
BearWorks BearWorks

College of Natural and Applied Sciences

12-1-2001

Modified adaptive algorithms Modified adaptive algorithms

Yingkang Hu

Kirill A. Kopotun

Xiang Ming Yu
Missouri State University

Follow this and additional works at: https://bearworks.missouristate.edu/articles-cnas

Recommended Citation Recommended Citation
Hu, Yingkang, Kirill A. Kopotun, and Xiang Ming Yu. "Modified adaptive algorithms." SIAM journal on
numerical analysis 38, no. 3 (2000): 1013-1033.

This article or document was made available through BearWorks, the institutional repository of Missouri State
University. The work contained in it may be protected by copyright and require permission of the copyright holder
for reuse or redistribution.
For more information, please contact bearworks@missouristate.edu.

https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/articles-cnas
https://bearworks.missouristate.edu/articles-cnas?utm_source=bearworks.missouristate.edu%2Farticles-cnas%2F3339&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu

 SIAM J. NUMER. ANAL. ? 2000 Society for Industrial and Applied Mathematics
 Vol. 38, No. 3, pp. 1013-1033

 MODIFIED ADAPTIVE ALGORITHMS*

 YINGKANG HUt, KIRILL A. KOPOTUNt, AND XIANG MING YU?

 Abstract. It is well known that the adaptive algorithm is simple and easy to program but the
 results are not fully competitive with other nonlinear methods such as free knot spline approximation.
 We modify the algorithm to take full advantages of nonlinear approximation. The new algorithms
 have the same approximation order as other nonlinear methods, which is proved by characterizing
 their approximation spaces. One of our algorithms is implemented on the computer, with numerical
 results illustrated by figures and tables.

 Key words. nonlinear approximation, approximation spaces, adaptive algorithms, data reduc-
 tion, piecewise polynomials, splines, Besov spaces, degree of approximation, modulus of smoothness

 AMS subject classifications. 41-04, 41A10, 41A15, 41A17, 41A25, 41A27

 PII. S0036142999353569

 1. Introduction. It is common knowledge that nonlinear approximation meth-
 ods are better, in general, than their linear counterparts. In the case of splines,
 nonlinear approximation puts more knots where the function to be approximated
 changes rapidly, which results in dramatic improvements in approximating functions
 with singularities. There are various satisfactory results on free knot spline approxi-
 mation, in which knots are chosen at one's will. Most related theorems are proved by
 showing the existence of certain balanced partitions (a more accurate description will
 be given later). This may cause difficulties in practice, since it is often numerically
 expensive to find such balanced partitions. Then, there is so-called adaptive approx-
 imation by piecewise polynomial (PP) functions, in which only dyadic intervals are
 used in the partition. Adaptive approximation draws great attention because of its
 simplicity in nature. As a price to pay for the simplicity, its approximation power
 is slightly lower than that of its free knot counterpart. Moreover, it is not known
 exactly what kind of functions can be approximated to a prescribed order; that is,
 there is no characterization of adaptive approximation spaces. We point out here that
 when we say adaptive algorithms in this paper, we mean those that approximate a
 given (univariate) function by PP functions/splines. There are other kinds of adaptive
 algorithms; some are characterized in the literature (see [10] for an example).

 In this paper, we shall modify the existing adaptive algorithms in two ways.
 The resulting algorithms have the same approximation power as free knot spline
 approximation while largely keeping the simplicity of adaptive approximation. In the
 next section, we shall state some known results on free knot spline approximation.
 After describing our algorithms in section 3, in section 4 we shall give our main results,
 which are parallel to those on free knot spline approximation given in the next section.
 Numerical implementation and examples will be the contents of the last section.

 *Received by the editors March 17, 1999; accepted for publication (in revised form) February 9,
 2000; published electronically August 29, 2000.

 http://www.siam.org/journals/sinum/38-3/35356.html
 tDepartment of Mathematics and Computer Science, Georgia Southern University, Statesboro,

 GA 30460 (yhu@gasou.edu).
 tDepartment of Mathematics, University of Manitoba, Winnipeg, MB, Canada R3T 2N2

 (kkopotun@math.vanderbilt.edu). This author was supported by NSF grant DMS 9705638.
 ?Department of Mathematics, Southwest Missouri State University, Springfield, MO 65804

 (xmy944f@mail.smsu.edu).

 1013

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 We emphasize that we consider only the univariate case in this paper. The idea
 of merging cubes was initially introduced and used by Cohen et al. in their recent
 paper [11] on multivariate adaptive approximation. The resulting partition consists
 of rings, which are cubes with a (possibly empty) subcube removed. Their algorithm
 produces near minimizers in extremal problems related to the space BV(R2). The
 authors further explored this algorithm in [21]. In particular, we were able to obtain
 results on extremal problems related to the spaces Vy,p(Rd) of functions of "bounded
 variation" and Besov spaces B (Rd). This algorithm is ready to implement for some
 settings, depending on the value of p (if Lp norm is chosen) and order of local poly-
 nomials (it is more difficult for r > 1), though the bookkeeping may be messy. On
 the other hand, this algorithm is designed for the multivariate case. Its univariate
 version would not only be much more complex than necessary, but would also produce
 one-dimensional rings, that is, unions of the subintervals not necessarily neighboring,
 which are unpleasant and, as it turned out, unnecessary. Our modified algorithms
 take advantage of the simplicity of the real line topology, simply merging neighboring
 intervals, thus resulting in partitions consisting of only intervals. These algorithms
 cannot be easily generalized to multivariate setting, since a procedure of emerging
 neighboring cubes may generate very complicated and undesirable sets in a partition.
 This also makes it much more difficult to establish Jackson inequalities for local ap-
 proximants. We refer the interested reader to [21], where one can find that the proof
 of Jackson inequality on a ring is already difficult enough. For these reasons, we
 strongly believe that simpler and more efficient univariate algorithms are necessary.

 2. Preliminaries. Throughout this paper, when we say that f, the function to
 be approximated, belongs to Lp(I), we mean f c Lp(I) if 0 < p < c, and f E C(I)
 if p = oo. If r is an integer, 0 < a < r and 0 < p,q < oo, then the Besov space
 Bq(Lp(I)) is the set of all functions f C Lp(I) such that the semi-(quasi)norm

 [t f ,,) pq dt \ 1/Q
 I f I Bc) [t,wr(f t0I)p,t 0 < q < oc, IflBg(L,(I)) '= -

 supt- r(f t, I)p, q = oo,
 t>0

 is finite, where wr is the usual rth modulus of smoothness. The (quasi)norm for
 Bq(Lp(I)) is defined by

 II * ||B (Lp(I)) '= I l|Lp(I) + I Ig B (Lp(I))-

 We also define a short notation for a special case that is used frequently in the theory:

 B (I) :- B (La(I)), y := (c + p-1)-1.

 If there is no potential confusion, especially in the case I = [0, 1], the interval I will be
 omitted in the notation for the sake of simplicity. For example, Lp stands for Lp[0, 1]
 and Ba for Ba[0, 1].

 If X0 and X1 are quasi-normed, complete, linear spaces continuously embedded
 in a Hausdorff space X, then the K-functional for all f E Xo + X1 and t > 0 is
 defined as

 K(f,t, Xo, X1) := inf llfo lxo + tllfi llxl I f = fo + fl,f o Xo, fl E Xi}.

 This can be generalized if we replace 11 * Ilxi by a quasi-seminorm I| |x on XI:

 K(f,t,Xo, X1) := inf {ll flo + tIfllX1 I f ffo + fi, fo E XO, fl C Xi}.

