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ABSTRACT 

Alluvial sediments within the Galena River Watershed were severely contaminated with 

heavy metals by historical zinc (Zn) and lead (Pb) mining operations during the early 

1800s until 1979. Since the mines closed, there have been efforts to remediate on-site 

mine waste. However, the effectiveness of these efforts to reduce metal concentrations in 

stream sediments is unknown. This study compares present-day (2017) contamination 

trends in the Galena River Watershed to trends reported 25 years ago. A total of 415 

sediment/soil samples were collected and analyzed using X-ray florescence spectrometry 

to determine sediment metal concentrations. The highest concentrations of zinc measured 

were 23,577 ppm in the channel bed, 19,825 ppm in the channel banks, and 51,273 ppm 

in tailings. Zinc concentrations averaged 198 ppm within the unmined Madden Branch 

(n=10), 2,057 ppm within the main branch of the Galena (n=31), 9,569 ppm within the 

heavily mined Diggings Branch (n=11), and 26,158 ppm in tailings (n=16). Present day 

contamination trends show little difference compared to 25 years ago. However, stream 

sediments collected downstream of some large-scale remediation projects have shown 

significant decreases in Zn concentrations. Nevertheless, even with continued efforts to 

remediate contaminated sediments in the Galena River, high concentrations will probably 

persist far into the future. 
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CHAPTER 1 – INTRODUCTION  

 

 Base metal mining for metallic ores has been occurring for millennia, but it was 

not until after the 1960s that widespread concern began to develop for protecting the 

environment from its adverse effects (Brown et al., 2009).  Base metals include non-

precious metals such as zinc (Zn), lead (Pb), nickel (Ni), and copper (Cu) (Leblanc et al., 

2000).  Base metal ores may also contain trace amounts of other metals such as cadmium 

(Cd) and arsenic (As).  Over the past two centuries, mining operations began to grow in 

size and production creating contamination problems worldwide (Amezaga et al., 2011).  

Early base metal mining and ore milling was inefficient and produced large quantities of 

metal pollution (Pavlowsky, 1996).  Regulations in the United States were not created at 

the federal level until the mid-1970s, which required proper and thorough remediation 

after mine closure (Brown et al., 2009).  Even with an increase in regulations, most mines 

today are large in order to compete within the market, resulting in a greater potential for 

pollution.  Further, many small operations in Latin America, Asia, and Africa are 

unregulated or illegal and cause large amounts of contamination (Amezaga et al., 2011).   

 Many mining sites across the world were abandoned prior to regulatory closure 

procedures leaving large areas of land covered in mine-related waste (Brown et al., 

2009).  Mine waste, usually in the form of tailing piles, can be mobilized by erosion and 

weathering causing heavy metal contamination of nearby soils, water, and alluvial 

sediments (Knox, 1987).  These contaminated sediments may become part of a stream’s 

sediment load eventually being dispersed downstream within channel and floodplain 

deposits during periods of high discharge.  These contaminated deposits of sediments 
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become secondary sources of pollution that can be eroded, reworked, and transported 

further downstream over time (Lecce and Pavlowsky, 1997).  Due to the effects of 

sediment mixing, dilution, and sedimentation downstream, the highest concentrations of 

metals are typically found close to the mine source (Pavlowsky, 1996).   

Many studies have examined the spatial trends of metal contamination within 

entire watersheds (Adams, 1944; Swennen et al., 1994; Pavlowsky, 1996; Miller et al., 

1999; Sutherland, 2000; Lecce and Pavlowsky, 2001; Coulthard and Macklin, 2003; 

Nieto et al., 2007; Vandeberg and Martin, 2011; Lecce and Pavlowsky, 2014). However, 

what is lacking in the literature are studies of the temporal trends of mining 

contamination in river systems.  This thesis will address a gap in knowledge to evaluate 

remediation effectiveness and associated sediment transport processes to reduce metal 

contamination levels through time and better understand how fluvial systems recover 

from the effects of mining. 

 

Mining in the Upper Mississippi Valley Lead-Zinc District 

 This study focuses on Pb and Zn contamination in river sediments caused by 

mining in the Upper Mississippi Valley Lead-Zinc District (UMVD) which started as 

early as the mid-1600s and became widespread by the mid-1800s (Fig. 1) (Heyl et al., 

1959; Knox, 1987).  The district is well known for rich Pb and Zn deposits found in 

northwest Illinois, northeast Iowa, and southwest Wisconsin (Knox, 1987).  Mines 

targeted sulfide ore minerals such as galena (PbS) and sphalerite (ZnS) contained in 

carbonate host rock (Heyl et al., 1959).  Lead mining peaked in 1845 several years prior 

to the start of Zn mining (Fig. 2).  Zinc smelting technology was not available until later 
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Fig. 2. Production of Pb and Zn ore in the UMVD (Heyl et al., 1959). 

 

years.  After the 1850s, Pb mining declined as Zn mining began to boom in the district.  

Zinc mining peaked in 1917 with nearly 60,000 Mg of ore being produced a year (Heyl et 

al., 1959).  After the Zn boom, the economy crashed in the late 1920s with a sharp 

decrease in ore production. There was a short revival during the Second World War, but 

only large producing mines were able to stay in business until the last mine closed in 

1979 (Heyl et al., 1959, Knox, 1987).  With a low price for Zn at the market as well as 

growing concerns about the lowering of the local water table, river pollution, and air 

contamination from diesel mining equipment and blowing dust, all mining activity ceased 

as of 1979 in the Galena River Watershed (Brown et al., 2009).  By the mid-1900s, most 

operations were relatively large and few in number (Heyl et al., 1959).  The last mining 

operation to close was Shullsburg (Eagle Picher) Mine just south of the City of 

Shullsburg.  
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In the UMVD, mining operations remained almost entirely unregulated and 

decentralized under the General Mining Act of 1872 that promoted quick expansion of 

mining activities rather than a sustainable economy with environmental protections 

(Amezaga et al., 2011).  It was not until the late 1900s that the act was amended to 

include regulations on post-closure procedures (Brown et al., 2009).  The Federal Land 

Policy and Management Act of 1976 prevented unnecessary degradation to public lands 

and required remediation of the land post-closure.  Due to the difficult nature of locating 

former owners and companies of abandoned mines, mines closed prior to 1976 (1974 in 

Wisconsin) were “grandfathered” into the act and not required to clean up mine waste 

(Brown et al., 2009).  

  This lack of regulation resulted in large quantities of tailing piles to accumulate 

and remain at most abandoned mine locations throughout the watershed (Heyl et al., 

1959).  Tailing piles are the after product of the milling process where mined rock is sent 

to a mill to be crushed and separated (Figs. 3 and 4) (Johnson, 2018).  Lead and Zn 

concentrates are removed and sent to a smelter whereas the remaining waste is placed in 

tailing piles.  Early milling involved hand operated jigging which was extremely wasteful 

and often resulted in tailing piles with grain sizes <2 mm in size with very high 

concentrations of Pb and Zn (Taggart, 1945).  Most tailing piles in the Galena Watershed 

contained >1,000 ppm Pb and Zn (Pavlowsky, 1995).  To reduce the waste of early 

milling processes, steam powered gravity mills were introduced at the start of the 20th 

century (Heyl et al., 1959). With this process, steam power operated machinery crushed 

and separated the ores from waste rock more efficiently.  The ore would be obtained by 

separating crushed rock by specific gravity on shaker tables (Richards, 1909).  Even at  
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Fig. 3. Historical photos of mining operations during the 1800s and early 1900s in the 

UMVD (Johnson, 2018). 

 

 

   

Fig. 4. Examples of tailing piles today within the Galena River Watershed, July 2017. 
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some mine locations, previous tailing piles would be re-processed through these new 

more efficient mills (Heyl et al., 1959).  

 In 1929, the first flotation mill in the UMVD was built in Linden, WI (Heyl et al., 

1959).  Later in 1938, the first flotation mill in the Galena River Watershed was built in 

Cuba City.  This process eliminated excessive ore waste, eliminated the need to 

magnetically separate iron (Fe) impurities, and finally allowed the mill to remove barite 

from Pb and Zn ores (Heyl, et al., 1959).  In addition to crushing rock, the mill would 

also grind the material until it was very fine. They would then separate and concentrate 

the ore depending on specific gravity and chemical makeup using different oils 

(Richards, 1909).  This process produced very fine tailings which would be released into 

slime pounds or nearby streams. 

 

Source and Effect of Mining Contamination 

The release of tailing material from mills into tailing piles is the primary source of 

Pb and Zn contamination within the watershed (Appendices A1, A2 A3, and A4) 

(Pavlowsky, 1996).  Earlier tailing piles prior to flotation methods were mostly sand and 

fine gravels which were loosely held together and heavily contaminated.  The highest 

tailing pile concentration measured by Pavlowsky (1995) from Galena River Watershed 

in the early 1990s was 89,092 ppm Zn from Kennedy Mine.  These tailings are prone to 

increased erosion and mass wasting causing runoff to nearby streams. 

 Lead and Zn concentrations now within the stream network will be stored in 

channel and bank deposits directly downstream of their source material (Lecce and 

Pavlowsky, 1997).  Metals stored within the stream channel can become remobilized 
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seasonally by floods and are considered the most recent sediments given their short 

storage time.  However, metals stored in bank material and floodplains may remained 

stored for years to millennia if rarely reworked by lateral channel migration and bank 

erosion (Lecce and Pavlowsky, 1997).  If these deposits are remobilize they become a 

secondary source of contamination where the river effectively contaminates itself.  The 

input of sediment contamination from secondary sources is commonly ignored in most 

studies and remediation projects (CDM Smith, 2018).  A Total Maximum Daily Load 

(TMDL) report for the Galena Watershed has recognized dissolved metals and 

abandoned mine sites as contamination sources in the Galena Watershed (CDM Smith, 

2018). However, the TMDL has overlooked the potential for metals and mine wastes 

stored in floodplain deposits to be important sources of metals to stream sediments 

(Coulthard and Macklin, 2003). 

 An additional source of contamination can be the result of the chemical 

breakdown (known as leaching) of tailing piles resulting in a dissolved loads of Pb and 

Zn (Adams, 1944; Leblanc et al., 2000; Kemper and Sommer, 2002; Nieto et al., 2007).  

The chemical breakdown of a sulfuric mineral can cause acid mine drainage where 

sulfuric acids greatly lower the pH of a stream making it very acidic.  While there is 

continued potential for leaching and dissolved metals in the Galena River Watershed, 

acid mine drainage is rare due to the primary host rock of the ore being dolomite, a 

carbonate (Adams, 1944; Heyl et al., 1959; Brown et al., 2009).  The high pH of dolomite 

will commonly neutralize the low pH of sulfuric acid (Adams, 1944).  The remaining 

dissolved Pb and Zn tends to bond to fine sediments including clay particles and organic 
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matter (OM) (Horowitz, 1991).  Moreover, contaminated fine-grained sediment can be 

easily dispersed downstream by high flows and floods (Pavlowsky, 1995). 

 Tailing piles are also a source for several other metals that contaminate the 

Galena River Watershed.  Since most tailing piles are dolomitic, fine gravels and sand 

particles in channel sediments near mine areas typically contain high calcium (Ca) 

concentrations (Adams, 1944).  Other metals such as Fe and manganese (Mn) are 

byproducts of Pb and Zn mining and tend to have high concentrations within some tailing 

piles where pyrite (FeS) and other sulfuric minerals were present in measurable amounts 

(Heyl et al., 1959).  Lastly, some metals such as As and Cd are released to streams as a 

result of Pb and Zn mining and have the potential to accumulate in high concentrations in 

some parts of the watershed (Leblanc et al., 2000). 

 Ultimately, all sources of metal contaminants within the watershed are at their 

highest concentrations near their mining source (Lecce and Pavlowsky, 1997).  The 

further Pb and Zn are dispersed downstream, the more the metals will mix with 

uncontaminated sediments in the stream bed or from tributaries (Marcus, 1987).  This 

level of dilution can be estimated by dividing the production mass of ore or metal by 

drainage area at the sample point in the stream network.  For this reason, contaminant ion 

levels will be the highest in small watersheds with high production. The greater the area 

and spacing between mines and the sampling point, the greater the rate of mining 

sediment dilution (Pavlowsky, 1996).   

 Streams segments that are in close proximity to mines have received large 

tonnages of tailing inputs that may result in harm to aquatic life in the Galena River 

watershed (CDM Smith, 2018).  The most recent TMDL of the Galena River states the 
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entire length of the river below the East Fork is impaired as a result of mining and 

dissolved Zn load which is extremely high in concentration.  According to a study 

conducted by MacDonald et al. (2000), high concentrations of Pb (>128 ppm) and Zn 

(>459 ppm) can be toxic to sediment-dwelling organisms.  This study shows that focus 

on dissolved metal concentrations may only indicate part of the toxic risk in mined 

watersheds.  Furthermore, nearly in all stream segments, excluding mostly unmined 

branches, Pb and Zn concentrations frequently exceed these thresholds in the Galena 

River Watershed according to the results of Pavlowsky (1995).  

         

Purpose and Objective 

 The purpose of this study is to evaluate present day contamination trends within 

the Galena River Watershed and compare them to contamination trends found in the early 

1990s reported by Pavlowsky (1995).  In addition, the study plans to determine where Pb 

and Zn concentrations have decreased on average within the watershed and if remediation 

resulted in decreased contamination over the past 25 years.  The objectives of this study 

are to (i) resample sites from the Pavlowsky (1995) study and add several new sampling 

sites to the lower Galena River below Galena, IL; (ii) create a GIS database of 

government documented remediation sites and assess all present day mine locations and 

change over the past 25 years; (iii) determine the trends of present day sediment 

contamination and their correlation with other variables such as Fe, Mn, Ca, and OM; and 

(iv) assess the influence of sediment transport, sediment-metal storage, and remediation 

in the watershed on contamination trends over the past 25 years.  Many studies that focus 

on mining-related metal contamination tend not to revisit the study area to assess change 
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over time with few exceptions, usually over shorter periods of time (Axtmann and 

Luoma, 1991).  Given the lack of current literature, it is relatively unknown what effect 

remediation will have on the watershed and to what magnitude and extent.  Revisiting the 

Pavlowsky (1995) study sites of the early 1990s will give insight into the potential for 

geochemical recovery of the Galena River as a result of nearly 40 years of mining 

inactivity, reworking and sediment dilution, and ongoing remediation efforts over the 

past 25 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

CHAPTER 2 – STUDY AREA 

 

 The Galena River Watershed (525 km2) is located in southwest Wisconsin and 

northwest Illinois (Fig. 1).  The highest elevation is in the north part of the watershed at 

380 m above sea level and the lowest elevation is at the confluence with the Mississippi 

at 177 m above sea level (CDM Smith, 2018).  The northern portion of the watershed is 

located within Lafayette County and partially within Grant County of Wisconsin.  The 

southern portion of the watershed is located completely in Jo Daviess County in Illinois.  

