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ABSTRACT 

Radish microgreens were grown in a hydroponic wicking system and subjected to a range of 
calcium chloride (Ca) solutions to evaluate growth, yield, and mineral content. A solution range 
of 0 to 160 mM Ca was applied to determine upper limits of Ca fertilization. Solutions above 20 
mM Ca showed toxic effects to germination and growth, while 5 and 10 mM Ca resulted in the 
greatest percent of shoots that grew to a desired size for harvest (%H), as well as greater average 
hypocotyl length per plant (HL) and cotyledon surface area per plant (CSA). For subsequent 
experiments, Ca solution range was narrowed to 0 to 10 mM Ca. A single best rate of Ca was not 
identified in this range, but trends suggested that added Ca can increase average fresh weight per 
plant (FW), HL, CSA, and the percent of shoots that develop a first true leaf (%TL). Capmat II 
growing media resulted in a low %H across multiple experiments, but when vermiculite was 
added as a growing media, average percent germination (%G) and %H increased in all 
treatments. Differences in plant size and biomass did not occur until higher Ca concentrations 
when microgreens were grown in vermiculite. In general, Ca content of plant tissues increased 
with Ca solution concentration; however, the level of increase was dependent on the media and 
whether treatments were applied at the time of planting or delayed until after germination. 
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INTRODUCTION 

 

Microgreens are a specialty crop that have been gaining popularity in recent years (Xiao 

et al., 2012). They are vegetable seedlings that are grown and harvested in a short amount of 

time, usually within 7 to 21 days after planting (DAP) (Sun et al., 2015). Microgreens are ready 

to be eaten when the cotyledons are fully expanded, and the first true leaves are just beginning to 

emerge. Many species of vegetables, herbs, and grains can be grown as microgreens. They are 

often used in the culinary industry for their wide range of colors, textures, and flavors (Xiao et 

al., 2012). In addition to their flavor and aesthetic value, they also have potential to contribute 

nutritional quality to the human diet. Researchers have even suggested that microgreens could 

contribute to functional diets for astronauts spending extended time in space (Kyriacou et al., 

2017).  

The importance of microgreens as a food crop ultimately lies in their high concentration 

of nutrients that are beneficial to human health. These tender, young plants often contain more 

phytonutrients, antioxidants, vitamins, and minerals than their mature counterparts (Pinto et al., 

2015; Xiao et al., 2016). Their value as health-promoting foods has increased consumer demand. 

As awareness grows, commercial vegetable growers are embracing this niche market (Xiao et al., 

2012), but there are unique challenges to growing microgreens when it comes to post-harvest 

handling and storage. This is due to the tendency of tender shoots to degrade quickly in storage 

conditions (Kou et al., 2015; Mir et al., 2016). Since shelf life is an extremely limiting factor in 

microgreens production, much of the research has focused on this aspect of production.  

Research pertaining to microgreens production is limited, however studies are beginning 

to determine that there are a variety of pre-harvest factors that can affect growth rates, yield, 
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nutrient content, and post-harvest quality in microgreens. Some of these include various 

fertilization methods, lighting conditions, pre-germination methods, and growing media 

composition. Furthermore, the responses to the different factors mentioned above have been 

shown to vary between species and varieties, along with nutrient composition (Di Gioia et al., 

2017; Mir et al., 2016; Xiao et al., 2016). Despite the recent research, and growing popularity, 

there is still a lack of standardization in the industry.  

It is common for commercial microgreens producers to use hydroponic systems, but 

research to evaluate the influence of certain mineral nutrient concentrations in solution on plant 

growth rates, yields, and nutrient content is also limited. Hydroponic growing methods do 

however provide a method to precisely control nutrient availability when growing microgreens 

and provides an ideal method for studying the effects nutrition on microgreen production. The 

following literature review will examine existing research relating to factors influencing 

microgreens production, especially pertaining to mineral nutrition.  
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LITERATURE REVIEW 
 

Assessment of Nutritional Value of Microgreens 

Many species and varieties of vegetables, and herbs can be grown as microgreens. The 

nutrient content and composition of the mature stages of vegetable, herb, and grain crops are 

well documented. However, nutrient composition and concentrations at later stages of growth 

have been shown to differ from early growth stages when microgreens are harvested for 

consumption. Even though some studies have begun to contribute to the base of knowledge in 

microgreens nutrition, only a narrow range of species and varieties have been evaluated. 

Xiao et al. (2012) evaluated the concentrations of certain vitamins and carotenoids in 

microgreens. Concentrations of phylloquinone (vitamin K1), ascorbic acid (vitamin C), ß-

carotene (provitamin A), lutein/zeaxanthin, violaxanthin, and tocopherol, were measured in 25 

different varieties of microgreens from different families, genera, and species. These were also 

compared to known concentrations in the mature forms of these plants. The concentrations of 

each of these vitamins and carotenoids varied greatly between species, and even within species. 

Despite the variation, 23 of the 25 varieties assayed proved to be good sources of these 

phytonutrients, and some were found to have higher concentrations of these when compared to 

their mature counterparts. For example, red cabbage microgreens possessed six-fold greater 

vitamin C than that of mature cabbage leaves (Xiao et al., 2012).  

Pinto et al. (2015) compared the mineral profile of microgreen lettuce to that of mature 

lettuce. While mature lettuces had greater nitrogen (N), phosphorus (P), and potassium (K) 

content, microgreen lettuce was greater in other nutrients including 2.0x calcium (Ca), 1.9x iron 

(Fe), 9.3x manganese (Mn), 1.6x zinc (Zn), 2.5x molybdenum (Mo), and 5.3x selenium (Se). 

Furthermore, microgreen lettuce also exhibited lower concentrations of nitrate and ammonium, 
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making them safer for consumption, especially for children, who have higher risk of nitrate 

toxicity (Pinto et al., 2015).  

More recently, Xiao et al. (2016) reported the mineral element composition and content 

of 30 microgreens varieties from the Brassicaceae family. They quantified the amounts of the 

macronutrients Ca, K, P, magnesium (Mg), and sodium (Na), along with the micronutrients Fe, 

Mn, Zn, copper (Cu), and heavy metals cadmium (Cd) and lead (Pb). Potassium was found to in 

greatest concentration of the macronutrients (176 to 387 mg/100 g fresh weight), followed by P 

(52 to 86 mg/100 g fresh weight), and then Ca (28 to 66 mg/100 g fresh weight). Iron was 

generally the most abundant micro element (0.47 to 0.84 mg/100 g fresh weight), on average, 

followed by Zn, Mn, and Cu. These results indicated that Brassicaceae microgreens are an 

overall good dietary source of macro-and microelements (Xiao et al., 2016). 

The species and varieties of microgreens that have been analyzed for nutrient content 

have shown that they are good sources of nutrition in the human diet. Many species, such as 

lettuce and red cabbage, even have higher concentration of key nutrients than that of the mature 

leaves. Still, much more work is needed to identify nutrient profiles of the many varieties of 

microgreens currently available to growers and consumers.  

 

Lighting Influence on Nutrient Content of Microgreens 

Several researchers have evaluated the effects of light intensity, quality, and duration on 

the nutrient content of various species of microgreens. They have shown that light conditions can 

not only influence growth and morphology, but also concentrations of phytochemicals, vitamins, 

and minerals. The effects of lighting factors on microgreens are varied and species-specific 

(Kyriacou et al., 2016). Much research in lighting effects on nutrient content of microgreens 
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focuses on the use of light emitting diodes (LED), as this technology is quickly becoming a 

standard for indoor growers in many fields. LED lighting gives growers the ability to provide 

specific spectral wavelengths to meet specific requirements of desired horticultural crops 

(Morrow, 2008).  

Kopsell and Sams (2013) measured the effects of exposure to either red and blue light 

(350 µmol m-2 s-1) or blue light (41 µmol m-2 s-1) on pigments in shoot tissues, as well as GLS 

and mineral elements. Broccoli microgreens were grown for 13 days in a complete nutrient 

solution before being exposed to light treatments for five days before harvest. Short term blue 

light increased concentrations of carotenoids (21%), xanthophylls (28%), and GLS (35%) in 

plant tissues. There were also increases in the micronutrients Cu (50%), Fe (64%), Mn (47%), 

Na (61%), Zn (35%), Mo (56%), and B (29%), and macronutrients Ca (38%), P (54%), K (65%), 

Mg (53%), and S (54%) in the blue light treatment. This study concluded that a specific 

wavelength of light could influence and even improve nutritional value of broccoli microgreens, 

when applied for a few days before harvest (Kopsell and Sams, 2013). 

Effects of LED red/blue and red/blue/green ratios were further compared to 

fluorescent/incandescent bulbs on broccoli microgreens (Kopsell et al., 2014). It was concluded 

that total fresh weight of shoots was 6 to 55% greater in all LED treatments than in the 

fluorescent/incandescent treatment. All LED treatments increased chlorophyll a and b, total 

carotenoids, total GLS, as well as macro- and micronutrients, compared to 

fluorescent/incandescent lighting. A treatment of 20% blue to 80% red resulted in the greatest 

concentrations of most of the measured metabolites (Kopsell et al., 2014).  

Samuoliene at al. (2013) measured the effects of a range of different photosynthetic 

photon flux densities (PPFD) from LED lighting on four different species of Brassicaceae 
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microgreens. The treatments included PPFDs of 110, 220, 330, 440, and 545 µmol m-2 s-1. The 

lower PPFD treatments resulted in decreased growth and nutritional value. In general, between 

330 – 440 µmol m-2 s-1 led to greater leaf surface area, anthocyanins, phenols, and free-radical 

scavenging capacity. This range also resulted in lower nitrates. The responses to these treatments 

varied between species, even though all four belonged to the same family. This has been reported 

to be a common occurrence when one study includes multiple species or varieties of microgreens 

(Samuoliene et al., 2013). 

