRNAmet binding site. The promoter region of GVCV was shown to be 

between nts 7332 and 7672 (147). Design of the clone took into consideration that 

previous attempts of the clone with 1.2 genome lengths was insufficient to provide 

evidence of causality or replication (121). Identification of the promoter, knowledge of 

the replication strategy of Badnaviruses, and successful attempts in the literature were 

considered for construction.  

 

Materials and methods 

Synopsis. Construction of the clone utilizes a design of 1.4 genome length 

terminally redundant GVCV fragment introduced into the shuttle vector 

pCR8/GW/TOPO. The 1.4 genome length is assembled from two PCR amplicons that 

were cut with unique type IIb restriction enzymes for directional cloning. Three 

fragments were digested from the two amplicons and assembled into the correct 

conformation for a longer than full length genome that is in the correct reading frame. 

Once assembled into pCR8/GW/TOPO, the clone was introduced into the destination 

vector pGWB401 to be transformed into Agrobacterium tumefaciens strain ‘GV3101’. 

Agrobacterium mediated transfection of healthy susceptible plants was monitored to test 

for the presence of GVCV’s associated disease symptoms and molecular tests will 

provide evidence for successful replication of the clone construct.  

 

Design. The GVCV-CHA reference genome (Figure 23) (NCBI Reference 

Sequence: NC_015784.2), the entry vector pCR8/GW/TOPO, and the destination vector 

pGWB401 sequences were downloaded from Addgene (https://www.addgene.org). 

https://www.addgene.org/
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FASTA files were uploaded into the program SerialCloner 2.6 

(http://serialbasics.free.fr/Serial_Cloner.html). The program identified all unique single 

cut restriction sites in all genomes. Manual inspection of restriction sites revealed three 

restriction enzyme (RE) recognition sequences that were unique to GVCV, contained 

overhangs for directional cloning, used the same reaction buffers, and had similar 

reaction conditions. Figures 23 and 24 show the genome arrangement of GVCV and the 

RE sites used, respectively.  The three unique restriction sites were Sal I (GTCGAC), Rsr 

II (CGGWCCG), and Avr II (CCTAGG) are listed in Table 4. A list of all RE used is 

located in Table 4. A multiple cloning site (MCS) was designed to contain all three 

restriction sites in the order Sal I, Rsr II, and Avr II with an overhang of an A at the 3’ 

end of each strand (GTCGACCGGWCCGCCTAGGA). To construct the MCS, two 

oligonucleotides were ordered from Eurofins. The oligonucleotides were reverse-

complimentary and annealed together by adding 25µl of 100µM of each into a 1.5 

microcentrifuge tube, heated to 94° C, and then slowly cooled to room temperature. The 

MCS was labeled, “MCS/SalI-AvrII”, and stored at -20°C until ready for use.  

 

Construction. PCR Primers were designed to amplify two overlapping fragments 

of the GVCV genome that contained the chosen RE sites (Figure 2). Two sets of primers 

were identified with similar Tm. Primer sequences of 4363 F and 1179 R, and 697F and 

4804R are listed in Table 1. PCR amplified two fragments of 4,570 bp, and 4,187 bp, 

respectively. The fragments were directly inserted into pCR8/GW/TOPO and the new 

plasmids were labelled pCR8/4808 and pCR8/1179.  The two plasmids were transformed 

into One Shot™ Top 10 Chemically Competent Escherichia coli using the standard 

http://serialbasics.free.fr/Serial_Cloner.html


 

57 

protocol included with the pCR8/GW/TOPO vector. A 90 µl solution of transformed 

bacteria was plated on Lysogeny Broth (LB) agar plates mixed with 100µM 

spectinomycin and incubated at 37°C overnight to isolate single colonies. Successful 

plasmid transformation was confirmed by colony PCR using the GVCV specific primers 

listed above. Positive colonies were grown in 5 ml LB broth with 5µl of 100µM 

spectinomycin added to prevent contamination from ubiquitous bacteria. Liquid cultures 

were incubated at 37°C for 16 hours. 700 µl of liquid culture solution was prepared for 

long term storage at -80° C by adding 300 µl of 50% glycerol. Plasmids were isolated 

using the Qiagen QIAprep Spin Miniprep kit following the manufacturer protocol. DNA 

quality and concentration was determined using the ThermoFisher Nanodrop 2000. 

Three RE digests using the overlapping PCR fragments were performed with two 

sets of REs in each reaction. An image of fragments produced is presented in Figure 25. 

RE digests were performed according to the NEB protocols. Reaction one used 

pCR8/1179 as a template and was digested with Sal I and Rsr II to produce two 

fragments of sizes 3,893 bps and 3,439 bps. Reaction two also used pCR8/1179 as a 

template and was digested with Sal I and Avr II to produce two fragments of sizes 3,429 

bps and 3,903 bps. Reaction three used pCR8/4804 as a template and was digested with 

Rsr II and Sal I to produce two fragments of sizes 3,853 bps and 3,072 bps. The three 

reactions were terminated by adding 10 µl of 6x Purple Loading dye, supplied by NEB. 

