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Harmonographs. II. Circular design
Robert J. Whitaker
Department of Physics, Astronomy, and Materials Science, Southwest Missouri State University, Springfield,
Missouri 65804

~Received 3 February 2000; accepted 14 June 2000!

Devices that produce curves by the rotation of circles~or gears! about one another constitute one
class of harmonographs. In the simplest case, a point on one of the circles will trace a cycloidal
curve. A number of devices of varying degrees of complexity and which make use of gears or
pulleys in their operation have been invented over the years to draw various curves. This paper
offers a survey of some of these. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

A survey of various designs of pendulum apparatus that
draw harmonic curves has been presented in the previous
paper. These devices are often referred to as ‘‘harmono-
grams,’’ and the curves they produce as ‘‘harmonographs.’’1

Another class of such devices operates by the rotation of
circles about one another. While the design of some of these
is simple, others may be of considerable complexity. The
basic mathematical concepts behind some of these instru-
ments, however, are ancient—the attempt to describe the
motion of the planets about a fixed earth.

The use of epicycles—circles moving on circles—is well
known in the history of astronomy. A useful account is avail-
able in Dryer,2 and an introductory explanation of its tech-
niques is given by Crowe.3 An extensive study of these ‘‘cy-
cloidal’’ curves was published by Proctor in 1878 in which
he provided a detailed geometric explanation of the proper-
ties of a variety of such curves and also applied these ideas to
selected astronomical problems.4 Proctor’s book is also illus-
trated by a number of diagrams which were mechanically
drawn.

While beyond the scope of this paper, mechanical devices,
which employed gears in clocks and various astronomical
devices, must be mentioned. Among the latter are various
planetaria and orreries which display the relative motions of
the earth and moon about the sun or the planets about the
sun. With these the observer views the moving object, and
there is no attempt to provide a permanent record of this
motion on paper. A detailed, illustrated history of these de-
vices is given by King and Millburn.5

Another device, specifically designed to produce a perma-
nent record of the motion of a ‘‘curve moving on a curve,’’
was the ‘‘geometric chuck.’’ These were devices attached to
a lathe for cutting decorative patterns in wood or metal.
Among the references to early ones are those of Suardi
around 1750 and of Ibbetson around 1833.6 Bazley provided
an extensive discussion of the use of Ibbetson’s chuck in
1875 along with a comprehensive set of examples of the
curves that could be drawn with it.7 He noted the importance
of such apparatus to have an attachment for a pencil or pen
so the curves could be traced on paper before it is used for its
intended purpose. The diagrams reproduced in his book were
so prepared.8

II. CIRCULAR HARMONOGRAPHS

Over the years a number of devices have been developed
with the specific purpose of drawing curves. Of the class
under consideration here are those that use wheels in their

operation. These may be gears that mesh with other gears or
wheels that may be connected to one another by means of
some kind of belt. One advantage of apparatus of this type
over pendulum apparatus is the absence of damping that is
present with the pendulums. If the wheel apparatus com-
pletes a closed curve, it will trace exactly the same path
again. Thus, one may set the apparatus to draw a particular
curve and be sure that one will get the same curve each time.

One such apparatus was described in 1869 by Edward
Pickering. Describing the experiment of Lissajous and the
curves produced from two vibrating tuning forks, he noted
the value of having a set of curves drawn for comparison. He
then described a machine, which he had devised, for drawing
the same curves mechanically. ‘‘The paper on which the
curves are drawn receives a horizontal motion to and fro,
while, at the same time, the pen is moving vertically up and
down.’’ 9 This is shown in Fig. 1.