Brazaitye et al. (2013) investigated the effects of supplementary, short-term red LEDs on 

shiso (Perilla frutescens). For this experiment, the microgreens were grown primarily under 

natural daylight with supplemental high-pressure sodium (HPS) lamps for 20 days. For the last 

three days before harvest, red LEDs (200 µmol m-2 s-1) were provided in addition to HPS lamps 

(90 µmol m-2 s-1). After harvest, shoots were analyzed for ascorbic acid, flavanols, anthocyanins, 

alpha tocopherol, and nitrates. The addition of the red LEDs resulted in increased ascorbic acid 

(21%) and anthocyanins (25%) and decreased nitrates (20%) but did not affect flavanols or free-

radical scavenging activity (Brazaitye et al., 2013). 

Gerovac et al. (2016) investigated the effects of light intensity and quality from LED 

sources on growth, morphology, and nutrient content of three microgreens species in the 

Brassicaceae family. Treatments consisted of combinations of different percentages of red, far 

red, green, and blue light (light quality) resulting in 105, 210, and 315 µmol m-2 s-1 between 400 

and 800 nm for 16 hours each day. The results of these experiments revealed that light intensity 

had a greater overall impact on yield and nutrient content of the different varieties, though the 

results varied between species. Regardless of light quality, as light intensity increased, dry 

weight increased, but hypocotyl length decreased in all species. Additionally, as light intensity 
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increased, leaf area of cotyledons decreased, and relative chlorophyll content increased in 

Kohlrabi. Lower light intensities generally led to increases in macro- and micronutrient content. 

These results indicated that light intensity can affect growth, yield, and nutrient content of 

microgreens, and that LED lighting can provide the ability to customize light treatments to 

individual crop needs (Gerovac at al., 2016). 

These studies in lighting factors have shown light quality and intensity can have 

significant effects on growth, development, yield, and nutrient content of microgreens. By using 

LED lighting, microgreens growers can customize the light that their plants receive to achieve 

the best possible growing conditions. They may also see an increase in important antioxidants, 

and other nutritionally important compounds. However, these studies also show variation in the 

responses of different species and varieties of microgreens, so further research is needed to 

determine requirements for specific microgreens varieties.  

 

Cultural Methods in Microgreens Production  

Most information on cultural methods of microgreen production is provided from seed 

suppliers, such as Johnny’s Selected Seeds (Winslow, ME, USA). Some research has examined 

different methods to improve seed germination, establishment and growth by using different 

soilless growing media, fertilization, and various seeding rates and soaking methods. However, 

there is a lack of standardization in commercial methods for producing microgreens. Although 

hydroponic methods are common in microgreen production and are used in research methods, no 

clear standards or directions have been identified for hydroponic microgreens production.  

For seed germination, Lee et al. (2004) evaluated a few methods of pre-germination 

soaks and matric priming as ways to improve germination, and seedling emergence and 
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development of microgreen beets and ruby red chard (Beta vulgaris L.). Germination was 

evaluated when seed balls were matrically primed in fine grade vermiculite, or soaked in 

deionized (DI) water, 0.3% H2O2 in DI water, 0.3% HCl in DI water, or 4% NaCl. The matric 

priming and H2O2 soak treatment resulted in the fastest germination. These two treatments were 

chosen for further comparison of seedling emergence, along with a control treatment where seeds 

were planted into vermiculite with no treatment. Additionally, seedling development was 

evaluated when seeds were planted in growing media after being treated with the two soak 

treatments, the vermiculite control and the combination of matric priming and soaking with pre-

germinating in vermiculite. The results revealed that the seeds sown in vermiculite with no 

priming or soaking emerged at the same time or earlier than those that were treated with priming 

or soaking (Lee et al., 2004). 

Murphy and Pill (2010) expounded upon some of the methods developed by Lee et al. 

(2004) to evaluate different seedings rates of arugula (Eruca vesicaria), as well as pre-planting 

fertilization of the growing media and post emergence fertilization, and the combination of both 

pre-planting and post emergence fertilization. Increasing the seeding rate increased total fresh 

weight of the arugula due to an increase in the number of shoots, but fresh weight per shoot 

declined. Lower seeding rates may result in larger individual shoots, however overall yield (total 

fresh weight) would be less. These results indicated it is more economically sensical to adhere to 

recommended rates of seeding (Murphy et al., 2010; Murphy and Pill, 2010). 

These experiments also evaluated different sources of N fertilizers (calcium nitrate, 

ammonium nitrate and urea) in different states (solid or liquid), and at different concentrations 

(500 to 4,000 mg N L-1) applied to the growing media before planting. Because liquid-state 

fertilizers were more evenly dispersed and readily available to be taken up by the plants, they all 
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resulted in greater fresh weight per plant than the solid-state fertilizers. All fertilizers resulted in 

increased total fresh weight and dry weight per plant when compared with no fertilizer treatment. 

Calcium nitrate yielded the highest fresh weight, followed by sodium nitrate, and then urea. 

Regardless of the N source, increasing the N concentration did increase fresh weight yields up to 

2,000 mg N L-1, with 4,000 mg N L-1 decreasing fresh weights (Murphy and Pill, 2010). In the 

post-emergence fertilization study, a 21-2.2-16.6 fertilizer, diluted to provide 0, 75, or 150 mg N 

L-1, was provided daily to germinated seedlings as an aqueous solution. Total fresh weight 

increased with fertilizer concentration, but fresh weight per shoot ultimately declined (Murphy 

and Pill, 2010). 

The final experiment compared the combination of pre-germination and ungerminated 

seeds with the addition of pre-plant incorporated solid calcium nitrate at 2,000 mg N L-1, or daily 

fertilization of 150 mg N L-1 as 21-2.2-16.6. The other treatments consisted of the two fertilizers 

combined at full strength and at half concentration. Total fresh weight increased in all treatments 

when seeds were pre-germinated in vermiculite. All fertilizer treatments resulted in higher fresh 

weight than those with no fertilizer treatment, regardless of whether the seeds were 

pregerminated in vermiculite. Overall, the most effective treatment to increase yields of arugula 

microgreens was 2,000 mg N L-1 calcium nitrate added to the media prior to planting with the 

addition of daily fertilizer solution of 150 mg N L-1 (Murphy and Pill, 2010). 

Another study by Murphy et al. (2010) revealed similar results in microgreen beet (Beta 

vulgaris L.) seeding rates. Sowing seeds at commercially recommended rates was more 

beneficial in total fresh weight yields than increasing or decreasing the rates. This study also 

further examined the treatment N fertilizer treatments that showed the best results in the arugula 

experiments, where seeds were grown in peat media pre-planting application of 2,000 mg N L-1 
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calcium nitrate with the addition of a daily solution of 150 mg N L-1 . This was also tested at half 

strength (1,000 mg N L-1 calcium nitrate plus 75 mg N L-1). These treatments were evaluated 

when seeds were planted directly in the media or pre-germinated in vermiculite. The full-strength 

fertilizer treatment increased fresh weight per plant by 47% when seeds were pre-germinated in 

vermiculite, and 48% when seeds were not pre-germinated (Murphy et al., 2010).   

Additional studies by Murphy et al. evaluated non-treated seeds with seed pre-

germination in vermiculite or hydroxyethyl cellulose gel (HEC) and growth in peat growing 

media versus nutrient film technique (NFT) hydroponic culture. The nutrient solution used for 

the NFT system was comprised of hydrosol 5-4.7-22 (1 g L-1), calcium nitrate (1 g L-1), 

magnesium sulfate (0.1 g L-1), and Fe chelate (0.04 g L-1). Nutrient film technique hydroponic 

culture produced greater fresh weight per plant than peat growing media, ranging from 33% to 

98%, depending on seed treatment (Murphy et al., 2010). 

The previous two studies showed fertilizer solutions and NFT hydroponic culture can 

affect the fresh weight yields of a specific variety of microgreens. Another study by Bulgari et. 

al. (2017) assessed the yield and nutrient content of three microgreens varieties grown in a half 

strength Hoagland’s solution in a hydroponic system. Three species: basil (Ocimum basilicum), 

swiss chard (Beta vulgaris), and arugula (Eruca vesicaria) were grown in vermiculite media-

filled polystyrene cell trays in a floating hydroponics system. Microgreens were evaluated for 

mineral uptake and content, and nitrate, pigment (chlorophyll, carotenoids, phenols, and 

anthocyanins), and sugar content. The results indicated different responses between varieties in 

growth, yield, and content of most mineral nutrients, pigments, and sugars. The variation of the 

results is consistent with other research using multiple species and varieties, and it shows that 
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there is still much to be learned about individual nutrient requirements and nutrient content of 

microgreens (Bulgari et al., 2017). 

 Different growing medias have been compared by Di Gioia et al. (2017) using Brassica 

rapa L. microgreens are often grown in a peat-based growing mix or Sure to Grow® fabric mats 

(polyethylene terephthalate), however there are presumably more sustainable substrates that can 

be used. The growing substrates compared in this experiment were recycled textile fiber (TF) 

mats made from recycled polyester and cotton fibers, jute-kenaf fiber mats (JKF) made from 

compostable recycled fibers, Sure to Grow® (STG) mats, and a 50/50 mixture of fine black and 

white peat mosses. Bulk densities of the medias were all within a desirable range, with peat 

being the highest, followed by TF, JKF, then STG mats. Peat had the highest total pore space and 

water holding capacity, but the lowest air capacity. Water extracts from water activity tests 

revealed TF, JKF, and STG had significantly lower concentrations of Na, Cl, and SO4
2-, 

suggesting that nutrient supply could be controlled and customized more easily in TF, JKF, and 

STG mats to meet plant needs (Di Gioia et al., 2017). 

The type of growing media did not affect the number of shoots that grew, and fresh 

weight was only reduced in the STG pads. The highest fresh weight per shoot resulted from peat, 

followed by TF, JKF, and STG. These results indicate that the type of media used can affect the 

yield of microgreens. Furthermore, mats made from recycled fibers could potentially provide a 

sustainable alternative to popular growing medias (Di Gioia et al., 2017). 