 1014

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 The interpolation space (X0, X)o,q, 0 < 0 < 1, 0 < q < oo, consists of all functions
 f c Xo + X1 such that ifl(xo,X1) ,q < oc, where

 If l {XOIXI) R (f c [t-OK(f,t, Xo,X1)] t)/ 0< q < oq ,
 sup tK(f, t, Xo,Xi), q 00.
 t>0

 When studying an approximation method, it is very revealing to know its approx-
 imation spaces, which we now define. Let functions in a quasi-normed linear space X
 be approximated by elements of its subsets oI, n = 0,1,..., which are not necessarily
 linear but are required to satisfy the assumptions

 (i) Do = {0};
 (ii) Qn C ",n+l;
 (iii) aJn = (n for any a - 0;
 (iv) bn + (n C 4cn where c := c({In}) does not depend on n;
 (v) U.=o0 ?n is dense in X;
 (vi) Any f c X has a best approximation from each 4(.

 All approximant sets in this paper satisfy these assumptions. Denoting

 En(f) :=E(f, 'n)x= inf Ilf - ofx,

 we define the approximation space

 Aq := Aq(X) := Aq (X, {}), c > 0,

 to be the set of all f E X for which En(f) is of order n-" in the sense that the
 following seminorm is finite:

 IfIA (j[nEn(f)]q O < q < oc,
 q\ **= \n=l n

 supnEnE(f), q oo.
 n>l

 The general theorem below enables one to characterize an approximation space by
 merely proving the corresponding Jackson and Bernstein inequalities (see [13, sections
 7.5 and 7.9], [9], and [15]).

 THEOREM A. Let Y := Yo, d > 0, be a linear space with a semi-(quasi)norm I |y
 that is continuously embedded in X. If {1,n} satisfies the six assumptions above, and
 Y satisfies the Jackson inequality

 (2.1) En(f) < Cn-lfly, f Y,

 and the Bernstein inequality

 (2.2) (ply < Cn3llfllx, e 4,

 then for all 0 < a < 3. 0 < q < oc, the approximation space

 (2.3) Aq (X, { })D -(X, Y)/aO,q -

 By a partition P = {JIi}= of the interval [0, 1] we mean a finite set of subin-
 tervals whose union U_l/i = [0, 1], where Ii := [xi, xi+l), i = 1,2,...,n - 1,
 In = [xn, xn+i], and xl := 0 < x2 < .. < < 1 =: xn+1. The (nonlinear)

 1015

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 spaces En,r of all PP functions of order r on [0, 1] with no more than n > 0 pieces
 are defined by

 n,r := En,r[0, 1] := {S S() = , Pi(x)xi(x), }P ?< n},
 IET

 where PI are in Pr-1, the space of polynomials of degree < r, and XI are the charac-
 teristic functions on I. Eo,, is defined as {0}. These E, = En,,, with r fixed, satisfy
 all assumptions (i)-(vi) on {,n} (see p. 3). The degree of best approximation of a
 function f by the elements of En,r is denoted by 7n,r(f)p := E(f, El,r)p.

 REMARK. Some authors use the notation (n-1)r,r in place of E,,,, since PP
 functions can be viewed as special kinds of splines with each interior break point xi,
 i = 2,..., n, considered as a knot of multiplicity r. Also in use is PPn,,. Following
 general notation in nonlinear approximation, we use the first subscript for the number
 of coefficients in the approximant. See [13], [14], [17], [26]. Strictly speaking, all n-
 piece PP function of order r only form a proper subset of the free knot spline space
 E(n-1)r,r, but this subset has the same approximation power in Lp as the whole space
 (see Theorem 12.4.2 of [13]).

 In his 1988 paper [23] (also see [24] and [13, section 12.8]), Petrushev charac-
 terized the approximation space A (Lp, {En,r}0?) using the Besov spaces; see the
 following theorem.

 THEOREM B. Let 0 < p < oo, n > 0, and 0 < a < r. Then we have

 (2.4) rn,r(f)p < Cn-[flfBa < Cn-"llflJB, f E B",

 and

 (2.5) ||S||Ba < CnrllSllp, S C En,r

 Therefore for 0 < q < oo and 0 < a < 3 < r

 (2.6) Aq(Lp) := Aq(Lp, {En,r}?) = (Lp, B)o/pO,q.

 In particular, if a := (a + p-1)-1,

 (2.7) A^(Lp) = (Lp, BP)0/,, = B".
 The inequality (2.4) can be proved by finding a balanced partition P = {lih}
 according to the function

 1 roo

 (2.8) G(x) ':= t-- o,t](s)X[o, -r.](lIx))K(f,x)lY dsdt

 in the sense that

 (2.9) G(x)dx= G(x)dx, i l, ... ,n,

 (see [13] for details of the proof). In fact, many Jackson-type inequalities can be
 proved by showing the existence of a balanced partition (see, e.g., Theorems 12.4.3,
 5, and 6 in [13], Theorem 1.1 in [19], and parts of Theorems 2.1 and 4.1 in [17]). We
 state here Theorem 12.4.6 of [13], given by Burchard [8] in 1974 for the case p = oc
 (see also de Boor [3]).

 1016

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 THEOREM C. Let r and n be positive integers, and let y := (r + p-1)-l. Let
 f E Lp[0, 1], 1 < p < oo. Iff E Cr(O, 1) with If(r)(x)l < q(x), where o E L, is a
 monotone function, then

 (2.10) 1n,r(f)p < Crn-r'l(pI .

 Let f E Lp[0, 1], 0 < y < p< oo, - :=y-1 -p-1, and r := [a] + 1. Let V^,p be the
 space of functions f E Lp[0, 1] for which the variation

 f lv,= sup IE III I)

 is finite, where the sup is taken over all finite partitions P of [0, 1]. Following [17]
 (see also Brudnyi [7] and Bergh and Peetre [1]), we define a modulus of smoothness
 for f c V,p by

 (2.11) Q(f,t),,p:= sup sup ha (r (f, I I)v
 O<h<t P(<_[h-1]+1 l c

 The following theorem, which is due to DeVore and Yu [17], provides characterization

 of Aq (Lp, {En,r}') using interpolation spaces involving V,,p.
 THEOREM D. Let 0 < p < oo, 0 < a < r, and 7 := (a + p-1)-l. Then for

 approximation by elements from {En,r}?, we have the Jackson inequality

 (2.12) 9n,r(f)p < Cn-lf lv,, f E V^p,p

 and the Bernstein inequality

 (2.13) ISlv,p < Cna|lS,lp, S C En,r.
 Therefore

 Aq (Lp) := Aq (Lp, {En,r}o) = (Lp, Vr,p)a//,q

 In particular, if p < oc,

 A, (Lp) = (Lp, Voa,p)c/,p = B.

 The Jackson inequality (2.12) follows from the definition of Q(f, t)?,p and the existence
 for any f E Vv,p of an S E En,r with n := [t-l] + 1 such that

 (2.14) Ilf - Slip < CQ(f, t),p,

 which can be proved (see [17]) by showing the existence of a balanced partition P =
 {'Ii}=1 such that

 or (f Iil , Ii)p =- Jr(f, IIj j, Ij)p, i, = 1,... ,n,

 and then defining S by
 n

 (2.15) S(x) := Pi(x)xIi(x),
 i=l

 where Pi are best Lp approximations to f on Ii from the space Pr-1.

 1017

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 3. Adaptive algorithms.

 3.1. The original adaptive algorithm. More than likely it will be hard to
 find an exactly balanced partition numerically. An algorithm of this sort by Hu
 [20], for instance, uses two nested loops (there is another level of loop that increases
 the number of knots). This is probably one of the reasons why much attention is
 paid to adaptive approximation, which selects break points by repeatedly cutting the
 intervals into two equal halves, and produces PP functions with dyadic break points,
 which can be represented by finite binary numbers of the form m. 2-k, 0 < k ooc
 0 < m < 2k. Denote the spaces of such PP functions by Ed , and their approximation

 errors E(f, SEd,)p by U(r(f)p. We now describe the original adaptive algorithms in
 the univariate setting.

