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ABSTRACT 

Due to historic overharvest and habitat degradation, the alligator snapping turtle 

(Macrochelys temminckii) has experienced population declines throughout its range. 

Tishomingo National Fish Hatchery in southern Oklahoma began a captive head-start 

program for this species in 2000 and has since released over 1,400 turtles in the region. 

However, there has been a recurring trend of turtles growing faster after release than 

while in captivity. My research sought to investigate this pattern by determining: 1) the 

influence of housing enrichment and housing density on juvenile growth rates and stress 

in indoor enclosures, and 2) the effects of supplementing hatchlings with adult feces to 

enhance the gut microbiome. I found that the presence of floating mats in indoor tanks 

improved growth rates compared to other structural components. Group density did not 

affect average growth rates, but animals that were housed communally exhibited more 

variable growth than individuals housed without conspecifics present. When exposed to 

feces of adult conspecifics, hatchlings assimilated fiber components of their omnivorous 

diet more efficiently than those exposed only to deionized water or creek water. Based 

upon these results, flotant structures and exposure to microbes found in the feces of adult 

M. temminckii are recommended for future head-start efforts. 
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OVERVIEW 

Turtles tend to be long-lived, slow-growing, and have delayed sexual maturity, 

and these life-history traits pose unique challenges for mitigating population declines. 

Young turtles often experience high mortality rates during the first years of life; 

therefore, population bottlenecks — especially those impacting reproductive-age adults 

— frequently result in detrimental delays of recovery (Congdon et al. 1993). Head-start 

programs attempt to alleviate this problem by breeding and raising animals in captivity to 

a size that presumably increases their likelihood of survival upon release into the wild 

(Heppell et al. 1996).  

The alligator snapping turtle (Macrochelys temminckii) is currently listed as 

‘Vulnerable’ by the IUCN Red List (1996), chiefly due to historical overharvest, 

impoundments, and habitat alteration. Tishomingo National Fish Hatchery in southern 

Oklahoma implemented a head-start program for alligator snapping turtles in 2000. 

Despite evidence of the program’s general success, sub-optimal growth rates of M. 

temminckii in captivity compared to those after release (Moore et al. 2013; Anthony 

2015) begs the question of what the turtles encounter in the wild that is unavailable to 

them in captivity.  

In Chapter 1, I examine the effect of species-specific probiotic supplementation 

on growth rates, digestive efficiency, and microbial community composition in M. 

temminckii hatchlings. The experiment described in this chapter tracks the intake, output, 

and assimilation of an omnivorous diet. Fecal samples collected at the beginning and end 

of the experiment were analyzed for their microbial community composition using 16S 
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rRNA gene sequencing. These differences in communities were used to make inferences 

about the impacts of endogenous communities on hatchling growth and digestion. 

Chapter 2 examines the influence of housing structural enrichment and housing 

density on growth rates and stress hormone levels in juvenile M. temminckii at 

Tishomingo National Fish Hatchery. The housing enrichment experiment in this chapter 

tests the application of four different structural arrangements in indoor turtle tanks. 

Structures were constructed to mimick habitats M. temminckii has been reported to 

associate with in the wild. The housing density experiment involved housing turtles low-, 

medium-, and high-density conditions. In both experiments, growth rates and 

corticosterone concentrations were measured at the beginning and end of the 

experiments’ duration to test the effects of different treatments. 
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THE ROLE OF GUT MICROBIAL SYMBIONTS IN ALLIGATOR SNAPPING 

TURTLE HATCHLING GROWTH AND DIGESTIVE EFFICIENCY 

Abstract 

The ability for vertebrates to exploit plant matter for energy largely relies on complex 

associations with fermentative microbes. Coprophagy as a behavioral means of microbial 

acquisition and maintenance has been observed most frequently in mammals; however, 

there is growing evidence that herbivorous reptiles associate with kin or conspecifics for 

brief periods in their lives to obtain species-specific microbes that are functionally 

tailored to their diet. Despite specializations for carnivory that include a sharp, recurved 

beak and a unique lingual lure, the Alligator Snapping Turtle (Macrochelys temminckii) 

is a dietary generalist that frequently consumes aquatic vegetation and detritus. Based on 

their dietary habits, I hypothesized that providing hatchlings with adult feces upon 

hatching would improve digestive efficiency and growth. As predicted, assimilation 

efficiency of neutral detergent fiber was significantly greater in turtles supplemented with 

feces than those exposed to either creek water or deionized water, but there was no 

difference among groups in assimilation of acid detergent fiber or crude protein. Growth 

rates were equal among treatments, although the short duration of the experiment may 

have been insufficient for differences in size to emerge. The microbial community 

structure of M. temminckii hatchlings differed between the start and end of the 42-day 

experiment. Inoculation material had no effect on the turtles’ core microbiomes at the end 

of the experiment; however, hatchlings provided with adult conspecific feces had higher 

abundances of fermentative bacterial groups.    
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Introduction 

Fermentative microsymbionts in the vertebrate gut are often credited for allowing 

the evolution of obligative and facultative herbivory in vertebrates (Ley et al., 2008; 

Stevens and Hume, 1998). In fact, most multicellular organisms are genetically incapable 

of producing cellulase enzymes to hydrolyze cellulose in plant cell walls; therefore, the 

synthesis of endogenous cellulase by microbes is necessary for efficient digestion and 

nutrient extraction. Exclusively in the presence of gut microbial communities, a host’s 

digestive process may include the fermentation of cellulose and lignin into digestible 

nutrients used for energy in the form of fatty acids, conversion of nitrogenous compounds 

into ammonia and microbial proteins, production of B vitamins, and competitive 

interactions between commensal and pathogenic bacteria (Stevens and Hume, 1998; 

Pough et al., 2013; Hanning and Diaz-Sanchez, 2015). Despite their general importance 

to digestive processes, gastrointestinal microbiomes can vary markedly in species 

richness and abundance, and community patterns often correlate with diet (Wu et al., 

2011), digestive system morphology (Stevens and Hume, 1998), the external 

environment (Bright and Bulgheresi, 2010), and phylogenetic history (Ley et al., 2008) of 

a host.  

The ubiquity of the symbiotic relationship between a host and its gut microbiome 

becomes disjointed when broad patterns in gut microbiomes align with the digestive 

strategies of vertebrate hosts, which vary with diet, anatomy, physiology, and energetic 

demands. For example, foregut-fermenting vertebrates are characterized by a 

fermentation chamber that is proximal to the small intestine in an enlarged forestomach. 

This facilitates the digestion of microbial mass for additional protein, in which amino 
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acids are subsequently absorbed in the small intestine. In contrast, hindgut-fermenting 

vertebrates delay microbial fermentation and absorption of synthesized nutrients until 

fiber passes through a single-chambered stomach and reaches the enlarged large intestine 

and cecum; this strategy results in undigested microbes that are excreted in the feces.  

Hindgut fermentation is employed in most herbivorous species of reptiles, mammals, and 

birds (Stevens and Hume, 1998; Mackie, 1999). Delayed fermentation and consistent 

excretion of gut microbes in feces (Ley et al., 2008), along with the rapid pace at which 

food is digested (Fletcher et al., 2010) results in reduced energetic gain of hindgut 

fermenters by up to half in comparison to ruminants (Walter, 2011).  

Research regarding microbe acquisition by a host and the impacts of the complex 

symbiotic relationships between a multicellular organism and its gut microbiome is in its 

infancy (Kostic et al., 2013). The most frequent means of acquiring and maintaining gut 

microbial communities is proposed to occur through environmental sources, collectively 

termed ‘horizontal transmission’ (Lombardo, 2008; Sanders et al., 2014; Yuan et al., 

2015). Horizontal transmission may be achieved via regurgitation of food items from 

parents to offspring (van Dongen et al., 2013), grooming of kin (Ley et al., 2008), fluid 

exchange during copulation (White et al., 2011), acquisition from the nest environment 

(Benskin et al., 2015; Kohl, 2012), and coprophagy (Funkhouser and Bordenstein, 2013). 

Coprophagy is a behavior in which organisms obtain endogenous microbes by 

intentionally consuming feces from itself, kin, conspecifics, or heterospecifics. This 

behavior may serve as a method to re-digest contents for further nutrient extraction, 

consume excreted microbes for protein, (Demment and Soest, 1985), re-establish 

impaired microbiomes (Zimmerman and Tracy, 1988), or allow for microbial 
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colonization in neonates (Troyer, 1984). Ingestion of soil and the use of coprophagy to 

acquire microbes from kin has been described in Iguana iguana neonates in the wild; this 

study also reported that inhibiting these behaviors resulted in diminished growth rates 

(Troyer, 1984).  

To date, over 90% of microbial symbiont research has focused on mammalian 

hosts, which comprise only 8% of vertebrate species (Colston and Jackson, 2016). While 

most mammalian taxa exhibit parental care and sociality to some degree, this life-history 

strategy is less common among reptiles. Fewer interactions with kin and conspecifics 

would presumably reduce the time span and/or opportunities for reptile neonates to 

establish microbiomes via coprophagy from these interactions in the wild. Aquatic turtles 

are particularly difficult to study, as they could indirectly and inadvertently acquire 

water-borne feces from conspecifics. The influence of microbial communities on 

digestion in freshwater turtles have been described in Pseudemys nelsoni, Trachemys 

scripta, Emys orbicularis, Trionyx sinensis, Sternotherus odoratus, and Dermatemys 

mawii, representing four of the nine extant turtle families (Bjorndal and Bolten, 1990; 

Bouchard and Bjorndal, 2005; Zhang et al., 2014; Nowakiewicz et al., 2015; Rawski et 

al., 2016; Rangel-Mendoza et al., 2018).  

The alligator snapping turtle (Macrochelys temminckii) is omnivorous and a 

dietary generalist in the family Chelydridae. This species possesses a unique lingual lure 

to attract aquatic animal prey, and also consumes mammals, birds, and other turtles; 

however, plants and plant parts, including acorns, wood, and plant tubers consistently 

comprise a large proportion of gut contents (Sloan et al., 1996; Elsey, 2006; East and 

Ligon, 2013). The roles of coprophagy and microbial fermentation are currently 



 

7 

unexplored in this species. Fast growth is exceedingly important in alligator snapping 

turtles due to high predation rates of juveniles in the wild prior to exceeding predator 

gape limitations (Dreslik et al., 2017), size-dependent sexual maturity, and the positive 

relationship between body size and reproductive output in females (Tucker and Sloan, 

1997; Thompson, 2013).  