Reactions were loaded into a 1% agarose gel and fragment sizes were determined by 

electropheretically separating fragments and comparing to a DNA ladder of known 

fragment sizes (1Kb plus NEB). The fragment of 3,893 bps, corresponding to GVCV 

DNA from position 4,643 to 786, was isolated from reaction one and labelled “SalI- 
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RsrII”. The fragment of 3,429 bps, corresponding to GVCV DNA from position 4643 to 

323, was isolated from reaction two and labelled “SalI- AvrII”. The fragment of 3,853 

bps, corresponding to GVCV DNA from position 786 to 4,643, was isolated from 

reaction three and labelled “RsrII- SalI”. All fragments were isolated using the Qiagen 

MinElute Gel Extraction Kit by following the manufacturer’s protocol, analyzed on the 

Nanodrop, and stored in 1.5 microcentrifuge tubes at -20°C.  

MCS/SalI-AvrII was removed from cold storage and inserted into 

pCR8/GW/TOPO following the manufacturer’s protocol; the new plasmid construct was 

named “pCR8/MCS”. One Shot™ Top 10 Chemically Competent E. coli were 

transformed with pCR8/MCS and incubated as previously described. RE digest of 

pCR8/MCS with SalI and HpaI were used to confirm successful transformation. 

Successful transformations were added to liquid cultures and incubated as previously 

described. pCR8/MCS in E. coli was stored in -80°C as previously described. pCR8/MCS 

was isolated from liquid culture, analyzed on the Nanodrop, and stored as previously 

described. 

Fragments RsrII-SalI and SalI-AvrII were ligated using alkaline bovine T4 ligase. 

The reaction was set up using 500ng of each fragment, 2µl of T4 ligase buffer, and 1 µl 

of T4 ligase. The reaction was incubated at 16°C overnight. The fragment was confirmed  

to be 7,286 bp, corresponding to nucleotide positions 786 and 323 of the GVCV-CHA 

genome. The fragment was excised from a 1% agarose gel and labeled, “RsrII-AvrII”. 

pCR8/MCS was digested with Rsr II and Avr II as previously described and the new 

fragment was ligated into the digested pCR8/MCS to make a new plasmid named, 

“pCR8/RsrII-AvrII”. The reaction used 1000ng pCR8/MCS and 500ng of fragment RsrII-
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AvrII, while using the same amounts of other reagents as previously described. The new 

plasmid was transformed into Top 10 E. coli, incubated, confirmed positive by colony 

PCR, isolated, and stored as previously described. 

pCR8/RsrII-AvrII was subjected to a RE digest using Rsr II and Avr II, as 

previously described. The fragment was separated on a gel, excised, purified, and 

analyzed on the Nanodrop. Fragment SalI-RsrII was removed from storage and ligated to 

the purified RsrII-AvrII fragment using reaction conditions similarly described and 

named, “1.4 GVCV”. The orientation of each fragment from Figure 25 is shown as the 

final construct in Figure 26. Concurrently, pCR8/MCS was digested with Sal I and Avr II 

and the 1.4 GVCV fragment was ligated into pCR8/MCS to become pCR8/GVCV and is 

shown in Figure 27. pCR8/GVCV was transformed into competent E. coli, incubated, 

confirmed positive by colony PCR, isolated, and stored as previously described. Further 

confirmation of the construct was performed by RE digest with a double cutter RE BsrGI. 

This RE flanks the region of the 1.4 length GVCV insert and provides a fragment of 

11,245 bps. The fragment was viewed on a 0.5% agarose gel, excised, purified, and 

analyzed on the Nanodrop. The fragment was labeled, “BsrGI GVCV”. 

Transfer to binary vector and Agrobacterium transformation. An LR 

recombination reaction using Gateway™ technology was used to transfer the 1.4 genome 

insert from pCR8/GW/TOPO into pGWB 401. Reaction conditions were according to the 

manufacturer protocol. Concurrently, the pGWB 401 plasmid was digested with a double 

cutter, BsrGI that was previously used to excise the 1.4 genome length from the 

pCR8/GW/TOPO backbone. The BsrGI GVCV fragment was ligated into the pGWB 401 

backbone using reaction conditions as previously describe. The 1.4 genome length of 
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GVCV in the gateway binary vector 401 is named pGWB/GVCV. Aliquots of 1µl of 

each reaction were transformed into competent E. coli and successful recombinant 

plasmids were selected for on a LB agar with 50µM Kanamycin. Colony PCR using M13 

F and GVCV specific primer 1179 R (Table 1) was used to test for successful 

transformations. Liquid cultures were taken of positive colonies and a sample was stored 

at -80°C. Plasmid pGWB/GVCV, shown in Figure 28, was then transformed into 

competent Agrobacterium ‘GV3101’, plated on rifampicin and kanamycin selective LB 

agar plates, and incubated in the dark at 28°C for 48 hours. Colony PCR using GVCV 

internal primers was used to select against false positive transformations. Agrobacterium 

that tested positive for pGWB/GVCV were grown in LB broth in the same conditions and 

a sample was stored at -80°C. 