A@rthur# E@dward# Donkin described an apparatus of his
design that drew the curve resulting from the superposition
of two sine curves~Fig. 2!. This apparatus employed several
gears that could be turned by a crank. A strip of paper, for
recording the curve, moves between a set of rollers in one
direction, and the frame along which the paper moves also
moves at right angles to the motion of the paper and with the

Fig. 1. Pickering’s mechanical ‘‘Lissajous’’ apparatus.
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harmonic motion imparted to it by the gears operating the
apparatus. A fixed pencil then records the motion imparted to
the paper.10

At a meeting of the Physical Society on 24 May 1879 W.
J. Wilson ‘‘... exhibited a new harmonograph and figures
drawn by it. ... In this instrument toothed wheels take the
place of pendulums, the ratio of the teeth giving the ratio of
the periods of the motions.’’11 The author provided no dia-
gram of his apparatus, and I have found no subsequent de-
scription of it. It is also not clear from this brief account what
kind of curves it traces. However, this paper is cited inThe
Oxford English Dictionary as a source of the term,
‘‘harmonograph.’’12

The ‘‘cycloidotrope’’ is described by Hopkins, and his
illustration is shown in Fig. 3. He attributed its invention to
A. Pumphery, of Birmingham, England.13,14 The middle of
the apparatus contains a smoked glass plate upon which the
curve may be traced. The plate is held in the middle of a ring
by the two springs, one shown at the top and the other at the
bottom of the ring.

The face of the ring has a toothed rim, which is
engaged by a small pinion on the crank shaft, and
the periphery of the ring is provided with 202 spur
teeth, which engage a pinion having 33 teeth and
turning on a stud projecting from the base plate@to
the left of the ring#.

An adjustable rod is attached to the spur pinion; one end is
attached to a pin which holds the tracing pen fastened with a
thumb screw. A steel tracing point, held in place with a
curved spring, is attached to one end of the tracing pen over
the glass plate. The other end of the pen is held by a movable
arm that may pivot about a pin set in the base plate.15 Some
of the curves that may be drawn with the cycloidotrope are

shown in Fig. 4. It should be noted that each of these dia-
grams is made up of tracings of several separate settings of
the apparatus traced on the same plate.

The most elaborate apparatus, to date, was the ‘‘campylo-
graph’’ designed by Marc Dechevrens.~The name comes
from the Greek, ‘‘curves’’ and ‘‘I write or draw.’’! He de-
scribed the curves it could draw in three articles~Refs. 16,
17, and 18!. Further discussion of his device, with illustra-
tions, was published inLa Nature;19 and a second article,
based on this one, was published inScientific American
Supplement.20 A picture of his apparatus~printed in each of
the above! is given in Fig. 5.

William F. Rigge, who had carried on extensive corre-
spondence with Dechevrens, also provided a discussion of
Dechevrens’ apparatus and the curves it could produce. Four

Fig. 2. Donkin’s harmonic curve apparatus.

Fig. 3. Pumphery’s ‘‘cycloidotrope.’’

Fig. 4. Curves drawn with the cycloidotrope.

Fig. 5. Dechevrens’s ‘‘campylograph.’’
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small wheels are located at each corner of a square plate.
One end of a crank pin is free to rotate about a point in one
wheel; the other end of the pin is attached to a short rod. The
other end of the rod rotates about a second pin which is free
to pivot about a point in a long rectangular bar. An identical
system joins the other end of the long bar to the wheel diag-
onal to the first. A second long bar is similarly attached to
the other two diagonal wheels. A pen is mounted at the in-
tersection of the two bars. Finally, paper is fastened to a disk
that may be made to rotate under the pen~see Fig. 5!. Di-
rectly below each of the four small wheels and the center
disk is a system of interconnected gears which may be
turned, simultaneously, by a crank. The two bars, each and
separately, may then be given transverse and rotational mo-
tion as each wheel turns; and the disk with the paper may
also be rotated. The gears can be replaced with gears of other
sizes to increase the variety of curves that could be drawn.
Rigge noted that there were 979 possible combinations that
could be introduced.21 A line diagram of the apparatus is
given in Fig. 6.22