This study sought to determine whether exposure of M. temminckii hatchlings to 

adult feces influenced endogenous microbial community composition, digestive 

efficiency, and growth. I hypothesized that captive alligator snapping turtle hatchlings 

that are exposed to microbes shed by adult conspecifics would have faster growth rates, 

improved digestive efficiencies, and more diverse gut microbial communities than turtles 

only exposed to creek water or deionized water.  

 

Methods 

 

My experiment took place from 23 September – 4 November 2016 at Missouri 

State University. I acquired hatchling Alligator Snapping Turtles from a captive head-

start program at Tishomingo National Fish Hatchery in southern Oklahoma. Hatchlings 

were acquired from three clutches and all hatched between 21 – 23 August 2016. Prior to 

transport to the university on 2 September 2016, the hatchlings and their eggs remained 

in environmental chambers at 28° C in the plastic boxes in which they hatched. Boxes 

contained damp vermiculite (1:1 water:vermiculite, by mass) and dividers between each 

turtle to limit physical contact with clutch-mates and maintain identity with its egg and 

clutch. Upon arrival at to the lab, I gently cleaned each hatchling to remove any 

vermiculite or egg debris with a soft-bristled brush. I then allowed the turtles to dry 

before marking them with numbered/color-coded tags adhered to the carapace (Queen 
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Marking Kits; The Bee Works, Oro-Medonte, Ontario, Canada). I housed each turtle 

singly in 1.9-L clear polycarbonate containers (CamSquare 2SFSCW; Cambro 

Manufacturing, Huntington Beach, CA, USA) filled with 400 mL of deionized water; this 

volume allowed turtles to surface easily to breathe (Appendix A). I distributed containers 

between two environmental chambers maintained at 28°C with a 12-hour light cycle 

(Appendix B). Upon placement into their assigned containers, I allowed the hatchlings to 

acclimate for 24 days before feeding was initiated. This time was necessary for turtles to 

complete assimilation of residual yolk prior to their first feeding. During this period, each 

turtles’ first post-hatching fecal pellet was collected and stored in a 0.5-mL 

polypropylene micro centrifuge tube, and then frozen at -20 °C. To eliminate potentially 

confounding effects of microclimate variation, I randomly repositioned hatchlings within 

and between the two environmental chambers weekly.  

Each container housing a hatchling was labeled to identify the turtle it contained 

and the group to which it was assigned. I supplemented each hatchlings’ food weekly 

throughout the study with 1-mL of material corresponding with the control or treatment 

group to which they were assigned. Hatchlings were assigned to one of three groups: the 

control group consisted of hatchlings that were provided food inoculated only with 

deionized water, and thus were not exposed to any sources of microbes to which the 

experimental groups were not equally exposed. The first treatment group was provided 

with food inoculated with creek water, while the second treatment group was 

administered food inoculated with feces obtained from adult conspecifics. The creek 

water was collected from Pennington Creek, located in southern Oklahoma. It is spring-

fed and free of resident Alligator Snapping Turtles. I harvested feces from captive—but 
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formerly wild-caught—adult turtles that are maintained in outdoor ponds at Tishomingo 

National Fish Hatchery. These turtles serve as brood-stock for a head-start program and 

were confiscated from an illicit turtle farm in 2006. Therefore, the duration of time they 

were kept in captivity was unknown.  

After acclimation of the hatchlings was completed, I recorded morphometrics 

weekly for each hatchling, including mass (± 0.01 g), straight midline carapace length (± 

0.1 mm), carapace width (± 0.1 mm), straight plastron length (± 0.1 mm), and shell 

height (± 0.1 mm). I also began feeding a pre-measured mass of omnivorous reptile 

pellets (Mazuri Herbivorous Reptile LS Diet, PMI Nutrition International LLC, 

Richmond, IN, USA) at 0900 h each day. Food quantities were increased uniformly for 

all turtles as the experiment progressed and turtles grew, ensuring that small quantities of 

orts still occurred without compromising water quality. At 1200 hours, I removed orts 

from each container and noted whether it appeared that turtles had consumed any food. 

To minimize degradation of fecal samples as well as the mixing of food and waste, I 

always collected feces prior to feeding, after collecting orts, or at any other point that 

fecal waste was observed. Feces and orts collected between each hatchlings’ first and 

final fecal excretions were stored separately but cumulatively for each hatchling in 50-

mL centrifuge tubes in a -20 °C freezer. I rinsed and replaced water in housing containers 

every other day, or as-needed based on cleanliness. To prevent unintentional bacterial 

accumulation, I scrubbed housing containers weekly with 0.5% chlorhexidine gluconate 

solution. As a control to monitor changes in food mass, I conducted feeding, cleaning, 

and orts collection procedures in three additional containers that did not house hatchling 

turtles. At the conclusion of the experiment, I gave hatchlings several days to excrete all 
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waste and stored the final fecal sample in a 1.5-mL microcentrifuge tube. These, and each 

turtles’ initial fecal samples were used to measure differences in microbiomes among 

treatments. Prior approval for this project was obtained from the Missouri State 

University Institutional Animal Care and Use Committee (Approved: 9/2/16; IACUC ID 

17-004.0).  

Digestive Processing Methods. All samples were sent to Colorado State 

University for analysis. There, proportions of acid detergent fiber (ADF), neutral 

detergent fiber (NDF), crude protein (CP) and nitrogen (N) were quantified for food, orts, 

and feces samples (measured in 0.1-g aliquants). NDF represents all cell wall components 

of plants (cellulose, hemicellulose, lignin and cutin), and ADF represents the 

lignocellulose and cutin components that characterize woody plant tissues. Samples were 

oven-drying 60 °C and dry weights were recorded. NDF and ADF were determined using 

the Ankom200 Fiber Analyzer (ANKOM Technology Corporation, Fairport, NY) and the 

associated manual’s guidelines (ANKOM Technology, 2017a,b). The AOAC (2006) 

Official Method 992.15 (TruSpec CN Carbon/Nitrogen Determination Instruction 

Manual, December 2004, Leco Corp., St. Joseph, MI) described in Desimone et al. 

(2013) was used to obtain proportions of CP. Sample aliquants were weighed in 

aluminum combustion tins. A standard reference of ethylenediaminetetraacetic acid 

(EDTA—9.75% nitrogen) was used to establish calibration and blanks after every 25 

samples run. After samples were optimized, crude protein of each sample was calculated 

by multiplying total nitrogen content by 6.25.  

Digestive Assimilation Calculations. Digestive assimilations were calculated for 

each hatchling using the following equation (Bjorndal, 1987; Durstche, 2004):  
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Intake of 𝑋 − Output of fecal 𝑋

Intake of 𝑋
× 100 

where intake and output are measured in grams, and X was any diet component in a given 

sample (e.g., NDF). To calculate the total intake by each turtle, I subtracted the total dry 

mass of orts from total dry mass of food administered to each turtle. Intake and output 

values of each nutrient were substituted into the above equation.  

Statistical Analysis: Growth and Digestive Assimilation. Preceding comparison 

tests across groups, I checked distributions of initial morphometrics, growth rates, and 

nutrient amounts and assimilations for normality using Shapiro-Wilk tests; I then used 

Kruskal-Wallis tests when data failed the assumption of normality. Before the experiment 

was initiated, I determined that the variance of turtle morphometrics was the same across 

treatments using a one-way analysis of variance (ANOVA). To account for variation in 

initial hatchling body size, I calculated size-corrected growth rates in mg·g-1·day-1. I then 

compared experiment growth rates across treatments using a Kruskal-Wallis test, and  

compared digestive assimilations using either ANOVAs or non-parametric Kruskal-

Wallis tests.  

Microbial Community Structure. A fecal sample was taken from each 

individual at the onset of the study and at the end of the 42-day experiment. The fecal 

microbiota of Alligator Snapping Turtle hatchlings in each of the three nutritional groups 

were examined by high throughput next-generation Illumina sequencing. Initially, these 

data were used to compare microbial population differences between nutritional groups. 

Total DNA was extracted using a QiaAMP DNA Stool mini kit (Qiagen, Germantown, 

Maryland). The V4 variable region were amplified using the 515F/806R primers with a 

barcode addition to the forward primer using the HotStarTaq Plus Master Mix Kit 
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(Qiagen, Germantown, Maryland) under the following conditions: 94 °C for 3 minutes, 

followed by 28 cycles of 94 °C for 30 seconds, 53 °C for 40 seconds and 72 °C for 1 

minute, after which a final elongation step at 72 °C for 5 minutes was performed. 

Samples were pooled in equal proportions based on their molecular weight and DNA 

concentrations and were purified using Ampure XP beads. Then the pooled and purified 

PCR product was used to prepare an Illumina DNA library and sequenced at MR DNA  

(www.mrdnalab.com, Shallowater, TX, USA) using the Illumina MiSeq platform 

following the manufacturer’s guidelines. The derived Q25 sequence data was processed 

using Qualitative Insights Into Microbial Ecology (QIIME) 1.9. In brief, sequences were 

joined, depleted of barcodes, and sequences <150bp or with ambiguous base calls 

removed. Sequences were denoised, OTUs generated, and chimeras removed. 

Operational taxonomic units (OTUs) were taxonomically classified using BLASTn 

against a curated database derived from Greengenes v13.5 reference database (DeSantis 

et al. 2006) using a >97% identity cutoff to classify at the species level (Ritari et al., 

2015). These data were then used to estimate alpha and beta diversity, compositional 

differences between nutritional groups, and temporal differences within nutritional 

groups.  

Normalized QIIME OTU data were used for Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUSt) to examine differences 

in metabolic function and chemical pathways of microbial communities across treatment 

groups (Langille et al., 2013). KEGG Orthology (KOs) were used to predict metabolic 

and functional capabilities of the identified microbes.  

Statistical Analysis: Microbiome Structure. The 16S rRNA gene sequences 
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were processed using QIIME v1.9.1+dfsg pipeline (Caporaso et al., 2010) and Bio-Linux 

1.8 (Field et al., 2006) to determine the diversity and composition of that fecal-associated 

microbiota using default parameters. Differences in microbial community composition 

across treatments (beta diversity) were assessed using phylogenetic metrics (weighted 

and unweighted UniFrac distances) (Lozupone and Knight, 2005; Lozupone et al., 2011).  

Ordination plots were visualized using EMPeror (Vázquez-Baeza et al., 2013).  

Significant differences in taxonomic richness were assessed across treatments 

using the nonparametric Kruskal-Wallis test and between treatments using a t-test. 

Significant differences in the relative abundances of individual bacterial taxa across 

treatments or factor levels were determined using ANOVA and the false discovery rate 

(FDR) correction. T-tests were used when comparing the relative abundances of 

individual taxa between two treatments.  