Transfection of Nicotiana benthamiana. Nicotiana benthamiana were grown 

from seed and tested for the presence of GVCV while pGWB/GVCV transformed 

Agrobacterium were grown to OD600. Transfections of 20 N. benthamiana plants were 

done by syringe infiltration. The transfected plants were placed in insect-proof tents to 

prevent the potential for recombinant GVCV DNA to escape, and the plants were grown 

in standard greenhouse conditions. Control plants that were not inoculated were also 

placed in insect-proof tents and grown in the same conditions. Progression of any disease 

symptoms was monitored for a month. At the end of the month, standard PCR detection 

using a triplex PCR was used to test for replication of GVCV. 

Transfections into susceptible grapevine ‘Chardonel’ will proceed only in when 

there is successful replication in the N. benthamiana alternative host. Syringe infiltration 



 

61 

and vacuum infiltration are used to test if pGWB/GVCV can successfully lead to a 

persistent infection in grapevines while also producing the associated disease symptoms. 

Sequencing of pGWB/GVCV. Sequencing of the construct was done at Nevada 

Genomics, using M13 primers, and GVCV specific primers in a primer walking strategy. 

Samples were prepared using 500ng of pGWB/GVCV with the desired primers and 

shipped. Sequences were provided by Nevada Genomics in the form of a chromatograph 

that includes the nucleotide sequence and a phred quality score of the likelihood the 

correct base was called. The chromat file was imported to the CodonCode Aligner 

software package and the sequences were aligned to the theoretical sequence of the 1.4 

genome length clone built on Serial Cloner. Only sequences where phred scores were 

above 20 were kept, corresponding to a 99% accuracy of base-calling.  

 

Results 

            Summary. The first attempt at construction of the pGWB/GVCV fragment 

proved unsuccessful. There was evidence at each stage that the construction was 

successful, but upon sequencing of pGWB/GVCV, it became clear that there were false 

positives along the way. The process was attempted again, but a detailed look at each step 

for the first attempt provides evidence for possible error. 

Construction. PCR fragments 1179 and 4804 were amplified using a high-

fidelity polymerase. The respective bands were purified and inserted into 

pCR8/GW/TOPO, and transformed into E. coli. The plasmids were isolated from liquid 

E. coli and digested with the aforementioned REs, and these digested fragments were 

purified from an agarose gel to produce fragments for ligation. The ligation of the 



 

62 

fragments RsrII-SalI and SalI-AvrII to make fragment RsrII-AvrII at 7,286 bps is shown 

in Figure 29. The ligated fragments were excised from the gel, purified, and transformed 

into RE digested pCR8/MCS. 

pCR8/ RsrII-AvrII was digested with the corresponding REs, the band was 

purified from the gel to isolate fragment “RsrII-AvrII”, and it was ligated to fragment 

“SalI-RsrII” to make the fragment “1.4 GVCV”. pCR8/MCS was digested with REs Sal I 

and Avr II, and the fragment “1.4 GVCV” was ligated to the pCR8/GW/TOPO backbone 

to create plasmid pCR8/GVCV.  

Transfer to binary vector and Agrobacterium transformation. An LR clonase 

reaction was attempted using the manufacturer’s protocol, but was unsuccessful, 

producing strange banding patterns when imaged on a gel. The traditional method of 

cloning was pursued. BsrG I restriction sites were placed in the Gateway plasmids by the 

manufacturers to provide an avenue of traditional cloning. These sites flank the TOPO 

site where the LR reaction would insert the “1.4 GVCV”, so the BsrG I enzyme was used 

to digest pCR8/GVCV and pGWB 401 to transfer the GVCV insert into the binary vector 

for Agrobacterium mediated transfection. Bands were purified from the gel, and ligated 

to form pGWB/GVCV as shown in Figure 30. 

pGWB/GVCV was transformed into competent A. tumefaciens ‘GV 3101’ and 

selection of successfully transformed bacteria utilized antibiotic selection plates. Colony 

PCR provided evidence that two of five tested colonies had the correct plasmid. Liquid 

cultures of A. tumefaciens ‘GV 3101’ were grown to an OD of 600 and used to infiltrate 

leaves of N. benthamiana by syringe, while a sample of pGWB/GVCV was sent for 
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sequencing. GVCV like symptoms were noticed, but PCR assays never detected viral 

nucleic acids after 2 months of incubation.  