 Let ? be a nonnegative set function defined on all subintervals of [0, 1] which
 satisfies

 (3.1) ?(I) < ?(J) if I C J;
 (3.2) ?(I) -+ 0 uniformly as III - 0.

 Given a prescribed tolerance E > 0, we say that an interval I is good if ?(I) < c;
 otherwise it is called bad. We want to generate a partition 9 := S(?, ?) of [0, 1] into
 good intervals. If [0, 1] is good, then 9 = {[0, 1]} is the desired partition; otherwise
 we put [0, 1] in 3, which is a temporary pool of bad intervals. We then proceed with
 this 3 and divide every interval in it into two equal pieces and test whether they are
 good, in which case they are moved into 9, or bad, in which case they are kept in 3.
 The procedure terminates when 3' = 0 (and, hence, all resulting intervals are good
 and are in 9), which is guaranteed to happen by (3.2).

 The set function ?(I) usually depends on the function f that is being approxi-
 mated and measures the error of approximation of f on I, such as fI G(x) dx in (2.9),
 thus will be called the (error) measure of I throughout this paper. In the simplest
 case, ?(I) is taken as the local approximation error of f on I C [0, 1] by polynomials
 of degree < r:

 (3.3) ?(I) := Er(f, I)p inf If - PIILp(I)) PEP,r-1

 and the corresponding approximant on S is defined by (2.15). This gives an error

 ILf - Sl[L[0, 1] <_ 191/P ,

 where 191 is the number of intervals in S. One can estimate in different ways

 (3.4) an(f)p := an(f,?)p := inf S191/p 6,

 where the infimum is taken over all E > 0 such that 19 = [9(e, ?) < n. See Birman
 and Solomjak [2] and DeVore [12] for estimates for functions f in Sobolev spaces.
 Other estimates can be found in Rice [25], de Boor and Rice [6], and DeVore and
 Yu [18] and the references therein. We only mention the following two results.

 THEOREM E (see [18, Theorem 5.1]). Let r = 1, 2,..., := r-1, and f C C[0, 1].
 If f E Cr(0, 1) with f(r)(x)I < 9((x), where 9p E La is a monotone function such that

 (3.5) j 9(x)'dx < C1n-1 if lIl < 2-n

 1018

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 where C1 is an absolute constant, then we have

 (3.6) an(f))o < Cn-' IPoll,.

 Note that compared with Theorem C with p = o, its free knot counterpart, this
 theorem has an extra requirement (3.5) on p.

 THEOREM F (see [18, Corollary 3.3]). Let 0 < p < oo, a > 0, and q > :=
 (a + p-1)-. Then for f E Bc(Lq), 0 < ar < oo, we have

 (3.7) an(f)p < Cn-aIflB7(Lq).

 Since If IB =If IfB(L,) < IfIfIB-(Lq), we see (3.7) is weaker than (2.4), which is for free
 knot spline approximation. The reason for this is not hard to see: adaptive algorithms
 not only select break points from a smaller set of numbers (that is, the set of all finite
 binary numbers), but they also do it in a special order. Consider f(x) = ax on [0, 1]
 as an example, a good free knot approximant will have most knots very close to 0 (see
 examples in [20] and Table 5.2 later in this paper). However, an adaptive algorithm
 needs at least n - 1 knots, 2-1,2-2,.... 21-n, before it can put one at 2-n and thus
 needs more knots than a free knot spline algorithm. Although one classifies adaptive
 approximation as a special kind of free knot spline approximation (since the knots
 sequence depends on the function to be approximated), one is far from free when
 choosing knots. It is considered "more restrictive" (DeVore and Popov [14]) than free
 knot spline approximation.

 We should point out that all theorems mentioned in this subsection are of a
 Jackson-type, that is, so-called direct theorems. Bernstein inequalities (closely related
 to inverse theorems, sometimes referred to also as inverse theorems themselves) for free

 knot splines, such as (2.5) and (2.13), are valid for all splines, including PP functions
 produced by adaptive algorithms. The problem is that all Jackson inequalities for
 the original adaptive algorithms are not strong enough to match those Bernstein
 inequalities in the sense of Theorem A. From this point of view, Theorems E and
 F are weaker than they look. We do not know exactly what kind of functions can
 be approximated by the original adaptive algorithms to a prescribed order, that is,
 we can not characterize their approximation spaces Aq. They do not fully exploit the
 power of nonlinear approximation, and sometimes they generate too many intervals,
 many of which may have an error measure much smaller than ?.

 As mentioned above, there are two major aspects in which adaptive approximation

 is different from free knot spline approximation: (a) a smaller set of numbers to choose
 knots from and (b) a special, and restrictive, way to select knots from the set. It turns
 out that (b) is the reason for its drawback. Although it is also the reason why adaptive
 approximation is simple (and we want to keep it that way), it does not mean we have to
 keep all the knots it produces. In this paper, we modify the usual adaptive algorithm

 in two ways. The idea is that of splitting AND merging intervals/cubes used in a
 recent paper by Cohen et al. [11]. The two new algorithms generate partitions of
 [0, 1] with fewer dyadic knots which are nearly balanced in some sense. In section 4,
 we prove that they have the same approximation order as that of free knot splines.

 3.2. Algorithm I. We start with the original adaptive procedure with some

 E > 0, which generates a partition S = {I}i=1 of [0, 1] into good intervals. The
 number N' may be much larger than it has to be. To decrease it, we merge some
 of the intervals I'. We begin with IV and check the union of IV and I1. If it is still
 a good interval, that is, if its measure E(I{ U I) < ?, we add I3 to the union and

 1019

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 check whether ?(I1 U I2 U I3) < e, and we proceed until we find the largest good union
 I1 U ... U Ik in the sense that

 ?(Il u ui)<e

 but

 ?(IU... UIk+i) >e or k=N'.

 We name IP U.. U I as II. If k < N', we continue with I+1 and find the next
 largest good union as 12. At the end of this procedure, we obtain a modified partition
 consisting of N < N' good intervals P = {Ii}N i for which each union Ji := Ii U Ii+
 is bad,

 ?(Ji) = ?(Ii U IJ,+) > , i = 1,2,... , N- 1.

 This partition is considered nearly balanced. For the size of N we have

 [N/2]

 (3.8) N < 1 + 2. [N/2] < 1 + 2 Z (J2i-1)
 i=1

 3.3. Algorithm II. Our second algorithm generates a nearly balanced partition
 in another way. It does not make heavy use of prescribed tolerance E; rather, it merges
 intervals with relatively small measures while dividing those with large ones. As in
 the ordinary adaptive algorithms, we start with dividing [0, 1] into two intervals II
 and 12 of equal length. However, this is where the similarity ends. We then compare
 measures S(Ii) and S(12) and divide the interval with larger measure into two equal
 pieces. In the case of equal measure, we divide, rather randomly, the one on the left.
 Now we have three intervals and are ready for the three-step loop below.

 Step 1. Assume there is currently a partition {I}1I and Ij has the largest
 measure among all Ii. If ?(Ij+l) < M := 0maxi (Ii) = OS(Ij), where 0 < 0 < 1
 is a fixed parameter, we check the union of Ij+l U Ij+2 to see whether its measure
 S(Ij+1 U Ij+2) < M. If so, add the next interval Ij+3 into the union and check its
 measure again. We continue until we get a largest union Ui=j+l1i whose measure is
 less than M, and replace this union by the intervals it contains. Then, if j + m1 < k,
 we find the next largest union Uij+1+ll+m2i in the same manner and replace these
 intervals by their union. Furthermore, we do the same to the intervals to the left of
 Ij (but keep Ij intact). In this way we obtain a new partition with (the old) Ij still
 having the largest measure. This partition is nearly balanced in the sense that the
 measure of the union of any two consecutive new intervals is no less than 0 maxi ?(Ii)
 (because these new intervals were largest unions of old intervals). At the end of this
 step we renumber the new intervals and update the value of k.