The headwaters of the Galena River originate just east of Platteville, Wisconsin and its 

mouth on the Mississippi River is 16 kilometers downstream of Galena, Illinois at Harris 

Slough (WVI, 2015b).  Galena, Illinois (42.4167°N - 90.4290°W) is the largest city in the 

watershed (USCB, 2017).  Other significant villages and towns include Shullsburg, Hazel 

Green, New Diggings, Belmont, and Cuba City in Wisconsin.      

 

Geology 

 The Galena River Watershed is entirely within the physiographic region known as 

the Driftless Area (Knox, 2006).  During the Wisconsin Glaciation the Driftless Area 

(which covers parts of Wisconsin, Illinois, Minnesota, and Iowa) was unglaciated 

resulting in a unique and river dissected landscape much greater in relief in comparison to 

surrounding regions (Knox, 2006).  The upland regions of the Driftless area are abundant 

with loess deposits composed of fine grained sediments (Magilligan, 1985).  Loess is the 

result of wind-blown sediment from glacial outwash deposits in neighboring regions that 

created up to four meter deposits in some areas (Magilligan, 1985).  
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 The surficial bedrock within the Galena River Watershed is middle Ordovician to 

Silurian in age (Heyl et al., 1959).  From oldest to youngest the bedrock is part of the 

following formations: St. Peter sandstone, Platteville limestone, Decorah shale, Galena 

dolomite, Maquoketa shale, and Edgewood dolomite (Mullens, 1964).  All formations are 

middle to late Ordovician while Edgewood dolomite is early Silurian (Fig. 5).  Seen in 

the geological map below, the majority of exposed bedrock is dolomitic and Ordovician 

in age and mostly from the Platteville, Galena, and Maquoketa formations (Figs. 6 and 7) 

(ISGS, 1967; GNHS, 1995). 

 A total of around 832,000 Mg of Pb ore and a total of around 44 million Mg of Zn 

ore was mined between the early 1800s and the mid-1900s (Heyl et al., 1959).  Most of 

these ore deposits range between a few hundred to nearly four million Mg.  However, the 

majority of deposits produced less than 100,000 Mg (Heyl et al., 1959).  The majority of 

minerals that were mined included galena (PbS), sphaleraite (ZnS), pyrite (FeS), and 

small quantities of smithsonite (ZnCO3).  Pyrite was primarily mined for the 

manufacturing of sulfuric acid (Heyl et al., 1959).  Most of these ores are retrieved from 

dolomitic [CaMg(CO3)2] base rock which has a neutralizing effect in local ground and 

surface waters with primarily mined sulfuric minerals within the watershed (Adams, 

1944; Heyl et al., 1959). 

 The most common soil in the Galena River Watershed is Tama Silt Loam (NRCS, 

2017; CDM Smith, 2018).  Tama Silt Loam is an upland soil with a moderate relief of 2-

6%, is well drained, and its parent material is loess over cherty residuum (NRCS, 2017).  

Another common upland soil is Palsgrove Silt Loam also formed from loess.  A common 

drainageway soil is Worthen Silt Loam with a common relief of 2-6%, well drained, and 
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Fig. 5. Geology of the Galena River Watershed (Brown et al., 2009). 
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Fig. 7. Bedrock geology of the State of Illinois. Study area located in northwest most 

corner of state (ISGS, 1967). 

 

parent material is silty alluvium.  The most common floodplain soil is the Orion Silt 

Loam which has a common relief of 0-3%, somewhat poorly drained, and parent material 

is silty alluvium (NRCS, 2017).  The most common soil order within both states and the 

Galena River Watershed is an Alfisol (Fig. 8 and 9) (NRCS, 2009; Hartemink et al., 

2012).    
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Fig. 8. Soils map of Wisconsin by soil order groups (Hartemink et al., 2012). 

 

Fig. 9. Soils map of Illinois by soil order groups (NRCS, 2009). 
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Climate and Hydrology       

 The climate of the City of Galena, IL is seasonally hot in summer and cold in 

winter (CDM Smith, 2018).  The table below lists average temperatures and precipitation 

rates in the Dubuque, IA area over the past 30 years (Table 1) (NOAA, 2018).  Dubuque, 

IA is located about 26 kilometers northwest of Galena, IL.  The average temperature for 

Dubuque is highest in the month of July (22.2°C) and lowest in the month of January      

(-7°C).  Both June and July have the highest rate of precipitation annually at around 

12.09 cm and 12.14 cm respectfully.  The highest rate for snowfall on average takes place 

during December at 27.69 cm.  Annually, Dubuque has an average temperature of 8.2°C, 

average precipitation of 91.97 cm, and an average snowfall of 106.17 cm.  This data is 

typical of the Dubuque area and is similar to the available Galena, IL records (NOAA, 

2018). 

 

Table 1 

Average monthly climate data for Dubuque, IA for past 30 years. 

Month 
Average 

Temperature 

(°C) 

Average High 

Temperature 

(°C) 

Average Low 

Temperature 

(°C) 

Average 

Precipitation 

(cm) 

Average 

Snowfall 

(cm) 

JAN -7.0 7.8 -24.4 3.10 24.64 

FEB -4.9 10.6 -20.6 3.63 25.40 

MAR 1.9 20.6 -14.4 5.84 14.73 

APR 8.7 26.1 -5.6 10.03 3.56 

MAY 15.0 29.4 0.6 10.36 0.00 

JUN 20.3 32.2 7.2 12.09 0.00 

JUL 22.2 33.3 10.6 12.14 0.00 

AUG 21.1 32.2 10.0 10.67 0.00 

SEPT 16.8 30.6 2.8 7.62 0.00 

OCT 10.0 26.7 -4.4 6.35 0.51 

NOV 2.8 18.9 -11.7 5.64 7.37 

DEC -4.6 10.0 -21.1 4.57 27.69 

ANNUAL 8.2 33.3 -26.7 91.97 106.17 
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 For hydrologic data, there are a total of four inactive streamflow gages within the 

Galena River Watershed that were once operated by the USGS (CDM Smith, 2018).  

Two of these gages were along the Madden Branch, one on Pats Creek, and one on the 

Galena River.  The gages located on Madden Branch and Pats Creek were only operated 

for a short two year period between 1980 and 1982.  The gage (USGS Gage 05415000) 

on the Galena River at Buncombe, WI (drainage area of 324 km2) was in operation from 

1939 until it closed in 1992.  Even though this gage has been closed for 25 years it offers 

the only overall discharge record of this area.  The mean annual discharge for the gage is 

79 m3/s, the highest average monthly discharge from this gage is in March at 159 m3/s, 

and the lowest average monthly discharge from this gage is in December at 54 m3/s.  The 

highest maximum flow recorded took place on June 29, 1969 at a peak of 3,400 m3/s 

(USGS, 2018).    

 

Settlement History and Land Use 

 The first known record of Pb mining in the UMVD was reported by French fur 

traders in 1658 in the Dubuque area (Heyl et al., 1959).  Since then there were small scale 

mining operations by French, Native American, and American settlers until the beginning 

of large scale mining in the early 1800s.  It was in 1819 that large permanent settlements 

started to appear throughout the UMVD (Heyl et al., 1959).  A rapid increase in 

settlement took place in 1820s as a result of increased mining operations, farming, and 

logging (Knox, 1987).  Many of these settlers came from the eastern states, southern 

Illinois (majority of which migrated from Peoria County), and parts of Europe (GHS, 

2012).   
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This growth in population and increase in Pb and eventually Zn ore mining led to 

a golden era of steamboat traffic for Galena, IL making it one of the greatest shipping 

centers in the United States at the time (Heyl et al., 1959; GHS, 2012).  The 1840s was 

the golden decade of Galena steamboat traffic with large quantities of cargo being 

shipped through the Mississippi River.  By the end of the 1850s, steamboats were no 

longer a significant shipping center in Galena, IL as the railroad out of Chicago 

dominated the state’s shipping industry (Heyl et al., 1959; GHS, 2012).      

After Zn mining peaked in 1917 mining operations were in decline until the final 

mine closed in 1979.  As mining operations decrease, logging and farming increased 

within the district (Knox, 1987).  Increased agricultural lands led to an increased rate of 

sedimentation and flood magnitude within the watershed (Woltemade, 1994).  Farm field 

runoff as well as contaminated sediments from abandoned tailing piles would disperse 

during high discharge events and settle along the banks of the Galena River.  These 

legacy sediments can be seen throughout the watershed and are known as post settlement 

alluvium (PSA) or legacy deposits (Magilligan, 1985; James, 2013).  A PSA deposit is 

characteristic of a light colored, sometimes contaminated sediment overlaying late 

Holocene floodplain deposits of a darker color (Appendices A5 and A6).    

 The Galena River Watershed is primarily pastoral and agricultural with very little 

industry and only small settlements the largest of which is Galena, IL (CDM Smith, 

2018).  As of 2014, the highest percent of land cover in the Galena River Watershed and 

the neighboring Sinsinawa River Watershed is pasture/hay around 36% of the area (CDM 

Smith, 2018).  Other land uses are listed in the following table including the most 

populous crop being corn and the most populous forest cover being deciduous (Table 2).  
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Table 2 

Land cover for the Galena River and Sinsinawa River Watersheds (CDM Smith, 2018). 

 

USDA/NASS Land Use 

Cropland Category 

Area 

(km2) 
Percentage 

Pasture/Hay 306.24 35.95 

Corn 248.08 29.12 

Deciduous Forest 96.25 11.3 

Soybeans 72.56 8.52 

Alfalfa 37.09 4.35 

Developed/Open Space 35.16 4.13 

Open Water 18.13 2.13 

Developed/Low Intensity 17.24 2.02 

Woody Wetlands 7.68 0.9 

Developed/Med Intensity 2.93 0.34 

Grassland Herbaceous 2.68 0.31 

Oats 2.44 0.29 

Winter Wheat 1.25 0.15 

Evergreen Forest 0.86 0.1 

Herbaceous Wetlands 0.75 0.09 

Shrubland 0.72 0.08 

Developed/High Intensity 0.66 0.08 

Barren 0.63 0.07 

Other Hay/Non Alfalfa 0.39 0.05 

Other 0.12 0.01 

Total 851.87 100 

 

Mining History 

 While some small operations existed likely as early as the mid-17th century, the 

majority of Pb and Zn mining in the UMVD took place from the 1820s until 1979 (Heyl 

et al., 1959).  There were several well-known mining towns that formed during this 

period such as Mineral Point, Dodgeville, Platteville, and Dubuque; however, two-thirds 

of all the Pb and Zn ore coming out of the UMVD came out of Galena, IL and the Galena 

River Watershed (Heyl et al., 1959).  At the peak of Pb mining in 1845 a quick decline 
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began as easily found sources decreased and the gold rush in California drove many 

settlers away.  After the start of the 20th century, Pb was primarily the byproduct of Zn 

mining operations.  As Pb mining started to declined, the technology for Zn smelting 

became more readily available in the 1860s and Zn surpassed Pb production permanently 

in the late 19th century (Heyl et al., 1959; Knox, 1987).  Zinc production remained high 

throughout the First World War but depletion of readily available ore and the Great 

Depression of the 1930s caused a steep decline in Zn mining from which the district 

would never recover.  With only a short revival during the Second World War, all mining 

operations ceased in 1979 (Heyl et al., 1959; Knox, 1987; Brown et al., 2009).     

Many of these abandoned mine locations were archived in the USGS report 

created by Heyl et al. (1959).  The map and table below show 171 known abandoned 

mine locations in the Galena River Watershed and their estimated production.  

Production values were estimated from averages found in the USGS report (Fig. 10; 

Table 3).  The majority of all mines (n=100) produced less than 100,000 Mg of ore 

overall; however, some of the largest mines produced greater than two million Mg.  The 

tributaries with the largest number of historical mine locations is Shullsburg Branch at 44 

mines (Heyl et al., 1959).   

 

Mining Contamination of Channel and Floodplain Sediments (1992) 

 The following section will briefly discuss the contamination trends of Pb and Zn 

found in the Pavlowsky (1995) study (Appendix B).  As expected, the highest 

concentrations of Pb and Zn were found in tailing piles throughout the watershed.  

Pavlowsky (1995) surveyed 15 different tailing piles of which the highest concentrations  
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Fig. 10. Map of historic mine production in the Galena River Watershed. 
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detected were found at Kennedy Mine at 85,913 ppm Zn and at DeRocher Mine at 3,220 

ppm Pb.  Kennedy Mine had one of the highest rates of production within the watershed 

at over 2,000,000 Mg overall (Heyl et al., 1959).  The average of all tailing piles sampled 

for the Pavlowsky (1995) study is 21,378 ppm Zn and 1,036 ppm Pb.  

 The background level of Pb and Zn from unmined tributary channel sediments 

within the Galena River Watershed recorded for the Pavlowsky (1995) study was 146 

ppm Zn and 40 ppm Pb.  These concentrations represents the natural occurrence of Pb 

and Zn in the watershed (Church et al., 2000; Mast et al., 2000).  The average 

concentrations for all recent channel sediments (mined or unmined) was 4,037 ppm Zn 

and 411 ppm Pb.  The highest sediment Zn concentrations were from Vinegar Hill 

Tributary and the highest sediment Pb concentrations were from Ellis Branch (Table 4). 

Floodplain samples from the Pavlowsky (1995) study were on average similar to 

those within channel sediments if not slightly higher.  The average concentrations for 

floodplain samples was 5,839 ppm Zn and 811 ppm Pb.  The highest soil Zn 

concentrations were from Scrabble Branch and the highest soil Pb concentrations were 

from Ellis Branch (Table 5). 

 

Remediation 

As of close in 1979, the Shullsburg (Eagle Picher) Mine, located just south of 

Shullsburg, WI, has been required to follow the 1974 Wisconsin metallic mining 

remediation regulations (Brown et al., 2009). Starting 1995, the remediation of the 

remaining land began by the operator Terra Industries.  The remediation project is still 

active today. 
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Table 4  

Average recent channel sediment concentrations (1992). 

Reach n Fe Mn Zn Pb OM 

Upper Galena R. 14 17,858 1,088 486 70 5.2 

Mid Galena R. 12 19,255 1,049 3,223 184 3.3 

Lower Galena R. 6 20,258 1,025 2,685 215 4.5 

Pats Cr. 5 19,817 1,252 645 41 5.0 

Madden Br. 11 17,848 1,208 194 38 5.8 

Blacks Cr. 1 35,958 1,426 1,159 124 5.0 

Shullsburg Br. 19 25,225 1,510 2,427 421 4.7 

Ellis Br. 14 26,131 1,193 6,499 685 4.3 

Diggings Br. 11 37,383 996 10,270 427 3.2 

Kelsey Br. 4 13,935 948 427 83 5.2 

Coon Br. 6 56,819 1,045 5,881 648 3.6 

Bull Br. 6 26,342 1,507 4,657 250 4.2 

Scrabble Br. 3 23,127 850 4,646 337 5.8 

Vinegar Hill 6 25,515 1,282 18,205 292 3.7 

East Fork 5 19,364 1,026 396 127 4.9 

Hughlett Br. 4 13,910 984 689 158 3.8 

Total 127 25,633 1,223 4,037 411 4.4 

 

Table 5 

Average surface overbank floodplain soil concentrations (1992). 