 

Results 

Growth. I had initially randomly assigned 60 Alligator Snapping Turtle 

hatchlings from three clutches to my three treatments; however, 26 of those animals were 

excluded from analyses due their latency to begin feeding, presumably a result of 

prolonged assimilation of residual yolk. In addition, one hatchling died during the 

acclimation period for my experiment. This hatchling retained an unusually domed 

carapace until its death; this condition is common among hatchling Alligator Snapping 

Turtles as they unfold from their eggs; however, failure to attain a typical morphology 

suggests that this hatchling may have been congenitally deformed. 
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Morphometrics of hatchlings at the beginning of the experiment were equal across 

treatments. Mass averaged 18.38 ± 0.14 g (F2,30 = 0.24, P = 0.787), straight mid-line 

carapace length (SCL) averaged 38.80 ± 0.17 mm (H = 1.51, P = 0.470), and plastron 

length (PL) averaged 30.41 ± 0.12 mm (F2,29 = 0.143, P = 0.867). The average 42-day 

growth rate of hatchlings was 3.17 ± 0.27 mg·g-1·day-1 (range = 1.90–6.34 mg·g-1·day-1) 

(Table 1) and did not differ significantly among treatments (H = 0.960, P = 0.619); 

however, while not statistically significant, the group inoculated with feces maintained 

the highest weekly average mass and straight midline carapace length throughout the 

experiment (Figure 1).   

Digestive Efficiency. Due to some hatchlings’ latency to feed, 26 turtles were 

removed from digestive assimilation analyses (Table 1). The dry mass of food distributed 

to turtles across treatments was the same over the duration of the study (F2,30 = 1.690, P = 

0.202), as was the total dry matter intake (F2,30 = 0.0538, P = 0.948) (Table 1). I adjusted 

the values for the mass of turtle food distributed, intake, and nutritional composition, to 

adjust for soluble components and moisture that were lost from food during the process 

of soaking and oven-drying. The assimilation of total dry matter by Alligator Snapping 

Turtle hatchlings in my experiment was affected by treatment group (F2,30 = 9.636, P < 

0.001). Turtles supplemented with adult feces had greater assimilation efficiencies of dry 

matter than those given deionized water (P < 0.001) and those given creek water (P = 

0.031). Due to the fact that small quantities of feces were recovered from some 

hatchlings, in some cases only NDF and ADF could be analyzed. Therefore, crude 

protein analyses were conducted on a subset of samples: deionized water (n = 9), creek 

water (n = 9) and adult feces (n = 4). Assimilation efficiency of crude protein did not 
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differ among treatment groups (F2,19 = 0.117, P = 0.890; Figure 2A). Assimilation 

efficiencies of lignocellulose (ADF) were also influenced by the source of microbiota 

provided to turtles (F2,30 = 5.689, P = 0.008; Figure 2B). Turtles exposed to adult feces 

displayed improved ADF assimilation compared to turtles exposed to DI water (P = 

0.006). I did not observe these differences between turtles given feces versus those given 

creek water (P > 0.05), or between the creek water group and the deionized water group 

(P > 0.05). The ability for hatchlings to assimilate cell wall contents (NDF) was also 

enhanced in turtles that were inoculated with adult feces (H = 6.158, P = 0.046; Figure 

2C); however, non-parametric pairwise comparisons failed to identify treatment 

differences (all P > 0.05).   

Endogenous Microbial Communities. After trimming barcodes and primers and 

removing chimeras, I generated a total of 4,900,245 sequence reads that represented 

27,698 OTUs. These OTUs were concentrated in 9.7% of the 70 samples used for 

analyses. The dominant phyla across the three treatment groups consisted of mainly 

Proteobacteria, Bacteroidetes, and Firmicutes (Figure 3). The alpha diversites of 

treatments and controls in my experiment differed across groups (Table 2) and controls 

(Figure 4). Hatchlings supplemented with adult feces contained greater average microbial 

taxonomic richness than those supplemented with creek water (t = -4.93; P = 0.014) or 

deionized water (t = -7.34; P = 0.014); however, differences were not detected between 

turtles provided with creek water and deionized water (t = 2.51; P = 0.34) (Figure 4). The 

combined initial samples of turtles had significantly lower average taxonomic richness 

than those who received creek water (t = 3.47; P = 0.042) or adult feces (t = -8.31; P = 

0.014) in my 42-day trial, whereas I did not observe this pattern in comparison to turtles 
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that only received deionized water (t = 0.69; P = 1.0). Interestingly, the creek water used 

for inoculation had the greatest average taxonomic diversity overall, and the turtles given 

feces possessed a greater richness than was distinguished in the feces control sample 

(Figure 4).  

The core microbiomes of hatchlings at the beginning and at the end of the 42-day 

trial clustered distinctly from each other in principle coordinate analysis (PCoA) plots, 

based on weighted and unweighted UniFrac distances (Figure 5). Additionally, the turtles 

that were exposed to adult feces distally clustered within the treatment cluster. Hatchlings 

within this treatment group had the highest abundance of phylum Firmicutes (22.2%) 

compared to the turtles early on in the experiment (9.7%), those supplemented with creek 

(15.0%) or deionized water (18.3%), the adult feces control (5.7%), and the creek water 

control (0.5%).  Especially prominent in the Firmicutes phylum was the appearance of 

family Ruminococcaceae, well known for its ability for its fibrolytic activity (Flint et al., 

2012), that initially made up 1.9% of the OTUs. After 42 days, abundances rose in all 

exposure groups, but was found at the highest levels in turtles exposed to adult 

conspecific feces (6.9% of the OTUs). In comparison, Ruminococcaceae was found in 

creek water-exposed turtles at  2.5% and DI exposed turtles at 3.0%. Ruminococcacea 

was almost absent from creek water (0.1%); however, adult feces contained 1.5% 

abundance.  

 

Discussion 

Growth rates of Alligator Snapping Turtles in the digestive efficiency experiment 

were not significantly influenced by treatment groups; however, there was a non-
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significant trend for turtles provided with adult feces to rapidly achieve and then 

consistently maintain the greatest average mass and carapace length. Troyer (1984) 

reported that hatchling Iguana iguana given adult feces only exhibited significant 

increases in growth after spending several weeks consuming soil in the nest, followed by 

the consumption of conspecific feces at 3–5 weeks of age. Iguanas that were not given 

conspecific feces during this time span grew more slowly, as did those given feces prior 

to three weeks of age. This suggests that if M. temminckii hatchlings are performing 

coprophagy in the wild as a means of microbial establishment, it could be a time-

sensitive event (e.g. time after yolk assimilation), one that is effectively triggered by 

some environmental cue, or a succession of microbes. Alligator Snapping Turtle 

hatchlings will remain in the nest chamber for as long as three weeks (Holcomb and Carr, 

2011), creating ample opportunity for similar means of generalized microbial acquisition.  

  Coprophagy has been inferred to serve as an important path for microbial 

acquisition and maintenance of diverse and physiologically functional microbial 

communities in numerous vertebrate taxa. In my study, Alligator Snapping Turtle 

hatchlings provided with adult conspecific feces shortly after hatching showed improved 

digestive assimilations of combined lignocellulose (ADF) compared to those given creek 

water or deionized water. This trend was also evident for digestion of the the digestion of 

total cell wall components (NDF) by hatchlings given feces, but pairwise testing failed to 

indicate significance, possibly due to uneven and low sample sizes that decreased 

statistical power. The significant increases of lignocellulose breakdown is especially 

notable due to its high indigestibility relative to all other cell wall components. As 

lignocellulose content increases in a diet item, the digestibility of that item decreases, and 
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requires the service of specialized fermentative microsymbionts (Zimmerman and Tracy, 

1988). Amorocho and Reina (2008) reported this to be true in Chelonia mydas agassizii 

that subsisted on diets of leaves, fish, and fruits. Dry matter assimilation of turtles in my 

experiment were intermediate to those in a digestive experiment containing two groups of 

Pseudemys nelsoni hatchlings characterized by diets of shrimp or duckweed (Bouchard, 

2004); both groups were inoculated with adult conspecific feces at the start of the 

experiment. Adult Trachemys scripta scripta fed an omnivorous diet of Tenebrio larvae 

and duckweed had lower assimilations of dry matter than M. temminckii hatchlings by 

>10%, which may be attributed to the lower digestibility of whole duckweed leaves or 

larger bite size of adult T. scripta scripta (Bjorndal, 1991; Bjorndal and Bolten, 1992). 

Nonsignificant trends for greater NDF and ADF assimilation in my experiment were also 

shown in hatchlings inoculated with creek water compared to those given deionized 

water. This is presumably due to the advantage of having exposure to broad, 

environmentally-available microbes (Troyer, 1984; Ley et al. 2008); however, the 

acquisition of species-specific, or specialized fermentative microbes has been described 

to be more impactful for growth, digestion, and microbial community development in 

reptiles (Troyer, 1982). Additionally, crude protein was assimilated equally by hatchlings 

in all three groups at rates that were consistently over 90%.  

Core phyla of final fecal samples were very similar to other studies of herbivorous 

Testudines (Gaillard, 2014; Zhang et al., 2014; Yuan et al., 2015; Abdelrhman et al., 

2016; Price, 2016). This may be due, in part, to the similar physiological constraints that 

turtles and tortoises place on the environment of their microsymbionts, including gut 

morphology, location of the fermentation chamber, diet, and the fluctuating conditions 
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associated with the ectothermic condition (e.g. body temperature, metabolic rate, fasting, 

dehydration) (Gaillard, 2014; Hanning and Diaz-Sanchez, 2015; Colston and Jackson, 

2016). Hatchlings supplemented with only deionized water also presented shifts in their 

microbial community composition. This could be attributed to the consumption or 

absorption of microbes in vermiculite or eggshell fragments through the mouth or 

residual yolk after hatchling, along with other sources of potential unintended cross-

contamination. Another method of microsymbiont colonization may be obtained through 

vertical transmission. In amniotes, this method of transmission would consist of the 

transmission of indigenous bacteria from the female to her eggs during oviposition 

(Benevides de Morais et al., 2010).  

The most dominant phylum represented across my experimental groups was 

Proteobacteria. Proteobacteria are recognized as a core contributor to most vertebrate 

microbiomes; however, the relative abundance of this group is disproportionately high for 

the M. temminckii hatchlings in my study compared to other reptiles, excluding sea turtles 

that are exposed to high abundances in saltwater (Keenan and Elsey, 2015; Price 2016). 