Recent research lends further evidence that responses to cultural methods of microgreens 

production is varied by species and variety but does suggest that providing supplemental 

nutrition to microgreens may improve yields. Still evident after these studies is that the 

microgreens industry still lacks standardization in production methods. 
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Factors Influencing Shelf Life of Microgreens 

Shelf life of fresh-cut microgreens has proven to be one of the most limiting factors in 

commercial microgreens production. Fresh cut fruits and vegetables are affected by several post-

harvest stress factors, both internal and externally. These include increased respiration rates and 

ethylene production, along with abiotic factors such as physical injury from processing or 

chilling injury from low temperature storage (Hodges and Toivonen, 2008). Plants harvested in a 

young stage of growth are more sensitive to abiotic stress factors that occur during harvest, 

washing, and storage than that of mature vegetables (Watkins and Nock, 2012). These stress 

factors, along with microbial populations that speed up the senescence process, can decrease the 

amount of time that microgreens remain edible after harvest (Chandra at al., 2012). Sanitizers, 

packaging materials, storage lighting, and Ca foliar sprays have been investigated in order to 

identify the best post-harvest processing and storage methods to achieve maximum shelf life for 

microgreens.  

Different sanitizers and packaging were evaluated by measuring microbial populations 

and post-harvest quality of Brassica campestris var. Narinosa microgreens. Microgreens were 

washed with tap water (TW), 100 ml L-1 chlorinated water (Cl), 0.25% (w/v) each of citric and 

ascorbic acid mixed solution (CA + AS), or 0.5% (w/v) citric acid solution followed by 50% 

(v/v) ethanol spray (CA + E). The microgreens were then packaged in either polyethylene (PE) 

or polypropylene (PP) bags. They were stored for nine days at 5°C, while being monitored for 

CO2 formation within the bags, color, electrolyte leakage, and microbial populations. Sensory 

evaluations were also performed by a panel to determine levels of off-odor and visual quality. 

The PE packaging yielded the best results with lower CO2 formation and less electrolyte 

leakage, most likely due to increased permeability of PE films compared to PP films. For 
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sanitizers, CL and CA+E treatments decreased CO2 formation and exhibited lower aerobic 

bacteria counts. Regardless of treatment and packaging, off-odor and visual quality declined past 

marketable quality by day five (Chandra et al., 2012). 

Xiao et al. (2014) evaluated the effects of light exposure on the concentration of ascorbic 

acid, carotenoids and tocopherols, antioxidant activity, as well as visual quality and off-odor of 

daikon radish (Raphanus sativus var. Longippinatus) microgreens under storage conditions. In 

addition to this, they monitored gas composition in package headspace, and weight loss of plant 

material. They also compared these results in two different types of packaging: polyethylene 

(OTR), and laser microperforated polypropylene (LMP). The stored microgreens in each 

packaging type were subjected to a treatment of fluorescent light (≈30 µmol m-2 s-1) or no light 

(≈1 µmol m-2 s-1) for 16 days (Xiao et al., 2014).  

Gas composition in the LMP bags remained stable at atmospheric levels and were not 

affected by the light or dark treatment. In the light treatments, CO2 level in OTR packaging 

remained unchanged from day zero to day 12, but slightly increased in the last four days. Under 

dark conditions, CO2 levels rose sharply in OTR packaging from day zero to day four and 

remained constant after that. Visual quality of microgreens stored in dark conditions in OTR 

packaging proved to be acceptable by a panel even at 16 days, whereas OTR samples stored in 

light conditions and both light treatments with LMP packaging declined over time. After four 

days of storage, the LMP packaging resulted in lower off-odor scores than the OTR packaging, 

which was likely attributed to the permeability of LMP film. Dark treatments maintained fresh 

weight close to that of day zero but declined significantly in light treatments through the course 

of the experiment. Samples stored under light conditions generally resulted in higher total 

ascorbic acid by day 16, whereas dark storage helped maintain higher levels of carotenoids, 
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antioxidant activity. Other bioactive compounds were unaffected by the treatments. These results 

indicate that storage conditions such as light and packaging can have effects on the physical and 

nutritive properties of radish microgreens (Xiao et al., 2014). 

The application of Ca is commonly used to slow the ripening process in fresh fruits and 

vegetables. This is likely attributed to its role as a second messenger in decreasing the expression 

of senescence-associated genes (Marschner, 2012; Kou et al., 2014). Because of this, recent 

research in microgreens production and shelf life have centered around application of Ca salts to 

microgreen shoots both pre- and post-harvest. Kou at al. (2014) conducted two experiments in 

Ca application with the objective of improving shelf life and post-harvest quality.  

Kou et al. (2014) evaluated the effects of nutrient foliar sprays applied before harvest on 

shelf-life and quality of broccoli (Brassica oleracea) microgreens. Concentrations of 1, 10, and 

20 mM CaCl2 or MgCl2, or 5 mM ethylene glycol-tetraacetic acid (EGTA) were applied to 

shoots daily for 10 days before harvest. After harvest and weighing, tissue samples were taken 

for separate analysis of shoot Ca concentrations. Fresh samples were placed into polyethylene 

bags and stored at 5 °C for 21 days. Gas composition, electrolyte leakage, microbial populations, 

as well as antioxidant activity were measured throughout the experiment. This experiment also 

evaluated the effects of treatments on expression of genes known to be associated with 

senescence (Kou et al., 2014). 

The results of this experiment revealed that 10 mM CaCl2 foliar spray led to greater 

hypocotyl length (27%), fresh weight (54%), and dry weight (24%) than the water treated 

control, and the cotyledons were larger overall. Ca concentration in the shoots also increased 

160% in the 10 mM Ca treatment compared to the water treated group. O2 loss was slower, and 

electrolyte leakage was less in 10 mM Ca, as well. Results of visual quality and off-odor scores 
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revealed that 10 mM Ca retained a higher quality than the other treatments after day seven, up to 

day 21. All Ca treatments led to significantly lower aerobic bacterial growth than the water 

control. Compared to water, the 10 mM Ca exhibited significantly lower expression of two out of 

three senescence-associated genes, which slowed degradation of plant tissues in storage. Overall, 

these results indicate that the degree to which Ca affects growth and development is dependent 

on dosage, and that pre-harvest Ca sprays can improve the post-harvest quality of microgreens, 

leading to a longer shelf life (Kou et al., 2014). 

Further studies examined different sources of Ca applied to broccoli microgreens. 

Treatments consisted of pre-harvest foliar sprays of different forms of Ca, post-harvest sprays 

and dips, and the combination of pre- and post- harvest treatments. The pre-harvest treatments 

were 1, 10, or 20 mM Ca lactate, Ca amino acid chelate (Ca AA) solutions, or 10 mM CaCl2. 

The post-harvest treatments included 0, 25, 50, or 100 µmol L-1 Ca lactate plus 100 µL L-1 

chlorine (Cl). The remaining treatments consisted of varying combinations of the pre- and post-

harvest treatments. Post-harvest quality, gas composition, electrolyte leakage, and microbial 

activity were measured, as in the previous experiment (Kou et al., 2015). 

Ca lactate and Ca AA pre-harvest sprays significantly reduced microbial populations of 

harvested microgreens compared to H2O controls but were still less effective than 10 mM CaCl2 

pre-harvest spray alone. The 10 mM CaCl2 pre-harvest spray also led to the best scores in visual 

quality and off-odor along with post-harvest dip in 50 mmol L-1 Ca lactate (+100 µL L-1 Cl), 

compared to all other treatments. Overall, the CaCl2 pre-harvest foliar spray led to better results 

in all aspects having to do with prolonged shelf life. Still, there is a need for less damaging 

washing and drying procedures, as they can negatively affect shelf life and quality (Kou et al., 

2015). 
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A more recent study by Lu et al. (2018) evaluated the effects of a CaCl2 foliar spray in 

addition to short-term, post-harvest exposure to UV-B lighting on the shelf life, and level of 

Glucosinolates (GLS) in packaged broccoli (Brassica oleracea var. Italica) microgreens. 

Microgreens were sprayed daily with H2O (control), 1 or 10 mM CaCl2 foliar spray. After 

harvest, the packaged microgreens samples were either placed into dark storage or exposed to 

either 0.09 or 0.18 Wh/m2 UV-B light for 2 hours, before being stored in the dark at 4° C for 21 

days. Visual quality, off-odor, gas composition of packaging, and tissue electrolyte leakage were 

measured throughout the experiment. Freeze dried tissue samples were used for analysis of GLS. 

Results were compared to that of mature broccoli florets and leaves (Lu at al., 2018). 

The results indicated that all samples treated with 10 mM Ca provided the best post-

harvest quality after day seven with regards to off-odor and visual quality, with light treatment 

having no affect. The concentration of total GLS (predominantly glucoerucin) was 20-fold 

higher in microgreens than mature plant tissues, which further confirms previous claims that 

seedling vegetables are higher in certain phytonutrients than mature forms of the plants. The 

application of 10 mM Ca increased total GLS in microgreens and was determined to have more 

of an effect on all measured factors than the application of UV-B lighting (Lu et al., 2018). 

Each of these studies have indicated that there are many factors that can influence shelf 

life and post-harvest quality of fresh cut microgreens, including packaging material, light 

exposure, sanitizer sources, and pre-harvest Ca foliar sprays. Furthermore, Ca sprays have also 

been proven to have significant effects on growth, yields and concentrations of certain important 

nutrients in microgreens. There is a continued need to study factors that affect microgreen shelf 

life, especially washing and drying procedures, and how different species and varieties respond. 

Additionally, there is a lack of knowledge about how CaCl2 concentration could affect yields 
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and mineral content of microgreens when applied directly to the roots, as opposed to a foliar 

spray.  

 

Calcium in Microgreens Production 

Research in microgreens involving Ca applications focused on shelf life and post-harvest 

quality. However, the experiments involving these treatments also saw significant effects on 

yield when Ca was applied as a foliar spray to plants, particularly a foliar spray of 10 mM CaCl2 

concentration. This Ca treatment has been shown to significantly improve shelf life, storage 

quality, nutrient content, and yields (Kou et al., 2014). 