Sequencing. Nevada Genomics sequencing did not show GVCV DNA between 

the M13 primers that flanked the insert site. The sequence that was recovered was 

uploaded to BLAST and a BLASTN search was queried against the GenBank database. 

The hits all corresponded to Gateway cloning vectors, suggesting that the ligations were 

backbone within backbone. 

Second Attempt. A second attempt was made at construction of the clone, since 

it is unclear where error was introduced. The process was started from scratch, beginning 

with the PCR amplification of the overlapping fragments 1179 and 4804. The PCR 

amplification was successful and the fragments were gel purified and introduced to 

pCR8/GW/TOPO to make pCR8/1179 and pCR8/4804. Figure 31 shows a successful RE 

digest of both plasmids. The gel was switched to a 0.5% agarose solution and ran for two 

hours to separate bands that were similar in fragment length. This is believed to be the 

step that introduced error, and will be discussed further in the discussion section. 

Continuation of the construction of the clone follows the methods previously described is 

currently under way. 

 

Discussion 

The failure of the first attempt at construction was likely researcher’s error. The 

band sizes of the first RE digest are similar for each of the three fragments used to 

construct the clone, and the backbone of the pCR8/GW/TOPO vector from where they 

were excised. Table 5 lists the REs used and the expected band sizes that would be 
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imaged on a gel. It is likely that the similar sizes of the fragments, the 1% agarose gel, 

and the inadequate time for separation all contributed to the failure to separate the bands 

in the initial attempt at construction. Figure 31 shows the separation of the bands of the 

digested pCR8/1179 and pCR8/4804 plasmids on a 0.5% agarose gel run at 2 hours. It is 

obvious that the bands were too similar in size to fully separate on the first attempt, so a 

test for contamination of the pCR8/GVCV plasmid was performed. Figure 32 shows the 

plasmids used for construction loaded into a 0.5% gel with no RE. There should be only 

one band, whereas there are two. It is possible that the first attempt made a chimeric 

plasmid of backbone and GVCV inserts. Considering they have similar sizes and the 

same restriction sites, if the bands of the pCR8/GW/TOPO backbone and GVCV 

fragments were purified together, then there could be ligation of backbone to GVCV and 

tests using restriction enzymes and GVCV specific primers would provide false positives. 

The insert’s 5’ and 3’ ends were pCR8/GW/TOPO sequences, so the colony PCR assays 

must have detected a GVCV sequence that was flanked by backbone sequences. This 

unique failure provided positive results until the construct was fully built into 

pGWB/GVCV.  

The construction of the second attempt will proceed with much more care. Gel 

times will be longer to allow full separation of bands, especially of similar lengths, and 

sequencing will be done at regular intervals instead of at the end, as it is a definitive 

method for confirmation of construct makeup. Greater care will also be taken in making 

sure the resolution of the ladder is good enough for determining the size of detailed 

bands, instead of looking at relative regions. The methods and designs are sound and 

should provide the correct construct if proper care is taken in each step.  
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Table 1: Number of samples collected over the previous years. “W” denotes wild and “C” 

denotes cultivated.  

 

Year Species Total sampled Positive 

sampled 

Percent 

(%) 

Before 2016 A. cordata 2 2 100 

Before 2016 V. spp. W-35 

C*-42 

W-2 

C*- 35 

W- 5.7 

C- 83 

2016 A. cordata 111 35 31.5 

2016 V. spp. W-14 

C-19 

W-0 

C-4 

W-0.0 

C- 21.1 

2017 A. cordata 257 85 33.1 

2017 V. spp. W-69 W-10 W-13.8 

Total A. cordata 370 122 33 

Total  V. spp. W-118 

C-61 

W-12 

C-39 

W-10.2 

C-63.9 

*: Samples were collected from only symptomatic vines. 

 

Table 2: Primer list. Used in Grapevine vein clearing detection, ORF II amplification, 

sequencing, and construction of infectious clone. 

 

Primer Name Sequence (5’-3’) 

16s F tgcttaacacatgcaagtcgga 

16s R agccgtttccagctgttgttc 

M13 F gttttcccagtcacgac 

M13 R caggaaacagctatgac 

697 F gctgctgaatacactgtacg 

963 F tccatcacagatctaacggca 

1101 F ctgaaaggtagatgtccacg 

1179 R gccacgtggacatctacctt 

1634 R caaggtagcgggcacgag 

1935 R tcggtgtagcacttgtattct 

4363 F atctgctcaatttctgaaggagaag 

4804 R ggaatgcattgtgctcgtag 

 

Table 3: Molecular clock rates of sequences and R2 values. 