Reach n Fe Mn Zn Pb OM 

Upper Galena R. 6 14,953 783 579 46 4 

Mid Galena R. 9 17,570 927 1,857 285 4 

Lower Galena R. 2 21,053 1,008 2,530 228 3 

Shullsburg Br. 5 22,225 840 2,148 714 4 

Ellis Br. 2 33,355 1,017 10,693 1,293 4 

Coon Br. 6 36,316 913 4,851 903 4 

Bull Br. 2 32,050 1,175 2,810 1,425 3 

Scrabble Br. 1 33,897 987 19,825 1,236 3 

Total 33 23,748 912 3,392 574 4 

  

 

 

 Other recent remediation projects (last 25 years) reported in government 

documents include the consolidation project of Champion Mine (2007) on Diggings 

Branch, Vinegar Hill EPA Superfund site at Inspiration and nearby Little Giant, and a 
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few other large operations such as Graham-Snyder, Graham-Ginte, Cuba City, and West 

Blackstone (Table 6) (Reinertsen, 1992; WDNR, 2001; WDNR, 2008; Brown et al., 

2009; EPA, 2018a; EPA, 2018b).  The following figures briefly show locations of 

remediated sites and reductions and removals of mine waste (Fig. 11) as well as 

remaining mine waste including examples within 100 m of a stream (Fig. 12).  Given 

there have been several remediation efforts over the past 25 years it would be beneficial 

for local and federal government agencies to know the effects of remediation on the 

reduction of Pb and Zn within the watershed. 

 

Table 6  

List of government documented remediation projects in the past 25 years in the Galena 

River Watershed. 

Mine Name Affected Stream 
Type of 

Remediation 
Source 

Champion Diggings Br. Consolidation WDNR, 2008  

Cuba City Coon Br. Removal WDNR, 2001 

Eagle Picher Shullsburg Br. Ongoing Brown et al., 2009 

Graham-Snyder Galena R. Removal Reinertsen, 1992 

Graham-Ginte Galena R. Removal Reinertsen, 1992 

Inspiration Vinegar Hill Ongoing EPA, 2018a 

Little Giant Vinegar Hill Ongoing EPA, 2018b 

West Blackstone Shullsburg Br. Removal  WDNR, 2001 
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Fig. 11. Map of remediated mine sites, reductions, and removals (Heyl et al., 1959). 

 



 

29 

 

Fig. 12. Map of remaining mine waste. Red symbols indicate waste within 100 meters of 

stream (Heyl et al., 1959). 
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CHAPTER 3 – METHODS 

 

The field and, to a lesser degree, laboratory methods used for this thesis project 

were based on those used by Pavlowsky (1995).  Geospatial data were collected and 

analyzed to approximate modern day conditions and compare the location of 2017 

samples to those from 1992.  Based on sample sites from 1992, samples were collected in 

field and returned to the Ozarks Environmental and Water Resources Institute (OEWRI) 

laboratory (oewri.missouristate.edu) at Missouri State University for further analysis.  

These results were added to the new Galena River Watershed database and statistically 

analyzed for geochemical, spatial, and temporal relevance.  

The Pavlowsky (1995) study dataset was used as a guide to locate locations for 

resampling as well as previous mine locations within the watershed.  This dataset 

includes the sediment concentrations of Zn, Pb, Fe, and Mn as well as OM% for each 

sample and several tailing piles.  Any data or information obtained about mine location 

and production recorded in the Pavlowsky (1995) study was originally obtained from a 

USGS report prepared by Heyl et al. (1959) discussing the geology of the UMVD.  The 

concentrations and spatial data from 25 years ago was analyzed and compared to the 

newly obtained 2017 field data to determine trends and create several different maps and 

graphs displaying the findings of this research (Xiao and Ji, 2007).    

 

Geospatial Data and Analysis 

 ESRI ArcGIS software was used to conduct remote sensing based analyses, 

compare heavy metal concentrations with area, distances, and spatial location, and map 
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the final project to display the results.  The first step was to geolocate hand-mapped 

sampling locations from 7½ quadrangle maps that were recorded in the early 1990s by 

Pavlowsky (1995).  Using USGS quadrangle digital downloads, sample sites and mine 

locations were digitized into the new Galena River Watershed GIS database (USGS, 

1952).  Township and range coordinates tabulated in Pavlowsky (1995) were also used to 

locate the previous sampling sites.  In addition, supporting information such as roads and 

state boundaries were obtained from the TIGER/Lines database on the United States 

Census Bureau website (USCB, 2017).  This information helped with in field navigation 

during sampling and later digital display of the results. In addition, a digital elevation 

model (DEM) of the Galena River Watershed was obtained from the USGS 

EarthExplorer website and used to delineate the Galena River Watershed (NASA and 

METI, 2011).   

 Lastly, data was obtained to analyze mine location and changes to remaining 

waste over the past 25 years. SSURGO soil data obtained from the United States 

Department of Agriculture was used to reference soil types within the watershed and 

locate areas denoted as mine waste (NRCS, 2017). The original soil survey was published 

in Grant County in 1961, Lafayette County in 1966, and Jo Daviess in 1996.  While the 

Illinois soil survey in Jo Daviess is more representative of the Pavlowsky (1995) study 

findings, the Wisconsin soil survey will represent soil features in the 1960s around 40 

years prior to the Pavlowsky (1995) study. In the soil survey, mine wastes, tailings, and 

disturbed soil were mapped with the symbol, Mp (NRCS, 2017). 

 Aerial imagery was used to verify mine location and condition as a potential 

pollution source.  Several image files were obtained from both Wisconsin View and the 
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Illinois State Geological Survey for both the year 2005 and the year 2015 (ISGS, 2015a; 

ISGS, 2015b; WVI, 2015a; WVI, 2015b).  Tailing pile presence was noted for each year 

and change was recorded.  Using both SSURGO and aerial imagery a general idea of 

mine waste cleanup from the 1960s to present can be analyzed and compared to the 

results of the sediment concentration analysis.  In addition to the aerial image analysis, 

several different sources were contacted within the WDNR, IDNR, EPA, and local 

governments at county level to obtain any information about remediation within Grant, 

Lafayette, and Jo Daviess Counties.   

 

Field Methods 

 Sampling was completed by four 2-4 person teams over three days in July 2017 to 

obtain samples from the original 153 sites from the Pavlowsky (1995) study (Fig. 13).  

Field maps were created to guide sampling teams to 1992 sample sites.  Overall, 124 sites 

were revisited and both channel and floodplain samples were collected.  There were five 

new sites sampled along several different tributaries.  In addition, 12 new sites were 

sampled along the Lower Galena River and 14 tailings pile samples were collected.     

 At each site at least three samples were collected using a shovel at no more than 

five cm deep (Appendices A7, A8, and A9).  Two sample duplicates were collected from 

within five m along the stream segment point bar.  Samples from these locations 

represent recently active sediment temporarily stored and remobilized during seasonal 

flood events (124 sites sampled, total of 242 samples) (Pavlowsky, 1995).  A third 

sample was collected from the bank-top of the bench or low floodplain deposits (114 

samples obtained). Duplicates from recent channel sediments will be compared to the  
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Fig. 13. Map of the sample sites from the Pavlowsky (1995) study collected from in 

2017. 
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first to determine precision of sampling using relative percent difference (RPD) as well as 

the variation of concentrations located within the point bar sampled. 

Samples collected from the Lower Galena River required a canoe and an Eckman-

dredge type sampler to retrieve sediments from the bottom. Additional samples were also 

obtained from fine-grained deposits along the lower bank surfaces above the low 

waterline.  All samples collected in the field were GPS located and placed into a quart 

sized Ziploc freezer bag and returned to the OEWRI laboratory in Springfield, MO. 

Channel characteristics were recorded for future use to better understand the 

geomorphology of the channel (Appendices C1, C2, and C3).  Channel depth, width, and 

bank height were all recorded to form a generalized cross-section of the sample site.  The 

condition of the banks at each site were also recorded to determine the effects of erosion 

on the river’s banks including tree debris that may be protecting a bank from erosion.  

Any visible PSA found within river banks was described.  

 

Laboratory Methods 

 All samples were analyzed in the OEWRI laboratory located at Missouri State 

University (oewri.missouristate.edu).  Each sample bag was opened and drained to let air 

dry overnight.  The samples were dried in heating ovens at 60°C.  Depending on the level 

of saturation, some samples remained in the oven for several days.  Once dried, each 

sample was disaggregated with mortar and pestle and put through a 2-mm sieve to be 

used for further analysis (OEWRI, 2007b).   

 XRF Analysis. All samples from the original sample sites and the Lower Galena 

were analyzed using an x-ray florescence (XRF) analyzer (X-MET3000TXS+) that has 
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been calibrated to determine Zn, Pb, Fe, Mn, and Ca concentrations within sediments and 

soils (OEWRI, 2007b).  A total of 39 samples during this analysis fell below the level of 

Pb detection by the XRF.  For these samples, they will be known as non-detect (ND) and 

assumed to have a concentration of 15 ppm Pb.    

 For XRF analysis each <2 mm sample was placed in a small metal-free bag, 

which was then placed in a Pb box and activated with x-ray radiation for 90 seconds to 

determine the concentrations of metals in the sediment.  In order to stay consistent with 

testing, three standards with known concentrations were used before and after a set of 

samples including a blank to assure the instruments performance.  Standards were used 

every ten samples.  Every tenth sample was analyzed twice as a laboratory duplicate.  

Laboratory accuracy for all samples had very low coefficient of variation (Cv%) with 

almost all samples below 10% excluding Mn which had an average Cv% of 40%.  The 

precision for all metals on average remained below 10 Cv% resulting in little variation 

between laboratory duplicates.   

 Aqua-Regia Analysis and Ratio Corrections. A subset of 33 samples was sent 

to the ALS Global Laboratory in Reno, NV to verify XRF results and expand the range of 

metals evaluated for this study.  The samples were digested using an aqua-regia solution 

made of 3:1 nitric acid and hydrochloric acid and analyzed by inductively coupled 

plasma-atomic emission spectrometry (ALS, 2009).  This method was similar to that used 

to determine sediment metal concentrations by Pavlowsky (1995).  Therefore, converting 

XRF values to representative aqua-regia values should improve the accuracy of site 

comparisons between the 1992 and 2017 sediment studies. 



 

36 

 Relationships between XRF and aqua-regia analyses were evaluated for each 

metal in two ways.  First, correlating XRF values to other routine analyses is a standard 

procedure for validating XRF results (EPA, 1998).  Following, aqua-regia over XRF 

concentration regression equations indicated strong linear trends for all metals with a 

power function (log-log regression) producing the best results with the following R2 

values: Pb, 0.966; Zn, 0.947; Fe, 0.929; Ca, 0.859; and Mn, 0.823.  Log-Log regression 

generally explained 17% and 24% more variance compared to arithmetic/linear equations 

for Zn and Pb, respectively.    

 A second method was used in this study to correct XRF concentrations to 

predicted aqua-regia values based on regression equations between the XRF metal 

concentration and the ratio between the paired aqua-regia and XRF concentrations (not 

the aqua-regia concentration itself).  This procedure can produce more accurate results 

for non-linear relationships that may develop over wide ranges of geochemical 

concentrations spanning several orders of magnitude as involved in this study.  In 

addition, the original spatial variability of sediment geochemistry is maintained in the 

corrected data set, rather than reducing the natural variability of the sample to a single 

linear trend line (Pavlowsky et al., 2017). 

 Regression equations between XRF concentrations and aqua-regia: XRF ratios 

were developed for this study to convert sediment XRF results to aqua regia-based values 

(Table 7).  The raw or original XRF concentration was multiplied by the ratio value 

predicted from the equation.  In some cases, such as with Ca and Fe, a single “best-fit”  

ratio value was prescribed based on curve-fitting and error evaluation judgements. 

Comparisons of measured and predicted aqua-regia concentrations tend to plot close to a   
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1:1 trend with relatively low errors, typically in the range of ±20%.  For Zn, the RPD 

values (i.e., predicted - measured/measured x 100) had a median of 9% ranging from a 

25%-tile value of -6% to a 75%-tile value of 31% (Fig. 14).  For Pb, the RPD values had 

a median of 5% ranging from a 25%-tile value of -10% to a 75%-tile value of 11% (Fig. 

15). 

 LOI Test. Loss on ignition (LOI) is a laboratory test used to determine percent 

OM for each sample tested.  Organic matter is strongly correlated with clay sized particle, 

both of which have high surface areas and tend to absorb free heavy metal ions during 

transportation (Lecce and Pavlowsky, 2004).  Lead and Zn associated with OM may have 

a higher chance to be transported further downstream.  LOI is a test that ignites the OM 

in a muffle furnace to determine CO2 weight loss by ignition.  The LOI method used here 

is based on Sparks (1996) and the OEWRI standard operating procedures manual in 

which five gram samples are ignited at 600°C for eight hours (OEWRI, 2007a). 

Laboratory duplicates were taken for LOI testing during every burn (OEWRI, 

2007a).  Each burn could hold one rack which contained anywhere between 13-15 

crucibles.  On each rack there would be one duplicated sample to determine the precision 

of LOI testing.  The average precision of all the duplicated samples is 1.3 Cv%.  This 

means overall there was very little variation between all duplicated crucibles.  There were 

a total of only four sets of duplicates yielding Cv% values between 10-20 Cv% while 

other 29 sets were all <10 Cv%.     
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Fig. 14. Comparison of measured and predicted Zn concentrations using ratio correction 

method. 

 

 

Fig. 15. Comparison of measured and predicted Pb concentrations using ratio correction 

method. 
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Statistical Analysis 

 Several different statistics were conducted on the results from the 2017 field and 

laboratory samples as well as the 1992 database.  Pearson’s correlation was used on the  

different variables of different segments of the watershed to determine strength and 

direction of the relationships between Pb, Zn, Fe, Mn, Ca, and OM (Carnahan et al., 

2008; Navarro et al., 2008).  In addition, regression models may also be normalized using 

other variables such as OM, Fe, and Mn to determine their effect on the overall 

concentrations and trends (Horowitz, 1991).   