 Step 2. Check whether the new partition produced in Step 1 is satisfactory using
 an application-specific criterion, for instance, whether k has reached a prescribed value
 n or the error is reduced to a certain level. If not, continue with Step 3; otherwise
 define the final spline by (2.15) and terminate the algorithm.

 Step 3. Divide the interval with the largest measure (Ij) into two equal pieces,
 renumber the intervals, update the values of k and M, and then go back to Step 1.

 REMARK. In Step 1, if Ii and 11+l are the two newest intervals (two "brothers"
 with equal length), one needs only to check Ii-1 U Ii if I - 1,1 7 j, and/or I+li U I1+2
 if I + 1, l + 2 - j, since other unions of two consecutive intervals have measures no

 1020

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 less than the value of M in the previous iteration, which is, in turn, no less than the
 current M. We stated it in the way above only because it shows the purpose of the
 step more clearly.

 It should be pointed out that one needs to be careful about the stopping criterion
 in Algorithm II. For example, if it is applied to the characteristic function f(x) =
 X[V/2,](x) with E(I) = r(f, II, I)p, p < oo, after two iterations we will always
 have k = 3 and ?(I1) = ?(I3) = 0. The break point v2/2 in this example can be
 replaced by any number in (0, 1) which does not have a finite binary representation
 such as 0.4. If k > n = 4 is used as the sole stopping criterion, the algorithm will fall
 into infinite loop. Fortunately, the error in this example still tends to 0; therefore,
 infinite loop can be avoided by adding error checking in the criterion. The next lemma
 shows this is the case in general.

 LEMMA 3.1. Let ? be an interval function satisfying (3.1) and (3.2), and let
 E > 0 and n > 0 be prescribed. Then the criterion

 (3.9) max?(Ii) < E or k > n
 i

 will terminate Algorithm II.
 Proof. We show that if k never exceeds n, then maxi /(Ii) -- 0 as the number

 of iterations goes to oo. Let 0 < 0 < 1 be fixed. Let M := 0maxi (Ii) with the
 max taken at one moment. Fix this M and denote the goup of all subintervals in
 the partition with "large" errors by G := {Ii I ?(Ii) > M}. Let M := 0 maxi (Ii)
 be as in Step 1, changing from iteration to iteration. We have M > M from now on.

 We first make a few observations. Since the interval currently having the largest

 measure is always in Gj, each iteration cuts a member of GM. However, the algorithm

 will not merge any member Ii E GMH with another interval because ?(Ii) > M > M
 already; any union of Ii with another interval would have even larger measure by
 (3.1). By (3.2), there exists r7 > 0 such that lIi > r7 for any Ii c GM. Note all
 intervals in a partition are disjoint, thus the total length of the intervals in GM is no
 larger than 1, and its cardinal number IGj?i < 1/rl.

 From these observations, we conclude the following. When an iteration cuts a
 member Ii of GC into two "children" of equal length, one of the three cases will
 happen: (a) neither child of Ii belongs to GM, thus IIi > r7 is removed from the total
 length of GM^; (b) exactly one of the children belongs to it (hence having a length
 > r7) and the other child, with the same length li1L/2 > r7, is removed from GM; or (c)
 both children belong to it. The case (a) decreases |G|I by 1, (b) keeps it unchanged,

 and (c) increases it by 1. Now one can see that at most [3/77] + 1 iterations will empty
 GM, since at least one third of them will be cases (a) or (b) to keep IG6/I < 1/77, which
 will remove all the total length of GM, thus emptying it. This reduces the maximum
 error maxi ?(I) by a factor 0 < 1. Repeat this enough times and the maximum error
 will eventually tend to 0. [

 Although (3.2) does not say anything about the convergence rate of E(I) as II -I
 0, and the proof of the above lemma may make it sound extremely slow, one can expect
 a fairly fast convergence in most cases. For example, in the case E(I) = w,(f, II, I)p,
 if f is in the generalized Lipschitz space Lip*(a,p) := Lip*(a, Lp[a, bl), 0 < a < r,
 that is, if

 If[Lip* '= if Lip*(a,p) '= sup(t - r(f, t, [a, b])p) < oo,
 t>O

 1021

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 then for any I C [a, b]

 ?(I) = r(f, IIl, I)p < r (f, III, [a, b])p < II If IfLip*.

 We feel it is safe to say that most functions in applications belong to Lip* (a, p) with
 an a reasonably away from 0, at least on subintervals not containing singularities,
 thus halving an interval often reduces its error by a factor of 2a.

 A natural question that may arise here is: How complex are the new algorithms?
 We give brief comparisons below to answer this question. Algorithm I is straight for-
 ward. It is the original adaptive algorithm with a second (merging) phase added.
 This phase consists of no more than N' + N < 2N' merging attempts, where N' is
 the number of subintervals the original algorithm generates, and N that of the final
 subintervals. As for Algorithm II, there are two major differences from the original
 version. The first one, as mentioned in the remark after the algorithm description,
 is: up to two merging attempts are made after cutting each interval. The other one
 is in the book-keeping. In the original version, a vector is needed to record errors
 on all intervals (or to indicate which intervals are bad), while Algorithm II keeps the
 index of the interval that has the largest error ?(I) in a scalar variable, in addition
 to the vector containing all errors. This requires a search for the largest element in
 the vector after each cutting or merging operation.

 One can see from above that the new algorithms are not much more complex
 in terms of programming steps. The added CPU time, in terms of the number of
 arithmetic operations, results mainly from the evaluations of the error measure E(I)
 required by merging operations. Our estimate is that either algorithm uses two or
 three times as much CPU time as the original algorithm. More information on CPU
 time will be given in section 5 together with numerical details.

 4. Approximation power of the algorithms. We now show that our modified
 adaptive algorithms have the full power of nonlinear approximation. More precisely,
 we prove that they produce piecewise polynomials satisfying the very same Jackson
 inequalities for free knot spline approximation (with possibly larger constants on the
 right-hand side since the partitions are not exactly balanced). As we mentioned
 earlier, the corresponding Bernstein inequalities hold true for all splines; therefore we
 are really proving that the approximation spaces for the modified adaptive algorithms
 are the same as those for free knot spline approximation.

 We state below our results as three main theorems, parallel to Theorems B, C,
 and D, respectively. In fact, we can prove most results of this kind for our algorithms,
 such as Kahane's theorems and its generalization [13, Theorems 12.4.3 and 5], but
 the proofs would be too similar to the ones below.

 We recall that throughout this paper, Ij denotes the interval with largest measure
 among all Ii in the partition, the union of any two consecutive intervals Ji = Ii U Ii+1
 has a measure ?(Ji) > ((Ij), and Ji is called bad in Algorithm I. All PP functions
 on the resulting partitions are defined by (2.15).

 THEOREM 4.1. Let n and r be positive integers, and let 0 < p < oc, 0 < a < r,
 and y := (a + p-l)-1. If f E Bc, then the two modified adaptive algorithms (with
 (i) E(I) = fI G(x) dx and E = n-l o G(x) dx, where G(x) is defined in (2.8) or (ii)
 ?(I) = Er(f, I)p and e = n-1 f I) produce PP functions S of (2.15) that satisfy
 the Jackson inequality

 Ilf - Sllp < Cn-"lflBa.