 

ID Rate (changes per site, per 

year) 

R2 

Badnavirus 4.8 E-3 7.49 E-2 

GVCV 1.0 E-3 0.682 

GVCV -ORF II 4.6 E-3 7.43 E-2 
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Table 4: Restriction enzyme list used in construction of clone. 

 

Restriction Enzyme Recognition Sequence (5’-3’) 

Sal I GTCGAC 

Rsr II CGGWCCG 

Avr II CCTAGG 

BsrG I TGTACA 

Hpa I GTTAAC 

Dra I TTTAAA 

 

Table 5: Table of plasmids and restriction enzymes used in the first step of clone 

construction. Note the similar sizes of the produced fragments of GVCV DNA and the 

pCR8/GW/TOPO backbone. 

 

Plasmid Restriction 

Enzymes 

GVCV Fragment 

size 

Plasmid Backbone 

size 

pCR8/1179 Sal I and Avr II 3,429 3,903 

pCR8/1179 Sal I and Rsr II 3,893 3,439 

pCR8/4804 Rsr II and Sal I 3,853 3,072 
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Figure 1: Native range of Vitis rupestris. Courtesy of USDA-NRCS (200). 
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Figure 2: Native range of Vitis riparia. Courtesy of USDA-NRCS (200). 
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Figure 3: Native range of Ampelopsis cordata. Courtesy of USDA-NRCS (200). 
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Figure 4: Native range of Vitis cinerea. Courtesy of USDA-NRCS (200). 

 



 

86 

 
Figure 5: Native range of Vitis vulpina. Courtesy of USDA-NRCS (200). 
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Figure 6: Native range of Vitis Spp. Courtesy of USDA-NRCS. Insets are the county 

distribution of the east and west coasts (200). 
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Figure 7: Example of triplex PCR diagnostic to test for Grapevine vein clearing virus. 
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Figure 8: Locations of Grapevine vein clearing virus-infected samples in from 2016 and 

2017. 
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Figure 9: Neighbor-joining tree of GVCV ORF II sequences. Used for estimation of 

molecular clock. 
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Figure 10: Neighbor-joining tree of Grapevine vein clearing virus genomes. It is used for 

estimation of molecular clock. 
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Figure 11: Neighbor-joining tree of Badnavirus genomes, that is used for estimation of 

molecular clock. 
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Figure 12: Linear regression of evolutionary distance and time of GVCV based on ORF 

II sequences. Statistics are in the table at the upper left-hand corner. 
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Figure 13: Linear regression of evolutionary distance and time of Grapevine vein 

clearing virus based on the genome sequences. Statistics are in the table at the upper left-

hand corner. 
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Figure 14: Linear regression of evolutionary distance and time of Badnaviruses based on 

the genome sequences. Statistics are in the table at the upper left-hand corner. 
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Figure 15: Maximum Likelihood tree of GVCV based on ORF II sequences that 

collapsed to a 70% bootstrap cutoff value. Gooseberry vein banding associated virus is 

used as the outgroup. 
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Figure 16: Screenshot from Tracer of ESS values and 95% HPD interval. Relative 

constant population size range and frequency distribution is graphed. 
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Figure 17: Screenshot from Tracer showing ESS values for the GTR gamma distribution 

for rates. Each codon position is highlighted. The gamma distribution of the substitution 

density and frequency of changes is graphed.  
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Figure 18: Divergence time and relative effective population size of Grapevine vein 

clearing virus estimated using ORF II sequence data.  
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Figure 19: Maximum clade credibility tree of ORF II isolates evolution through time. 

Gooseberry vein banding associated virus is used as a root at the top. Times are in years 

before present.  

 

 

 

 

 

 

 



 

101 

 
 

Figure 20: Maximum clade credibility tree of GVCV isolates based on ORF II sequences 

evolution through time. The red lines highlight ORF II sequences that contain the 9-bp 

indel and are traced back to relative geographic points.   
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Figure 21: Maximum clade credibility tree of ORF II isolates evolution through time. The 

red lines highlight ORF II sequences that were isolated from Vitis spp. and are traced 

back to relative geographic points with the top point being the most northerly.  
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Figure 22: Maximum clade credibility tree of GVCV isolates based on ORF II sequences 

through time. The red lines highlight GVCV isolates from samples collected from the 

Herman and Augusta wine producing regions and are traced back to relative geographic 

points. 
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Figure 23: Genome arrangement of GVCV-CHA reference. The tRNA binding site, and 

three open reading frames (ORF) are highlighted and nucleotide positions are listed.  
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Figure 24: GVCV genome with overlapping PCR fragments. Overlapping fragments are 

highlighted and GVCV unique restriction sites are shown. 
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Figure 25: Restriction enzyme digested fragments from PCR products.  