 Finally, an overall paired t-test sample sets by tributaries will be conducted on 

both sample concentrations between 1992 and 2017 as well as locations below mine sites 

to determine the significance of remediation effects on sediment metal concentrations 

(Acosta et al., 2011; Mehrabi et al., 2015). The hypothesis for this test will be that there 

has been no change over the past 25 years.  The test will either reject the null hypothesis 

that there has been a significant change to Pb and Zn concentrations over the past 25 

years or it will fail to reject it meaning there is no significant evidence to say there is any 

difference between the two means.  Each test will use the 95% confidence interval. 
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CHAPTER 4 – RESULTS AND DISCUSSION 

 

 During field work in July 2017, 415 sediment samples from stream channels 

(n=270), floodplains (n=121), and tailings piles (n=24) were collected and later analyzed 

at the OEWRI Laboratory at Missouri State University (oewri.missouristate.edu).  Repeat 

samples occurred at 124 sites from Pavlowsky (1995) (Appendix B).  Duplicates (n=135) 

were taken at channel sediment sites to evaluate the precision of field procedures and 

results.  Further, 12 additional sites were collected from the Lower Galena River (below 

the East Fork) and 7 sites from the Harris Slough.  The Harris Slough sample results are 

not discussed in great depth in this thesis.   

 Overall, the precision of channel geochemistry and OM analyses was good, 

typically below 20-30% RPD (Appendix D).  Only Madden Branch, Kelsey Branch, East 

Fork, and Hughlett Branch were above 30% median RPD for Pb and Hughlett Branch for 

Zn.  For Pb, 33% of branches were below 10% RPD median, 46% were between 10% 

and 30% RPD, and 15% were above 30% RPD.  For Zn, only 7% of branches were below 

10% RPD, 87% were between 10% and 30%, and 7% were above 30% RPD.  For the rest 

of the metals analyzed only Mn for Scrabble Branch was above 30% RPD.  For Mn, Ca, 

and OM almost all branches were between 10% and 30% with Ca completely between 

these two values.  For Fe, 73% of branches were below 10% RPD. 

 There were typically three conditions that caused relatively high relative 

variability of Zn and Pb concentrations among the tributary segments.  First, streams with 

low mean values will tend to have higher relative error (Madden Branch Pb = 94% RPD; 

East Fork Pb = 51% RPD).  Second, low sample size will increase error since standard 
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deviations will tend to be larger (Kelsey Branch Pb = 42% RPD).  Finally, some stream 

segments have both heavily contaminated reaches and relatively less contaminated 

reaches reflecting the spatial variability of non-uniform sediment mixing from both 

mining and background sources (Hughlett Branch Zn = 51% RPD).     

 

Metal Concentrations in Sediments and Tailing Samples (2017) 

Tailing Materials and Background. The primary source of pollution to stream 

sediments within the Galena River Watershed is tailing materials created from the milling 

process of historical mining operations (Heyl et al., 1959; Knox, 1987; Pavlowsky, 

1995).  Concentrations within tailing piles of Pb (max=2,342 ppm), Zn (max=31,500 

ppm), Fe (max=193,657 ppm), Mn (max=1,823 ppm), and Ca (max=151,523 ppm) are 

greatly elevated in comparison to channel and floodplain samples (Table 8; Appendix E).  

Generally Pb and Zn will be relatively concentrated in tailing piles as a result of Pb and 

Zn mining while high concentrations of byproducts such as Fe and Mn are also found 

within tailing piles. Calcium concentrations are also very high as a result of the primary 

tailing material being dolomite (21% Ca) with some calcite (40% Ca) (Adams, 1944). 

 The variability between tailing pile samples is high for both Pb and Zn samples 

(Table 9).  When taking a sample from a tailing pile, the concentration can greatly change 

depending on location and depth.  For this reason, samples from tailings cannot 

accurately represent trends downstream (Pavlowsky, 1995).  However, tailing samples 

can still show examples of high concentrations representing a source material for 

contamination throughout the watershed mixing with background concentrations.     

 On the other hand, background levels are represented by unmined tributaries 



 

43 

Table 8 

Tailing pile averages in 2017. 

Mine Name Pb Zn Fe Mn Ca OM% 

Blackstone 1,371 28,157 51,129 1,105 143,400 3.59 

Century 922 5,163 62,292 1,143 67,659 5.89 

Champion 463 12,081 68,653 1,592 144,406 4.74 

Federal 959 22,292 62,422 1,190 151,523 4.86 

Hoskins 499 10,448 40,754 1,206 136,589 2.88 

Kennedy 552 12,183 73,488 1,823 75,474 3.69 

Little Dad 1,243 19,994 45,366 1,023 151,070 4.73 

Little Giant 2,037 20,972 62,680 1,270 121,519 5.68 

Lucky Twelve (1) 316 9,651 42,955 1,271 146,436 3.75 

Lucky Twelve (2) 1,141 17,315 193,657 980 112,951 4.79 

Monroe-Longhorn-Little Joe 2,342 28,520 48,503 1,111 130,081 3.50 

Old Ida Blende 705 31,500 162,742 1,445 77,403 6.57 

Sally Waters 946 25,544 43,396 1,251 145,381 2.59 

Vinegar Hill 1,474 27,866 84,137 1,217 146,403 6.76 

 

Table 9 

Variability of average tailing pile samples. 

Metal/OM 25% 50% 75% 25%-75%  Mean SD Cv% 

Pb 590 953 1,339 749 1,069 591.9 55.36 

Zn 12,106 20,483 27,286 15,179 19,406 8,388.5 43.23 

Fe 46,150 62,357 72,280 26,130 74,441 46,176.8 62.03 

Mn 1,119 1,212 1,271 152 1,259 226.2 17.97 

Ca 115,093 139,995 146,148 31,055 125,021 30,070.4 24.05 

OM% 3.61 4.73 5.48 2 4.57 1.3 28.64 

 

 

within the watershed.  The only two tributaries that do not have records of historical 

mining operations are Madden Branch and East Fork.  The average Pb concentrations for 

Madden Branch and East Fork are 33 ppm and 267 ppm respectively and for Zn 

concentrations are 244 ppm and 656 ppm respectively.  Madden Branch better represents 

background levels while other external sources could be causing higher concentrations 

within the East Fork (i.e. roads and rails) (Adams, 1944).  
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Channel Sediments. Both Pb (max=1,622 ppm) and Zn (max=16,428 ppm) 

concentrations are extremely high within channel sediments from the Galena River 

Watershed (Figs. 16 and 17; Appendix F).  For Pb concentrations, the highest average 

occurs in Coon Branch (731 ppm) and for Zn concentrations the highest average occurs 

in Diggings Branch (7,797 ppm).  Metal concentrations within each tributary can also 

vary greatly depending on proximity to the nearest mine location as well as the density of 

mine locations and the watershed area (Marcus, 1987; Pavlowsky, 1995).  For this 

reason, the Cv% of most large streams for Pb and Zn samples are high (i.e. Ellis, 

Diggings, Coon, Bull, Scrabble, Vinegar Hill).    

 Other concentrations analyzed such as Fe (max=116,036 ppm), Mn (max=1,990 

ppm), and OM content (max=23.9%) have a much lower Cv% and have a more 

consistent spatial distribution throughout the watershed (Figs. 18, 19, and 20).  The 

highest average concentrations for Fe was found in the Coon Branch (60,077 ppm), Mn 

in Bull Branch (1,382 ppm), and OM content in Vinegar Hill Tributary (9.0%).  The Fe 

outlier in Coon Branch is a result of a historical roaster pile located near Cuba City and 

the headwaters of the Coon Branch causing acid mine drainage and the transport of rich 

Fe sediment from the processing plant to tailing piles and mill effluents that ultimately 

entered the stream system (Fig. 18) (WDNR, 2001).  Even though this roaster pile is now 

removed, there are still high Fe concentrations today (Appendix A10).  Another anomaly 

includes the high OM content in Vinegar Hill.  For Fe, Mn, and OM content, Vinegar Hill 

has one of the highest Cv% while other tributaries are mostly below 30%.  The maximum 

at Vinegar Hill is likely an outlier causing a high average or a sample taken in error that 

is resulting in a great Cv% for Fe, Mn, and OM content.  
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Fig. 16. Average concentrations of Zn by branch averages and Cv%. 

 

 



 

46 

 

Fig. 17. Average concentrations of Pb by branch averages and Cv%. 
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Fig. 18. Average concentrations for Fe by branch averages and Cv%. 
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Fig. 19. Average concentrations for Mn by branch averages and Cv%. 
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Fig. 20. Average OM% by branch averages and Cv%. 
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 Calcium concentrations (max=150,669 ppm) are similar in trends to those of Pb 

and Zn (Fig. 21).  The highest average for Ca was found in the Ellis Branch (102,908 

ppm).  The highest concentrations of Ca are found near tailing piles due to the high Ca 

content of dolomitic bedrock within the tailings (Adams, 1944).  For this reason, the 

source of Pb and Zn is strongly associated with Ca concentrations (Pavlowsky, 1995).  

Similar to Pb and Zn, Ca also has a wide variation in Cv% throughout the watershed.            

 In addition, seven sites were sampled in the Harris Slough of the Mississippi 

River near the confluence of the Galena River as a pilot project with the University of 

Wisconsin – LaCrosse (Appendix G).  Averages for Pb (221 ppm), Zn (1,906 ppm), Fe 

(22,019 ppm), Mn (738 ppm), Ca (32,016 ppm), and OM content (5.8%) were calculated 

for the slough.  For all metals, the Harris Slough average is slightly lower than the Lower 

Galena average yet remains well above background levels (Appendix H).  As a result, 

contaminated sediments from the Galena River Watershed may be responsible for recent 

contamination as well as historical contamination of the Mississippi River’s backwaters, 

sloughs, and wetlands.  

 Channel versus Floodplain Bank Samples. The floodplain samples collected from 

nearby banks are very similar in concentrations to those samples retrieved from the 

channel bed (Appendices F, I, J, and K).  Floodplain and channel samples collected at the 

same site are strongly correlated with each other using a logarithmic regression line 

(Table 10; Figs. 22 and 23).  For Pb, the logarithmic formula is y=0.632x1.071 with R2 

value of 0.899 and for Zn the logarithmic formula is y=1.047x0.9771 with a R2 value of 

0.918 (y = floodplain Pb or Zn; x = channel Pb or Zn).  This trend indicates almost a  
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Fig. 21. Average concentrations of Ca by branch averages and Cv%. 
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Table 10 

Correlation matrix between floodplain and channel sediment concentrations. 

Sample Type n Pb Zn Fe Mn Ca OM 

Tributaries 77 0.906 a 0.898 a 0.898 a 0.473 a 0.770 a 0.323 a 

Main Channel 29 0.786 a 0.712 a 0.524 a 0.287 0.568 a 0.196 

All Samples 106 0.886 a 0.862 a 0.881 a 0.436 a 0.729 a 0.342 a 

a. Correlations that are significant at the 0.01 level                                 
 

 

Fig. 22. Relationship between Channel Pb and Floodplain Pb concentrations. 

 

Fig. 23. Relationship between Channel Zn and Floodplain Zn concentrations. 
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perfect 1:1 relationship suggesting that bed and bank sediment are similar in source and 

transport pathway. 

 In addition, the correlation analysis shows that nearly all channel metals and OM 

content have a strong positive correlation with their floodplain counterparts (Table 10). 

The strongest relationships between floodplain and channel sediments are seen in Pb, Zn, 

and Fe concentrations with only Mn and OM content showing significant yet lesser 

relationships.  Tributaries show a greater positive relationship over the main branch of the 

Galena and the strongest relationship is between channel and floodplain concentrations 

for Pb in tributaries.  Ultimately, this strong relationship suggests that mining-metals are 

still being moved into long-term storage in alluvial floodplain deposits by channel 

sediment transport.  These metals are then released back to the channel by bank erosion 

overtime (Knox, 1987).          

 Ecological Toxicity. The ecological thresholds of threshold effect concentration 

(TEC) and probable effect concentration (PEC) are commonly surpassed in the Galena 

River Watershed in most tributaries (MacDonald et al., 2000).  From this analysis, only a 

few samples fell below the TEC threshold (<121 ppm Zn and <35.8 ppm Pb) while the 

majority of all samples exceeded the PEC (>459 ppm Zn and >128 ppm Pb) (Tables 9 

and 10).  A few samples from the Upper Galena River (31%), Madden Branch (60%), 

Shullsburg Branch (5%), and East Fork (20%) were the only samples to fall below the Pb 

TEC threshold.  There were no samples that fell below the Zn TEC threshold.  These 

results show that samples from the Upper Galena, Madden Branch, and East Fork are the 

least contaminated in the watershed.  However, even these streams contain elevated Zn 

and Pb concentrations (Tables 11 and 12).  It is possible that high concentrations of Pb  
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Table 11 

Percent of samples above the PEC and below the TEC thresholds (Pb). 

Stream n 
Percent of Sites (Pb) 

<TEC TEC-PEC >PEC 

Upper Galena River 13 31 46 23 

Middle Galena River 12 0 0 100 

Lower Galena River 6 0 0 100 

Pats Creek 4 0 50 50 

Madden Branch 10 60 40 0 

Blacks Creek 1 0 0 100 

Shullsburg Branch 19 5 11 84 

Ellis Branch 8 0 25 75 

Diggings Branch 11 0 0 100 

Kelsey Branch 3 0 0 100 

Coon Branch 4 0 0 100 

Bull Branch 4 0 50 50 

Scrabble Branch 3 0 0 100 

Vinegar Hill 6 0 17 83 

East Fork 5 20 20 60 

Hughlett Branch 4 0 25 75 

 

Table 12 

Percent of samples above the PEC and below the TEC thresholds (Zn). 

Stream n 
Percent of Sites (Zn) 

<TEC TEC-PEC >PEC 

Upper Galena River 13 0 46 54 

Middle Galena River 12 0 0 100 

Lower Galena River 6 0 0 100 

Pats Creek 4 0 50 50 

Madden Branch 10 0 100 0 

Blacks Creek 1 0 0 100 

Shullsburg Branch 19 0 16 84 

Ellis Branch 8 0 0 100 

Diggings Branch 11 0 0 100 

Kelsey Branch 3 0 33 67 

Coon Branch 4 0 0 100 

Bull Branch 4 0 25 75 

Scrabble Branch 3 0 0 100 

Vinegar Hill 6 0 17 83 

East Fork 5 0 40 60 

Hughlett Branch 4 0 25 75 
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and Zn in unmined streams are a result of historical use and runoff of tailings being used 

for roads and rails (Adams, 1944).   

 On the other hand, all samples from branches including Middle Galena, Lower  

Galena, Blacks, Diggings, Coon, and Scrabble are above the PEC threshold (Tables 11 

and 12) (MacDonald et al., 2000).  Only the unmined Madden Branch remains entirely 

below the PEC threshold.  A total of 67% of Pb samples and 76% of Zn samples within 

the entire watershed exceed the PEC causing great potential for harm to sediment 

dwelling organisms.  These concentrations stay elevated from continued input of 

contaminated sediments released from tailing piles and floodplain storage (Knox, 1987).  

In addition, other metals from the aqua-regia analysis (Appendix L) show that As (8%) 

and Cd (46%) also exceed the PEC threshold (ALS, 2009).  Both As and Cd are potential 

trace elements of Pb and Zn mining and can also cause ecological harm (Leblanc et al., 

2000).  According to MacDonald et al. (2000), the current concentrations of 

contamination within the Galena River Watershed would be dangerous for sediment 

dwelling organisms.    