Kou et al. (2014) applied Ca as a foliar spray to broccoli microgreens to evaluate their 

ability to delay senescence and promote longer shelf life. The results of this experiment not only 

revealed that 10 mM Ca can increase shelf life, but it also increased cotyledon surface area and 

hypocotyl length, resulting in 50% greater fresh weight and 25% increased dry weight to 0 mM 

Ca. The 1 mM Ca foliar spray did not affect growth, while 20 mM Ca was toxic with yellowing 

cotyledons. Increasing Ca concentration in the spray also resulted in an increase in shoot Ca 

content after harvest, with 10 mM Ca increasing shoot Ca content almost 160% over the water-

treated plants. Due to this response of microgreen yield and Ca content to foliar Ca applications 

by Kou et al. (2014), the current research evaluated the impacts of Ca availability to roots of 

hydroponically grown microgreens.  

 

Role of Calcium in Plant Growth and Development 

The crucial role of calcium in plant growth and development is diverse and well 

documented. Calcium is involved in a host of cellular functions and contributes to structural 
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integrity of cell walls and membranes. It binds with pectate in the middle lamella of cell walls, to 

provide structural support and strength, and to prevent build-up of compounds that promote cell 

wall degradation (Marschner, 2012). It functions as an intracellular signaling mechanism that 

triggers physiological responses to stress and developmental cues such as germination and root 

hair elongation (Anil and Rao, 2001; Marschner, 2012; White and Broadley, 2003). 

Some of the stimuli for changes in cytosolic free Ca 2+ include aspects of light exposure, 

temperature changes, osmotic stress, cell division and apoptosis, germination, senescence of 

tissues, and much more. These changes in cytosolic Ca serve as intracellular messages, triggering 

physiological responses to the various stimuli and stress factors that plants may experience, and 

each response is unique in its duration, periodicity, or amplitude (White and Broadley, 2003). 

There are three different physiotypes that plants are categorized into according to their 

specific Ca needs. Calcitrophs belong to plant families that have higher soluble Ca in their 

tissues. Calcium accumulation in the shoots of calcitrophs can be directly related to the amount 

of Ca available in the soil solution or growing media. Plants in the Brassicaceae family belong to 

the calcitroph physiotype and are popular plant families used in microgreens production (White 

and Broadley, 2003). 

 

Research Objective 

The objective of this research was to identify the optimal fertilization rate of CaCl2 for 

growth, yield, and nutrient content of hydroponically growth daikon radish (Raphanus sativus) 

microgreens. Radish is a member of the Brassicaceae family and is popular in microgreens 

production for its fast growth rates and ease of production. The use of radish for this study 

allowed for multiple experiments to be completed within a relatively short amount of time. 
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Utilizing a hydroponic growing environment allows nutrients to be made available at precise and 

continuous concentrations via the nutrient solution. Calcium has been shown to increase yields 

and shoot Ca concentration when applied to microgreens as a foliar spray (Kou et al., 2014), but 

to my knowledge no one has evaluated the effects of root-applied Ca to hydroponically grown 

microgreens to determine optimal Ca fertilization rates for production.  
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MATERIALS AND METHODS 

 

Experiment One:  Broad Range Ca Application  

Daikon radish (Raphanus sativus) microgreens seeds purchased from Johnny’s Selected 

Seeds (Winslow, ME, USA) were grown in a hydroponic wicking system, using Rubbermaid® 

TakeAlongs 669 ml food storage containers (Newell Brands Inc. Atlanta, Georgia, USA). Slits 

were cut on opposite sides of each lid and a 2.5 x 33 cm strip of Capmat II capillary matting 

(Phytotronics, Inc.® Earth City, MO, USA) was inserted through the slits, allowing it to hang 

down into the container and wick solution up from inside the container to the seedbed on top of 

the lid (Figure 1A). A 14 x 14 cm square of matting was placed on top of the lid and the strip to 

act as the seed bed (Figure 1B). Seeds were dispersed evenly on top of the lids and matting at a 

rate of 3.3 g per container, equaling about 250 seeds per container (Figure 2). Seeding rate was 

estimated based on 100 seed count average weight and on seeding recommendations of Johnny’s 

Selected Seeds for 8 to 10 seeds per 2.5 cm2 (Johnnys Selected Seeds, 2017).  

 

 

Figure 1. Hydroponic setup for Experiments One through Four with (A) wicking strip and (B) 
square of capillary matting for seed bed. 

A B 
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Figure 2. Radish seeds distributed on capillary matting. 

 

Treatment solutions of 0, 5, 10, 20, 40, 80, 160 mM Ca were made from calcium chloride 

(CaCl2) anhydrous powder (ACROS Organics-Thermo Fisher Scientific, Waltham, MA, USA) 

and DI water filtered with a Barnstead E-Pure™ filtration system (Thermo Fisher Scientific, 

Waltham, MA, USA). Each container held 300 ml of treatment solution. The seeds were placed 

on the capillary mat seed bed with the wicks reaching the treatment solutions, and the containers 

were then placed in a Percival model LED-41L2 growth chamber (Percival Scientific, Inc. Perry, 

IA, USA) where temperature and lighting parameters could be controlled. Three replications of 

each treatment were completely randomized on the two shelves of the growth chamber. 

Temperature was maintained at 21.5 °C. Lights were turned on when hypocotyls began to 

elongate, and cotyledons had fully emerged. This stage of growth occurred around three days 

after planting. Light levels were maintained near 350 µmol m-2 s-1 at plant level using 12 fixed 
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cool white (90% power) and red (20% power) dimmable LED lights, for a 12 hour on and off 

cycle. The microgreens were monitored and photographed every day.  

The radish microgreens were ready for harvest when the cotyledons were fully expanded, 

and the first true leaves were beginning to emerge (Kyriacou et al., 2016). At seven DAP, the 

plants were at harvest stage. To harvest, each shoot was cut at the base, where the hypocotyl 

meets the radicle. Fresh weight per container was measured, then each sample was submerged 

six times each in a series of three DI water rinses. The number of shoots that reached the first 

true leaf stage, along with the number of seeds that did not germinate, and the number of seeds 

that stopped growing after radicle emergence were counted and used to determine the percent 

germination, and the percent of shoots that made it to first true leaf stage.  

A subsample of 20 to 30 plants (depending on the number of harvestable shoots present) 

was taken from each treatment for hypocotyl and cotyledon analysis. Subsample size (n) was 

recorded to calculate per-plant measurements. Cotyledons and hypocotyls of each plant in the 

subsample were separated and laid flat on a plexiglass tray (Figure 3). A penny was used as a 

standard in each scan, to make sure analyses remained consistent across experiments. The tray 

was placed into a Regent Scanner (Regent Instruments, Quebec, Canada) that captured color and 

black-and-white images. Winrhizo software (Regent Instruments, Quebec, Canada) was used to 

analyze the images to determine average hypocotyl length and cotyledon surface area per plant. 

The plants from the subsample were then added back to the main sample, and the tissues were 

dried in a forced air oven at 46 °C and dry weight was measured. Tissue samples were ground to 

a fine powder using a modified coffee grinder and placed into labeled 20 oz Whirl-Pack® bags 

(Nasco, Fort Atkinson, WI) for storage.  
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Figure 3. Hypocotyls and cotyledons arranged on the scan tray for analysis. 

 

Experiment Two:  Narrow Range Ca Application  

For Experiment Two, the hydroponic system was the same, except the solution range was 

narrowed to include 0, 2.5, 5, 7.5, and 10 mM Ca, with 250 ml of solution added to each 

container on the day of planting. Each treatment was replicated four times, and the containers 

were arranged randomly with two replications per shelf in the growth chamber. The microgreens 

were monitored and photographed daily and harvested seven days after planting. One tray from 

each treatment was randomly selected to measure solution pH and electrical conductivity (EC) at 

the beginning and end of the experiments using an Ohaus Starter 300 pH meter (Ohaus Corp., 

Parsippany, NJ) and a Bluelab conductivity pen (Bluelab Corp. Lmt., New Zealand).  

 

Experiment Three:  Delayed Narrow Range Ca Application  

Experiment Three was a repeat of Experiment Two, except that the seeds were treated 

with acid scarification prior to planting. For acid scarification, 3.3 g of radish seeds for each 
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container were placed into individual 50 ml centrifuge tubes (Fisher Scientific Co LLC, Hanover 

Park, IL, USA) with small holes in the bottom for drainage. Each tube was submerged in ACS 

grade concentrated sulfuric acid (Fisher Science Education, Nazareth, PA, USA) for two 

minutes, followed by three rinses in a DI water. The tubes were then submerged three times in a 

saturated sodium bicarbonate solution, followed by a continuous flow DI water rinse for two 

minutes. The seeds were air dried overnight, before being placed onto the growing media.  

Another difference from Experiment Two was that the Ca treatments were delayed. At 

the time of sowing, 300 ml DI water was added to each tray. After three days, at the stage the 

radicles had elongated and the cotyledons had begun to emerge, the DI water was replaced with 

the Ca solutions of 0, 2.5, 5, 7.5, and 10 mM. Solutions were added at a rate of 250 ml per 

container. 