 1022

 (4.1)

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 From Theorem A we obtain the approximation space A (Lp, {d d}0) as a by-
 product. It turns out to be the same as A (Lp, {En,r}), which is not surprising
 since ZEd is dense in En,r. The surprising part is that one can get such an approxi-
 mant using a simple adaptive algorithm.

 COROLLARY 4.2. Let 0 < p < oo, 0 < q < oo, O < a < / < r, and y =
 (a + p-l)-l. For approximation by PP functions in d n,r we have

 (4.2) Aq (Lp), d,}) = (Lp

 In particular,

 (4.3) Ac(Lp) (Lp, B3),a/, = Bo.

 Proof of Theorem 4.1. The proofs of the theorem in the cases (i) and (ii) are
 very similar. We only consider (i) and remark that, in the case (ii), the inequality
 E1N/2] If l (J2 < Clf IB- plays the major role. L~~i=1 Bc(J2i-1) - -

 PP approximants produced by Algorithm I. Let E(I):= S G(x) dx, where G is as
 in (2.8), and e := n-lMY, where

 M = G(x) dx

 We claim that the number N of intervals it produces is no greater than 2n+ 1. Indeed,
 by (3.8)

 [N/2] S(J2_1) [N2J _ G(x) dx
 <1+2)3 N < + i= i + 2

 2n]1
 < 1 + M G G(x)dx = 2n+ 1.

 The rest of the proof of (4.1) is similar to that of (2.4) (cf. section 12.8, p. 386 of
 [13]); we sketch it here for completeness. It is proved in [13] that for any f E B"[O, 1],
 M is equivalent to IflB[0, 1] with constants of equivalence depending only on r and
 y, and that for such an f

 (4.4) Er(f, I)p < Clf B-(I) < C G(x) dx = C(I)) /

 Define the approximant S by (2.15) and we have

 N N

 IIf - Sip - Er(f, Ii) C E(Ii)P/' < CNEP/7
 i=l i=l

 < cn n-P/MP = Cn-PaMP < Cn-Palf lp;

 here in the fifth step we have used the equality = (a + p-1)-1, and in the last step
 we have used the equivalence of M and IflIB.
 PP approximants produced by Algorithm II. Let ?(I), M, and e be the same as
 above, and use (3.9) as stopping criterion in Step 2. If the algorithm terminates due

 1023

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 to maxi (li) < E (thus giving less than n pieces), it is the same situation as with
 Algorithm I. Otherwise we have n pieces when it terminates, and (4.1) follows:

 f SIP ZEr(fIIi)P? Z (jCG(x)d)Px Y

 < Cn G(x)dx)- ? Cn(f G(x) dx)

 < (j G(x)dx) n-PaMP < Cn-Palf up

 THEOREM 4.3. Under the conditions of Theorem C, the modified adaptive algo-

 rithms (with S(I) := f1 co(x))dx and E := n- fI Io(x)'Ydx) produce PP approximants
 S in Ed that satisfy the Jackson inequality:

 (4.5) ud(f)p ? f - SHlp < Cn-r WK.l(r

 Proof of Theorem 4.3.
 PP approximants produced by Algorithm I. Let

 &(I) = p(x) ^1dx, M Io(x dx) idx llllly, and E := n1M-Y.

 Defining Pi as the Taylor polynomial for f of degree r - 1 at the point x.+I (not best
 L, approximation), we have (see equation (4.15) in Chapter 12 of [13])

 (4.6) flf - PifL1p(I) ? CflcHL,(I) = C) JW-lI

 Using (4.6) in place of (4.4), then (4.5) for p < oc can be proved by arguments very
 similar to those in the proof of Theorem 4.1 by Algorithm I. We also refer the reader
 to the proof of Theorem C in [13]. For p - oc, the estimate of N is the same and we

 need only to replace (ZN l -P l ())1 by Max1<i<N Hlf - Pi2 Lz(Ij):

 Jlf - Sllc - max flf - PillL,.(I) ? C max lpllL,(I2) 1<i<N 1<i<N

 - C max (jj)1/-1 < Cn-11-IM = Cn7-'ljp ll-.
 1<i<N

 PP approximants produced by Algorithm II. Let S(I), E, and M be the same as
 above. Use (3.9) again as the stopping criterion in Step 2. If the algorithm terminates
 because maxi E(li) K E, it is the same situation as in Algorithm I. Otherwise, for
 p < oc we have n intervals, and

 n n

 li p= i p (10 <C-7llslY (1i) (n(1 j)L(r
 i=1 i=1

 [n/2] \ ply
 < Cn - 3<CnlP 7MP = CnTP M

 in 1 2

 1024

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 where we have used the inequality (4.6) in the second step, and -y = (r + 1/p)-1 in
 the last one. For p - oo, we make similar changes to those in Algorithm I:

 lif - s1k= -max Ilf - PilIL.(I) < C max h0,L,(I) = CKrP11L,(Ij) 1<i<n 1<i<n

 [n1/2] \L/7
 <C -3 L(J) <Cn-'I'YM =CnM U

 i=1 2

 THEOREM 4.4. Let n and r be positive integers, and let 0 < p, < o0, 0 < a < r,
 and =y (a + p1')-1. If f E V-~,, then the two modified adaptive algorithms (with
 ,F(l) :E,(f, I)-r and E :6 n-YPQ(f, 1/n)7,,) produce PP functions S of (2.15) that
 satisfy the Jackson inequality

 (4.7) If - Sllp < Cn-?lf Iv,

 Using Theorems 4.4 d A Awe have the following characterizationo f A'(L, {rd,r}o)o*
 COROLLARY 4.5. For approximation by PP functions in wd we have

 Ac(Lp) := AO'(Lp, { Ed,r}) = (Lp, V,Vp)a/o,q.

 In particular, if p < oc0

 Ao(Lp) = (Lp, Vo,,,p)0/0 = Be.

 Proof of Theorem 4.4. It suffices to show (2.14) since (4.7) immediately follows
 from it with any t > 0 and n := [t1'] + 1 (see the end of section 2). We only prove it
 for p < oc. The case of p = oc can be verified by making changes similar to those in
 the proof of the L, case in the previous theorem.

 PP approximants produced by Algorithm I. Let E(I) := Er(f,j)-Y and
 E := n--Y/PQ(f, 0,yt) P. From (3.8), the number N of intervals the algorithm produces
 can be estimated as

 N < Cn.

 Indeed, if N > 2n (otherwise, it's done) we have

 [N12]j Er (f i J2i- 1) Cn-Y/P [N12]
 N ? 1 ? 2 I n'/P Q(f,t)p - 3(f wt)W(f, J2j-j1, J2j-1) ? Cn-7/PNO',

 ___ i=1

 where we have used the definition (2.11) of Q (f, t> ,,p Since 1 - ay = 'ylp, this gives
 N < Cn. Now (2.14) follows, since

 N N

 lif - slip - v E Pi) TL p p p(i) Er(f, i)
 i=1 =

 < CN (n--Y1p(f,tg)l)p1,y < CQ2(f,t)p7p

 PP approximants produced by Algorithm II. We set 8(I) := Er(f, I)Y, and use
 n := [t-1] + 1 and & := n-Y/PQ(f, t)2~, in the stopping criterion (3.9). If it stops
 because max E(li) < E, we have exactly the same situation as with Algorithm I, with

 1025

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 the same partition; otherwise there are n intervals when it terminates. In the latter
 case, we have