   

Sediment and Mining Source Effects 

 Pearson’s correlation analysis indicates strong relationships among geochemical 

components for most sediment types (Table 13).  The strongest positive relationship is 

between Pb and Zn concentrations with all categories having a relationship above 0.5.  

The strongest positive relationship between Pb and Zn is found in the main branch of the 

Galena River from floodplain samples (0.959).  This relationship is also very strong in 

the main branch of the Galena River from channel samples (0.892).  Other metals have a  
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Table 13 

Correlation matrices for metals and OM. 

Metal  Tailings Background 
Channel Floodplain 

Trib. Main Trib. Main 

n 24 15 82 31 82 31 

Pb-Zn 0.573 a 0.605 a 0.556 a 0.892 a 0.736 a 0.959 a 

Pb-Fe 0.033 0.435 b 0.623 a 0.615 a 0.732 a 0.876 a 

Pb-Mn -0.169 -0.218 0.009 0.395 a -0.105 0.592 a 

Pb-Ca 0.177 0.404 b 0.371 a 0.467 a 0.441 a 0.566 a 

Pb-OM 0.194 -0.109 -0.006 -0.368 a 0.079 0.080 

Zn-Fe 0.176 0.755 a 0.419 a 0.438 a 0.6 a 0.867 a 

Zn-Mn -0.075 -0.230 0.245 a 0.356 a 0.093 0.606 a 

Zn-Ca 0.246 0.366 0.634 a 0.648 a 0.56 a 0.624 a 

Zn-OM 0.251 0.079 -0.030 -0.448 a 0.213 0.127 

Fe-Mn 0.285 0.266 0.121 0.482 a -0.137 0.622 a 

Fe-Ca -0.44 b 0.347 0.124 0.111 0.264 b 0.339 b 

Fe-OM 0.579 a 0.094 0.136 0.023 -0.020 0.058 

Mn-Ca -0.080 0.075 0.218 a 0.461 a 0.296 a 0.596 a 

Mn-OM 0.199 -0.396 b -0.177 b -0.131 0.046 -0.018 

Ca-OM -0.165 -0.099 -0.288 b -0.414 a 0.047 0.178 

a. Correlations that are significant at the 0.01 level                                  
b. Correlations that are significant at the 0.05 level                                        

 

weaker relationship with Pb and Zn as they represent more of a byproduct of historical 

mining in the Galena River Watershed (Heyl et al., 1959).  For example, Fe also has a 

strong positive relationship with both Pb and Zn with the strongest relationship in the 

main branch of the Galena River floodplain samples. To a much lesser degree, Mn has a 

positive relationship with Pb and Zn in most channel and floodplain samples.  This 

relationship indicates that variations in Fe and Mn are associated with tailing inputs as 

byproducts of Pb and Zn mining.  Furthermore, Ca concentrations also have a strong 

positive relationship with Pb and Zn concentrations due to high concentrations of Ca in 
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the ore host rock (Adams, 1944).  Overall, all metal concentrations tend to be connected 

due to source contaminates from tailings input. 

On the other hand, most metals have a negative or weak relationship with OM 

content within the watershed.  Naturally, this relationship would be expected stronger as 

OM will transport metals by sorption (Horowitz, 1991; Pavlowsky, 1995). Organic matter 

relationships are strongest within floodplain samples of both the tributaries and the main 

branch suggesting OM may be binding Pb and Zn within floodplain soils at a greater rate 

than within the channel.  Fine-sediment particles containing OM with Pb and Zn may be 

deposited during overbank floods on floodplains more than in higher energy channel 

environments.  Additionally, background and tailing samples also have much lower 

relationships between all metals and OM content.  The reasons for these may be due to 

the variability of tailing pile samples in general as well as lower metal concentrations in 

background streams overall that would not show strong relationships to OM given 

detection limit errors and mixed sediment sources.  

 

Zn and Pb change trends between 1992 and 2017 

 Temporal changes in sediment contamination for repeated sampling sites were 

evaluated in two ways.  First, average metal concentrations were calculated for all sites 

within a tributary and compared at the segment-scale (Figs. 24 and 25). Second, metal 

concentrations from each site were compared by regression analysis between the values 

from the two sampling years (Figs. 26 and 27).  Lead and Zn concentrations in stream 

sediments in 2017 have changed very little since 1992.  Accordingly, Pb and Zn 

concentrations continue to remain very high within the watershed.   
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Fig. 24. (A) Zn concentration comparison between 1992 and 2017 (n). (B) Zn 

concentration difference (n). Note: Vinegar Hill value is -13,470 ppm. (C) Zn 

concentration percent difference. Between red lines represents no change. Values >30% 

change are significant. 

A 

C 

B 
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Fig. 25. (A) Pb concentration comparison between 1992 and 2017 (n). (B) Pb 

concentration difference (n). (C) Pb concertation percent difference. Between red lines 

represents no change. Values >30% change are significant. 

A 

C 

B 
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Fig. 26. Relationship between 1992-2017 Channel Zn. 

 

Fig. 27. Relationship between 1992-2017 Channel Pb. 
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Segment-Scale Averages. For Zn concentrations, the Middle Galena, Lower 

Galena, Shullsburg, Ellis, Diggings, Coon, Bull, and Vinegar Hill all exhibited an 

average decrease over the past 25 years (Figs. 22 and 23).  Only Ellis Branch had a 

decrease for Pb concentrations (-20%).  Segments with an increase or decrease greater 

than 30% are higher than the average range of duplicate error showing some level of 

significance while values below 10% will show statistically no change.  For Zn 

concentrations most segments did not see much change (Table 14).  Only the Upper 

Galena and Pats Creek saw a >30% increase while Coon Branch and Vinegar Hill saw a 

>30% decrease.  Several sites for Pb had a >30% increase including Upper Galena, 

Middle Galena, Pats Creek, Blacks Creek, Kelsey Branch, Scrabble Branch, Vinegar Hill  

 

Table 14 

Average Zn percent change by stream branch. 

Stream 

Segment 

Decreasea No Changea Increasea 

>30% 10%-30% ±10% 10%-30% >30% 

Upper Galenab     XX 

Middle Galena   XX   

Lower Galena   XX   

Patsb     XX 

Madden    X  

Blacks   XX   

Shullsburg  XX    

Ellis  XX    

Diggings  XX    

Kelsey    X  

Coonb XX     

Bull   XX   

Scrabble   XX   

Vinegar Hillb XX     

East Fork     X 

Hughlett    XX  

Watershed   XX       

  a. X = less than PEC but above TEC and XX = above PEC (MacDonald et al., 2000) 

  b. Significant Change 
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Branch, East Fork, and Hughlett Branch (Table 15).  However, only a portion of these 

sites are above the PEC threshold making their change far more significant.  There were 

no >30% Pb decreases.   

 The magnitude of the percent change in metal concentrations can be influenced by 

the level of contamination in the segment.  Segments with low contamination will have a 

smaller absolute change, but potentially a higher relative percent change such as Upper 

Galena, Madden Branch, and East Fork.  For this reason, branches with the greatest 

absolute change would be the decrease at Vinegar Hill for Zn concentrations and the 

increase at Scrabble Branch for Pb concentrations.  However, the large decrease at 

Vinegar Hill Branch may be due to the fact that the 1992 average for the tributary is 

 

Table 15 

Average Pb percent change by stream branch. 

Stream Segment 

Decreasea No Changea Increasea 

>30% 10%-30% ±10% 10%-30% >30% 

Upper Galena     X 

Middle Galenab     XX 

Lower Galena    XX  

Pats     X 

Madden    X  

Blacks     X 

Shullsburg   XX   

Ellis  XX    

Diggings    XX  

Kelsey     X 

Coon    XX  

Bull    XX  

Scrabbleb     XX 

Vinegar Hillb     XX 

East Fork     X 

Hughlettb     XX 

Watershedb         XX 

  a. X = less than PEC but above TEC and XX = above PEC (MacDonald et al., 2000) 

  b. Significant Change 
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extremely high compared to other branch averages.  While it is possible that a sample 

was collected in very close proximity to a tailing pile input in the early 1990s, Pb 

concentrations were rather low, possibly because Pb production had much declined in the 

early 1900s when the mine was most active in producing Zn ore (Heyl et al., 1959; Knox 

1987).  Additionally, the decrease of Zn contamination may be the result of a continued 

EPA Superfund site at Little Giant and Inspiration on Vinegar Hill Branch (EPA, 2018a; 

EPA, 2018b). 

 Site-level Regression Trends. Compared to differences between segment metals 

trends, comparisons of changes in metal concentrations by site over the past 25 years 

indicate to a further degree the relatively small differences overall between the two study 

periods (Figs. 26 and 27).  Almost half of all the recent channel sediment sample sites 

(42%) indicated a decrease in Zn concentrations over the past 25 years while Pb samples 

indicated a smaller average site decrease (31%) over the past 25 years.  Both Pb and Zn 

concentrations have a high R2 value and fit the regression model well.  Comparison to the 

1:1 line shows that samples between 1992 and 2017 have not changed much over the past 

25 years.  Furthermore, the regression model shows a slight increasing trend for less 

contaminated sites and a slight decreasing trend for the most contaminated sites. The 

decrease in high concentrations is likely due to a more direct response of sediment metal 

contamination to mine inactivity.  The slight increase in less contaminated streams 

possibly reflect the use of tailings for fill and road pavements that may have subtly added 

metals to local streams.   

Factors affecting the reduction or increase of sediment contamination within 

tributaries in the Galena Watershed over the past 25 years may include the: (1) Rate mine 
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production and waste inputs into the stream system (Heyl et al. 1959), (2) degree of 

contaminated sediment stored and released by erosion from channel and floodplain 

deposits (Knox, 1987; Pavlowsky, 1996), (3) dilution rate of contaminated sediment 

being dispersed downstream (Marcus, 1987; Pavlowsky, 1996), (4) variable geomorphic 

and sediment transport process that influence sediment and channel conditions overall 

(Knox, 1989; Coulthard and Macklin, 2003), (5) type and distribution of mining land 

remediation, and (6) systematic effects of sampling and analytical errors on metal 

concentration values.  In summary, Pb and Zn concentrations have changed very little 

since 1992 if the effects of sampling variability and differences in analytical procedures 

on geochemical results are considered (Table 14 and 15). 

 Paired T-Test. To more objectively test the changes in sediment geochemistry 

over the past 25 years a paired t-test using SPSS was used to evaluate differences 

between the two sampling periods at a 0.05 significance level (Tables 16 and 17) 

(Simmons, 2008; IBM, 2016).  On average there has been very little significant change 

over the past 25 years with nearly all samples showing insignificant results.  While 

changes in metal concentrations greater than and less than ±10% occurred, relatively low 

sample sizes and high sediment variability reduced the number of significant differences.  

For Pb, the Middle Galena, Kelsey Branch, and East Fork indicated a small significant 

increase over the past 25 years.  For Zn, no stream indicated significant change. 

However, all samples together show a weak significant decrease overall within the 

watershed for Zn samples.  Overall, neither Pb nor Zn concentrations within any branch 

showed significant decrease over the past 25 years.  It is possible that due to a large-scale 

remediation project that the Vinegar Hill Tributary has made a surprisingly large  
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Table 16 
Paired T-test for Pb by channel average (significance level=.05). 

Reach n  t df 
Sig (2-

tailed) 

Sig. 

Difference 

Upper Galena River 13 -0.3 12 0.77 No 

Middle Galena River 12 -4.056 11 0.002 Yes 

Lower Galena River 6 -0.806 5 0.457 No 

Pats Creek 4 -1.85 3 0.161 No 

Madden Branch 10 0.493 9 0.634 No 

Shullsburg Branch 19 0.164 18 0.871 No 

Ellis Branch 8 -0.028 7 0.978 No 

Diggings Branch 11 -0.387 10 0.707 No 

Kelsey Branch 3 -9.743 2 0.01 Yes 

Coon Branch 4 -2.002 3 0.139 No 

Bull Branch 4 0.748 3 0.509 No 

Scrabble Branch 3 -1.26 2 0.335 No 

Vinegar Hill 6 -0.889 5 0.415 No 

East Fork 5 -2.823 4 0.048 Yes 

Hughlett Branch 4 -1.971 3 0.143 No 

Watershed Total 124 0.624 123 0.534 No 

 

Table 17 

Paired T-test for Zn by channel average (significance level=.05). 

Reach n t df 
Sig (2-

tailed) 

Sig. 

Difference 

Upper Galena River 13 -1.933 12 0.077 No 

Middle Galena River 12 0.315 11 0.759 No 

Lower Galena River 6 -0.038 5 0.971 No 

Pats Creek 4 -1.147 3 0.335 No 

Madden Branch 10 -0.884 9 0.4 No 

Shullsburg Branch 19 0.868 18 0.397 No 

Ellis Branch 8 -1.153 7 0.287 No 

Diggings Branch 11 1.725 10 0.115 No 

Kelsey Branch 3 -3.954 2 0.058 No 

Coon Branch 4 0.61 3 0.585 No 

Bull Branch 4 1.507 3 0.229 No 

Scrabble Branch 3 -0.001 2 0.999 No 

Vinegar Hill 6 1.184 5 0.289 No 

East Fork 5 -1.733 4 0.158 No 

Hughlett Branch 4 -0.813 3 0.476 No 

Watershed Total 123 1.99 123 0.049 Yes 
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 recovery for Zn concentrations. However, excluding the high outlier from the Pavlowsky 

(1995) study, the change is less. 

 

Remediation Influence on Stream Contamination 

 The analysis of mine pit and waste locations from SSURGO soil maps and 

disturbed mine lands and tailing piles on aerial imagery showed an overall decrease in 

mine waste area over time (Appendix M) (Heyl et al., 1959).  Mine wastes were not 

observed (2015) at 47% of original mine sites documented by Heyl et al. (1959) (Fig. 28; 

Table 18).  However, the majority of mine locations that have been removed were of the 

lowest production rate (about 5,000 Mg).  In fact, all abandoned mines classified as 

having the highest production in the District (about 2,000,000 Mg) still have relatively 

large areas of tailings and other wastes potentially available for transport to local streams.  

As a result, the remaining mines within the watershed represent the largest historical and 

contemporary sources of tailing materials, seepage, and eroded contaminated sediment to 

the stream system.  Moreover, many of the smaller mines may not have initially produced 

waste or released contaminated sediment due to lack of production and/or potential for 

significant land disturbance (Heyl et al., 1959).  Therefore, the supply of mine waste 

inputs to streams may not have reduced greatly since the last mine closed. Following, 

more effort needs to be placed on remediation of the largest mines and tailing disposal 

sites in the watershed to reduce the risk on ongoing contamination from abandoned 

mining areas. 