 

Experiments Four A and B: Delayed Ca Application with Subplots 

 In Experiment Four, each container was divided into four quadrants (four subplots) by 

drawing lines on the capillary matting. The methods, treatments and number of containers 

remained the same as Experiment Three. The containers were arranged in a randomized 

complete block design with blocks one and three on the top shelf of the growth chamber and 

blocks two and four on the bottom shelf. The same factors were measured and recorded, but they 

were measured per subplot, rather than per container. Solution pH and EC container were 

measured at the beginning and end of the experiments as in Experiment Two. This experiment 

was repeated two times (Experiments Four A and Four B). 
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Experiment Five: Delayed Narrow Range Ca Application with Vermiculite 

In Experiment Five, vermiculite was added as a growing medium. In this hydroponic 

system, 2.5 cm-wide capillary matting strips were fed through two 2.5 cm slits in the bottom of a 

669 ml Rubbermaid® TakeAlongs container. The 669 ml container was nested into a larger, 1.2 

L Rubbermaid® TakeAlongs container that held the treatment solutions. Another 14 x 14 cm 

square of capillary matting was placed in the bottom of the smaller container, and 2.5 cm depth 

of Sunshine® premium grade, medium-textured vermiculite (Sun Gro, Inc. Agawam, MA, USA) 

was added on top of the matting (Figure 4A). The 2.5 cm capillary matting strips wicked the 

solution to the capillary mat square, and then throughout the vermiculite. Strips of plastic were 

cut to three cm widths and placed into the containers to divide them into four subplots (Figure 

4B). Use of vermiculite as a growing media eliminated the need to pre-treat seeds with acid 

scarification. Non-scarified seeds were evenly distributed at a rate of 3.3 g per container and 

covered with a light layer of vermiculite (enough to cover the seeds). At the time of sowing, 300 

ml DI water was added to each tray. Three DAP, the DI water was removed, and Ca solutions of 

0, 2.5, 5, 7.5, and 10 mM were applied at 250 ml per container. Four replications of each 

treatment were arranged in a randomized complete block design in the growth chamber. The 

microgreens were monitored and photographed daily and harvested six DAP. The same factors 

as Experiments One through Four were measured and recorded.  

 

Experiment Six: Delayed Broad Range Ca Application with Vermiculite 

 The same hydroponic system setup from Experiment Five was applied. Microgreens 

were provided with only DI water for the first two days. Three DAP, treatment solutions of 0, 5, 

10, 15, 20, and 25 mM Ca were added. For this experiment, there were three replications of each 
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treatment, arranged in a randomized complete block design, with blocks one and two placed on 

the top shelf of the growth chamber, and block three on the bottom shelf. Each container was 

divided into four subplots. The microgreens were monitored and photographed daily and 

harvested six days after planting. The same measurements were collected as in the previous 

experiments in each subplot. Solution pH and EC were measured at the beginning and end of the 

experiments as in Experiments Two and Four.  

 

 

Figure 4. Hydroponic setup for Experiments Five and Six using vermiculite media. 

 

Mineral Nutrient Analysis and Statistical Analysis 

Finely ground, dried tissue samples of 0.2500g ± 0.005g were digested in 5ml trace grade 

nitric acid (Thermo Fisher Scientific, Waltham, MA, USA) using a MARS 6 Microwave 

Accelerated Reaction System (CEM Corp., Matthews, NC, USA). This system consisted of a 25-

A B 
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minute ramping stage to 200 °C. The temperature is maintained for 10 minutes. Samples were 

then cooled to 70 °C, before the system was ventilated. After cooling for another one to two 

hours, the samples were brought to 25 ml volume with DI water, and filtered using Q2 fine, slow 

flowing, 11cm filter paper (Thermo Fisher Scientific, Waltham, Massachusetts, USA) into 25 ml 

polypropylene scintillation vials. Digested samples were used to analyze mineral nutrient 

concentrations on a percent by weight basis.  

Shoot Ca, Mg, and K concentrations of the digested samples were determined using 

Atomic Absorption/ Flame Emission Spectrophotometry (Agilent Technologies, 200 Series AA, 

Santa Clara, CA, USA). The analytical wavelengths were 422.7 nm for Ca, 285.2 nm for Mg, 

and 766.5 nm for K. Digested samples were diluted at a 1:20 ratio with 0.105% lanthanum oxide 

(La). Agilent Technologies Ca, Mg, and K standards prepared with 0.105% La and 1% trace 

grade nitric acid background were used to set absorbance curves. Ca standard concentrations 

were 1.00, 2.00, 3.00 and 4.00 ppm; Mg 0.25, 0.50, 1.00, 1.50, and 2.00 ppm; K 0.25, 0.50, 1.00, 

and 2.50 ppm.  

Phosphorus concentrations were determined colorimetrically using a GENESYS™ 10S 

UV-Vis spectrophotometer, a Masterflex sipping system, and VISIONlite software (Thermo 

Fisher Scientific, Waltham, MA, USA). Absorption was set at 660 nm. Samples were diluted at 

1:20 or 1:40 ratios with DI H2O and then four ml ascorbic acid working solution was added 

(Murphy and Riley, 1962). The samples were then vortexed and allowed to incubate for 20 

minutes before analysis. Phosphorus standards from Ricca Chemical Company, LLC (Arlington, 

TX, USA) were used to make standard solutions of 0.00, 0.50, 1.00, 2.50, and 5.00 ppm 

concentrations in DI H2O. These were used to set the standard curve for P analysis.  
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 Data collected in these experiments were analyzed for significant effects and interactions 

using a general linear model procedure in SAS version 9.4 (SAS Institute, 2017). Calcium 

treatments were fixed factors across all experiments. Block was an additional fixed factor in 

experiments Four through Six. When P value was significant (α=0.05) for main effects, Tukey’s 

pairwise comparison was used to compare treatment means. When there was a significant 

interaction (α=0.05) between treatment and block, treatment main effects could not be used for 

pairwise comparison. Presence of significant interactions are indicated in the results reported.  

  



29 

RESULTS 

 

pH and Electrical Conductivity of Ca Solutions  

Electrical conductivity and pH were measured at the beginning and end of experiments 

Two, Four (A and B), and Six (Tables 1, 2, 3, and 4). pH decreased from the beginning to the 

end of each experiment, except in Experiment Four A. Regardless of the changes in pH, it 

generally remained near a desirable level (about 5.5), except in a few treatments where it was 

slightly lower. Electrical conductivity was also variable, but typically increased slightly over 

time.  

 

Experiment One: Broad Range Ca Application 

Average percent germination (%G) was 100% when seeds were grown in 0 mM Ca, with 

a significant decline 10 mM Ca and again at 160 mM Ca, where it was as low as 10% (Table 5). 

There were no significant differences in fresh weight per plant (FW) in the range of 0 to 40 mM 

Ca (Table 5). At concentrations lower than 40 mM Ca, differences in dry weight (DW) were 

variable between treatments with no clear growth curve (Table 5). No shoots were developed to a 

harvestable stage in the 80 and 160 mM Ca treatments (Table 5). Average hypocotyl length per 

plant (HL) increased in increments of close to 0.5 cm between 0, 5, and 10 mM Ca treatments, 

before beginning to decline at 20 mM Ca (Table 5). Results of average cotyledon surface area 

per plant (CSA) were similar to HL with an increase of 18% (0.2 cm2) from 0 to 10 mM Ca, and 

a slight decrease at higher Ca concentrations (Table 5).  
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Table 1. pH and EC measured at the beginning and end of Experiment Two. 
 
 

 

 

 

 

 
EC measurements expressed as S⋅m2 mol-1 

 

 

Table 2. pH and EC measured at the beginning and end of Experiment Four A. 
 

 

 

 

 

 
 

EC measurements expressed as S⋅m2 mol-1 

 

 

Table 3. pH and EC measured at the beginning and end of Experiment Four B. 
 
 
 
 
 
 
 
 
 
 
 
 

EC measurements expressed as S⋅m2 mol-1 

Treatment  
mM Ca 

0 2.5 5 7.5 10 

Starting pH 8.68 5.55 5.57 5.59 5.62 

Ending pH 6.46 5.44 5.20 5.21 5.29 

Starting EC 0 280 430 620 1010 

Ending EC 0. 290 430 830 1150 

Treatment  
mM Ca 
 

0 2.5 5 7.5 10 

Starting pH 6.46 5.85 5.68 5.60 5.56 

Ending pH 7.65 5.91 5.77 6.06 6.01 

Starting EC 0 230 550 720 1160 

Ending EC 0 280 570 870 1210 

Treatment  
mM Ca 
 

0 2.5 5 7.5 10 

Starting pH 8.94 5.43 5.68 5.61 5.98 

Ending pH 8.51 5.27 5.58 6.51 6.51 

Starting EC 0 270 540 750 1220 

Ending EC 0 190 480 780 1150 
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Table 4. pH and EC measured at the beginning and end of Experiment Six. 

Treatment  
mM Ca 
 

0 5 10 15 20 25 

Starting pH 8.94 5.43 5.40 5.43 5.53 5.59 

Ending pH 8.51 5.27 5.20 5.18 5.13 5.11 

Starting EC 0 580 800 1750 1980 2750 

Ending EC 0 570 1210 1790 2380 2800 

EC measurements expressed as S⋅m2 mol-1 

 

Mineral nutrient analysis for Experiment One revealed incremental increases in Ca 

content of plant tissues as Ca levels increased in treatment solutions (Figure 5). Compared to 0 

mM Ca, 5 mM Ca resulted in a 3.4-fold increase in tissue Ca content and increased an additional 

27% to 10 mM Ca and another 18% to 20 mM Ca. In general, added Ca from 5, 10, and 20 mM 

Ca treatments increased percent Mg in plant tissues compared to 0 mM Ca, but there were no 

differences in K or P (Figure 5). 

 

Experiment Two: Narrow Range Ca Application 

Percent germination followed a similar trend to Experiment One, where germination 

decreased as Ca increased (Table 6). Germination remained at about 90% or greater from 0 to 5 

mM Ca treatments but decreased to 75% in 7.5 mM Ca and 61% in 10 mM Ca treatments. 

Increases in %H were not significant across treatments (Table 6). Furthermore, no treatment 

yielded higher than 60% harvestable shoots. There were no differences in FW, except between 

the 5 and 7.5 mM Ca treatments (Table 6). Calcium treatment did not affect DW, HL, CSA, or 

the percent of shoots that had a first true leaf (%TL) (Table 6).
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Table 5. Experiment One: germination and growth of radish microgreens on Capmat II media after seven days of growth in 0 to 160 
mM Ca treatments. ANOVA F statistic and p values.  