The unusual dominance of Proteobacteria in my study may be a result of immature gut 

microbiomes (Hanning and Diaz-Sanchez, 2015). Proteobacteria are efficient colonizers 

for the fasting or sterile gut, but are poor competitors; therefore, they are often replaced 

by more diet-specialized groups of anaerobic bacteria over time (Costello et al., 2010; 

Hanning and Diaz-Sanchez, 2015). This is supported by findings of Troyer (1984), in 

which iguanas consumed soil in the nest during the first several weeks of life, suggesting 

preparation of the gut for supplementation of fermentative microbes via coprophagy 

shortly after (Troyer, 1984). Alternatively, elevated abundance of Proteobacteria may 
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have been attributed to ambient environmental exposure, particularly by creek water, in 

which case this phylum may have been chiefly transient across hatchlings in my study. 

This is supported by the greater relative abundances observed in the adult feces control 

and creek control samples, as well as the lower abundances in hatchlings only inoculated 

with deionized water.   

The next most abundant phylum was Bacteroidetes, which is also increasingly 

common in the gastrointestinal tract of carnivorous and herbivorous humans, vertebrates 

animals, and reptiles specifically (Ley et al., 2008; Costello et al., 2010; Colston and 

Jackson, 2016). This implies that this group plays an important role in digestion (Yuan et 

al. 2015). Microbes in this phylum are known to be metabolically broad; however, the 

majority are reported to be anaerobic and sacchrolytic, and play an integral role in early 

degradation of cellulose and hemicellulose (Colston and Jackson, 2016).  

M. temminckii inoculated with adult feces contained the greatest taxonomic 

diversity across tratments and the adult feces control sample. The feces-inoculated 

hatchlings also had the largest abundances of Firmicutes, which are abundant among all 

mammals and predominately function as metabolizers of polysaccharides (Hanning and 

Diaz-Sanchez, 2015). Turtles in the feces group contained the the highest abundances of 

the class Clostridia at the end of the experiment, which frequently metabolize 

carbohydrates (Colston, 2017). More specifically, they contained more than double the 

relative abundance of the family Rumminococcaceae compared to turtles that did not 

receive feces. This family is only currently found as a resident in the gut of herbivorous 

vertebrates and has fibrolytic capacity to create short-chain fatty acids for the host 

(Campos et al. 2018). Over the span of my 42-day experiment, shifts in microbial 
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community composition were distinguishable across all groups. This is potentially due to 

the stability of the adult feces compared to the developing hachling where the 

introduction of adult feces causes dramatic microbial changes as the resident gut 

microbiome matures (Yuan et al. 2015). This dramatic increase in diversity may help 

enrich fiber degraders like Ruminococcaceae, leading to better digestive efficiency of 

fiber.  

Despite the recent explosion of technological capabilities and research to describe 

vertebrate gut microbiomes, the elusive lifestyle of most wild reptiles leaves room for 

speculation about how hosts acquire species-specific microbes. Inoculating Alligator 

Snapping Turtle hatchlings with adult conspecific feces improved digestion of cell wall 

components, and also showed trends for increased assimilation of lignocellulose (ADF) 

and growth. Supplementing hatchling food with feces also increased taxonomic richness, 

and resulted in higher abundances of microbial groups with sacchrolytic and fibrolytic 

functions. While behavioral observations of reptile neonates in the wild are rare, the 

ability to examine the influence of induced coprophagy may provide clues for how 

succession of microbiomes takes place. While there are several of these functional trends 

for greater fermentation capabilities in the feces-supplemented hatchlings, further 

divergence of this group may be time-dependent, warranting long-term monitoring of 

changes in growth, digestive efficiency, and microbial community assemblages.
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Table 1. Average initial mass, growth rates, and digestive processing of hatchling 

Alligator Snapping Turtles provided with deionized water, creek water, or adult 

conspecific feces in their food. Nutrient values are on a dry-matter basis. Values are ± 1 

standard error for turtles of each treatment.  

 

  
Treatment Groups 

  
DI Water 

(n = 11) 

Creek Water 

(n = 14) 

Feces 

(n = 8) 

Initial Mass (g) 18.87 ± 0.15 18.73 ± 0.28 18.96 ± 0.22 

Growth Rate (mg·g-1·day-1) 3.17 ± 0.27 3.07 ± 0.33 3.47 ± 0.35 

Intake (g)* 2.05 ± 0.06 2.03 ± 0.07 2.06 ± 0.12 

NDF 0.75 ± 0.04 0.70 ± 0.03 0.71 ± 0.05 

ADF 0.50 ± 0.01 0.50 ± 0.07 0.51 ± 0.03 

Crude Protein** 0.57 ± 0.02 0.53 ± 0.02 0.49 ± 0.03 

Output (g) 0.58 ± 0.02 0.54 ± 0.02 0.50 ± 0.03 

NDF  0.43 ± 0.01 0.41 ± 0.19 0.37 ± 0.03 

ADF  0.50 ± 0.01 0.50 ± 0.02 0.51 ± 0.03 

Crude Protein**  0.06 ± 0.002 0.05 ± 0.002 0.05 ± 0.003 

Assimilation (%)    

Dry Matter 71.85 ± 0.51 73.33 ± 0.65 75.71 ± 0.53 

NDF 42.71 ± 1.83 41.97 ± 1.23 46.84 ± 1.05 

ADF 39.31 ± 0.90 42.08 ± 1.21 45.84 ± 1.70 

Crude Protein** 90.21 ± 0.35 90.00 ± 0.44 90.26 ± 0.16 

*Neutral detergent fiber (NDF) represents the cell wall constituents of plants (cellulose, 

hemicellulose, lignin and cutin). Acid detergent fiber (ADF) represents the lignocellulose 

content.  

**Crude protein analyses contained treatment sample sizes that differed from those listed 

in the headings: DI water (n = 9), creek water (n = 9), and feces (n = 4). 
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Table 2. Alpha diversity metrics for fecal microbial communities of hatchling Alligator 

Snapping Turtles exposed to deionized water, creek water, or adult conspecific feces in a 

42-day digestive efficiency experiment. Initial fecal samples were collected at the start of 

the experiment. Values are ± 1 SD.   

 

Treatment Groups 

Indices Initial DI Water Creek Water Feces  

Observed OTUs 1335 ± 276 1208 ± 160 1475 ± 238 2166 ± 205 

Chao1 2581 ± 602 2719 ± 422 3244 ± 531 4500 ± 598 

Faith's Phylogenetic 

Diversity 
105 ± 17 109 ± 12 128 ± 19 169 ± 16 
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Figure 1. Average weekly A) mass and B) straight midline carapace length of Alligator 

Snapping Turtle hatchlings split into three groups characterized by the source of 

microbiota provided over a 6-week span. Closed circles = turtles inoculated with 

deionized water, open circles = turtles inoculated with creek water, and closed triangles = 

turtles inoculated with adult feces. Error bars are ± 1 SE. 

A 
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Figure 2. The assimilation efficiencies of A) crude protein, B) acid detergent fiber 

(ADF), and C) neutral detergent fiber (NDF) by M. temminckii hatchlings inoculated DI 

water, creek water, and adult M. temminckii feces. Lowercase letters illustrate the 

relationships among treatments for comparisons of the mean nutrient assimilation 

efficiencies. Error bars are ± 1 SE. 
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Figure 3. The relative abundance of core phyla in samples of adult feces, creek water, 

and hatchling feces at the start and end of a 42-day digestive efficiency experiment. Only 

major phyla are indicated for clarity.  
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Figure 4. Rarefaction analysis of average operational taxonomic unit (OTU) richness 

(Chao 1) observed across gut microbiomes of M. temminckii hatchlings, as well as the 

creek water and adult conspecific feces of which they were inoculated. Error bars in 

control samples are not visible due to having proportionately fewer reads. Green = turtles 

inoculated with deionized water, yellow = combined turtles initial, red = adult 

conspecific feces control, blue = turtles inoculated with creek water, purple = turtles 

inoculated with adult feces, orange = creek water control. 
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Figure 5. Principle coordinate analysis (PCoA) A-B) unweighted UniFrac distances and 

C-D) weighted UniFrac distances of representing the gut microbiomes of M. temminckii 

hatchlings in a digestive efficiency experiment, as well as the creek water and adult 

conspecific feces samples of which they were inoculated. Samples were rarefied to 

46,329 reads. In all cases initial samples cluster as a distinct group. Within the treatment 

cluster, turtles that were exposed to adult feces clustered independently from the DI and 

creek water exposure (panels B and  D).
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EFFECTS OF INDOOR HOUSING CONDITIONS ON GROWTH RATE AND 

PLASMA CORTICOSTERONE LEVELS IN ALLIGATOR SNAPPING 

TURTLES 

 

Abstract 

The decline of alligator snapping turtle (Macrochelys temminckii) populations 

throughout its range has spurred efforts to propagate and head-start turtles in captivity, 

allowing them to reach a size less susceptible to mortality after release. Growth rates of 

captive juvenile M. temminckii at Tishomingo National Fish Hatchery have been 

generally lower than that after release; however, the underlying cause of retarded growth 

in captivity is unknown. Due to this species’ cryptic nature and affinity for structure in 

the wild, I hypothesized that faster growth rates and reduced corticosterone levels would 

occur in enclosures with increased artificial refugia, as well as among turtles housed at 

lower densities. To test the effects of added structure, experimental treatments were 

designed to simulate observed habitat associations for M. temminckii, such as flotant 

vegetation, submerged structures, and overhead canopy cover. To determine the influence 

of housing density, treatments in a second experiment were manipulated based on 

conditions likely encountered in the wild, at the hatchery, and at densities that were 

considered comparatively crowded. Morphological measurements and blood samples 

were taken at the beginning and end of a 6-week experiment. Turtles maintained in 

enclosures with artificial flotant structures grew significantly faster than turtles 

maintained with other structural components. Stocking density had no significant effect 

on average growth over the duration of the study. Corticosterone levels were not 
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significantly different across treatments in either experiment. An important proximate 

result of my study will be improved head-starting practices for the species and, perhaps 

ultimately, will raise awareness for the implications of optimizing husbandry practices in 

conservation programs. 

 

Introduction 

While threats to reptilian taxa in freshwater ecosystems are reported to be 

disproportionately high, freshwater turtles are markedly at risk with 46–57% of species of 

conservation concern (Böhm 2013). Degradation of aquatic habitats occurs directly and 

indirectly from flood control structures, agricultural development, deforestation, draining 

of wetlands, mining, and proliferation of invasive species (Richter et al. 1997; Moll and 

Moll 2004). The need for captive wildlife propagation programs to augment or restore 

populations is rising. This has created an ongoing challenge for conservation biologists to 

better understand the ecology and life-history of declining species. Despite the recent 

expansion of knowledge for captive animal husbandry, reptiles remain relatively 

understudied, with much more research focused on mammals and anurans (Hayes et al. 