Remediated Segments. In the stream segments where mine site remediation 

occurred, sediment-Pb concentrations increased and Zn concentrations generally  
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Fig. 28. Galena River Watershed Mines with Remaining Waste in 2015. Production 

values according to Heyl et al. (1959). 
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Table 18 

Percent of remaining historical mines by production. 

Segment 
Total 

Minesa 

% of remaining historical mines by Production (Mg)a 

<100,000 100,000-400,000 >400,000 

Galena 50 32 45 40 

Pats 3 100 100 - 

Madden 0 - - - 

Blacks 3 50 0 - 

Shullsburg 44 45 73 100 

Ellis 12 60 100 100 

Diggings 10 0 83 100 

Kelsey 3 100 0 - 

Coon 17 42 0 75 

Bull 8 50 100 100 

Scrabble 13 14 67 33 

Vinegar Hill 4 - 100 - 

East Fork 0 - - - 

Hughlett 4 0 0 - 

Total 171 20 57 59 

a. production values and mines obtained from Heyl et al., 1959. 

 

decreased between 1992 and 2017 (Table 19 and 20).  Of the five stream segments with 

remediated mines, Vinegar Hill Branch had the highest decrease of sediment-Zn (-74% 

change) and a small Galena Tributary with Graham-Snyder and Graham-Ginte Mines had 

the highest sediment-Pb increase (92% change) (Table 19).  Stream segments with the 

fewest mine sites remaining from the Heyl et al. (1959) inventory did not show consistent 

decreases in metal contamination since 1992. However, it is not clear when the mines 

were cleaned up or if they ever were associated with tailings inputs.  Nevertheless, 

Hughlett, Blacks, Kelsey, and Scrabble Branches indicated very little change in sediment-

Zn concentrations and slight increases for Pb concentrations over the past 25 years (Figs. 

24 and 25; Table 18).  Ultimately, even with nearly half of the historical mines and  
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tailings piles now gone today, there are still very high concentrations of Zn and Pb in 

stream sediments with historical mine sites.    

Remediated Sites. Of the six remediated mine sites, only about half produced 

decreases in metal concentrations at sampling sites directly downstream of the site 

location (Table 20) (Brown et al., 2009).  The largest decrease decreases to sediment-Zn 

was downstream of Inspiration/Little Giant Mines in Vinegar Hill Branch (-95% change)  

and the largest increase was below the Eagle Picher mine in Shullsburg Branch (1,249% 

increase).  The only decrease to sediment-Pb was below Cuba City (-5% change) and the 

largest increase was below the Inspiration/Little Giant Mines (809% change).  The recent 

and ongoing remediation work at Eagle Picher Mine may be causing increased erosion 

rates as material is disturbed while being removed.  For this reason, ongoing remediation 

projects may not see expected decreases in Pb and Zn concentrations until after 

construction with time for recovery.   

 Even through sediment-Zn concentration decreased below some mine sites over 

the past 25 years, there are many other mines that have had equal if not greater decreases 

that were not considered remediated.  This result suggests that even though there is a 

decrease in sediment-Zn concentrations downstream of some remediated mines, it is just 

as possible that these decreases are caused by random sediment processes, overall mining 

inactivity, and movement of wastes into alluvial storage independent of remediation 

activities (Knox, 1987).  On the other hand, the effects of remediation of a mine source 

may not be apparent until the effects of dilution and transport by uncontaminated 

sediment lowers channel sediment metal concentrations. Nevertheless, removal and 
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stabilization of historical tailing piles is important to long-term improvement in sediment 

quality and more monitoring is needed to accurately evaluate effectiveness. 

 

Present-Day Contamination Problems 

 Even with past and on-going remediation efforts and nearly half the mines 

cleaned-up, the concentrations of Pb and Zn within the Galena River Watershed have 

remained relatively high over the past 25 years with very little change.  Therefore, these 

metals are probably being maintained by other sources within the watershed including 

other abandoned tailing piles, remobilization of contaminated channel bar and bed 

deposits, and secondary storage within the floodplain and banks as have been previously 

recognized in the Galena Watershed and other streams in the district (Knox, 1987; 

Pavlowsky, 1996; Lecce and Pavlowsky, 1997).   

Present day concentrations in floodplain deposits are similar to channel sediments 

showing that present day floods are storing metals within the banks of the river for future 

remobilization.  To better understand the long-term environmental risk due to the release 

of metals from floodplain storage back to the stream, a study of the spatial patterns of 

bank erosion rates and associated sediment inputs and contaminant loads for the Galena 

River and its heavily mined tributaries should be completed.  Historically, sediment yield 

to the Galena River and its tributaries has been decreasing every few decades due to 

modern conservation practices (Knox, 1987; Trimble, 1999).  However, the role of bank 

erosion in maintaining high metal concentrations in channel sediments has not been 

evaluated.  
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 To date, the influence of remediation efforts at abandoned mine sites on the 

reduction of channel sediment contamination has been limited and long-term effects are 

unknown.  This study may have identified local improvements in sediment quality below 

remediated sites. However, the sampling design for the present study was focused on the 

repeat sampling of 1992 sites and not assessing the specific effects of remediation 

projects.  In addition, channel disturbance and reworking of tailing piles as part of 

ongoing remediation projects may itself be a source of contaminated sediment to nearby 

streams.  Therefore, additional channel contamination assessments of remediated reaches 

and the long-term monitoring of contaminated streams is needed.  More focused and 

short-interval sampling from above to below remediation sites with a pre-treatment 

control assessment would be beneficial to address our lack of knowledge regarding the 

role that site clean-up may have on improvements in water and sediment quality in the 

Galena watershed. 

Sediment contamination by historical mine sites and ongoing remobilization from 

tailing piles and alluvial sediments still pose a risk to aquatic life including sediment 

dwelling organisms in the Galena River and its tributaries (MacDonald et al., 2000).  The 

recently USEPA-approved TMDL for the Lower Galena River in Illinois did not address 

mining sediment contamination directly, but focused on dissolved Zn impairments (CDM 

Smith, 2018).  In addition, TMDL recommendations included mine site treatments and 

broader-aimed nonpoint sediment control practices to reduce future mine water 

discharges, tailing inputs, and channel sediment contamination.  However, stored 

contaminated sediment in floodplains within the watershed is probably an important 

secondary source of pollution that has not been addressed in long-term watershed 
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management plans for the Galena River.  The results of this thesis and previous studies 

have shown that Galena River Watershed sediments, both recent and stored, are heavily 

contaminated with Pb and Zn more so than surrounding watersheds such as Blue River 

(Lecce and Pavlowsky, 2004).  For this reason alone, the Galena River Watershed should 

continue to be monitored and to better support remediation efforts of mine-waste in the 

future.  More focus on contaminated sediment as a long-term metal source to the Galena 

River Watershed is needed. 
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CHAPTER 5 – CONCLUSION 

 

 Even after more than 40 years of mining inactivity, the Galena River and its 

tributaries remain heavily contaminated with metals from historical Pb and Zn mining.  In 

2017, a total of 415 samples were collected from the Galena River Watershed for this 

study.  Results showed that all tributaries including the main branch of the Galena River 

and some unmined areas contain environmentally toxic concentrations of sediment Pb 

and Zn as well as Cd, and to a lesser degree As (MacDonald et al., 2000).  Since the 

Pavlowsky (1995) study sediments were sampled in 1991-92 there have been several 

remediation projects and clean-up efforts. However, these projects appeared to have only 

local effect on current overall Pb and Zn concentrations.  The key findings of this study 

are as follows:      

1. Concentrations of sediment Pb and Zn are high in 2017. Concentrations of 

2017 channel sediments range from <30 to 1,261 ppm Pb and 130 to 14,223 ppm 

Zn while concentrations for floodplain sediments range from <30 to 1,626 ppm 

Pb and 136 to 16,441 ppm Zn.  The concentrations of Pb (67% of sites) and Zn 

(76% of sites) are on average well above the PEC threshold for toxic effect on 

sediment dwelling organisms (MacDonald et al., 2000).  Additional metal 

concentrations from the aqua-regia analysis show that Cd (46%) and As (8%) 

concentrations are also above PEC threshold.  In addition, relatively high 

concentrations extend from the Galena River mouth out into the Harris Slough of 

the Mississippi River system averaging 221 ppm Pb and 1,906 ppm Zn.  The 

average channel background concentrations not affected by documented mining 

operations for the Madden Branch were 33 ppm Pb (Cv=74%) and 243 ppm Zn 

(Cv=34%). 

 

2. There are strong associations among elements in sediments reflecting the 

strong control of tailing wastes and their mineralogy and sediment 

geochemistry. Channel sediment metals have strong positive relationships with 

other metals such as Pb, Zn, Fe, and Ca.  The greatest relationship in any location 

is a strong positive correlation between Pb and Zn concentrations.  Lead and Zn 

also share a positive relationship at most sites with Fe and Ca.  To a lesser degree, 

Mn has a strong positive correlation with Pb and Zn concentrations only in the 

main channel of the Galena.  Typically, mining metals are associated with OM as 
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a result of binding of dissolved metals downstream.  However, most metals 

appear to have weak relationships with OM suggesting that contamination is 

related more to tailings and fine-sediment particles to a significant degree 

(Pavlowsky, 1995).   

 

3. There is a strong positive relationship between 1992 and 2017 samples. On 

average, there were very few significant decreases in Pb and Zn concentrations by 

branch averages over the past 25 years.  For Pb concentrations, every branch 

increased except the Ellis Branch (20% decrease).  For Zn concentrations there 

were several overall slight decreases in 8 different branches and several overall 

slight increases in 8 different branches.  Of these decreases, three were below 

10%, three were between 10%-30%, and the last two were above 30% decrease.  

Overall, Zn concentrations as a whole indicated a weak significant decrease over 

the past 25 years. This can be further explained by the strong positive relationship 

between 1992 and 2017 Pb and Zn channel concentrations.  This suggests that 

even though there has been some clean-up and 40 years of mining inactivity, 

recovery to background levels is slow and can take centuries. 

 

4. There has been little effect from mine waste remediation. The majority of 

mine sites cleaned-up prior to the Pavlowsky (1995) study were mostly low 

producing mines that created very little waste (Heyl et al., 1959).  Most high-

producing historical mines continue to have large tailing piles effecting local 

streams.  Even in tributaries with the most mine clean-up activities, Pb and Zn 

concentrations have barely changed and in some cases have increased.  The 

majority of documented remediation projects in the past 25 years have seen a 

slight decrease in Zn concentrations in sediment within 3 km of the mine site with 

the highest decrease in Vinegar Hill for Zn at Inspiration and Little Giant.  With 

only Eagle Picher mine showing a large increase, remediation appears to have 

some effect on the reduction of downstream contamination locally.  However, 

similar changes also occurred at some mine sites that have not been remediated.  

It is possible that the small decreases and lack of an overall trend may be due to 

lack of time for recovery of remediated mine sites.  More monitoring is needed to 

evaluate effectiveness of remediation on stream sediment metal concentrations. 

 

5. Continued high Pb and Zn concentrations are likely due to remaining tailing 

piles and contaminated floodplains and banks. Even though mining ceased in 

1979, many tailing piles still remain throughout the watershed with 21% of all 

remaining tailing piles located within 100 m of a stream (Pavlowsky, 1996).  

These tailing piles have extremely high Pb and Zn concentrations and will 

continue to be a source of metals to the watershed.  Additionally, contaminated 

banks and floodplain deposits will continue to be a secondary source to the 

channel during floods, erosion, and reworking (Knox, 1987; Lecce and 

Pavlowsky, 1997).  It is likely that Pb and Zn concentrations will remain high 

well into the future even with continued remediation projects.           
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In conclusion, the Galena River Watershed channel and floodplain samples are 

heavily contaminated with Pb and Zn and there has been little to no decrease over the 

past 25 years in most branches of the watershed.  To date, remediation efforts appear to 

have little or unknown effects on channel sediment concentrations with the largest 

decrease being at an EPA Superfund site.  The results of this analysis show that TMDL 

reports that only focus on dissolved Zn concentrations are severely underestimating the 

scale of metal contamination in Galena River sediments (CDM Smith, 2018). Watershed 

management goals to improve water quality should include sediment as a risk as well as a 

potential future source of pollution released from storage in channel deposits and 

floodplain soils.  
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APPENDICES 

 

 

Appendix A. Photo Log (July 2017) 

 

 

 
Appendix A-1. Remaining tailings at Kennedy Mine, Wisconsin 

 
Appendix A-2. Tailings and waste rock at Federal Mine, Wisconsin 
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Appendix A-3. Tailing pile at Lucky Twelve Mine, Wisconsin 

 

 
Appendix A-4. Tailing pile at Vinegar Hill Mine, Illinois 

 



 

85 

 
Appendix A-5. Example of PSA in the Shullsburg Branch, Wisconsin 

 

 

 
Appendix A-6. Example of PSA in the Shullsburg Branch 
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Appendix A-7. Example of sample site on bank/floodplain on the Middle Galena River, 

Wisconsin 

 

 

 
Appendix A-8. Geomorphological survey example, Shullsburg Branch, Wisconsin 
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Appendix A-9. Sediment sampling in the Lower Galena River, below Galena, IL 

 

 
 

Appendix A-10. Example of acid mine drainage near previous roaster pile site 
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Appendix C. Channel Characteristics 

 

Appendix C-1. Channel Characteristics (m) 

 

Site 
Bed 

Width  

Bankfull 

width 

Water 

Depth 

Bankfull 

depth 

Bar 

Height  

Bench 

Height 

Bank Height 

Left Right 

2 1.5 3.3 0.3 0.7   0.6 0.5 

4 1.9 3 0.3 1   1 0.7 

6 3.1 6.1 0.25 0.75   0.25 0.7 

7 2.7 6 0.25 0.6    1.75 

8 5.5 8.8 0.28 1.4   0.25 1.3 

9 5.5 8.6 0.4 0.7   0.3 1.8 

11 6.8 10.5 0.45 1.9   2.2 0.6 

12 12.6 16 0.76 3 1.56 1.3 3  

14 7.9 14 0.85 2.8 0.1 1.85 2.8 2.6 

16 13.5 21 0.62 2.3  0.7   

17 12 21 0.6 1 0.7 1.4   

19 14.6 16.6 0.75 1.8   1.15 1.3 

20 20.4 22.7 0.48 1.7   1.9 1.3 

21 12.8 15.8 0.6 1.84    0.35 

22 14.7 18.1 0.8 1.5   2.75 0.5 

26 15 25 0.9 3   1.2 1.2 

27 20 31 0.6 3.5   1 2 

29 17.5 30 0.9 4.2   1.7 1.6 

30 13 28 0.5 2     

31 11.3 23.7 1.3 3.3   1.6 1.9 

33 1.7 3.3 0.11 0.8 0.2  0.8 0.8 

34 12.8 21.3 1 2   2 2 

37         

39 17 23 0.71 3.2     

40 23.5 32.5 0.5 2.7     

42    4.2    2.7 

43    2.5   2.5  

46   2.3      

47   4.3      

49 5 7.6 0.2 0.5   0.3 0.3 

50 2.5 4.4 0.3 0.5   1.4 0.4 

51 3.1 4.7 0.3 0.4   0.3 0.3 

52 4 6 0.25 1.2   0.75 0.55 

53 0.6 1.6 0.005 1.6 0.1  1.2  

54 2 7.5 0.22 1.2 0.4   1.2 1.2 
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Appendix C-1 continued. Channel Characteristics (m)  