 

 
 

Figure 26: Fragments from Figure 3 ligated in correct orientation 



 

107 

 
Figure 27: pCR8/GVCV. The 1.4 length GVCV genome is highlighted in blue. The 

pCR8/GW/TOPO backbone is shown in grey. Features of interest are highlighted and 

genome positions are delineated. 
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Figure 28: pGWB/GVCV. The 1.4 length GVCV genome is highlighted in blue. The 

pGWB 401 backbone is shown in grey. Features of interest are highlighted and genome 

positions are delineated. 
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Figure 29: Ligation of fragments “RsrII-SalI” and “SalI-AvrII” to make fragment “RsrII-

AvrII” consisting of 7,286 bps. All lanes contain the ligated fragment. 
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Figure 30: Ligation of “1.4 genome” into pGWB 401 to make pGWB/GVCV. Lanes 2 

and 3 have an expected band size at 20,396 bps. The top bar on the ladder corresponds to 

20,000 bps.  
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Figure 31: Restriction digest of pCR8/1179 and pCR8/4804. Gel ran for two hours. Lanes 

1 and 2 have pCR8/1179 digested with Sal I and Avr II to produce two fragments at sizes 

3,429 bps and 3,903 bps. Lanes 3 and 4 have pCR8/4804 digested with Rsr II and Sal I to 

produce two fragments at sizes 3,853 bps and 3,072 bps. The top arrow on the ladder 

corresponds to 4,000 bps and the bottom corresponds to 3,000 bps.   
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Figure 32: Gel image of multiple pCR8/GVCV plasmids to check for contamination. No 

restriction enzyme was used, so only one band should be present, the upper band, 

corresponding to 14,009 bps. The lower band is at position 5,000 bps, and is an unknown 

contaminant. 

 

 

 

 

 

 

 

     Ladder            1      2        3                4       5       6               7                 

8 



 

113 

Appendix 

 

Appendix A 

 
17Vitis0009 37.15 -93.05 

17Vitis0021 37.15 -93.05 

17Vitis0022 37.15 -93.05 

17Vitis0025 37.15 -93.05 

17Vitis0027 37.15 -93.05 

17Vitis0030 37.15 -93.05 

17Vitis0045 37.15 -93.05 

17Vitis0047 37.15 -93.05 

17Vitis0051 37.6093 -93.4191 

17Vitis0052 37.6092 -93.4189 

17Amp0003 37.1948 -93.6479 

17Amp0009 38.5429 -90.9954 

17Amp0014 38.5408 -90.9854 

17Amp0019 38.5445 -90.9752 

17Amp0022 38.5618 -91.0173 

17Amp0024 38.5643 -91.0257 

17Amp0025 38.564 -91.0256 

17Amp0029 38.5637 -91.0264 

17Amp0030 38.5631 -91.0279 

17Amp0032 38.5623 -91.0277 

17Amp0034 38.562 -91.0278 

17Amp0035 38.5619 -91.0279 

17Amp0040 38.6044 -91.0011 

17Amp0042 38.6053 -91.0026 

17Amp0045 38.6061 -91.0038 

17Amp0049 38.5938 -90.9838 

17Amp0051 38.5864 -90.968 

17Amp0052 38.5829 -90.9644 

17Amp0067 38.594 -90.8873 

17Amp0070 38.5865 -90.8947 

17Amp0077 38.6163 -91.0406 

17Amp0078 38.6164 -91.0409 

17Amp0083 38.6312 -91.0646 

17Amp0084 38.631 -91.0643 

17Amp0086 38.6299 -91.0635 

17Amp0087 38.6348 -91.0494 

17Amp0088 38.6273 -91.0516 

17Amp0091 38.6272 -91.0515 

17Amp0096 38.6293 -91.1074 

17Amp0097 38.6444 -91.1833 

17Amp0098 38.6443 -91.1836 

17Amp0101 38.6444 -91.1851 

17Amp0102 38.6967 -91.44 

17Amp0103 38.6969 -91.4397 

17Amp0104 38.7018 -91.4378 

17Amp0105 38.7018 -91.4379 

17Amp0108 38.7492 -91.4512 

17Amp0119 37.0667 -93.0167 

17Amp0125 37.0667 -93.0167 

17Amp0133 37.0667 -93.0167 

17Amp0140 37.0833 -93.0333 
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17Amp0141 37.0833 -93.0333 