Rigge mentioned that Dechevrens had built a second, im-
proved design of the campylograph. However, the pictures
and the brief description he provided are insufficient to de-
termine its operation. Dechevrens had informed Rigge that
he had completed an elaborate, illustrated account of the
campylograph ready for the printer. But, Rigge observed,
with Dechevrens’ death in 1923, the work would probably
never be published.23

In 1916 Robert Moritz, a mathematician at the University
of Washington, reported on an instrument of his design
which he called the ‘‘cyclo-harmonograph.’’ The choice of
this term, he explained, is because the operation of this in-
strument produced a curve that was ‘‘... the locus of a point

which has simple harmonic motion in a straight line while at
the same time this line rotates uniformly about one of its
points.’’ 24

A simplified diagram of his apparatus is shown in Fig. 7.25

As Moritz described its operation:

A wheel W1 , center C, carries a crank-pinR
which, as the wheel rotates, slides in a slotted cross-
barSTof a cross-headHK perpendicular toST. This
cross-head is constrained to move in the direction of
HK by means of two fixed guidesF andG. As the
wheel W1 moves with constant angular velocity
about its centerC, any point P in HK will have
simple harmonic motion in the direction ofHK.

Let now the mechanism thus far described be
made to revolve about a fixed wheelW2 , centerO,
by means of an idle-wheelI which connects the cir-
cumferences of the wheelsW1 andW2 . Any pointP
in HK will then receive rotary harmonic motion and
a pencil or pen-point placed atP will trace out a
cyclic-harmonic curve in the plane of the paper.26

The author noted that the locus ofP, then, was indepen-
dent of the distance between the centers of the two wheels; it
depended only on the dimensions of the two wheels; it de-
pended on the distance of the crank-pinR from the center,C,
of W1 ; and it depended on the, arbitrary, initial position ofP
andR. The curve produced will be the same if wheelW2 is
fixed andW1 revolves around it or if the centers of both
wheels are fixed, and allowed to revolve, and the paper on
which the curve is traced is fastened to wheelW2 . The latter
arrangement, he observed, is more advantageous.27 The ap-
paratus was so designed that a set of ten wheels of different
radii (W1 and/orW2) could be raised or lowered to the plane
of the idle wheel with which it meshes, thus allowing easy
adjustment of which wheel~s! would be used in drawing the
desired curve.28

The polar equation for the locus of pointP may be shown
to be

r5a cos@~p/q!u#1k,

wherer andu are the polar coordinates of pointP from point
O; a is the distanceCR; andk is the distance of any pointP0

on H0K0 from O0 ; p and q are the radii of the wheelsW2

and W1 , respectively.29 As has been noted, the instrument
behaves as if wheelW2 is fixed and wheelW1 rotates around
it. This being the case, the pointP will trace that curve
known as an ‘‘epitrochoid.’’ This class of curves will be
discussed more completely in the Appendix.

Fig. 6. Diagram of the campylograph.

Fig. 7. Moritz’s ‘‘cyclo-harmonograph.’’
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Banfield, in introducing his ‘‘photo-ratiograph’’ in 1921,
had the following to say about harmonographs:

The harmonograph, generally speaking, is some-
what tolerantly regarded in physical circles as a sci-
entific toy, though the beauty of the result never fails
to excite admiration, grudging though it may be. The
cause of this attitude probably lies in the fact that
science always deals with exact premises, and in this
the usual pendulum-controlled harmonograph fails
lamentably.30

His design, he noted, eliminated the lack of precision that he
had found with pendulum apparatus. It operated with a series
of gears and a mechanical linkage, which he described as ‘‘...
a kind of inverted pantagraph.’’ Instead of a pen to record the
path of the curve, a brightly illuminated pin-hole was re-
corded on a photographic plate when the apparatus and cam-
era were placed in a darkened room. The description and
photographs of the apparatus were insufficient to determine
its exact method of operation.31 The caption of a photograph,
showing this apparatus on display in the Science Museum in
London, provides an interesting contrast to the designer’s
comments above:

The beauty of mathematical figures such as these
provided evidence for those who argued that math-
ematics did not exile beauty from the world. No
conflict need exist between the admirers of the natu-
ral forms and the partisans of mathematics and
mathematical methods.32

The various apparatus described above suggests a degree
of complexity that could preclude its reproduction by an
amateur in mechanical crafts, even if sufficiently detailed
descriptions were provided. However, designs of apparatus
for someone to construct with basic hand tools have been
described. One of these is the ‘‘wondergraph,’’ described by
Collins and shown in Fig. 8. Details for construction are
provided by the author.33 A nearly identical apparatus was
also described by Stong, after a design by Tom Barnard.34 A
comparison of each of these with the ‘‘campylograph’’ re-
veals a strong similarity in basic design.

Another device, that operates almost identically to those in
the previous paragraph, is the ‘‘schemagraph’’ described by
Bulman. While its construction is somewhat more sophisti-
cated and requires a greater skill with tools, the author has
provided detailed notes for its construction.35

One of the simplest and, in many ways, the most versatile
devices described in the literature is Hoferer’s ‘‘kukulo-
graph.’’ The author noted that the name means ‘‘circle-

circle-writer.’’ Two or more annular rings are cut from a
piece of 1

2-in. fiber board. Several disks of different radii are
similarly cut, and holes are drilled in the disks at various
distances from the center. The ring is held firmly, and a disk
may be rotated around the outside or around the inside of the
ring; a pencil placed in one of the holes in the disk will trace
its path. The curve produced depends on the relative radii of
the disk, of the ring, and on the position of the hole in the
disk.36 A working design could also be constructed from
heavy cardboard without too much difficulty.

One may recognize this apparatus as being identical in
concept and basic design to the popular toy, ‘‘Spirograph®,’’
which appeared on the market in 1967.37 The problem of
possible slippage between the ring and the disk of the kuku-
lograph is eliminated by the toothed gears of which the
Spirograph is made. This writer has provided a detailed dis-
cussion of the curves possible with this device elsewhere.38

The results are summarized in the Appendix.
A pair of turntable oscillators—using phonograph

turntables—were employed by Project Physics to demon-
strate harmonic motion and the superposition of two har-
monic motions. A Plexiglas™ platform was attached to the
turntable by means of a pin; the platform then moved in one
direction between guides as the turntable rotated, executing
simple harmonic motion. A second platform, which held the
paper, was moved similarly by a second turntable and per-
pendicular to the first. Figure 9 shows the apparatus drawing
a curve. While there were four different speeds that could be
changed for each of the turntables~162

3, 331
3, 45, and 78 rpm!,

neither could be ‘‘fine’’ adjusted. Similarly, lack of complete
smoothness of the platforms between the guides affected the
quality of the figure produced.39

In addition to the above one finds mention or brief de-
scriptions of a variety of devices for producing and/or re-
cording some form of repetitive motion. Mach, for example,
briefly described an apparatus of his design to illustrate the
superposition of three harmonic curves or to produce ‘‘Lis-
sajous’ curves.’’40 Pictures and cursory descriptions of sev-
eral mechanical devices for producing simple harmonic mo-
tion have also been published by Frick41 and by Miller.42

A diagram of an interesting apparatus by Sto¨hrer is given
in Fig. 10. Each of the disks executes simple harmonic mo-
tion in its plane of motion. A small beam of light passes
through the point of overlap between the two disks, and the
mutually perpendicular motion of the two disks allows the

Fig. 8. The ‘‘wondergraph.’’