Column values are means ± standard error. Means within each column followed by different letters are significantly different from one 
another (p<0.05) based on Tukey’s pairwise comparison.

Treatment  
mM Ca 
 

% Germination 
 

Fresh wt.  
(g/plant) 
 

Dry wt. 
(g/plant) 
 

% Harvestable 
 

Hypocotyl 
Length 
(cm/plant) 
 

Cotyledon Surface 
Area (cm2/plant) 
 

0  100.0±0.0a 0.164±0.024a 0.025±0.006a 
 

23.8±6.49bc 
 

2.367±0.240bc 
 

1.097±0.025bc 
 

5  88.5±11.5ab 0.117±0.016a 0.015±0.008abc 48.7±7.07a 2.853±0.049ab 1.198±0.019ab 
 

10    72.1±2.5b 0.113±0.005a 0.016±0.009abc 
 

35.6±3.34a 3.331±0.119a 1.294±0.036a 

20    70.0±1.4b 0.118±0.007a 0.009±0.003bc 21.0±6.95bcd 2.429±0.164bc 1.082±0.033bc 

40    62.4±6.9b 0.112±0.012a 0.019±0.004ab   2.9±0.26cd 2.253±0.065c 0.992±0.034c 
 

80    64.4±1.9b 
 

0.000±0.000b 0.000±0.000c 0.00±0.00d 0.000±0.000d 0.000±0.000d 

160      9.7±5.7c 
 

0.000±0.000b 0.000±0.000c 0.00±0.00d 0.000±0.000d 0.000±0.000d 

df 

 
ANOVA F Statistic (and p value) 

 

6 
 25.59  

(<0.0001) 
27.12 
(<0.0001) 

8.74 
(0.0004) 

9.19  
(0.0003) 

119.72  
(<0.0001) 

485.54 
(<0.0001) 
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Figure 5. Experiment One: Mineral content in harvested plant tissues Values are means ± 
standard error (n=3). Within mineral, values not followed by the same letter are significantly 
different (p<0.05) based on Tukey’s pairwise comparison. 

 

In Experiment Two, Ca content of shoots increased as Ca treatment level increased, 

similar to Experiment One (Figure 6). Ca content of shoots from 2.5 mM Ca treatments (0.485%) 

was 2.8-fold greater than the control (0.129%). Ca content increased again at the 7.5 mM Ca, 

increasing 67% from the 2.5 mM Ca treatment.  Treatment did not affect Mg, K, or P content of 

harvested plant tissues (Figure 6).  

 

Experiment Three: Delayed Narrow Range Ca Application 

When Ca was delayed until after germination and acid scarification was used to prepare 

seeds before planting, %G for all treatments was near 100% (Table 7). There were no differences 

identified between treatments in any of the growth or yield factors measured. This included %H, 

FW, DW, %TL, HL, and CSA (Table 7). 
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Table 6. Experiment Two: germination and growth of radish microgreens on Capmat II media after seven days of growth in 0 to 10 
mM Ca treatments. ANOVA F statistic and p values. 

Column values are means ± standard error. Means within each column followed by different letters are significantly different from one 
another (p<0.05) based on Tukey’s pairwise comparison.

Treatment  
mM Ca 
 

% Germination 
 

Fresh wt.  
(g/plant) 
 

Dry wt. 
(g/plant) 
 

% 
Harvestable 
 

Hypocotyl 
Length 
(cm/plant) 
 

Cotyledon 
Surface Area 
(cm2/plant) 
 

% Plants 
with First 
True Leaf 
 

0  96.9±1.3a 
 

0.056±0.001ab 
 

0.010±0.0003a 
 

39.8±6.57a 
 

1.923±0.129a 
 

3.973±0.272b 
 

  34.2±7.6a 
 

2.5 93.6±1.9a 
 

0.068±0.003ab 
 

0.001±0.0002a 
 

56.3±10.4a 
 

2.412±0.166a 
 

4.636±0.151ab 
 

  35.0±4.4a 
 

5  89.4±2.4ab 
 

0.071±0.003a 
 

0.010±0.0001a 
 

55.4±5.23a 
 

2.135±0.084a 
 

4.865±0.135a 
 

28.3±15.2a 
 

7.5 74.9±7.9bc 
 

0.050±0.009b 
 

0.009±0.0019a 39.0±11.6a 
 

2.274±0.105a 
 

4.440±0.269ab 
 

  10.0±3.6a 
 

10  61.1±3.3c 
 

0.066±0.001ab 0.010±0.0002a 54.6±4.11a 2.222±0.044a 4.543±0.001ab   15.8±2.5a 

df 

 
ANOVA F Statistic (and p value) 

 

4 
 13.10 

(<0.0001) 
3.69 
(0.0276) 

0.47 
(0.7542) 

1.18 
(0.3606) 

2.56 
(0.0815) 

2.70 
(0.0707) 

1.92 
(0.1588) 
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Figure 6. Experiment Two: Mineral content in harvested plant tissues. Values are means± 
standard error (n=4). Within mineral, values not followed by the same letter are significantly 
different (p<0.05) based on Tukey’s pairwise comparison. 
 

 In Experiment Three, Ca content increased in plant tissues as Ca treatment concentration 

increased, though overall Ca content was lower than previous experiments (Figure 7). Percent Ca 

in plant tissues of 2.5 mM Ca was 2.8 fold greater than the control. It increased an additional 

27% in 5 mM Ca treatments, and another 24% in 7.5 mM Ca treatments. The differences in Mg 

were variable, showing no clear trend in treatment effects (Figure 7). Ca treatment yielded no 

differences in K and P content of plant tissues (Figure 7).
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Table 7. Experiment Three: germination and growth of radish microgreens on Capmat II media after four days of growth in 0 to 10 
mM Ca treatments. ANOVA F statistic and p values. 

Column values are means ± standard error. Means within each column followed by different letters are significantly different from one 
another (p<0.05) based on Tukey’s pairwise comparison.

Treatment  
mM Ca 
 

% Germination 
 

Fresh wt.  
(g/plant) 
 

Dry wt. 
(g/plant) 
 

% 
Harvestable 
 

Hypocotyl 
Length 
(cm/plant) 
 

Cotyledon 
Surface Area 
(cm2/plant) 
 

% Plants 
with First 
True Leaf 
 

0  97.1±1.1 
 

0.058±0.001 0.0105±0.0004 44.5±2.1 1.837±0.058 4.105±0.141   39.2±9.9 

2.5 96.5±1.0 
 

0.056±0.003 0.0103±0.0004 43.0±3.5 1.793±0.058 4.687±0.213 55.8±15.1 

5  98.2±0.5 
 

0.063±0.003 0.0103±0.0004 52.2±5.0 2.029±0.050 4.788±0.169 54.2±13.0 

7.5 98.1±1.0 
 

0.060±0.001 0.0102±0.0001 45.7±5.4 1.973±0.080 4.643±0.180   30.8±3.4 

10  98.3±0.6 
 

0.061±0.002 0.0109±0.0002 46.3±5.6 1.792±0.068 4.243±0.124   46.7±5.3 

df 

 
ANOVA F Statistic (and p value) 

 

4 
 0.08 

(0.5421) 
1.42 
(0.2751) 

0.70 
(0.6019 

0.61 
(0.6644) 

2.99 
(0.0533) 

3.18 
(0.0446) 

1.03 
(0.4259) 
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Figure 7. Experiment Three: Mineral content in harvested plant tissues. Values are means ± 
standard error (n=4). Within mineral, values not followed by the same letter are significantly 
different (p<0.05) based on Tukey’s pairwise comparison. 
 

Experiment Four A: Delayed Narrow Range Ca Application with Subplots 

Germination remained above 90% across treatments (Table 8). There were no identified 

effects of treatment on %H (Table 8). FW was greatest in the range of 2.5 to 7.5 mM Ca (Table 

8). DW was variable, with no clear trend (Table 8). Differences in effects on HL could not be 

identified (Table 8). Cotyledons from 2.5 mM Ca were 23% larger than 0 mM Ca (Table 8). 

Tissue Ca content followed the same trend as in previous experiments. Shoots grown in 

2.5 mM Ca were 2.6- fold greater than the control, on average (Figure 8). There was an 

additional increase of 66% from 2.5 mM Ca to 7.5 mM Ca treatments. There were no differences 

in Mg, K, or P content of plant tissues in this experiment (Figure 8).
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Table 8. Experiment Four A: germination and growth of radish microgreens on Capmat II media after four days of 
growth in 0 to 10 mM Ca treatments (with subplots).  ANOVA F statistic and p values. 

Column values are means ± standard error. Means followed by different letters are significantly different from one another (p<0.05) 
based on Tukey’s pairwise comparison. A * following F statistic values in the ANOVA table indicates a significant interaction 
(p<0.05) between treatment and block. Tukey’s pairwise comparison could not be used to identify significant treatment effects when 
there was a significant interaction. 

Treatment  
mM Ca 
 

% Germination 
 

Fresh wt.  
(g/plant) 
 

Dry wt. 
(g/plant) 
 

% 
Harvestable 
 

Hypocotyl 
Length 
(cm/plant) 
 

Cotyledon 
Surface Area 
(cm2/plant) 
 

% Plants 
with First 
True Leaf 
 

0  91.6±5.3 0.072±0.004b 0.013±0.0006a 
 

33.8±5.3 2.016±0.155 
 

1.210±0.069b 
 

40.9±8.5 
 

2.5 96.6±2.2 0.084±0.003a 0.013±0.0007ab 39.6±3.5 2.168±0.171 1.490±0.073a 47.4±6.2 

5  94.5±4.0 0.080±0.004a 0.012±0.0006ab 38.3±8.5 2.099±0.207 1.293±0.079b 51.8±6.2 
 

7.5 93.7±3.2 0.079±0.003a 0.013±0.0006a 
 

39.0±6.0 1.929±0.121 
 

1.347±0.068ab 
 

42.3±8.4 
 

10  94.9±3.6 0.072±0.003b 0.011±0.0005b 
 

36.6±5.9 2.005±0.161 
 

1.252±0.083b 
 

41.6±6.0 
 

df 

 
ANOVA F Statistic (and p value) 

 

4 
 1.27* 

(0.2920) 
10.56 
(<0.0001) 

3.36 
(0.0150) 

1.01* 
(0.4071) 

1.65* 
(0.1736) 

8.86 
(<0.0001) 

1.67 
(0.1696) 
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Figure 8. Experiment Four A: Mineral content in harvested plant tissues Values are means ± 
standard error (n=4). Within mineral, values not followed by the same letter are significantly 
different (p<0.05) based on Tukey’s pairwise comparison. 
 