 

Site 
Bed 

Width  

Bankfull 

width 

Water 

Depth 

Bankfull 

depth 

Bar 

Height  

Bench 

Height 

Bank Height 

Left Right 

55 1.3 1.9 0.12 0.7     

56 5.5 6 0 1     

57 2.2 5 0.35 1     

58 2.7 3.6 0.4 1   0.75 1 

60 3.3 4.2 0.4 0.75   0.7 0.6 

61 4.8 11.2 0.5 1.3   0.8 0.6 

62 0.8 3.6 0.15 1.2   1.2 1.35 

63 7.7 9.5 0.31 1.7   1.9 1.7 

65 1.3 2.5 0.6 1.1   1.1 1.3 

66 4.47 5.1 0.18 0.6   1.15 0.4 

67 4.1 5.8 0.45 0.9   0.8 0.9 

68 1.95 2.2 0.43 0.55   0.55 0.55 

69 2.5 6 0.45 0.65   2 0.75 

70 6.1 10.5 0.45 0.65   0.6 0.55 

71 2.8 8.5 0.28 0.9   0.35 0.4 

72 4.5 8.2 0.22 1.1   1.1 0.6 

74 5.4 9.3 0.38 2 1 1 2 1.38 

75 2.1 8 0.3 1.6 0.3 0.5   

76 1.1 6 0.19 1.1   0.8 0.7 

77 1.7 2 0.28 1.3   0.7 1.1 

78 6.1 14.1 0.64 1.8   1.2 2 

79 2.3 14.3 0.43 1.4   1.2 1.4 

80 3.2 10.5 0.33 1.5     

81 9.2 10 0.25 1.1 0.4 1.1   

82 2.2 8 0.3 0.6 0.6 0.4   

83 4.3 9.1 0.2 2 0.3 1.5   

84 1 1 0.05 0.5   0.3 0.3 

85 1.55 3.7 0 1.6   0.85 0.7 

86 3.15 9 0.24 0.5 0.3 0.9   

87 4.1 7.1 0.29 2 0.3 1   

88 1.65 2.9 0.32 0.7 0.4 0.7   

89 1.5 9.4 0.08 0.4 0.1    

90 14.7 14.7 0.5 1.5 0.6 1.5   

91 1.4 5.3 0.24 0.7 0.4 0.8   

92 1.2 7.5 0.2 0.6 0.3 1     
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Appendix C-1 continued. Channel Characteristics (m) 

 

Site 
Bed 

Width  

Bankfull 

width 

Water 

Depth 

Bankfull 

depth 

Bar 

Height  

Bench 

Height 

Bank Height 

Left Right 

93 5.5 16.2 0.27      

94 6.2 19 0.45 1.2 0.7 1.2   

95  1       

96 1 1.5 0.2 0.4     

98 1.7 3 0.4 0.8     

102 2.6 4 0.2 0.7     

103 1.3 2.7 0.2 0.95   0.2 0.5 

104 1.25 2.7 0.2 0.75   0.4 0.35 

105 1.15 5 0.35 1.15   1.15 1.15 

106 1.4 4.4 0.18 1   0.6 1 

108 0.8 2 0.2 0.65     

109 2.3 2.7 0.23 0.7   0.7 0.6 

110 2 4 0.21 1.6 0.8  0.9 1.6 

111 1 1 0.1 0.8 0.1    

112  0.5 0      

113 3 3.8 0.28 1.8   1.8 0.8 

114 2.2 5.3 0.14 1.1 0.14  1.1 1.1 

115 2.7 4.8 0.23 1.2 0.23  1.2 1.2 

116 3 7 0.28 1 0.28  1 1 

117 2.5 4 0.3 1.2 0.4  1.2 1.2 

118 2.5 5 0.35 1.2 0.4  1 1.2 

119 2.3 7.7 0.15 1.3   1.7 0.7 

121 4        

122 6.5 12 0.2 2   0.6 1.4 

123 1.5 35 0.21 1.4 0.5    

124 2.4 5 0.38 1.85 0.45    

127 5 5.5      0.7 

128 2 6 0.2 2.6   2 2.5 

131 3.8 5 0.22 0.6     

132 0.5 1.5 0.15 1     

133 2.9 3.1 0.22 1.1     

134 4.6 8.3 0.2 1.2     

135 0.5        

136 2.1 2.7 0.16 0.7 0.5    

137 3 5.5 0.21 1.2 0.4       
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Appendix C-1 continued. Channel Characteristics (m) 

 

Site 
Bed 

Width  

Bankfull 

width 

Water 

Depth 

Bankfull 

depth 

Bar 

Height  

Bench 

Height 

Bank Height 

Left Right 

138 2.4 6 0.2 1 0.3  1 0.8 

139 3.6 7.5 0.25 1.6 0.35  1 1.6 

140 2.9 6 0.42 2.5 0.5  2.5 1.5 

142  1 0 0.3     

143 15.3 22.3 0.65 1.8 1  1.8 1.8 

144 2.6 7 0.31 0.5 0.5    

145 1.35 7.35 0.13 1   0.3 0.4 

146 3.4 7.4 0.41 1.7   1.2 1.4 

147 2.8 13.8 0.3 1.6   0.6 0.4 

148 7.5 150 0.61 1.8   1 1.4 

149 9.2 18 0.71 2     

150 2.4 3.7 0.1 0.4     

151 1.4 2 0.18 0.3   0.25 0.25 

152 3 5.25 0.25 1.25   0.6 0.6 

153 5.8 9.9 0.6 2.4     1.6 1.6 

 

 

Appendix C-2. Bank Stability 

 

Site 
Left (%) Right (%) 

Stable Steep Raw Artificial  Stable Steep Raw Artificial 

2 80 15 5 0 100 0 0 0 

4 100 0 0 0 100 0 0 0 

6 100 0 0 0 0 100 15 0 

7 100 0 0 0 0 90 15 0 

8 100 0 5 0 50 50 5 0 

9 100 0 0 0 100 0 80 0 

11 100 0 0 0 100 0 0 0 

12 5 95 20 0 95 5 5 0 

14 5 95 80 0 100 0 0 0 

16 100 0 0 10 30 70 50 10 

17 95 5 0 0 100 0 0 0 

19 5 95 0 0 50 50 0 0 

20 100 0 0 0 40 60 10 0 

21 85 15 15 0 66 33 20 0 
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Appendix C-2 continued. Bank Stability 

 

Site 
Left (%) Right (%) 

Stable Steep Raw Artificial Stable Steep Raw Artificial 

22 100 0 100 0 100 0 0 0 

26 100 0 0 0 100 0 0 0 

27 20 0 80 0 0 0 100 0 

29 90 0 10 0 0 100 0 0 

30 95 0 5 0 100 0 0 0 

31 75 20 5 0 100 0 0 0 

33 70 30 10 0 70 30 10 0 

34 2 98 5 0 0 100 30 0 

37 100 0 0 0 70 0 30 0 

39 90 0 10 0 100 0 0 0 

40 0 50 50 0 80 20 0 0 

42 100 0 100 30 100 0 100 30 

43 100 0 100 10 100 0 100 10 

49 100 0 0 0 100 0 0 0 

50 0 100 20 0 100 0 0 0 

51 100 0 0 0 100 0 0 0 

52 40 30 30 0 25 25 50 0 

53 10 90 10 0 50 50 0 0 

54 100 0 10 0 100 0 5 0 

55 0 50 50 0 0 0 100 0 

56 0 80 20 0 0 80 20 0 

57 100 0 0 100 100 0 0 0 

58 100 0 15 0 50 50 10 0 

60 100 0 0 0 100 0 0 0 

61 100 0 0 0 0 100 0 0 

62 0 34 66 0 0 0 100 0 

63 0 90 10 0 0 70 30 0 

65 80 20 0 0 0 95 5 0 

66 0 95 5 0 95 0 5 0 

67 90 0 10 0 90 0 10 0 

68 25 0 75 0 20 0 75 0 

69 0 100 0 0 100 0 0 0 

70 100 0 0 0 100 0 0 0 

71 100 0 0 0 0 90 10 0 

72 0 0 100 0 100 0 0 0 
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Appendix C-2 continued. Bank Stability 

 

Site 
Left (%) Right (%) 

Stable Steep Raw Artificial Stable Steep Raw Artificial 

74 20 80 60 0 0 100 0 0 

75 10 80 10 0 100 0 0 0 

76 80 0 20 0 80 0 20 0 

77 80 0 20 0 70 0 30 0 

78 0 0 100 0 0 80 20 0 

79 90 0 10 0 80 0 20 0 

80 0 0 100 0 0 0 100 0 

81 80 0 10 10 85 0 10 5 

82 0 90 10 0 100 0 0 0 

83 0 80 0 20 100 0 0 0 

84 100 0 0 0 100 0 0 0 

85 0 0 100 0 0 0 100 0 

86 25 0 75 0 95 0 5 0 

87 80 0 10 10 0 90 0 10 

88 0 10 90 0 100 0 0 0 

89 80 0 20 0 95 0 0 5 

90 0 0 100 0 0 10 90 0 

91 100 0 0 0 100 0 0 0 

92 78 0 20 2 50 0 50 0 

93 90 10 0 0 10 80 0 10 

94 55 15 30 0 90 10 0 0 

96 0 90 0 10 0 100 0 0 

98 10 80 10 0 0 100 0 0 

102 0 90 10 0 100 0 0 0 

103 100 0 10 0 100 0 0 0 

105 50 50 0 0 100 0 0 0 

106 10 90 10 0 100 0 15 0 

108 100 0 0 0 80 20 0 0 

109 90 10 60 0 90 10 70 0 

110 100 0 2 0 95 5 2 0 

111 90 10 10 0 100 0 0 0 

113 50 50 10 0 100 0 0 0 

114 100 0 3 1 100 0 2 1 

115 100 0 0 0 80 20 30 0 

116 100 0 0 0 100 0 0 0 

 

 

 

 



 

100 

Appendix C-2 continued. Bank Stability 

 

Site 
Left (%) Right (%) 

Stable Steep Raw Artificial Stable Steep Raw Artificial 

118 90 10 0 0 10 90 50 0 

119 0 0 100 0 0 0 100 0 

122 100 0 0 0 100 0 0 0 

123 90 10 0 0 100 0 0 0 

124 80 20 2 0 90 10 2 0 

127 33 66 30 0 0 100 0 30 

128 100 0 0 0 0 0 100 0 

131 95 0 5 0 80 0 20 0 

132 10 80 10 0 0 95 5 0 

133 20 30 50 0 5 15 80 0 

134 80 0 20 0 0 0 100 0 

135 100 0 0 0 100 0 0 0 

136 10 80 10 0 100 0 0 0 

137 100 0 0 0 0 95 5 0 

138 100 0 0 0 80 20 5 0 

139 100 0 0 5 60 40 20 5 

140 20 80 70 0 90 10 10 0 

142 100 0 0 0 100 0 0 0 

143 70 30 20 0 80 20 10 0 

144 100 0 0 0 100 0 0 0 

145 100 0 0 0 100 0 0 0 

146 0 0 100 0 0 0 100 0 

147 100 0 0 0 100 0 0 0 

148 40 0 60 0 60 0 40 0 

149 80 0 20 0 0 95 5 0 

150 0 50 50 0 90 0 10 0 

151 0 0 0 10 0 0 0 10 

152 20 80 0 0 20 80 5 0 

153 100 0 10 30 100 0 100 30 
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Appendix C-3. Bank Condition (0=not present, 1=present, 2=common) 

 

Site 

Left Right 

Tree 

Roots 

Fallen 

Tree 
Slumps 

Toe 

Erosion 

Tree 

Roots 

Fallen 

Tree 
Slumps 

Toe 

Erosion 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1 1 

8 0 0 0 0 0 0 1 0 

9 0 0 0 0 0 0 1 1 

11 0 0 0 0 0 0 0 0 

12 2 0 1 1 0 0 1 1 

14 0 0 2 2 0 0 1 0 

16 0 0 0 0 0 0 2 1 

17 0 0 2 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 

21 0 0 0 0 1 0 0 0 

22 0 0 0 1 0 0 0 0 

26 0 0 0 0 0 0 0 0 

27 0 0 0 0 2 0 0 0 

29 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 

33 0 0 2 2 0 0 2 1 

34 0 0 1 1 0 0 1 1 

37 0 0 0 0 0 1 0 0 

39 1 0 0 0 0 0 0 0 

40 0 1 1 1 0 1 0 0 

42 1 0 0 0 1 0 0 0 

43 1 0 0 0 1 0 0 0 

46 0 0 0 0 0 0 0 0 

47 0 0 0 0 0 0 0 0 

49 0 0 0 0 0 0 0 0 

50 0 0 1 1 0 0 0 0 

51 0 0 0 0 0 0 0 0 

52 2 2 2 0 2 2 2 0 

53 0 0 2 1 0 0 1 1 
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Appendix C-3 continued. Bank Condition (0=not present, 1=present, 2=common) 

 

Site 

Left Right 

Tree 

Roots 

Fallen 

Tree 
Slumps 

Toe 

Erosion 

Tree 

Roots 

Fallen 

Tree 
Slumps 

Toe 

Erosion 

54 0 0 0 1 0 0 0 0 

55 1 0 1 0 1 0 0 0 

56 1 1 0 0 0 0 0 0 

57 0  0 0 0  0 0 

58 1 0 0 0 1 0 0 1 

60 0 0 0 0 0 0 0 0 

61 0 0 1 0 0 0 1 0 

62 0 1 0 0 1 1 0 0 

63 1 1 0 0 1 1 0 0 

65 0 0 0 0 0 0 0 0 

66 1 1 1 0 2 2 0 0 

67 0 0 1 0 0 0 1 0 

68 0 0 0 0 0 0 0 0 

69 0 0 0 0 0 0 0 0 

70 0 0 0 0 0 0 0 0 

71 0 1 1 0 0 0 0 0 

72 0 1 0 0 1 1 0 0 

73 0 0 0 0 0 0 0 0 

74 1 0 2 2 0 0 1 0 

75 0 0 2 1 0 0 0 0 

76 0 0 0 0 0 0 0 0 

77 0 0 0 0 0 0 0 0 

78 0 0 0 0 1 1 0 0 

79 0 0 0 0 0 0 0 0 

80 0 0 0 0 0 0 0 0 

81 0 0 0 1 0 0 0 0 

82 0 0 0 1 0 0 0 0 

83 0 0 0 0 0 0 0 0 

84 0  0 0 0 0 0 0 

85 1 1 0 0 1 1 0 0 

86 0 0 0 0 0 0 0 0 

87 0 0 0 0 0 0 0 0 

88 0 0 1 1 0 0 0 0 

89 0 0 0 0 0 0 0 0 

90 0 0 0 0 0 0 0 0 
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Appendix C-3 continued. Bank Condition (0=not present, 1=present, 2=common 