 /n \ 1/P> n \ l/p

 lif - slip Eli-IIIP) < C E (fI I)p
 i=1 i=l

 [n/2] 1/7

 < CnX/pWr(f, Ijl,Ij)p < Cnl/p E r(f, IJ2i-l, J2i--l)
 T=l i

 < Cnl/P . n-l17 nC"Q(f, t),p = CQ(f, t),p. D

 5. Numerical implementation and examples. Theoretically, the two algo-
 rithms have the same approximation power. However, when it comes to numerical
 implementation, we prefer Algorithm II since it directly controls the number of poly-
 nomial pieces n, while e in Algorithm I is neither a power of n nor a tolerance for
 Ilf - Sl (though it is closely related to both). We implemented Algorithm II on the
 computer, using Fortran 90 and mainly for p = 2. The error measure used in the code
 is ?(I) = Er(f, I)2 unless we have a better one to use, such as fI p := fI If(r) for
 the square root function in the first example in this section. The L2 norm of f on the
 interval Ii = [ti, ti+l] is estimated by the composite Simpson rule for integral

 ([f(x)]2dxz - ([f(x1)]2 + 4[f(x2)]2 + 2[f(x3)]2 + 4[f(X4)]2
 (5.1) h 3f

 + ... + 2[f(Xnp-2)]2 + 4[f(Xnp_1)]2 + [f(Xnp)]2),

 and its Loo norm is estimated by

 (5.2) max If(xi)l,
 1<i<np

 where ti = x1 < x2 < ... < Xnp = ti+ are equally distributed nodes, np is a program
 parameter roughly set as 6 times r, and h = (ti+ - ti)/np. The best L2 polynomial
 approximant on Ii, discretized by (5.1) as an overdetermined np x r system of linear
 equations for the least squares method, is calculated by either QR decomposition or
 singular value decomposition by calling LINPACK subroutines Sqrdc and Sqrsl, or
 Ssvdc (or their double precision counterparts). The latter takes longer but we did
 not see any difference in the first four or five digits of the local approximation errors
 they computed; thus we did not test it extensively.

 The Lo version of algorithm is basically the same, except that we use ?(I) = Ilf-
 PI loo, estimated by (5.2). The local polynomials PI (and the global smooth splines)
 are still obtained by the least squares method, that is, still best L2 approximants.
 This is common in the literature, and it is justified by the fact that the best L2
 polynomial approximant is also a near-best Loo polynomial on the same interval; see
 Lemma 3.2 of DeVore and Popov [16].

 The number of polynomial pieces is used as the main termination criterion, while
 E in (3.9) is set to a small value mainly to protect the program from falling into infinite
 loops, rather than the sophisticated ones as in proofs in the previous section. It turned
 out that infinite loop is not a problem. A nonfull rank matrix in the least squares
 method is a problem, which happens far before it falls into an infinite loop. This
 is because if Ii is too small, the machine will have difficulties distinguishing the np

 1026

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 points needed in (5.1). Therefore, we added a third condition to protect the program
 from failing: stop the program when

 (5.3) ti+ - ti < np ' max([ti , Iti+ll) * Em.

 We also added a second part in the code, namely, finding an L2 smooth spline
 approximation to the function with the knot sequence {ti} +2_, where the interior
 knots a < t2 < t3 < .' < tn < b are the break points of the PP function obtained
 by Algorithm II, used as single knots, and the auxiliary knots are set as t2-r =
 t3-r = .. = tl = a, and tn+1 = tn+2 = . .= tn+r = b. Despite the fact that the
 partitions are guaranteed to be good only for PP functions, they usually work well
 for smooth splines, too. De Boor gave some theoretical justification in the discussion
 of his subroutine Newnot [4, Chapter XII].

 The least square objective function for finding this smooth spline S is

 nsn+l

 (5.4) E wj[f(7) -S(7)]2,
 j=1

 where n, set as 5r+ 1, is the number of equal pieces into which we cut each subinterval
 Ii, rj are the points resulted from such cutting, and the weights wj are chosen so

 that (5.4) becomes a composite trapezoidal rule for the integral f [f(x) - S(x)] dx:
 wj = (ti+1 - ti)/ns if Tj E (ti, ti+i); Wj = (ti+1 - ti-)/(2ns) if rj = ti for some
 2 < i < n; wi = (t2 - a)/(2n) and wn+n+l = (b - tl)/(2ns). The actual calculation
 of the B-spline coefficients of

 n

 S(x) = CiBir(x),
 i=2-r

 where Nir(x) := N(x; ti,..., ti+r) are the B-splines with the knot sequence {ti} scaled
 so that E Nir(x) - 1, is done by de Boor's subroutine L2Appr in [4, Chapter XIV].
 We used the source code of all the subroutines in the book from the package PPPACK
 on the Internet.

 We tested our code on a SUN UltraSparc, with a clock frequency 167MHz, 128MB
 of RAM, and running Solaris 2.5.1. The speed is so fast that it is not an issue here:
 for finding break points, it is somewhere from 0.015 second for n = 6 to 0.1 second for
 n = 30 when printing minimum amount of messages on the screen, and it is less than
 10% of these for computing smooth splines. We also tested the code on a 300 MHz
 Pentium II machine with 64 MB of RAM running Windows NT 4.0. The speed is at
 least three times as fast. None of the problems we tested used more than 0.1 second.
 (The reason for the great difference in speed may be that the SUN we used is a file
 server, not ideal for numerical computation.) There is still room for improvement in
 efficiency. For example, one can use a value of np, larger than what we use, at the
 beginning and decrease it as n increases (and the error on each subinterval decreases).
 The value of n, should be related to n, too, for the same reason.

 The main cost of CPU time is the evaluation of the error measure ?(I) for each
 subinterval I. We use ?(I) = Er(f, I)2, estimated by QR decomposition, as an exam-
 ple. Each such problem involves np function evaluations, and (np -)r2 arithmetic
 operations required in QR decomposition, plus some more for estimating the error
 from the resulting matrices. Each cutting of intervals requires two E(I) evaluations,

 1027

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 TABLE 5.1

 Approximation order of f(x) = ax on [0, 1].

 r 1 1 2 2 3 3 4 4 5 5

 n 2-60 11-60 2-60 11-60 2-60 11-60 2-60 11-60 2-60 11-60

 a (L2) 1.00 1.00 1.95 1.99 2.91 2.98 3.89 4.20 4.91 5.48
 a (Lo,) 0.98 0.99 1.90 1.96 2.81 3.05 3.62 4.05 4.42 4.97

 and each merging attempt requires one. Our numerical experiments show that a typ-
 ical run resulting in n subintervals cuts intervals about 2n time. Each cutting results
 in up to two attempts of merging subintervals. That gives about 8n least squares
 problems, each of which involves np function evaluations plus about npr2 arithmetic
 operations. In view of the approximation order we proved in the previous section, and
 the fact that np is roughly a multiple of r, we think it pays to use a relatively large r,
 at least 4 or 5. For r = 5, the error will reach the machine epsilon (single precision)
 when n is somewhere between 30 and 70 in most cases.

 We use the square root function f(x) = ax to test the PP function approximation
 order. This function is only in the Lipschitz space Lip(, Lo), thus the approximation
 order is only 1/2 for splines with equally spaced knots in the Lo norm, no matter
 what their order r is. By Theorem 4.3, we should have en := I f -Sn p < Cn-r, where
 Sn is the function consisting of n polynomial pieces computed by Algorithm II using
 ?(I) = fI p(x)Y dx := fS [f(r)(x) l dx, and we have combined |II I| in the theorem
 into the constant C. After the knot sequence has been found, QR decomposition is
 used at the end of the program on each subinterval to estimate en. Since the error
 decreases fast for r = 5, double precision had to be used in QR decomposition for
 large values of n. Assume that what we actually obtain from the code is en = Cn-~,
 where a is the approximation order. Since logen = logC - a log n, if we plot the
 points (xn,yn) := (logn, logen) in the plane, they should form a line. Since such
 a plot zigzags very much, we calculated the least squares line y = -ax + b fitting

 (Xn, Yn) to find the order. Table 5.1 gives values of a for different r using both L2 and
 Loo norms. We should mention that the points (Xn, Yn) for small values of n are too
 low and ruin the obvious line pattern formed by those for larger n, thus we give two
 values of a, one from the points for n = 2,... , 60, and the other from n = 11,... , 60.
 As can be seen from the table, the latter values are right around or even exceed r.