Experiment Four B: Delayed Narrow Range Ca Application with Subplots 

Germination was greater than 90% across all treatments (Table 9). Results of %H and 

FW were variable, showing clear trend (Table 9). No difference in DW could be identified 

(Table 9). All treatments, except 10 mM Ca, resulted in greater %TL than the control (Table 9). 

Treatments did not affect HL until a level of 10 mM Ca (Table 9). The CSA measurements 

showed the same trend as HL (Table 9).  

Calcium content of tissues was the same as previous experiments. Ca content of shoots in 

2.5 mM Ca was 2.1-fold greater than the control (Figure 9). There was an additional increase of 

38% from 2.5 to 5 mM Ca treatments, and 30% from 5 to 10 mM Ca treatments. Treatment did 

not cause differences in Mg in this experiment (Figure 9). Potassium and P were highly variable 

but did not reveal a clear trend (Figure 9). 
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Table 9. Experiment Four B: germination and growth of radish microgreens on Capmat II media after four days of 
growth in 0 to 10 mM Ca treatments (with subplots). ANOVA F statistic and p values. 

Column values are means ± standard error. Means followed by different letters are significantly different from one another (p<0.05) 
based on Tukey’s pairwise comparison. A * following F statistic values in the ANOVA table indicates a significant interaction 
(p<0.05) between treatment and block. Tukey’s pairwise comparison could not be used to identify significant treatment effects when 
there was a significant interaction.

Treatment  
mM Ca 
 

% Germination 
 

Fresh wt.  
(g/plant) 
 

Dry wt. 
(g/plant) 
 

% 
Harvestable 
 

Hypocotyl 
Length 
(cm/plant) 
 

Cotyledon 
Surface Area 
(cm2/plant) 
 

% Plants 
with First 
True Leaf 
 

0  95.1±1.6 0.070±0.002 0.012±0.0002 44.8±3.3 1.954±0.083ab 1.293±0.049ab 26.9±2.7b 

2.5 98.1±0.3 0.079±0.002 0.012±0.0002 49.0±2.0 1.985±0.077ab 1.384±0.036ab 44.4±3.1a 
 

5  94.1±1.3 0.072±0.002 0.012±0.0003 41.1±2.1 2.093±0.118ab 1.341±0.072ab 40.2±2.6a 
 

7.5 97.9±0.7 
 

0.074±0.002 0.012±0.0003 
 

53.6±2.2 
 

2.174±0.066a 
 

1.447±0.049a 39.6±2.2a 
 

10  94.6±1.1 
 

0.067±0.002 
 

0.012±0.0002 
 

42.6±3.0 1.844±0.078b 1.244±0.043b 
 

35.4±2.5a
b 
 

df 

 
ANOVA F Statistic (and p value) 

 

4 
 3.52* 

(0.0119) 
 

8.60* 
(<0.0001) 

0.95 
(0.4413) 

5.17* 
(0.0012) 

2.80 
(0.0337) 

2.71 
(0.0381) 

6.74 
(0.0002) 
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Figure 9. Experiment Four B: Mineral content in harvested plant tissues (± standard 
error) Values are means ± standard error (n=4). Within mineral, values not followed by 
the same letter are significantly different (p<0.05) based on Tukey’s pairwise 
comparison. 
 

Experiment Five: Delayed Narrow Range Ca Application with Vermiculite  

In this experiment, %G was above 98% across all treatments (Table 10). No 

treatment effects were identified in %H, FW, or DW (Table 10). Treatments above 2.5 

mM Ca increased %TL of 18.6% (5 mM Ca) to 27.3% (10 mM Ca). From 0 mM Ca, 

CSA increased 15.1% in 10 mM Ca treatments (Table 10).  

Nutrient analysis revealed no difference in Ca content until 10 mM Ca, increasing 

14% over the control (Figure 10). Magnesium and K increased with Ca levels (Figure 

10). Magnesium increased 20.4% from 0 to 5 mM Ca, and an additional 8.4% from 5 to 

10 mM Ca. Potassium increased 15.6% from 0 to 2.5 mM Ca, and another 8.2% from 2.5 

to 10 mM Ca treatments. Decreases in P anions were not significant (Figure 10). 
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Table 10. Experiment Five: germination and growth of radish microgreens in vermiculite media after four days of growth in 0 to 10 
mM Ca treatments (with subplots). ANOVA F statistic and p values. 

Column values are means ± standard error. Means followed by different letters are significantly different from one another (p<0.05) 
based on Tukey’s pairwise comparison. A * following F statistic values in the ANOVA table indicates a significant interaction 
(p<0.05) between treatment and block. Tukey’s pairwise comparison could not be used to identify significant treatment effects when 
there was a significant interaction. 

Treatment  
mM Ca 
 

% Germination 
 

Fresh wt.  
(g/plant) 
 

Dry wt. 
(g/plant) 
 

% 
Harvestable 
 

Hypocotyl 
Length 
(cm/plant) 
 

Cotyledon 
Surface Area 
(cm2/plant) 
 

% Plants 
with First 
True Leaf 
 

0  99.5±0.3 
 

0.085±0.001 
 

0.011±0.0003 91.7±1.7 
 

1.932±0.064 
 

1.611±0.044b 
 

47.9±1.5b 

2.5 99.7±0.2 0.091±0.001 
 

0.012±0.0002 
 

91.0±1.5 2.057±0.045 
 

1.714±0.055ab 
 

54.1±2.1ab 
 

5  99.1±0.4 0.096±0.003 0.012±0.0004 91.7±1.4 2.091±0.047 
 

1.653±0.038b 
 

56.8±3.4a 
 

7.5 99.5±0.2 0.090±0.002 0.012±0.0002 85.6±2.3 1.927±0.049 1.682±0.040ab 
 

60.4±2.2a 
 

10  99.6±0.2 
 

0.104±0.003 
 

0.012±0.0002 
 

94.4±0.7 
 

2.229±0.046 
 

1.854±0.042a 
 

61.0±2.3a 
 

df 

 
ANOVA F Statistic (and p value) 

 

4 
 0.73 

(0.5750) 
 

16.03* 
(<0.0001) 

1.24 
(0.3028) 

6.00* 
(0.0004) 

9.82* 
(<0.0001) 

4.55 
(0.0028) 

5.93 
(0.0004) 
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Figure 10. Experiment Five: Mineral content in harvested plant tissues. Values are means ± 
standard error (n=4). Within mineral, values not followed by the same letter are significantly 
different (p<0.05) based on Tukey’s pairwise comparison. 
 

Experiment Six: Delayed Broad Range Ca Application with Vermiculite  

In this experiment, %G was between 99% and 100% across all treatments (Table 11). 

There were no significant effects of Ca treatment on %H (Table 11). Fresh weight increases were 

11.5% in the 15 mM Ca treatment, and 14.2% in the 20 mM Ca compared to the control (Table 

11). No differences in DW occurred across treatments (Table 11). Gradual increases in %TL 

occurred as Ca increased (Table 11). From 0 to 25 mM Ca %M increased 50.4% (Table 11). 

There were no differences from treatment on HL (Table 11). Plants grown in 20 and 25 mM Ca 

had greater 20% increase in CSA compared to the control and 5 mM Ca treatments (Table 11).  

Ca increased 20.7% from 0 to 5 mM Ca treatments and 79.3% from 0 to 20 mM Ca 

treatments, however significant differences could not be identified due to a significant interaction 

(p< 0.05) (Figure 11). There were gradual increases in tissue content of Mg and K cations 
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(Figure 11). Magnesium increased 24.8% from 0 to 15 mM Ca treatments. Potassium increased 

16.9% from 0 to 5 mM Ca, and 39.5% from 0 to 15 mM Ca treatments. Phosphorus in plant 

tissues decreased as Ca concentration increased (Figure 11). Phosphorus decreased 3.8% from 0 

to 10 mM Ca treatments, 4.9% from 10 to 15 mM Ca, 8% from 15 to 20 mM Ca, and 6.9% from 

20 to 25 mM Ca treatments. 
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Table 11. Experiment Six: germination and growth of radish microgreens in vermiculite media after four days of growth 
in 0 to 25 mM Ca treatments (with subplots). ANOVA F statistic and p values. 

Column values are means ± standard error. Means followed by different letters are significantly different from one another (p<0.05) 
based on Tukey’s pairwise comparison.  