1998; Bashaw et al. 2016). Historically, reptiles were often considered to be unresponsive 

to most environmental influence in captivity (Burghardt 2013), but few studies have 

conducted quantitative physiological assessments of housing conditions by measuring 

influences of the captive environment on growth, adrenal response, or reproductive 

success (Oonincx and Leeuwen 2017). However, a few studies have described broad 

effects of husbandry and captive environment on overall health of Chelonids. For 

example, Case et al. (2005) described broad effects of husbandry and captive 
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environment on overall health, finding that eastern box turtles (Terrapene carolina 

carolina) had lower heterophil-to-lymphocyte ratios when provided mulch substrate and 

hides, suggesting lower levels of stress. Additionally, Chen et al. (2007) found that 

captive soft-shelled turtles (Pelodiscus sinensis) exhibited lower growth rates when 

maintained at higher stocking densities.  

The alligator snapping turtle (Macrochelys temminckii) is currently listed as 

‘Vulnerable’ on the IUCN Red List (1996) due to habitat degradation as described above, 

along with historically unregulated harvest from the 1960s to the 1980s (Pritchard 1979a; 

Roman et al. 1999; Reed et al. 2002). Delayed sexual maturity and high early life-stage 

mortality rates have also exacerbated these bottlenecks, causing reverberating effects that 

have delayed resurgence and repopulation. These challenges are exacerbated by illegal 

poaching, despite legal protections throughout its range (U.S. Department of Justice 

2017).  Reintroduction of juveniles and translocation of adults from healthy populations 

are likely viable conservation measures; however, opportunities for translocation are rare 

because of the paucity of robust donor populations (Riedle et al. 2008; Moore et al. 

2013). Captive propagation that includes growing hatchling M. temminckii to a larger size 

in captivity prior to reintroduction presumably gives these animals a greater likelihood of 

survival upon release (Pritchard 1979b; Ligon and Lovern 2009; Moore et al. 2014).  

Tishomingo National Fish Hatchery, located in southeastern Oklahoma, initiated a 

head-start program in 2000 and has released over 1,400 alligator snapping turtles at eight 

locations throughout the Mississippi River drainage since 2006. Each year during nesting 

season, eggs are collected from nests produced by captive brood stock and incubated until 

hatching. After hatching, juveniles spend one or more years in indoor enclosures to 
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maximize survival. The turtles are then rotated to fenced outdoor ponds until they are 

released at a reintroduction site. Turtles are fed daily indoors and are supplemented with 

extra forage when housed outdoors, conditions that were designed to result in growth that 

would exceed growth rates in natural populations. Surprisingly, however, the average 

growth rate of juvenile M. temminckii at Tishomingo National Fish Hatchery is generally 

lower than growth rates exhibited after reintroduction (Moore et al. 2013; Anthony 2015). 

The underlying causes of comparatively retarded growth rates in captivity are unknown.  

In comparison to many sympatric freshwater turtles, M. temminckii is highly 

aquatic and exhibits a preference for benthic habitats (Sloan and Taylor 1987; Riedle et 

al. 2006). Hatchling, juvenile, and adult M. temminckii preferentially choose habitats with 

dense overhead canopy cover and submerged or emergent structure (e.g. flotant 

vegetation, submerged rocks and logs, and undercut banks) (Riedle et al. 2006; Bass 

2007; Dreslik et al. 2017; Spangler 2017). Presumably, such environmental features are 

favored because they convey fitness advantages, such as correlating with locations of 

patchy dietary resources or providing protection from potential predators (Howey and 

Dinkelacker 2009). In addition to the immediate benefits of acquiring nutrients efficiently 

and avoiding violent death, these preferred conditions might offer associated benefits of 

reducing psychological and physiological stress and their associated impacts on fitness. 

I conducted two experiments to test the effects of housing conditions and rearing 

densities to identify conditions that are the least stressful and most conducive for growth. 

My objectives were to identify captive environment conditions for juvenile M. temminckii 

that minimize stress and optimize growth, while adhering to spatial constraints that 

require artificial and communal housing.  I tested the hypotheses that 1) increasing 
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structural components in housing environment and 2) reducing housing density will both 

result in decreased baseline corticosterone (CORT) levels and faster growth rates. 

 

Methods 

Animals and Housing Conditions. I conducted two experiments concurrently 8 

June–27 July 2017 at Tishomingo National Fish Hatchery in southeastern Oklahoma. 

Prior to and during my experiments, all subjects were maintained in the same building 

under common conditions. Windows provided natural light and dictated diel light cycles. 

As a result, day length was comparatively long and varied throughout the experiments 

(mean = 14.3 h sunrise to sunset; range = 13.95–14.45 h). The building in which the 

turtles were housed experienced light foot traffic by hatchery staff during daylight hours, 

and I made no effort to eliminate this activity in order to replicate the conditions that 

turtles are exposed to in a typical head-start program. All of the turtles I used in my study 

were 21 mos old at its inception, and each turtle was double-marked using 

numbered/color-coded tags adhered to the carapace (Queen Marking Kits; The Bee 

Works, Oro-Medonte, Ontario, Canada). I only handled turtles when tanks were cleaned 

or when collecting blood samples and to obtain morphometrics at the beginning and end 

of each experiment. Rarely, individual turtles were further handled during cleaning 

events to replace identifying tags that had fallen off. I provided experimental animals 

with 6.4-mm diameter fish-based pellets three times daily at approximately 0800h, 

1400h, and 2100h. I scaled the quantity of food to the number of turtles in each enclosure 

to limit accumulation of orts but increased quantities as the experiments progressed and 

turtles grew. Small quantities of orts still occurred but minimally affected water quality. 
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Prior approval for this project was obtained from the Missouri State University 

Institutional Animal Care and Use Committee (Approved: 9/2/16; IACUC ID 17-004.0). 

Housing Enrichment Experiment. To test the effects of cage furnishings on 

growth and stress, I exposed groups of M. temminckii to four different housing conditions 

to determine their influence on growth and circulating corticosterone levels (CORT) 

(Appendix C). Each treatment group was characterized by the addition of one or more 

types of cover that correspond with preferred habitat variables that have been described 

from field studies (Sloan and Taylor 1987; Riedle et al. 2006; Howey and Dinkelacker 

2009; Spangler 2017), while the control group was representative of the housing 

conditions that have historically been provided at Tishomingo National Fish Hatchery. 

The conditions in control tanks included placement of three segments of 15-cm diameter 

polyvinyl chloride (PVC) pipe (length = 30 cm), sliced longitudinally and placed with the 

convex side down to provide upturned edges under which turtles could find cover. 

Treatment 1 included the same PVC hides as the control group, with the addition of a 

black plastic egg crate-type light diffusers (30.5 × 39.5 cm) suspended just above the 

water’s surface on a floating PVC tubular frame. This addition was conceived to simulate 

an undercut bank or floating vegetation mat, which have been identified as preferred by 

this species (Sloan and Taylor 1987; Spangler 2017). Treatment 2 included control 

conditions plus a black mesh shade cloth covering two-thirds of the top of the tank (40 

cm above the water surface). Shade cloth was selected to simulate overstory canopy, 

which is also reportedly favored by M. temminckii (Sloan and Taylor 1987; Riedle et al. 

2006; Shipman and Riedle 2008). Finally, treatment 3 consisted of the control group PVC 
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hides, the egg crate-type light diffusers, and the black mesh shade cloth over the top of 

the tank. 

Twenty tanks (58 × 58 cm; water depth = 14 cm) were arranged in clusters of two 

or four (Figure 1), and 15 turtles were randomly assigned to each tank (187 cm2 surface 

area per turtle). Treatments were assigned to the 20 tanks in a randomized block design 

with clusters serving as experimental blocks (Figure 1). After turtles were placed into 

their assigned tanks, they were given one week to acclimate before I collected initial 

blood samples and morphological measurements. These blood samples were drawn from 

a randomly selected subgroup of five turtles from each tank and all blood samples were 

collected within five minutes of handling to prevent unintended deviations from baseline 

CORT levels that could result from handling. I collected morphological data from every 

individual after blood sampling was completed. Morphometric data included mass (±0.01 

g), straight midline carapace length (±0.1 mm), and plastron length (±0.1 mm). The 

methods described above for body measurements and blood sampling were repeated at 

the end of the 6-week study.  

Housing Density Experiment. This experiment was designed to assess the 

potential influence of housing density on M. temminckii growth and CORT levels. I 

housed turtles in opaque plastic containers (43 × 30 cm) (Traex Corp.; Dane, WI, USA) 

that were randomly positioned on two levels of stacked shelving (Figure 2). Each 

container contained two PVC hides (15-cm diameter PVC; length = 30 cm) placed 

convex-side down. A total of 24 containers (12 per shelf) were used to obtain eight 

replicates for each density treatment. I randomly reassigned the positions of containers 

within and across the two shelving levels weekly to eliminate potentially confounding 
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effects of microclimate variation within the building. Three experimental groups were 

designated: (1) turtles housed solitarily (1,290 cm2 per turtle); (2) turtles housed in 

medium-density conditions of five individuals per container (258 cm2 per turtle); and (3) 

turtles housed in high-density conditions of 10 individuals per container (129 cm2 per 

turtle). The same growth measurements and blood sampling were performed at the 

inception and end of the experiment as described in the housing enrichment experiment. I 

drew blood samples from one representative turtle from each enclosure, followed by 

collection of morphometrics from every turtle.  

Blood Sampling and Corticosterone Radioimmunoassay. I collected blood 

samples (0.2–1.0 mL) from animals in both experiments at the beginning and end of each 

experimental trial. The same animals were sampled at each interval to facilitate analyzing 

data in a repeated measures framework. Samples were taken from the caudal artery on the 

dorsal side of the tail with a 21-gauge needle and 1-mL syringe (Teare 2010). Blood 

samples were collected within five minutes of a turtle being removed from its tank, which 

is predicted to be representative of its baseline circulating CORT concentrations (Polich 

2016; D. Thompson, pers. comm.). Samples were initially stored on ice and later 

centrifuged. I then transferred plasma to new storage tubes and froze them at -20 °C. 

Finally, corticosterone concentrations were determined via radioimmunoassay using 100 

µL aliquants and following methods described in Love et al. (2017).  