 REMARK. We tried some power of Er(f,I)p for ?(I) and felt, in view of (4.6),
 it would yield a better balance of subintervals, thus a higher order. But the orders so
 obtained were well below r (4.46 for r = 5 and p = oo, e.g.). The reason might be that
 f^I p is additive, but (power of) Er (f, I)p is not.

 To illustrate the advantage of interval merging, we compare the original adaptive
 algorithm and our modified ones with the function

 f(x) 1log2(2-m + x)
 -m

 This function is in C??, and is decreasing and convex on [0, 1] with f(0) = 1 and
 f(1) _ -2-m/(mln2). We use m = 50, r = 1, and ?(Ii) = El(f, Ii)oo. Note that
 El(f, Ii)oo = (f(xi) - f(xi+i))/2 since f is decreasing on [0, 1]. Table 5.2 shows
 comparison in numbers of knots produced for the same approximation error by the
 original adaptive algorithm and our Algorithm II. Both programs try to put first knots
 near x = 0 where the graph is very steep. The original algorithm has to, as pointed
 out early, lay down knots 2-1,2-2,...,2-23 one by one before reaching an error of

 1028

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 TABLE 5.2

 Comparison in numbers of interior knots produced by the original and modified adaptive algo-
 rithms for the same error in approximating f(x) = - log2(2-m + x)/m.

 Error 0.27 0.23 0.14 0.12 0.060 0.032

 Original 23 27 36 38 44 47
 Alg. II 1 2 3 5 10 15

 0.27, while Algorithm II, after trying all these knots one at a time and merging all
 but the last interval, puts the very first knot at 223.

 It is interesting to watch how Algorithm II moves a knot toward a better position
 in successive iterations without increasing the total number of pieces. The following
 screen output shows that in iterations 1 and 2 the program moves the break point 0.5
 to 0.25 and then to 0.125, while the error decreases form 0.5 to 0.47; in iterations 3-22
 it moves the break point all the way to 2-23 1.192 x 10-7 with the error decreased
 to 0.27. What happened internally is, in iteration 1, e.g., it cuts the interval [0, 0.5]
 into [0, 0.25] and [0.25, 0.5]. Since the error on the union of [0.25, 0.5] and [0.5, 1] is
 smaller than that on [0, 0.25], it then merges the two intervals into [0.25, 1]. The net
 effect of these steps is moving the break point 2-1 to 22.

 Iteration 0: # of intervals = 2, Knots & errors:
 errors=

 4.90000E-01 1.OOOOOE-02

 L_\infty error on [a, b] = 4.90000E-01
 knots=

 0.OOOOOE+00 5.00000E-01 1.OOOOOE+00

 Iteration 1: # of intervals = 2, Knots & errors:
 errors=

 4.80000E-01 2.00000E-02

 L_\infty error on [a, b] = 4.80000E-01
 knots=

 0.OOOOOE+00 2.50000E-01 1.OOOOOE+00

 Iteration 2: # of intervals = 2, Knots & errors:
 errors=

 4.70000E-01 3.00000E-02

 L_\infty error on [a, b] = 4.70000E-01
 knots=

 0.OOOOOE+00 1.25000E-01 1.OOOOOE+00

 (Many lines deleted....)

 Iteration 22: # of intervals = 2, Knots & errors:
 errors=

 2.70000E-01 2.30000E-01

 L_\infty error on [a, b] = 2.70000E-01
 knots=

 0.OOOOOE+00 1.19209E-07 1.OOOOOE+00

 1029

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 TABLE 5.3

 Approximation errors to the Runge function on [-5, 5].

 n If - Sn2Vlf - Sn 2/oc Ilf - Sn fS oo, Hu Ilf - Snl \ LM
 3 0.0035 0.029 0.074 0.079 0.070

 5 0.00084 0.0058 0.013 0.0035 0.0032

 7 0.00029 0.0039 0.0098

 9 0.00011 0.00087 0.0023

 11 0.000039 0.00018 0.00091 0.00086 0.00090

 We now consider the infamous Runge function, which is also in C?? but, on the
 other hand, is hard to interpolate or approximate. Lyche and M0rken [22] approxi-
 mated it by the knot removal algorithm, and Hu [20] approximated it by balancing
 the rth derivative of the function on subintervals in two nested loops. Here and in
 the rest of the paper, we use r = 4. In Table 5.3, we compare our results with those
 of Lyche and M0rken (LM) [22] and Hu [20]. For the same number of knots (that is,
 n- 1), we list our errors measured in 11 Il 2//b -a for the PP function Sn and the
 smooth spline Sn, also that of Sn measured in Loo norm. We divide the L2 norm by
 /b- a since it is more comparable to the Loo norm, which is what LM and Hu used.
 The errors by LM are estimated from figures in [22]. Because of the simple nature of
 our algorithm, we only expected to compete with their results by splines with two or
 three times as many knots. It turns out that our approximation errors are almost as
 good as theirs, which were produced by more sophisticated methods.

 By now, the reader may begin to wonder: what is the effect of the parameter
 0 < 0 < 1 in Step 1 of Algorithm II, used in Lemma 3.9 to guarantee the termination
 of Algorithm II. We tried 0 = 1 with all functions we tested, it worked excellently
 except that the number of polynomial pieces went up and down a few times with the
 square root function using ?(I) = fI [f(r)(x)l^ dx, in which case 0 = 0.9 was used
 instead. It is true that in theory it might get into an infinite loop, but since our goal
 is to find a nearly balanced partition, 0 = 1 works better in this aspect, provided
 infinite loop does not happen. It did not. As a matter of fact, sometimes we feel
 the need for a value slightly larger than 1, e.g., with symmetric functions such as the
 Runge function. What happens with 0 < 1 is that if there are two subintervals having
 the same largest measure at the moment, symmetric about the center of the interval,
 then the outcome of the next iteration, which processes the subinterval on the left,
 will very often interfere with the processing of the subinterval on the right later. It
 may not make the approximation error worse, at least not by much, it is just that the
 knot sequence becomes unsymmetrical, thus unnatural and unpleasant. Furthermore,
 most algorithms in the literature produce symmetric knots for symmetric functions;
 it would be hard to compare our results with theirs. For these minor reasons, we
 used 0 = 1.01 in preparation of Table 5.3. In the next example, we consider the PP
 function

 x2 if x< v/2/2,
 (1 otherwise,

 which has a jump at v-/2. As we mentioned in the discussion before Lemma 3.1, since
 v//2 has no finite binary representation, this function can never be approximated
 exactly by a PP function with dyadic break points. The program (with p = oo) keeps
 cutting and merging around the jump (since the number of pieces is always 3 after
 two iterations), until it is stopped by the criterion (5.3), resulting in t2 = 0.70710659

 1030

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 2.4

 2.2- - .04

 2- - .03

 1.8- - .02

 1.6- -. .01 1.4\ 1.~~~~~~~ .o0

 1 4 . \ " \ ' ' i ' .

 1.2- " / \ " - -.01
 II

 1 - \ - -.02

 0.8- - -.03

 0.6 - cooooooooo OOOOOOOOGO - -.04

 0.4 ' X ' : ')IOKX)X xl : x x
 500 600 700 800 900 1000 1100

 Temperature

 FIG. 5.1. Titanium Heat Data (circles). The final spline (solid line) has 15 interior knots. The
 errors for preapproximation (dotted) and for the final spline (dashed) use scales on the right.

 and t3 = 0.70710754. The PP function matches f exactly on the computer screen
 since the two points are indistinguishable. One can very well combine them into a
 single break point, thus virtually reproducing f. The original adaptive algorithm, in
 contrast, would put many many knots around the jump while trying to narrow the
 subinterval containing the jump: 0.5,0.75, 0.625, 0.6875, 0.71875,.... All these knots
 are useless except the newest two.