Fig. 9. Turntable oscillators drawing a curve.
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light to trace a Lissajous figure on a screen. Greenslade has
described this apparatus and has published a photograph of
the one in the Smithsonian collection.43 While some of the
apparatus described above make limited use of mechanical
linkages, no attempt has been made to survey this potential
class of devices.44

III. THE CREIGHTON COMPOUND HARMONIC
MOTION MACHINE

Of the many devices invented to trace curves based on
some form of repetitive motion, none is more detailed or
more complex than the ‘‘Creighton Machine’’ constructed
by William F. Rigge, S. J. at Creighton University and
shown in Fig. 11. Rigge noted that he had begun work on it
in January 1915 and had completed it in its final form in
May 1924.45 The machine was capable of drawing both
‘‘rectangular’’ curves ~‘‘Lissajous’’ curves! and cycloidal
curves; indeed, it could reproduce any curve that was pos-
sible with any of the other devices previously described. He

noted that basic to its design was mathematical accuracy.
Thus one could set the machine to draw any desired curve,
based on its equation. Prior to the completion of his machine
several articles were published that described its function.46

The machine was constructed with an arrangement of pul-
leys and gears such that various gear ratios could easily be
changed. In addition an attachment could be moved with
simultaneous simple harmonic motion in two directions per-
pendicular to one another for drawing rectangular curves.
Other types of curves could be drawn on a rotating table or
on a moving ribbon, the motion of either~and of the pen!
being determined by the setting of the various gears. The
machine was driven by a motor, and a single curve could
take several minutes to draw; in its most complex setting
Rigge calculated that it could take more than two years to
complete a curve. In all, he determined that more than 7.6
billion different curves could be drawn with his machine.47

IV. DISCUSSION AND CONCLUSIONS

The author of the obituary of Professor Hugh Blackburn in
the Times~London! observed that Blackburn

... had invented and exhibited in his rooms in Cam-
bridge a pendulum with a double suspension, which
in subsequent years became known as the Blackburn
pendulum, and by the use of which important ad-
vances were made in experimental physics.48

While one may still wonder about details of the ‘‘important
advances,’’ a number of different pendulum devices de-
signed for drawing curves have been invented over the years,
and these have been traced in a previous paper. Those appa-
ratus which make use of gears and pulleys to draw other
classes of curves have been examined in this paper.

Rigge observed that both pendulum and wheel harmono-
graphs had advantages and disadvantages. Among the advan-
tages of pendulum devices were: their cheapness; the beauty
of the curves produced as the amplitude of each pendulum
decreased; and the possible adjustment of the angles between
the pendulums. Disadvantages, he noted, were: restriction to
rectangular curves; time required to ‘‘finish’’ a curve; trial
and error in determining the curve to be drawn; and decreas-
ing amplitude of pendulums.

Fig. 10. Diagram of Sto¨hrer’s apparatus.

Fig. 11. Fr. Rigge’s ‘‘Creighton Machine.’’
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The advantages of wheel machines were that all variables
might be determined and set in advance; they could be
stopped and restarted without affecting the curve; they could
be designed to draw any type of curve; and they could be
built to be very rugged. Disadvantages were: cost; limited
class of curves that could be drawn with simple machines;
need for mechanical skill in construction; imperfections in
construction; and possible complexity of the machine.49

It would seem that harmonographs of either kind were
developed primarily as demonstration apparatus. While the
pendulum apparatus could demonstrate simple harmonic mo-
tion in mutually perpendicular directions and record the
curves produced, the production of a variety of curves was
often the primary purpose for building the apparatus. And,
the curves were produced because of their aesthetic charac-
teristics.

Rigge noted, in the first paragraph of the Preface to his
book, that

Harmonic curves always captivate the eye by their
wonderful beauty and their endless variety. They
have that correct proportion in their apparent com-
plexities which allures the draughtsman, and that fe-
cundity in mathematics which attracts the beginner
and holds the veteran.50

And, while much of his book is devoted to the mathematical
and mechanical means of curve production, a full chapter is
devoted to their beauty.51

More recently, Cundy and Rollett observed in their book,
Mathematical Models, that