Statistical Analysis: Housing Enrichment. Results from the housing enrichment 

experiment were analyzed in a randomized design to compensate for potentially 

heterogeneous environmental conditions within the building in which the study was 

conducted. I treated tanks as random factors, treatment groups as fixed factors, and 
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individual turtles were experimental units. I checked the distributions of initial body size, 

CORT, and growth rate data for normality using Shapiro-Wilk tests, and I used non-

parametric Kruskal-Wallis tests when data failed the assumption of normality. Prior to 

beginning the experiment, I ensured that variance of body size was equal among 

treatments using a Shapiro-Wilk test. To determine the influence of housing enrichment 

treatments on growth, I analyzed size-corrected growth rates to adjust for variation in 

body size at the inception of experiments, with rates expressed in mg·g-1·d-1. I compared 

turtles’ growth rates over the duration of the experiment across treatments using a non-

parametric Kruskal-Wallis test. I tested for effects of end-of-trial CORT levels on growth 

rates using linear regressions. To compare growth rates with experimental groups and 

tanks as main effects, and baseline CORT level changes between beginning and end of 

the experiments as the response variable, I used a two-factor repeated-measures analysis 

of variance (ANOVA). I analyzed differences in baseline CORT samples among blocks, 

treatment groups, tanks, and period (beginning versus end samples) by using a multiple-

factor repeated-measures ANOVA.  

Statistical Analysis: Housing Density.  The housing density experiment was 

analyzed using a completely randomized design, with treatment as a fixed factor and 

tanks representing experimental units. This design was necessary because the low-density 

tanks contained just one turtle each and therefore within-tank variation could not occur. 

As described for my housing experiment, I calculated size-corrected growth rates (mg·g-

1·d-1); I also used Kruskal-Wallis non-parametric tests when initial body size, growth rate, 

or CORT concentrations failed the assumption of normality. I began by testing for the 

effect of housing density on growth rates over the duration of the experiment using a 
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Kruskal-Wallis test. I then conducted one-factor ANOVAs to assess the effects of 

housing density on the mean, minimum, and maximum growth rates of turtles in each 

tank. By necessity, all three values were represented by the same individuals in the low-

density treatment. I used linear regression to examine the effects of end-of-trial CORT 

levels on growth rates. Using a repeated-measures ANOVA, I was able to compare 

CORT level values among periods and experimental groups. Finally, I used a repeated-

measures ANOVA to compare growth rates with treatments and periods as main effects, 

and the response variable as baseline CORT level change over the duration of the 

experiment.  

 

Results 

Housing Enrichment. Three hundred turtles were initially assigned to treatments 

in the housing enrichment experiment. However, four animals’ blood samples were 

omitted from CORT assays either because plasma sample volumes were insufficient or 

else were contaminated with lymph. Additionally, one turtle died from injuries inflicted 

by a cage mate. Notably, overall aggression was exceedingly rare and was only observed 

when animals were disturbed during cage cleaning. The deceased turtle was replaced 

with another turtle of the same age class to maintain consistent housing density; however, 

data from these two individuals were omitted from analyses. 

At the beginning of this experiment, morphometrics of the 21-month-old alligator 

snapping turtles were equal among treatments and averaged 102.0 ± 1.41 g (H = 0.161, p 

= 0.98), 69.75 ± 0.33 mm straight mid-line carapace length (F3,295 = 0.190, p = 0.90), and 

57.34 ± 0.28 mm plastron length (F3,295 = 0.114, p = 0.952). Turtles grew an average of 
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18.24 ± 0.35 mg·g-1·d-1 (range = 4.04–36.34 mg·g-1·d-1) over the course of the 6-week 

trial; however, growth rates were strongly influenced by housing enrichment treatment, 

with turtles in the two treatments that contained flotant structures growing much faster 

than either the control or the treatment with shade-cloth canopy (H = 31.24, p < 0.0001; 

Figure 3). Among the subset of 76 turtles from which useable blood samples were 

obtained, growth rate did not correlate with plasma CORT levels measured at the end of 

the experiment (r2 = -0.0031, p = 0.59; Figure 4A). Plasma CORT was not affected by 

treatment, and there was no interaction between sampling period and treatment 

(treatment: F3,184 = 0.78, p = 0.51, period  treatment: F3,184 = 0.10, p = 0.96). However, 

there was a strong and consistent effect of sampling period on CORT (F1,184 = 8.90, p = 

0.0032; Figure 5A).  

Housing Density. One hundred twenty-eight turtles were distributed across 24 

enclosures comprising three levels of density. Mean growth rates across treatments was 

21.70 ± 0.44 mg·g-1·day-1 (range = 8.17–32.60 mg·g-1·day-1) and was not significantly 

influenced by stocking density (H = 0.09, p = 0.96). However, there were significant 

differences when the turtles housed singly in the low-density treatments were compared 

to the fastest and slowest-growing turtles in the medium- and high-density treatments, (F 

= 10.501, df = 2 p < 0.001; Figure 6). Specifically, the fastest-growing turtles maintained 

in high-density (p < 0.001) and medium-density (p = 0.013) conditions grew faster than 

those in the low-density groups. However, there were no differences observed between 

fastest-growing animals in the high-density and medium-density groups. Conversely, the 

slowest-growing turtles in the low-density group grew faster than those in the high-

density treatment (p < 0.05). I did not observe any differences between slowest-growing 
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turtles in the low- and medium-density treatments (p > 0.05) or the medium- and high-

density treatments (p > 0.05) 

In contrast to results from the housing enrichment experiment, I observed a 

negative correlation between CORT at the end of the experiment and growth (slope = -

1.99, r2 = 0.40, p < 0.001; Figure 4B). Neither housing density nor interaction between 

housing density and period had a significant effect on average baseline CORT (treatment: 

F2,21 = 1.73, p = 0.20, period  treatment interaction: F2,21 = 0.23, p = 0.80). However, 

CORT was consistently lower at the end of the experiment than at the beginning (F1,21 = 

4.58, p = 0.0443; Figure 5B).  

 

Discussion 

Field studies of adult, subadult, and hatchling alligator snapping turtles have 

consistently reported associations with overstory canopy, as well as various aquatic 

structures that have included woody debris, rocks, undercut banks, and mats of floating 

aquatic plants (Harrel et al. 1996; Riedle et al. 2006; Bass 2007; Moore et al. 2014; 

Spangler 2017). When organisms associate with habitat features at frequencies that are 

greater than would occur randomly, it is typically assumed that there is a fitness benefit to 

doing so. Interestingly, while my housing enrichment experiment sought to simulate 

these habitat characteristics, growth rates of juvenile alligator snapping turtles were only 

greater in enclosures containing floating mats that mimicked flotant vegetation and were 

unaffected by the presence of a shade cloth implemented to mimic overstory canopy. 

Thus, the likely fitness benefits of floating mats—and hence the preference for it in 

nature—are reasonably clear, whereas associating with dense overstory canopy either 
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enhances fitness in some way other than increasing growth rates or else simply does not 

convey a fitness advantage. While many studies have reported preferences for these and 

other habitat features, to my knowledge no study has attempted to rank the relative 

importance of preferred environmental variables. Alternatively, it is possible that shade 

cloth covering the tops of tanks was simply not perceived in the same way by captive 

turtles as overstory canopy is by wild turtles. Finally, it is possible that alligator snapping 

turtles do not in fact exhibit a preference for overstory canopy, but rather are found in 

association with it due to some highly correlated variable, such as water depth, that was 

not represented in my experiments. 

Throughout my housing enrichment experiment, turtles were typically closely 

grouped below the flotant structure and were rarely seen in close proximity to PVC 

segments beyond the perimeter of the mat (Appendix D). The surface area of the flotant 

afforded refuge for every animal, which may have been conducive to reducing 

competition within tanks (Oonincx and Leeuwen 2017). In contrast, only a subset of 

animals could be in close proximity to sides of PVC segments, leaving others exposed 

and likely to jockey for a preferred position in the tank. Higher growth rates of M. 

temminckii maintained in tanks with flotant structures may be due to reduced energy 

expended on activity resulting from reduced competition for the limited cover provided 

by PVC segments, or could have resulted from increased food consumption. Although I 

did not quantify either variable, there appeared to be consistently shorter latency to feed 

and less orts in tanks that were afforded cover by a flotant mat. This may be due to the 

turtles’ perception that they were undetectable under the mats. 
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My hypothesis that growth rates would inversely correlate with housing density 

was not supported, as housing density did not affect average growth across density 

groups. However, as turtle density increased, so too did the average mass gained by 

fastest-growing turtle in each tank. The inverse relationship was apparent for slowest-

growing turtles, which grew more slowly at both medium and high densities than turtles 

that were housed singly. These patterns clearly indicate high variability in growth rates, 

even as the average collective growth rate remained consistent among groups. I interpret 

these patterns to indicate that communal housing in turtles results in a distinct division of 

winners and losers of resources. Food was allocated based upon the number of turtles in 

an enclosure, and presumably turtles that fed immediately or otherwise actively competed 

for food were able to co-opt disproportionate quantities. Meanwhile, turtles that were 

reluctant to eat obtained less food. These patterns suggest the possibility of dominance 

hierarchies in groups of alligator snapping turtles, at least in a captive setting. In support 

of this possibility, subsets of individuals in medium- and high-density groups typically 

displayed immediate feeding responses, and all or most food presented to them was 

consumed prior to the next feeding event. While feeding, turtles in these groups would 

frequently mount other turtles to obtain food, stretch their necks past other individuals, or 

forcefully move other turtles to eat. These behaviors closely resembled those reported for 

common snapping turtles housed communally, which resulted in differential food 

acquisition (Froese and Burghardt 1974). Grimpe (1987) noted that two captive adult M. 

temminckii exhibited a hierarchical relationship characterized by a male aggressor that 

frequently bit a submissive female cage mate, as well as the females’ retreat from food 

when the dominant male approached. Reduced body condition of wild male M. 
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temminckii in the presence of well-nourished females has also generated speculation for 

male-male competition in response to population growth (Trauth et al. 2016). The fact 

that I observed similar patterns among small juveniles that were similar in size suggests 

that dominance hierarchies may not result solely from variation in size or male 

dominance. 

A study of hatchling common snapping turtles (Chelydra serpentina) found that 

growth rates were higher when animals were housed in isolation, rather than in groups 

(McKnight and Gutzke 1993). This contrasted with my results in which average growth 

rates of turtles maintained solitarily were not significantly different from those housed 

communally. Solitary turtles were also rarely seen eating and often left orts. I speculate 

that the lack of competition resulted in a weak feeding response. Based on the 

understudied behavioral ecology of M. temminckii in the wild, it is possible that some 

level of competition with conspecifics or guild mates may be beneficial. My study was 

not designed to formally investigate behavior, but similar experiments could be 

conducted to resolve the role of competition in triggering feeding activity and, by 

extension, growth.  