 

Site 

Left Right 

Tree 

Roots 

Fallen 

Tree 
Slumps 

Toe 

Erosion 

Tree 

Roots 

Fallen 

Tree 
Slumps 

Toe 

Erosion 

91 0 0 0 0 0 0 0 0 

92 0 0 0 1 0 0 1 0 

93 0 0 0 0 0 0 0 0 

94 0 0 1 1 0 0 0 0 

95 0 0 0 0 0 0 0 0 

96 0 0 0 0 0 0 0 0 

98 0 0 0 1 0 0 0 0 

102 0 0 0 0 0 0 0 0 

103 0 0 0 1 0 0 0 0 

104 0 0 0 0 0 0 0 0 

105 0 0 0 0 0 0 0 0 

106 0 0 1 0 0 0 0 0 

108 0 0 0 0 0 0 0 0 

109 0 0 2 2 0 0 0 1 

110 0 0 0 0 0 0 1 0 

111 0 0 0 1 0 0 0 1 

112 0 0 0 0 0 0 0 0 

113 2 0 2 1 0 0 0 1 

114 0 0 2 1 0 1 0 1 

115 0 0 2 0 0 0 2 1 

116 0 0 1 0 0 0 2 0 

117 0 0 2 0 0 0 2 0 

118 0 0 1 0 0 0 1 2 

119 1 2 1 0 1 2 0 0 

121 0 0 0 0 0 0 0 0 

122 0 0 0 0 0 0 0 0 

123 0 0 1 1 0 0 0 0 

124 0 0 2 1 0 0 1 1 

127 0 0 0 0 0 0 0 0 

128 0 0 0 0 0 0 2 0 

131 0 0 1 0 0 0 1 0 

132 1 1 0 1 0 1 0 1 

133 0 0 1 2 1 0 1 1 

134 0 1 1 0 1 1 0 1 

135 0 0 0 0 0 0 0 0 
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Appendix C-3 continued. Bank Condition (0=not present, 1=present, 2=common) 

 

Site 

Left Right 

Tree 

Roots 

Fallen 

Tree 
Slumps 

Toe 

Erosion 

Tree 

Roots 

Fallen 

Tree 
Slumps 

Toe 

Erosion 

136 0 0 0 0 0 0 0 0 

137 0 0 0 0 1 0 1 0 

138 0 0 2 0 0 0 2 0 

139 0 0 0 1 0 0 1 2 

140 0 0 2 1 0 0 2 1 

141 0 0 0 0 0 0 0 0 

142 0 0 0 0 0 0 0 0 

143 2 2 2 1 1 1 1 1 

144 0 0 0 0 0 0 0 0 

145 0 0 0 0 0 0 0 0 

146 0 0 0 0 2 1 0 0 

147 0 0 0 0 0 0 0 0 

148 0 0 0 0 0 0 0 0 

149 1 0 1 0 0 0 0 1 

150 0 1 0 1 0 0 0 1 

151 0 0 0 1 0 0 0 1 

152 1 0 0 0 0 1 0 0 

153 1 0 0 2 1 0 0 0 
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Appendix L. Aqua-regia results (ppm) 

 

Site Type Ag Al(%) As B Ba Be Bi Ca Cd Co 

2 Channel <0.2 1.01 7 <10 160 0.5 <2 32,500 0.6 7 

2 Floodplain <0.2 1.06 10 <10 160 0.6 <2 35,800 <0.5 11 

9 Channel <0.2 1.14 6 <10 160 0.5 2 11,600 0.8 8 

9 Floodplain <0.2 0.93 4 <10 140 0.5 <2 37,400 0.9 8 

19 Channel 0.2 1.02 7 <10 170 0.5 <2 65,300 2.3 8 

19 Floodplain <0.2 0.72 7 <10 150 <0.5 2 64,300 2.6 7 

33 Channel 0.3 0.5 18 <10 90 <0.5 2 136,000 16.4 9 

33 Floodplain 0.6 0.37 21 <10 70 <0.5 <2 128,000 46.5 10 

40 Channel 0.2 0.76 10 <10 200 <0.5 2 93,000 6.8 10 

40 Floodplain <0.2 0.61 11 <10 170 <0.5 2 120,000 6.5 9 

60 Channel <0.2 1.34 6 <10 150 0.7 <2 12,400 <0.5 8 

60 Floodplain <0.2 1.09 5 <10 130 0.5 <2 24,200 <0.5 8 

69 Channel <0.2 1.02 8 <10 150 0.5 <2 59,200 0.8 11 

69 Floodplain <0.2 0.94 5 <10 140 0.5 2 33,800 0.8 7 

94 Channel 0.2 0.86 11 <10 490 0.5 <2 52,700 6.2 11 

94 Floodplain 0.2 0.59 12 <10 590 <0.5 2 99,000 6.9 9 

105 Channel 0.4 0.25 23 <10 190 <0.5 3 162,000 14.6 7 

105 Floodplain 0.5 0.43 25 <10 350 <0.5 <2 109,000 16.4 10 

115 Channel 0.5 0.51 26 <10 70 <0.5 2 123,000 23.6 13 

115 Floodplain 0.6 0.43 36 <10 80 <0.5 <2 110,000 27.2 18 

134 Channel 1.5 0.22 62 <10 70 <0.5 <2 166,000 42.1 27 

134 Floodplain 0.6 0.57 35 <10 90 <0.5 <2 96,000 19.3 28 

146 Channel <0.2 0.98 12 10 370 0.5 <2 56,500 0.6 10 

146 Floodplain <0.2 0.96 12 10 230 0.5 <2 32,900 0.6 9 

151 Channel <0.2 0.65 9 <10 90 <0.5 2 69,100 1 7 

151 Floodplain <0.2 0.55 7 <10 70 <0.5 <2 73,000 1.1 6 

5 Bank <0.2 0.69 8 <10 140 <0.5 <2 29,300 2.5 7 

5 Channel 0.2 0.46 6 <10 110 <0.5 <2 127,000 4.8 6 

8 Bank 0.2 1.23 11 10 180 0.6 <2 18,300 3 10 

8 Channel <0.2 0.87 9 <10 170 <0.5 2 63,200 6.2 10 

136 Tailings 1.3 0.17 108 10 10 <0.5 2 142,000 26.4 92 

104 Tailings 0.5 0.09 48 <10 30 <0.5 2 172,000 19.9 10 

T144 Tailings 0.8 0.21 49 10 10 <0.5 <2 146,000 46.1 16 
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Appendix L continued. Aqua-regia results (ppm) 

 

Site Type Cr Cu Fe Ga Hg K(%) La Mg(%) Mn Mo 

2 Channel 17 10 17,400 <10 0.025 0.11 20 1.84 687 <1 

2 Floodplain 18 11 21,700 <10 0.03 0.12 20 2.01 1,370 <1 

9 Channel 18 11 19,600 <10 0.031 0.11 20 0.66 769 1 

9 Floodplain 15 11 17,900 <10 0.032 0.12 20 1.96 932 <1 

19 Channel 16 12 22,100 <10 0.032 0.12 10 1.5 1,060 <1 

19 Floodplain 13 9 18,200 <10 0.062 0.07 10 2.02 879 <1 

33 Channel 8 15 28,500 <10 0.036 0.07 10 7.25 1,395 <1 

33 Floodplain 7 16 32,900 <10 0.096 0.07 10 6.89 1,320 <1 

40 Channel 12 12 21,700 <10 0.041 0.1 10 4.05 1,095 <1 

40 Floodplain 10 10 19,200 <10 0.029 0.08 10 5.06 1,100 <1 

60 Channel 20 17 20,200 <10 0.036 0.15 20 0.47 902 <1 

60 Floodplain 17 15 18,300 <10 0.035 0.11 20 0.99 633 <1 

69 Channel 15 11 20,000 <10 0.022 0.11 20 3.45 1,270 <1 

69 Floodplain 14 12 16,800 <10 0.021 0.13 10 1.63 914 <1 

94 Channel 15 12 24,600 <10 0.053 0.12 10 1.78 1,075 <1 

94 Floodplain 11 9 21,800 <10 0.037 0.18 10 4.32 1,200 <1 

105 Channel 5 33 29,700 <10 0.068 0.05 10 8.13 1,325 <1 

105 Floodplain 8 34 37,500 <10 0.077 0.06 10 6.05 1,190 <1 

115 Channel 9 13 32,100 <10 0.108 0.08 10 6.36 899 <1 

115 Floodplain 7 16 40,100 <10 0.147 0.06 10 6.19 1,045 <1 

134 Channel 7 22 46,400 <10 0.085 0.05 10 7.98 1,585 <1 

134 Floodplain 10 19 34,100 <10 0.068 0.08 10 5.17 1,325 <1 

146 Channel 15 20 23,900 <10 0.025 0.12 20 3.22 796 <1 

146 Floodplain 15 19 20,900 <10 0.034 0.13 20 1.89 860 1 

151 Channel 12 8 19,200 <10 0.025 0.08 10 4.08 1,375 1 

151 Floodplain 11 7 19,100 <10 0.022 0.06 10 4.07 1,380 <1 

5 Bank 13 9 17,800 <10 0.023 0.09 10 1.05 508 <1 

5 Channel 9 9 17,700 <10 0.039 0.06 10 6.28 1,140 <1 

8 Bank 18 20 23,000 <10 0.056 0.13 20 0.59 717 <1 

8 Channel 15 13 23,000 <10 0.053 0.11 20 2.75 956 <1 

136 Tailings 4 71 76,000 <10 0.11 0.08 10 6.67 1,710 1 

104 Tailings 3 46 47,100 <10 0.082 0.03 <10 8.38 1,170 <1 

T144 Tailings 5 11 68,700 <10 0.126 0.12 <10 4.79 1,175 1 
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Appendix L continued. Aqua-regia results (ppm) 

 

Site  Type Na(%) Ni P Pb S(%) Sb Sc Sr Th Ti(%) 

2 Channel 0.02 13 670 28 0.06 <2 2 21 <20 0.02 

2 Floodplain 0.02 16 1,630 26 0.04 <2 2 27 <20 0.02 

9 Channel 0.02 16 530 64 0.03 <2 2 17 <20 0.02 

9 Floodplain 0.02 15 940 47 0.05 <2 2 24 <20 0.02 

19 Channel 0.02 15 940 150 0.13 <2 2 37 <20 0.02 

19 Floodplain 0.02 13 810 155 0.06 <2 2 33 <20 0.02 

33 Channel 0.03 16 1,090 823 0.71 <2 1 42 <20 0.01 

33 Floodplain 0.03 16 940 2,540 1.54 <2 1 37 <20 0.01 

40 Channel 0.03 17 870 281 0.27 <2 2 37 <20 0.02 

40 Floodplain 0.02 14 970 274 0.16 <2 1 42 <20 0.01 

60 Channel 0.02 17 880 47 0.06 <2 3 18 <20 0.02 

60 Floodplain 0.02 14 870 28 0.12 <2 2 20 <20 0.02 

69 Channel 0.03 18 800 38 0.07 <2 2 30 <20 0.02 

69 Floodplain 0.02 12 860 32 0.1 <2 2 24 <20 0.02 

94 Channel 0.03 24 910 362 0.26 <2 2 32 <20 0.02 

94 Floodplain 0.02 17 1,080 351 0.26 <2 1 44 <20 0.01 

105 Channel 0.03 11 910 753 1.44 <2 1 50 <20 0.01 

105 Floodplain 0.02 16 800 947 0.66 <2 1 35 <20 0.01 

115 Channel 0.03 19 1,230 1,060 1.21 <2 1 39 <20 0.01 

115 Floodplain 0.02 22 900 1,660 0.91 <2 1 34 <20 0.01 

134 Channel 0.03 40 1,130 798 2.52 <2 1 47 <20 0.01 

134 Floodplain 0.02 36 1,010 680 1.07 <2 1 30 <20 0.01 

146 Channel 0.03 18 1,560 780 0.1 <2 2 35 <20 0.02 

146 Floodplain 0.02 19 930 635 0.05 <2 2 22 <20 0.02 

151 Channel 0.02 14 690 609 0.08 4 2 26 <20 0.02 

151 Floodplain 0.02 12 680 335 0.05 <2 1 26 <20 0.02 

5 Bank 0.02 13 670 155 0.12 <2 2 20 <20 0.02 

5 Channel 0.03 10 1,100 185 0.16 <2 1 42 <20 0.01 

8 Bank 0.02 23 900 227 0.12 <2 2 20 <20 0.02 

8 Channel 0.03 18 1,100 211 0.26 <2 2 32 <20 0.02 

136 Tailings 0.02 174 1,160 985 4.5 <2 1 44 <20 <0.01 

104 Tailings 0.03 18 650 582 4.49 <2 1 49 <20 <0.01 

T144 Tailings 0.02 31 1,310 1,010 6.77 <2 2 65 <20 <0.01 
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Appendix L continued. Aqua-regia results (ppm) 

 

Site  Type Tl U V W Zn 

2 Channel <10 <10 22 <10 231 

2 Floodplain <10 <10 32 <10 125 

9 Channel <10 <10 28 <10 315 

9 Floodplain <10 <10 23 <10 295 

19 Channel <10 <10 22 <10 1,140 

19 Floodplain <10 <10 17 <10 1,100 

33 Channel <10 <10 13 <10 8,860 

33 Floodplain <10 <10 11 <10 23,900 

40 Channel <10 <10 19 <10 3,300 

40 Floodplain <10 <10 16 <10 3,120 

60 Channel <10 <10 28 <10 111 

60 Floodplain <10 <10 24 <10 94 

69 Channel <10 <10 24 <10 530 

69 Floodplain <10 <10 22 <10 304 

94 Channel <10 <10 22 <10 3,130 

94 Floodplain <10 <10 16 <10 3,430 

105 Channel <10 <10 7 <10 5,950 

105 Floodplain <10 <10 11 <10 6,570 

115 Channel <10 <10 13 <10 10,850 

115 Floodplain <10 <10 12 <10 12,250 

134 Channel <10 <10 9 <10 23,600 

134 Floodplain <10 <10 16 <10 10,850 

146 Channel <10 <10 24 <10 291 

146 Floodplain <10 <10 24 <10 282 

151 Channel <10 <10 20 <10 837 

151 Floodplain <10 <10 17 <10 909 

5 Bank <10 <10 18 <10 1,510 

5 Channel <10 <10 12 <10 2,220 

8 Bank <10 <10 28 <10 1,720 

8 Channel <10 <10 21 <10 2,950 

136 Tailings <10 <10 4 20 20,200 

104 Tailings <10 <10 3 <10 9,060 

T144 Tailings <10 <10 4 <10 21,900 
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