 In practice, one often wants to approximate discrete data points other than known
 functions as in the previous examples. In this case, we preapproximate the points by
 a spline with as many parameters as we wish to use, then apply our algorithm to this
 spline. For smooth-looking data, we interpolate the data by a C1 cubic spline with
 knots at the data points, using de Boor's subroutine Cubspl in [4]. This worked very
 well. We produced some sample data points from the Runge function and square root
 function and applied this approach to them. It resulted in virtually the same knot
 sequences as those generated by directly approximating the original functions.

 In the real world, however, it is likely that the data will contain errors. If the
 data points are interpolated, one can see small wiggles in the graph, which tricks the
 program laying knots in areas where the curve is otherwise flat. One such example
 is the Titanium Heat Data (experimentally determined), see [4, Chapter XIII], and
 also LM [22] and Hu [20]. In Figure 5.1 the reader can see wiggles on both the left
 and right. De Boor [4, Chapter XIV] suggests that the data be approximated by a
 less smooth spline. We absolutely agree. For the same reason, we used fewer knots
 for preapproximating spline in the flat parts at both ends, than we did near the high

 1031

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

 peak around 900?, trying to ignore the wiggles. In fact, we used almost the same knot
 sequence for preapproximating spline as in Figure 4 of [20].

 TABLE 5.4

 Approximation errors to the Titanium Heat Data.

 Obtained by Order # of knots Error
 De Boor 6 15 0.032
 LM 4 6 0.045
 Hu 4 10 0.048

 Hu 4 13 0.024

 Alg. II 4 11 0.070
 Alg. II 4 15 0.031

 Since de Boor, LM, and Hu all used Loo norm for approximating these data, we
 also used the Lo version of our program. Figure 5.1 shows a cubic spline approxi-
 mation to the Titanium Data obtained by this method. It has 15 interior knots with
 an error of 0.031. Table 5.4 gives a comparison of our results with those by others on
 the same data.

 Acknowledgments. We are deeply indebted to Professor Ron DeVore, who
 inspired us by discussing the excellent ideas in [11] during our visit to the University
 of South Carolina. We want to thank him and Professors Pencho Petrushev and

 Albert Cohen for providing us with drafts of their manuscript [11]. Credit is also due
 to Professor Dietrich Braess, the editor of this paper, and the referees, whose opinions
 and suggestions helped very much in improving the manuscript. As a matter of fact,
 we reshaped the last section during the communication with them.

 REFERENCES

 [1] J. BERGH AND J. PEETRE, On the space Vp (0 < p < oo), Bol. Un. Mat. Ital. (4), 10 (1974),
 pp. 632-648.

 [2] M. BIRMAN AND M. SOLOMJAK, Piecewise polynomial approximation of functions of classes
 Wp, Mat. Sb (N.S.), 73 (1967), pp. 331-355.

 [3] C. DE BOOR, Good approximation by splines with variable knots, in Spline Functions and
 Approximation, A. Meir and A. Sharma, eds., Birkauser, Basel, 1973, pp. 57-72.

 [4] C. DE BOOR, A Practical Guide to Splines, 4th ed., Springer-Verlag, New York, 1987.
 [5] C. DE BOOR AND J. R. RICE, Least squares cubic spline approximation II-Variable knots, CSD

 TR 21, Purdue University Report, Lafayette, IN, 1968.
 [6] C. DE BOOR AND J. R. RICE, An adaptive algorithm for multivariate approximation giving

 optimal convergence rates, J. Approx. Theory, 25 (1979), pp. 337-359.
 [7] Yu. BRUDNYI, Spline approximation and functions of bounded variation, Dokl. Akad. Nauk

 SSSR, 215 (1974), pp. 511-513.
 [8] H. BURCHARD, Splines with optimal knots are better, Appl. Anal., 3 (1974), pp. 309-319.
 [9] P. L. BUTZER AND K. SCHERER, Jackson and Bernstein-type inequalities for families of com-

 mutative operators in Banach spaces, J. Approx. Theory, 5 (1972), pp. 308-342.
 [10] A. COHEN, W. DAHMEN, AND R. A. DEVORE, Adaptive wavelet methods for elliptic operator

 equations-Convergence rates, Math. Comp., to appear.
 [11] A. COHEN, R. A. DEVORE, P. PETRUSHEV, AND H. Xu, Nonlinear approximation and the space

 BV(R2), Amer. J. Math., 121 (1999), pp. 587-628.
 [12] R. A. DEVORE, A note on adaptive approximation, Approx. Theory Appl., 3 (1987), pp. 74-78.
 [13] R. A. DEVORE AND G. G. LORENTZ, Constructive Approximation, Springer-Verlag, Berlin,

 1993.

 [14] R. A. DEVORE AND V. A. PoPov, Free multivariate splines, Constr. Approx., 3 (1987), pp. 239-
 248.

 1032

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

 MODIFIED ADAPTIVE ALGORITHMS

 [15] R. A. DEVORE AND V. A. POPOV, Interpolation spaces and non-linear approximation, in Func-
 tion Spaces and Applications, M. Cwikel, J. Peetre, Y. Sagher, and H. Wallin, eds., Lecture
 Notes in Math. 1302, Springer, Berlin, 1988, pp. 191-205.

 [16] R. A. DEVORE AND V. A. PoPov, Interpolation of Besov spaces, Trans. Amer. Math. Soc., 305
 (1988), pp. 397-414.

 [17] R. A. DEVORE AND X. M. Yu, K-functional for Besov spaces, J. Approx. Theory, 67 (1991),
 pp. 38-50.

 [18] R. A. DEVORE AND X. M. Yu, Degree of adaptive approximation, Math. Comp., 55 (1990),
 pp. 625-635.

 [19] Y.-K. Hu, Convexity preserving approximation by free knot splines, SIAM J. Math. Anal., 22
 (1991), pp. 1183-1191.

 [20] Y.-K. Hu, An algorithm for data reduction using splines with free knots, IMA J. Numer. Anal.,
 13 (1993), pp. 365-381.

 [21] Y.-K. Hu, K. A. KOPOTUN, AND X. M. Yu, On multivariate adaptive approximation, Constr.
 Approx., 16 (2000), pp. 449-474.

 [22] T. LYCHE AND K. M0RKEN, A data reduction strategy for splines with applications to the
 approximation of functions and data, IMA J. Numer. Anal., 8 (1988), pp. 185-208.

 [23] P. PETRUSHEV, Direct and converse theorems for spline and rational approximation and Besov
 spaces, in Functions Spaces and Approximation, M. Cwikel, J. Peetre, Y. Sagher, and
 H. Wallin, eds., Lecture Notes in Math. 1302, Springer, Berlin, 1988, pp. 363-377.

 [24] P. P. PETRUSHEV AND V. A. PoPov, Rational Approximation of Real Functions, Cambridge
 Univeristy Press, Cambridge, UK, 1987.

 [25] J. R. RICE, Adaptive approximation, J. Approx. Theory, 16 (1976), pp. 329-337.
 [26] L. L. SCHUMAKER, Spline Functions: Basic Theory, John Wiley, New York, 1981.

 1033

This content downloaded from
�������������146.7.114.79 on Mon, 27 Sep 2021 19:52:23 UTC��������������

All use subject to https://about.jstor.org/terms

	Modified adaptive algorithms
	Recommended Citation

	tmp.1632772555.pdf.UDpIW