Contrary to my prediction that high group density and low housing enrichment 

would trigger a stress response in juvenile alligator snapping turtles, average CORT 

levels did not vary among treatments in either experiment. There are two potential causes 

for this outcome: 1) the turtles were equally physiologically stressed (or not) across 

treatment groups in both experiments, or 2) corticosterone is not a reliable indicator of 

stress in this taxon. Although plasma CORT is considered the dominant glucocorticoid in 

reptiles (Sandor and Mehdi 1979; Jessop 2005; Wada 2008; Silvestre 2014), it is possible 
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that some reptile taxa deviate from this broad phylogenetic pattern. My study is the first 

that I am aware of to report stress hormone levels of alligator snapping turtles, and it is 

conceivable that corticosterone is less active than cortisol. Indeed, the physiological 

activity of cortisol in a physiological stress response has been demonstrated in studies of 

Asian soft-shelled turtles (Pelodiscus sinensis) (Zhou et al. 2003) and Hermann’s 

tortoises (Testudo hermanni) (Fazio et al. 2014). To my knowledge, no study to date has 

compared the relative activity of different glucocorticoids in the stress response of turtles, 

although among non-avian reptiles at least one lizard has been demonstrated to 

physiologically respond to both corticosterone and cortisol (Jacob and Oommen 1992). 

Alternative explanations for the lack of treatment effects on CORT levels are that 

animals were either equally unstressed across treatments (concentrations were generally 

low), or that CORT is simply a poor indicator of stress in some taxa or under some 

conditions.  Heterophil to lymphocyte ratios (H/L) have been shown to complement 

CORT levels in turtles and have even been suggested as a more dependable index for 

chronic stress (Aguirre et al. 1995; Morici et al. 1997; Adamovicz et al 2015; Polich 

2016). For example, eastern box turtles (Terrapene carolina carolina) had lower H/L 

ratios but displayed no difference in fecal CORT or growth when provided with an 

enriched environment (Case et al. 2005). Other potential indicators of chronic stress 

should be investigated, such as stress-induced CORT and cortisol, immune response, 

respiration rate, complete hemogram and differential analysis, and oxidative damage 

(Aguirre et al. 1995; Romero and Wilkelski 2001; Selman et al. 2012). 

The effect of period on CORT levels in both experiments may be a consequence 

of insufficient acclimation time prior to initiating the experiments and/or the influence of 
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housing conditions prior to the start of the experiment. Turtles were relocated from large 

raceway tanks to smaller tanks of similar densities. Moving reptiles to smaller areas of 

habitat can cause a heightened influence or change of hierarchy in close quarters, leading 

to a period of adjustment for social stability (Greenberg 1987). Baseline CORT levels of 

wild M. temminckii should be measured to compare my results to concentrations typical 

for the species. Additionally, experiments testing the acute response of alligator snapping 

turtle circulating CORT to stress would be helpful for assessing its role in the stress 

response. 

The relationship between CORT and growth supported my predictions in one 

experiment but did not in the other. The lack of a CORT/growth relationship in the 

housing enrichment experiment suggests that CORT either does not influence growth in a 

predictable way or that CORT is a poor indicator of stress in alligator snapping turtles. 

However, the expected negative relationship I observed in the housing density 

experiment, with high CORT levels corresponding with low growth rates suggest that, at 

least under some conditions, elevated CORT does in fact suppress growth. Plasma CORT 

concentrations were similar in the two experiments, so it seems unlikely that one set of 

treatments triggered a stress response and the other did not.  

Implications for Captive Propagation. My results demonstrate the importance 

of how captive environmental enrichment can maximize growth of juvenile alligator 

snapping turtles for reintroduction. Additions to enclosures that emulate structures that 

turtles use in nature may be useful, but clearly some types of enrichment produce 

measurable benefits to individual fitness whereas others do not. The effects of housing 

density are less clear and the ‘right’ density may be context-dependent. Group housing 
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produced variable growth rates within cages, suggesting that there are winners and losers 

under such conditions. While there is still room for debate for the effectiveness of head-

starting as a conservation tool, the high mortality rates that young M. temminckii sustain 

before reaching sizes that exceed predator gape limits are still problematic for restoring 

wild populations (Dreslik et al. 2017). This suggests that there is in fact value to head-

starting alligator snapping turtles, and that experimentally evaluating different rearing 

conditions can identify optimal husbandry methodologies that produce turtles that are 

optimally conditioned prior to release. 



 

53 

Literature Cited 

ADAMOVICZ, L, BRONSON, E., BARRETT, K., AND DEEM, S.L. 2015. Health assessment of 

free-living box turtles (Terrapene carolina carolina) in and around the Maryland 

Zoo in Baltimore 1996–2011. Journal of Zoo and Wildlife Medicine 46:39–51. 

AGUIRRE, A.A., BALAZS, G.H., SPRAKER, T.R., AND GROSS, T.S. 1995. Adrenal and 

hematological responses to stress in juvenile green turtles (Chelonia mydas) with 

and without fibropapillomas. Physiological Zoology 68:831–854. 

ANGELIER, F. AND WINGFIELD, J.C. 2013. Importance of the glucocorticoid stress 

response in a changing world: theory, hypotheses and perspectives. General and 

Comparative Endocrinology 190:118–128. 

ANTHONY, T.L., RIEDLE, J.D., EAST, M.B., FILLMORE, B., AND LIGON, D.B. 2015. 

Monitoring of a reintroduced population of juvenile alligator snapping turtles. 

Chelonian Conservation and Biology 14:43–48.  

BASHAW, M.J., GIBSON, M.D., SCHOWE, D.M., AND KUCHER, A.S. 2016. Does enrichment 

improve reptile welfare? Leopard geckos (Eublepharis macularius) respond to 

five types of environmental enrichment. Applied Animal Behaviour Science 

184:150–160. 

BASS, A.A. 2007. Habitat use and movements of alligator snapping turtle (Macrochelys 

temminckii) hatchlings. Unpublished MS Thesis, University of Louisiana, 

Monroe, Louisianna. 

BÖHM, M., COLLEN, B., BAILLIE, J.E., BOWLES, P., CHANSON, J., COX, N., … AND 

RHODIN, A.G. 2013. The conservation status of the world’s reptiles. Biological 

Conservation 157:372–385. 

BURGHARDT, G.M. 2013. Environmental enrichment and cognitive complexity in reptiles 

and amphibians: concepts, review, and implications for captive populations. 

Applied Animal Behaviour Science 147:286–298. 

CASE, B.C., LEWBART, G.A., AND DOERR, P.D. 2005. The physiological and behavioural 

impacts of and preference for an enriched environment in the eastern box turtle 

(Terrapene carolina carolina). Applied Animal Behaviour Science 92:353–365 

CHEN, X., NIU, C., AND PU, L. 2007. Effects of stocking density on growth and non‐
specific immune responses in juvenile soft‐ shelled turtle, Pelodiscus sinensis. 

Aquaculture Research 38:1380–1386. 

DRESLIK, M.J., CARR, J.L., LIGON, D.B., AND KESSLER, E.J. 2017. Recovery of the 

alligator snapping turtle (Macrochelys temminckii) in the Mississippi River Valley 

drainages of southern Illinois, Oklahoma, and Louisiana. Illinois Natural History 

Survey, 59 pp. 



 

54 

FAZIO, E., MEDICA, P., BRUSCHETTA, G., AND FERLAZZO, A. 2014. Do handling and 

transport stress influence adrenocortical response in the tortoises (Testudo 

hermanni)? ISRN Veterinary Science 2014:1–6. 

FROESE, A.D. AND BURGHARDT, G.M. 1974. Food competition in captive juvenile 

snapping turtles, Chelydra serpentina. Animal Behaviour 22:735–740. 

GREENBERG, N. AND WINGFIELD, J.C. 1987. Stress and reproduction: reciprocal 

relationships. In Hormones and reproduction in fishes, amphibians, and reptiles. 

Springer, Boston, MA. Pp. 461–503. 

GRIMPE, R. 1987. Maintenance, behavior, and reproduction of the alligator snapping 

turtle, Macroclemys temminckii, at the Tulsa Zoological Park. Bull. Oklahoma 

Herpetological Society 12:1–6.  

HARREL, J.B., ALLEN, C.M., AND HEBERT, S.J. 1996. Movements and habitat use of 

subadult alligator snapping turtles (Macroclemys temminckii) in Louisiana. 

American Midland Naturalist 135:60–67. 

HAYES, M.P., JENNINGS, M.R., AND MELLEN, J.D. 1998. Chapter 13. Beyond mammals: 

environmental enrichment for amphibians and reptiles. In Second Nature: 

Environmental Enrichment for Captive Animals, Smithsonian Institution Press, 

Washington D.C. Pp. 205–235. 

HOMBERGER, B., JENNI-EIERMANN, S., AND JENNI, L. 2015. Distinct responses of baseline 

and stress-induced corticosterone levels to genetic and environmental factors. 

General and Comparative Endocrinology 210:46–54. 

HOWEY, C.A.F., AND DINKELACKER, S.A. 2009. Habitat selection of the alligator 

snapping turtle (Macrochelys temminckii) in Arkansas. Journal of Herpetology, 

43:589–596. 

JACOB, V. AND OOMMEN, O.V. 1992. A comparison of the effects of corticosterone and 

cortisol on intermediary metabolism of Calotes versicolor. General and 

Comparative Endocrinology 85:86–90. 

JESSOP, T.S., SUMNER, J.M., LIMPUS, C.J., AND WHITTIER, J.M. 2004. Interplay between 

plasma hormone profiles, sex and body condition in immature hawksbill turtles 

(Eretmochelys imbricata) subjected to a capture stress protocol. Comparative 

Biochemistry and Physiology Part A: Molecular & Integrative Physiology 

137:197–204. 

KORTE, S.M., KOOLHAAS, J.M., WINGFIELD, J.C., AND MCEWEN, B.S. 2005. The 

Darwinian concept of stress: benefits of allostasis and costs of allostatic load and 

the trade-offs in health and disease. Neuroscience and Biobehavioral Reviews 

29:3–38. 

LIGON, D.B. AND LOVERN, M.B. 2009. Temperature effects during early life stages of the 



 

55 

alligator snapping turtle (Macrochelys temminckii). Chelonian Conservation and 

Biology 8:74–83. 

LOVE, A.C., LOVERN, M.B., AND DURANT, S.E. 2017. Captivity influences immune 

responses, stress endocrinology, and organ size in house sparrows (Passer 

domesticus). General and Comparative Endocrinology 252:18–26. 