Treatment  
mM Ca 
 

% Germination 
 

Fresh wt.  
(g/plant) 
 

Dry wt. 
(g/plant) 
 

% 
Harvestable 
 

Hypocotyl 
Length 
(cm/plant) 
 

Cotyledon  
Surface Area 
(cm2/plant) 
 

% Plants 
with First 
True Leaf 
 

0  99.9±0.1 
 

0.098±0.003b 0.011±0.0002 
 

97.0±0.7 
 

2.900±0.070 
 

1.385±0.033c 
 

47.3±2.1c 
 

5 99.7±0.2 
 

0.104±0.004ab 
 

0.012±0.0003 
 

97.0±1.0 3.018±0.102 1.373±0.042c 
 

49.4±1.9c 
 

10 99.9±0.1 0.104±0.001ab 0.011±0.0001 
 

96.0±0.6 
 

3.083±0.064 
 

1.485±0.066bc 57.5±3.1bc 
 

15 99.7±0.2 0.109±0.002a 0.011±0.0003 
 

98.1±0.4 2.992±0.060 1.487±0.056bc 
 

52.6±1.6bc 
 

20  100.0±0.0 
 

0.112±0.002a 
 

0.012±0.0003 
 

97.2±0.7 2.883±0.096 1.721±0.039a 62.5±3.6ab 
 

25 99.7±0.2 0.107±0.002ab 
 

0.011±0.0003 
 

96.4±0.9 2.879±0.071 
 

1.638±0.051ab 
 

71.2± 3.1a 
 

df    ANOVA F Statistic (and p value)  

5 
 0.55 

(0.7392) 
 

3.52 
(0.0080) 

1.01 
(0.4207) 

0.99 
(0.4306) 

1.29 
(0.2818) 

8.76 
(0.0001) 

11.42 
(<0.0001) 



 

46 

 
Figure 11. Experiment Six: Mineral content in harvested plant tissues. Values are means ± 

standard error (n=4). Within mineral, values not followed by the same letter are significantly 
different (p<0.05) based on Tukey’s pairwise comparison.
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DISCUSSION 
 

Germination of Radish Microgreens  

In Experiments One and Two, where Ca was applied from the time of planting, there 

were significant decreases in %G as Ca increased in treatment solutions. When a broad range of 

solutions, up to 160 mM Ca were applied in Experiment One, treatment solutions greater than 40 

mM concentration resulted in toxic effects on germination. Furthermore, these higher 

concentrations also had a negative impact on growth after germination. There were very few 

harvestable shoots in 40 mM Ca, and no harvestable shoots in 80 and 160 mM Ca, demonstrating 

that these concentrations had a toxic effect on growth and development after germination.  

In Experiment Two, treatment solutions were narrowed down to a range of 0 to 10 mM, 

but germination still showed a decreasing trend as Ca increased. This suggested that mineral salts 

in treatment solutions had a negative impact on seed imbibition. It is also possible that imbibition 

was slowed in general due to very limited contact with the growing media, since the seeds were 

only laying on top of the Capmat II felt material. In addition to these limitations, the radish 

microgreen seed that was purchased for these experiments was found to be a mixture of varieties, 

therefore not genetically pure. This was evident in the variable color and size of individual radish 

shoots at the time of harvest and contributed to the high variation seen across all experiments 

(Figure 12). For subsequent experiments (after Experiment Two), seeds were treated with 

sulfuric acid scarification prior to planting, and Ca treatments were delayed until after radicles 

had elongated and cotyledons were beginning to emerge. This greatly improved %G in the 

Capmat II media, helping it to remain above 90% for all treatments. Still, growth of plants after 

germination was highly variable, due to the limitations previously noted.  
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After performing several experiments with the Capmat II media, and getting less than 

ideal growth and yields, even with consistent germination, it was decided that vermiculite should 

be added above the Capmat II media. In Experiments Five and Six, where vermiculite was used, 

acid scarification was not required, because germination remained around 100% for all 

treatments. This was attributed to better contact of seed surfaces to the growing vermiculite 

media surrounding the seeds  

 

 

Figure 12. Variability in size and variety of radish microgreens when harvested seven DAP. 
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Growth and Yields of Radish Microgreens  

Growth and yield measurements (FW, DW, %H, %TL, HL, CSA) were highly variable 

across all experiments. Differences between treatments were apparent in Experiment One, when 

a broad range of solutions were applied. Based on research published by Kou et al. (2014), where 

pre-harvest Ca foliar sprays at a concentration of 10 mM increased fresh weight yields of 

broccoli microgreens by more than 50%, it was expected that the results of biomass 

measurements in the current experiments would reflect a similar trend. This was not the case, as 

variation within treatments resulted in the absence of a clear growth curve in measurements of 

FW and DW on a per plant basis. However, measurements of %H, HL, and CSA did suggest that 

yields could be improved with added Ca, because these variables showed an increase up to 10 

mM Ca treatments. At 20 mM Ca, these began to decline, revealing the limits of Ca nutrition in 

the microgreens.  

When the solution range was narrowed for Experiments Two through Four, there were 

some trends revealed in the data, even though differences may not have been statistically 

significant, or there may have been block effects or interactions between treatment and block (in 

the case of Experiment Four A and B). In general, added Ca increased FW, %H, CSA, and %TL 

across the Capmat II experiments, even though a particular rate of Ca could not be identified as 

the best treatment. Furthermore, when microgreens were grown in vermiculite, growth and 

germination were better overall, though experiments using different growing medias could not be 

statistically compared to one another, in this case. When grown in vermiculite, microgreens 

generally had greater %H and %TL in a shorter amount of time than those grown using Capmat 

II media. This resulted in more consistent growth and development throughout the vermiculite 

experiments.  



 

50 

Mineral Content of Radish Microgreens  

When radish microgreens were grown using Capmat II media, there were incremental 

increases in Ca content of plant tissues as Ca increased in treatment solutions. The Ca content of 

harvested shoots was generally as much as four times that of the control (0 mM Ca) in the higher 

treatment levels (7.5 and 10 mM Ca). This is similar to the results reported by Kou at al. (2014), 

when Ca foliar sprays were applied to broccoli microgreens. These results show that similar to 

foliar spray, Ca applied as a hydroponic solution does increase Ca content of harvested shoots. 

When radish microgreens were grown in vermiculite, the increase of Ca content in plant tissues 

was more gradual. There were no differences from the control in the lower concentrations until 

Ca reached 10 mM in Experiment 5, though Experiment 6 showed differences beginning in the 5 

mM Ca treatment but leveling off until another increase at 20 mM Ca. It is possible that 

vermiculite made some of the Ca unavailable to the plants, or that the plants did not take up as 

much in this media because they did not require as much Ca under better growing conditions.  

In the Experiments One through Four, where Capmat II media was used, there was some 

variation in Mg, K, or P content of plant tissues after harvest, but for the most part, these levels 

were not affected by Ca treatment. Where there were differences, there was no clear trend 

identified, which suggests that this could be due to human errors in collection and/or processing 

of samples, or the variation of the plants, themselves. Possible experimental errors could include 

mineral contamination at any point during data collection and processing (harvesting or grinding 

samples), or during microwave digestion and sample preparation for mineral analysis. Several 

studies have shown that variations in mineral content of different varieties of microgreens, even 

within the same species, are common (Di Gioia et al., 2017; Mir et al., 2016; Xiao et al., 2016). 
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With the mixture of varieties in the seed that was used in these experiments, these differences in 

mineral content could be attributed to this genetic variation.  

When microgreens were grown in vermiculite, the results of Mg, K, and P analysis were 

very different than the previous experiments. The cations, Mg and K, increased incrementally as 

Ca increased in treatment solutions. In addition to this, P anions decreased as Ca treatment 

concentration increased. These results are likely attributed to the fact that vermiculite is not an 

inert growing media. A high cation exchange capacity (CEC) can affect the levels of mineral 

nutrients that are available to be taken up by plant roots. Vermiculite is a silicate clay that has a 

relatively high CEC. Ca ions have a higher affinity to cation exchange sites than Mg or K ions, 

so it is possible that Mg and K ions that were already adsorbed in the vermiculite were 

exchanged with Ca and released into the solution. This would result in the lower levels of Ca 

available in solution and increases in available Mg in the solution, resulting in the reported lower 

tissue Ca and greater tissue Mg. Phosphorus content of plant tissues decreased as Ca treatment 

levels increased, in Experiment Six. In this experiment, the microgreen shoots grew to a large 

enough size that it is possible P was diluted within the plant. Another possibility is that P 

complexed with positively charged Ca ions in the nutrient solution. This tends to happen in field 

soils at low pH levels (Brady and Weil, 2002).  

 

Limitations of the Study 

This series of experiments progressed through trial and error, as limitations were 

identified. Germination was greatly limited in the Capmat II growing media. Acid scarification 

in addition to delaying Ca treatments improved germination, but growth and yields were still 

lower than desired. Vermiculite improved germination growth, and yields, but it is not the ideal 
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growing media for mineral nutrient studies, as these results suggest that the CEC of vermiculite 

influenced mineral content of plant tissues in addition to the Ca treatments.  

The main limitation across all experiments was a high degree of variation within Ca 

treatments. This made it difficult and sometimes impossible to identify trends that may have 

been present in the treatments. Early on, sampling errors may have contributed to some of this 

variation, but after revising harvest protocol and increasing sample size, variation was still very 

high. In Experiments Four B and Four B, when plots were divided into subplots to increase 

sample size, and the experimental design was changed to randomized complete block, the results 

revealed block affects and interactions between treatment and block that were significant 

(p<0.05). As mentioned previously, this could likely be due to the variation of the seed causing 

different seed sizes, and the inadequate conditions provided by the Capmat II growing media. 

Possible solutions to this would be to find a new seed source that is genetically pure, and to 

increase sample size by subsampling over time, rather than dividing plots into subplots and 

harvesting all samples in the same day.  

 

Future Research and Impact of the Study 

Microgreens experiments are still being conducted for this project, based on the results of 

the reported vermiculite experiments. Because the most recent broad range experiment 

(Experiment Six) did not conclusively identify the upper limit of Ca in microgreens grown in 

vermiculite, this is the next step to continue this research. In addition, it would be beneficial to 

evaluate a range of solutions when applied from the time of planting versus after germination to 

see if there are still detrimental effects on germination and growth. If vermiculite can provide a 
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better growing environment to allow Ca to be applied from the time of planting, differences in 

yields may be more apparent.  

Despite the limitations of these experiments, they have culminated to a foundation of 

knowledge and experimental methods that will allow this research to continue. The system that 

has been developed through these experiments will allow future graduate students to evaluate 

different microgreens varieties and different mineral nutrients in this system to gain a better 

perspective on how hydroponic microgreens production can be improved to benefit producers 

with higher yields. This study has also shown that nutrition of hydroponically grown 

microgreens can be improved for consumers, as well, through careful application of Ca fertilizer.  
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