17Amp0142 37.0667 -93.05 

17Amp0144 37.0833 -93.0333 

17Amp0146 37.0672 -93.05 

17Amp0148 37.0667 -93.0333 

17Amp0156 37.0833 -93.0333 

17Amp0154 37.0833 -93.0333 

17Amp0156 37.0833 -93.0333 

17Amp0158 37.15 -93.05 

17Amp0159 37.15 -93.05 

17Amp0160 37.15 -93.05 

17Amp0162 37.15 -93.05 

17Amp0164 37.1 -93.05 

17Amp0166 37.1 -93.05 

17Amp0167 37.1 -93.05 

17Amp0172 37.1 -93.05 

17Amp0174 37.1 -93.05 

17Amp0175 37.1 -93.0667 

17Amp0177 37.1 -93.05 

17Amp0180 37.1 -93.05 

17Amp0182 37.1 -93.05 

17Amp0184 37.1 -93.05 

17Amp0190 37.0833 -93.05 

17Amp0192 37.0833 -93.05 

17Amp0194 37.0833 -93.05 

17Amp0195 37.0833 -93.05 

17Amp0201 37.0833 -93.05 

17Amp0202 37.0833 -93.05 

17Amp0203 37.0833 -93.05 

17Amp0207 37.6094 -93.4191 

17Amp0208 37.6093 -93.4191 

17Amp0209 37.6092 -93.4191 

17Amp0210 37.6091 -93.4192 

17Amp0213 37.6082 -93.419 

17Amp0214 37.608 -93.419 

17Amp0215 37.6071 -93.4187 

17Amp0218 37.605 -93.4185 

17Amp0221 37.6051 -93.4184 

17Amp0241 39 94.0167 

17Amp0242 39 94.0167 

17Amp0246 36.9505 -90.9922 

17Amp0251 36.9959 -91.013 

17Amp0254 36.0167 -93.05 

17Amp0256 38.6312 -91.0646 

17Amp0257 38.6312 -91.0646 

Vit16-15III 37.0356 -93.1516 

Vit16-24III 37.1014 -90.0192 

Vit16-25III 37.0836 -90 

Vit16-26III 37.1019 -90.0019 

Vit16-29III 37.0017 -92.0833 

Vit16-30III 37.0017 -92 

Vit16-31III 37.0017 -92.0833 

Vit16-32III 37.0017 -92.0833 

Amp16-7I 38.0022 -91.0333 

Amp16-9I 38.0017 -91.1333 

Amp16-11I 38.0172 -91.1017 
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Amp16-3IIIa 37.0836 -90 

Amp16-5IIIa 37.0836 -90.0019 

Amp16-6IIIa 37.1019 -90.0019 

Amp16-7IIIa 37.1019 -90.0019 

Amp16-8IIIa 37.1019 -90.0019 

Amp16-13IIIb 36.0692 -93.0524 

Amp16-17IIIb 36.1357 -93.1336 

Amp16-18IIIb 36.1357 -93.1336 

Amp16-21IIIb 36.4231 -93.8422 

Amp16-23IIIc 37.0354 -93.1513 

Amp16-24IIIc 37.0384 -93.1516 

Amp16-25IIIc 37.0355 -93.1515 

Amp16-33IIIc 37.0345 -93.0023 

Amp16-36IIIe 37 -93.15 

Amp16-42IIIe 37.0014 -93.15 

Amp16-45IIIe 37.0019 -93.0344 

Amp16-51IIIe 37.0006 -93.0839 

Amp16-52IIIe 37.0356 -93.1516 

AMP2IIIe 37.0008 -93.1503 

AMP1IIIf 38.0432 -92.7142 

Amp16-17IVc 36.0204 -93.3567 

Amp16-18IVc 36.0204 -93.3567 

Amp16-8V 35.4712 -93.8109 

Amp16-9V 35.4703 -93.8103 

Amp16-1VI 34.8516 -92.4832 

Amp16-2VI 34.8513 -92.4835 

Amp16-3VI 34.8512 -92.4836 

Amp16-4VI 34.9041 -92.4481 

Amp16-7VI 34.9053 -92.4477 

Amp16-1VII 35.1019 -98.0183 

Amp16-3VII 35.1019 -98.0183 
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Appendix B 

 