MCKNIGHT, C.M. AND GUTZKE, W.H. 1993. Effects of the embryonic environment and of 

hatchling housing conditions on growth of young snapping turtles (Chelydra 

serpentina). Copeia 2:475–482. 

MOLL, D. AND E.O. MOLL. 2004. The Ecology, Exploitation, and Conservation of River 

Turtles. New York Oxford University Press. 393 pp. 

MOORE, D.B., LIGON, D.B., FILLMORE, B.M., AND FOX, S.F. 2013. Growth and viability 

of a translocated population of alligator snapping turtles (Macrochelys 

temminckii). Herpetological Conservation and Biology 8:141–148. 

MOORE, D.B., LIGON, D.B., FILLMORE, B.M., AND FOX, S.F. 2014. Spatial use and 

selection of habitat in a reintroduced population of alligator snapping turtles 

(Macrochelys temminckii). The Southwestern Naturalist 59:30–37. 

MORGAN, K.N. AND TROMBORG, C.T. 2007. Sources of stress in captivity. Applied 

Animal Behaviour Science 102:262–302. 

MORICI, L.A., ELSEY, R.M., AND LANCE, V.A. 1997. Effects of long-term corticosterone 

implants on growth and immune function in juvenile alligators, Alligator 

mississippiensis. The Journal of Experimental Zoology 279:156–162. 

OONINCX, D. AND VAN LEEUWEN, J. 2017. Evidence-Based Reptile Housing and 

Nutrition. Veterinary Clinics: Exotic Animal Practice 20:885–898. 

POLICH, R.L. 2016. Stress hormone levels in a freshwater turtle from sites differing in 

human activity. Conservation Physiology 4:16. 

PRITCHARD, P.C.H. 1979a. Encyclopedia of turtles. TFH Publications, Neptune, New 

Jersey, USA. 

PRITCHARD, P.C.H. 1979b. ‘Headstarting’ and other conservation techniques for marine 

turtles. International Zoo Yearbook 19:38–42. 

REED, R.N., J. CONGDON, AND GIBBONS, J.W. 2002. The Alligator Snapping Turtle 

(Macrochelys [Macroclemys] temminckii): A review of ecology, life history, and 

conservation, with demographic analyses of the sustainability of take from wild 

populations. US Fish and Wildlife Service Report:1–17. 

RICHTER, B.D., BRAUN, D.P., MENDELSON, M.A., AND MASTER, L.L. 1997. Threats to 

imperiled freshwater fauna. Conservation Biology 11:1081–1093. 



 

56 

RIEDLE, J.D., P.A. SHIPMAN, S.F. FOX, AND LESLIE JR., D.M. 2006. Microhabitat use, 

home range, and movements of the alligator snapping turtle, Macrochelys 

temminckii, in Oklahoma. Southwestern Naturalist 51:35–40. 

RIEDLE, J.D., LIGON, D.B., AND GRAVES, K. 2008. Distribution and management of 

alligator snapping turtles, Macrochelys temminckii, in Kansas and Oklahoma. 

Transactions of the Kansas Academy of Science 111:21–28. 

ROMAN, J., S.D. SANTHUFF, P.E. MOLER, AND BOWEN, B.W. 1999. Population structure 

and cryptic evolutionary units in the alligator snapping turtle. Conservation 

Biology 13:135–142. 

ROMERO, L.M., AND WIKELSKI, M. 2001. Corticosterone levels predict survival 

probabilities of Galapagos marine iguanas during El Nino events. Proceedings of 

the National Academy of Sciences, 98:7366–7370. 

SANDOR, T. AND MEHDI A.Z. 1979. Steroids and evolution. In: Hormones and Evolution, 

Vol. I. E.J.W. Barrington (Ed.). Academic Press, New York. 

SELMAN, C., BLOUNT, J.D., NUSSEY, D.H., AND SPEAKMAN, J.R. 2012. Oxidative damage, 

ageing, and life-history evolution: where now? Trends in Ecology and Evolution 

27:1570–1577. 

SHIPMAN, P.A. AND RIEDLE, J.D. 2008. Status and distribution of the alligator snapping 

turtle (Macrochelys temminckii) in southeastern Missouri. Southeastern Naturalist 

7:331–338. 

SILVESTRE, A.M. 2014. How to assess stress in reptiles. Journal of Exotic Pet Medicine 

23:240–243. 

SPANGLER, S.J. 2017. Ecology of hatchling alligator snapping turtles (Macrochelys 

temminckii). (M.Sc. Thesis, Missouri State University, Springfield, Missouri)  

SLOAN, K.N. AND TAYLOR, D. 1987. Habitats and movements of adult alligator snapping 

turtles in northeast Louisiana. In: Proceedings of the Annual Conference of 

Southeastern Association Fish and Wildlife Agencies, 41 pp. 343–348. 

TEARE, A.R. 2010. Reproductive biology and conservation genetics of the alligator 

snapping turtle (Macrochelys temminckii). MS Thesis, Georgia Southern 

University, Americus, Georgia. 

TRAUTH, S.E., SIEGEL, D.S., MCCALLUM, M.L., JAMIESON, D.H., HOLT, A., TRAUTH, J.B., 

AND KONVALINA, J.D. 2016. Long-term monitoring and recovery of a population 

of Alligator Snapping Turtles, Macrochelys temminckii (Testudines: 

Chelydridae), from a northeastern Arkansas stream. Journal of the Arkansas 

Academy of Science 70:235–247. 

U.S. DEPARTMENT OF JUSTICE OFFICE OF PUBLIC AFFAIRS. 2017. Two brothers sentenced 



 

57 

to 21 months in prison for illegally trafficking threatened alligator snapping 

turtles. Retrieved 27 April, 2018, from https://www.justice.gov/usao-edtx/pr/two-

brothers-sentenced-21-months-and-16-months-prison-illegally-trafficking-

threatened.  

WADA, H. 2008. Glucocorticoids: mediators of vertebrate ontogenetic transitions. 

General and Comparative Endocrinology 156:441–453. 

ZHOU, X., XIE, M., NIU, C., AND SUN, R. 2003. The effects of dietary vitamin C on 

growth, liver vitamin C and serum cortisol in stressed and unstressed juvenile 

soft-shelled turtles (Pelodiscus sinensis). Comparative Biochemistry and 

Physiology Part A: Molecular & Integrative Physiology 135:263–270. 

 

 



 

58 

 

 

Figure 1. Aerial view of the juvenile M. temminckii tank arrangement in the housing 

enrichment experiment. Each color represents one of five experimental blocks. Letters 

indicate the housing treatment experimental unit in a randomized block design. 
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Figure 2. M. temminckii enclosures divided into three treatments groups of varying 

densities spanning across two webbed plastic shelves. Containers were rotated weekly to  

account for potential confounding variables in the environment. 
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Figure 3. The percent change in mass of juvenile M. temminckii housed in tanks 

containing four combinations of structural enrichment components. Error bars are ± 1 SE. 
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Figure 4. The relationship of M. temminckii baseline corticosterone levels to growth rates 

at the end of two captive housing experiments, which manipulated A) housing structural 

enrichment (r2 = 0.003, p = 0.59) and B) stocking density (r2 = 0.40, p < 0.001, slope = -

1.99) 
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Figure 5. Average baseline CORT of a subset of juvenile M. temminckii sampled at the 

beginning and end of two 6-week experiments. A) Turtles were maintained in enclosures 

varying in structural enrichment types. B) Turtles were housed in low-density, medium-

density, and high-density conditions. Closed circles = CORT at start of density 

experiment, open circles = CORT at end of density experiment. Error bars are ± 1 SE. 
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Figure 6. The percent change in mass (g) displayed by alligator snapping turtles housed 

in low-density, medium-density, and high-density conditions. Mean percentage change of 

mass, and the fastest- and slowest-growing individuals over the course of the study are 

represented. Roman numerals, uppercase letters, and lowercase letters illustrate the 

relationships among treatments for comparisons of the mean, maximum, and minimum 

growth rates, respectively. Error bars are ± 1 SE.  
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SUMMARY 

By reviewing the growing base of literature on the life-history, ecology, and 

behavior of the alligator snapping turtle (Macrochelys temminckii) and closely-related 

species, I was able to simulate a few of the elements that may benefit this species in the 

wild.   The importance of optimizing growth and fitness of juvenile alligator snapping 

turtles in a head-start program extends far beyond the immediate successes of releasing a 

healthy cohort into the wild. Elevated rates of juvenile growth and development reduces 

risks of depredation, increases the animal’s ability to compete for resources, and could 

reduce the amount of time before reaching sexual maturity.  

Juvenile turtles provided with one or a combination of tank furnishings including 

submerged PVC pieces, floating mats, and black mesh shade cloth canopy only showed 

elevated growth rates in treatments containing floating mats. Stress did not appear to be 

the influencing factor of growth rates in my housing experiment, but further 

experimentation of stress response in this species is warranted. The density at which the 

turtles were housed did not have an effect on average growth rates, but higher densities 

did create a larger divide in growth between the largest and smallest turtles in each 

enclosure. Behavioral observations during the experiment suggest that hierarchical 

competition may be the source of this divide.  

Hatchlings inoculated with adult conspecific feces after hatching were better at 

assimilating fiber than turtles inoculated with creek water and deionized water. Growth 

was not significantly different across treatments, but hatchlings receiving adult feces 

consistently maintained larger body masses each week, which seemed to become more 

prominent toward the end of the 6-week experiment. Core microbiomes were consistent 
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across hatchling groups. Notable changes were observed between the first fecal sample 

and the final fecal sample in each treatment, suggesting that the turtles’ microbiomes 

change over time based on differential exposure to microbes.   
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APPENDICES 

 

Appendix A 

Hatchlings in the digestive efficiency experiment housed singly in 1.9-L polycarbonate 

containers filled with 400 mL of deionized water. Containers were labeled with a unique 

number matching its turtle’s unique tag number, along with its treatment color code.   
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Appendix B 

Hatchlings housed across two environmental chambers maintained at 28 °C, with a 12-

hour light cycle. Each hatchling container was rotated with their individual 1.9-L 

containers throughout the chambers to reduce the potential confounding effects of 

microclimate. 
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Appendix C 

 

The four treatment groups of the housing enrichment experiment at Tishomingo National 

Fish Hatchery were characterized by A) three PVC segments cut longitudinally and 

placed convex-side down, B) PVC segments and a floating mat with PVC frame, C) PVC 

segments and a black mesh shade cloth covering two-thirds of the tank, and D) all three 

structural components.  
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Appendix D 

Juvenile M. temminckii congregating under a floating PVC mat at Tishomingo National 

Fish Hatchery that was used in the housing enrichment experiment. 
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