 
 Codon dS dN dN-dS P-value 
1 0 0 0 N/A 
2 1 4.001384818 3.001384818 0.142959599 
3 1 0 -1 1 
4 0 0 0 N/A 
5 0 0 0 N/A 
6 5.348465017 0 -5.348465017 1 
7 4 0 -4 1 
8 2 0 -2 1 
9 3 0 -3 1 
10 1 0.5 -0.5 0.888888889 
11 10.33560478 0 -10.33560478 1 
12 1.337070414 0 -1.337070414 1 
13 10.52619562 0 -10.52619562 1 
14 15.45176937 1.70357158 -13.74819779 0.999994144 
15 4.750799062 2.854810645 -1.895988417 0.872656224 
16 3 0 -3 1 
17 3.885740644 0 -3.885740644 1 
18 10.632716 3.566783559 -7.065932438 0.990899824 
19 17 0 -17 1 
20 5 0 -5 1 
21 1.048671897 1.978949592 0.930277695 0.486392159 
22 8 0 -8 1 
23 7 0 -7 1 
24 10 0 -10 1 
25 24.02168734 0 -24.02168734 1 
26 0 0 0 N/A 
27 7.972544882 0 -7.972544882 1 
28 5.690498738 0 -5.690498738 1 
29 11 0.500215677 -10.49978432 0.999998112 
30 1 0 -1 1 
31 16 0 -16 1 
32 19.54454151 0 -19.54454151 1 
33 22 0 -22 1 
34 5.477592218 0 -5.477592218 1 
35 10 0 -10 1 
36 0 0 0 N/A 
37 5.436934154 0 -5.436934154 1 
38 12.58332593 0 -12.58332593 1 
39 19.18857439 0 -19.18857439 1 
40 1 0 -1 1 
41 26.83346937 0 -26.83346937 1 
42 5.637952591 3.388986506 -2.248966086 0.881539136 
43 5.148672983 0 -5.148672983 1 
44 0 0 0 N/A 
45 5 0 -5 1 
46 10.18901587 0 -10.18901587 1 
47 12.35013488 0 -12.35013488 1 
48 8.852121258 0 -8.852121258 1 
49 12.68454686 0 -12.68454686 1 
50 5.34139973 0 -5.34139973 1 
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51 10.25704497 0 -10.25704497 1 
52 1.28921662 0 -1.28921662 1 
53 16 0 -16 1 
54 5.783427403 0 -5.783427403 1 
55 4.015387781 0 -4.015387781 1 
56 9.06450081 0 -9.06450081 1 
57 7.024176796 0 -7.024176796 1 
58 8.200218651 0 -8.200218651 1 
59 5.080021403 0.496092729 -4.583928673 0.998752906 
60 2.548371665 4.233757008 1.685385343 0.396101734 
61 0 2.5 2.5 0.131687243 
62 0 1.038503643 1.038503643 0.433588707 
63 0 4.533723679 4.533723679 0.046156937 
64 0 0.500053562 0.500053562 0.698743294 
65 0 1 1 0.444444444 
66 0 7.070505927 7.070505927 0.003268459 
67 0 0.999532627 0.999532627 0.444860179 
68 1.960925031 5.103525034 3.142600003 0.164533324 
69 0 5.79976085 5.79976085 0.011582408 
70 0 7.400456182 7.400456182 0.005661323 
71 0 0 0 N/A 
72 0 0 0 N/A 
73 0 1.998025677 1.998025677 0.198312772 
74 1.004884804 1.995150727 0.990265923 0.464109918 
75 0 3.999550372 3.999550372 0.039438971 
76 1.185074634 1.731123111 0.546048477 0.535788729 
77 8.014866335 5.494903903 -2.519962432 0.855199913 
78 0 1.892883087 1.892883087 0.297297905 
79 0 9.689675583 9.689675583 0.000335811 
80 0 9.27349736 9.27349736 0.001146213 
81 1.119524055 9.600655299 8.481131244 0.005570597 
82 1.181475219 14.43103572 13.2495605 1.34844E-05 
83 0 2.130001694 2.130001694 0.179152257 
84 0 4 4 0.039018442 
85 1.125078402 0.473670312 -0.651408089 0.91222074 
86 0 1.794757095 1.794757095 0.137976818 
87 0 7.767242901 7.767242901 0.047080068 
88 0 0 0 N/A 
89 0 3.315004304 3.315004304 0.085595084 
90 0 5.221639798 5.221639798 0.034389266 
91 0 1.99857173 1.99857173 0.198738599 
92 0 3.552828148 3.552828148 0.053123924 
93 0 6.994244109 6.994244109 0.003465165 
94 12.49380507 1.887180873 -10.60662419 0.999927827 
95 0 0.509590012 0.509590012 0.654291191 
96 1.084022115 0.515441379 -0.568580737 0.896149188 
97 0 8.718463919 8.718463919 0.000905455 
98 0 2.697845482 2.697845482 0.165988325 
99 0 12.13710937 12.13710937 9.94129E-06 
100 0 6.556923415 6.556923415 0.010564957 
101 0 3.423506631 3.423506631 0.068391576 
102 0.606275831 2.584429094 1.978153263 0.314276423 
103 0 8.738959838 8.738959838 0.001142327 
104 0 2.0609688 2.0609688 0.209539858 
105 7 5 -2 0.828143294 
106 0 0 0 N/A 
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107 2.005047005 1.556023335 -0.44902367 0.778690165 
108 0 3.694745582 3.694745582 0.108107945 
109 0 0.515634194 0.515634194 0.677547526 
110 0 0.5 0.5 0.666666667 
111 0 1 1 0.444444444 
112 0 0 0 N/A 
113 1.001167236 7.500915403 6.499748167 0.01376568 
114 0 0.499696352 0.499696352 0.667071777 
115 0 0 0 N/A 
116 0 0 0 N/A 
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