The harmonograph was a popular diversion in Vic-
torian drawing-rooms, since when it has suffered a
decline and is rarely seen today. The construction of
a good machine entails a considerable amount of
labour and skill, but the effort will be well repaid,
and it makes a fascinating contribution to any math-
ematical exhibition that may be planned.52

While the harmonograph may have been popular in Vic-
torian times, its attraction has extended to the present time.
That interest in harmonographs has not been lost is clear
from the recent publications on the subject by Greenslade.53

The curves—symmetric and nonsymmetric—drawn by these
devices seem to provide a particular fascination to many
people. This fascination extends beyond the usefulness of the
curves in describing some physical phenomena, but also in-
cludes an appreciation of the beauty of the curves. The recent
interest in the variety of fractal forms is one example of this.
Complex curves, with a great deal of detail, may be pro-
duced with a small computer and can be observed on the
monitor; but, as Tolansky remarked, these cannot compare in
interest with those produced by a ‘‘crude’’ mechanical de-
vice that traces the curve on paper as we watch it grow.54

Harmonographs are only one of many classes of demon-
stration equipment that have been designed for use in physics
lectures or laboratories that no longer see active use. How-
ever, as some of the writers cited above have noted, these
‘‘antique’’ devices may still serve a purpose in bringing one
piece of physics~or mathematics! to students or the general
public. Do departments~and their institutions! which have
old apparatus have a responsibility for their preservation and
possible display? To what extent do faculty~much less our
students! have an understanding or appreciation of this as-
pect of the intellectual heritage of our discipline?

Collecting antique scientific instruments has also become

an active hobby. Many items bring high prices at auctions.55

As departments search for space for new equipment by dis-
posing of older, unused items, it might be wise to identify
these before they are discarded.

These two papers have attempted to survey the develop-
ment of harmonographs through published accounts of vari-
ous designs. These have been found in publications directed
toward the professional as well as the general reader. The
author is aware that many harmonographs are on display in
museums and in some physics departments, but he has made
no attempt to survey these. It is his hope that the history of
these devices may encourage others to explore the dusty cor-
ners of the ‘‘philosophical cabinets’’ of their college and
university departments and to consider the range of curves
that can be produced and displayed through the varied design
and operation of these early ‘‘analog computers.’’
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APPENDIX: CYCLOIDAL CURVES

Many curves are defined kinematically. That is, something
moves, under some kind of constraint, with respect to some-
thing else. For example: ‘‘Thecircle is usually defined as the
locus of a pointP such that the distance fromP to a fixed
point O is constant.’’56 All of the curves drawn by the vari-
ous apparatus discussed above operate in this manner. The
curve produced is the locus of a point defined by the motion
of that part of the apparatus that carries the recording device.

For the case of curves rolling on curves, Lockwood pro-
vides the following definitions:

If a curve rolls, without slipping, along another,
fixed curve, any point or line which moves with the
rolling curve describes aroulette.57

]

The termtrochoidhas the same meaning asroulette.
It is used more particularly for the roulettes traced
by points carried by a circle rolling on a fixed circle.
These are calledepitrochoidsor hypotrochoidsac-
cording as the circle rolls on the outside or inside of
the fixed circle.58

However, if the tracing point is on the circumference of the
rolling circle, the roulette traced is called anepicycloid or
hypocycloid.59 Clearly, any curve drawn with the ‘‘kukulo-
graph’’ or the Spirograph will be an epitrochoid or a hypo-
trochoid; a ‘‘pure’’ epicycloid or hypocycloid would not be
possible because of the interference of the gear teeth with the
pen or pencil drawing the curve.60

Figure 12 illustrates the geometry of the epitrochoid, in
which circleM rotates around the outside of the fixed circle,
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F. The radius of the fixed circle isa; the radius of the rotat-
ing circle isb; h is the distance of the tracing point,P, from
the center ofM. The parametric equations of the coordinates
of the recording point are

x5~a1b!cosA2h cos$@~a1b!/b#A% ~1!

and

y5~a1b!sinA2h sin$@~a1b!/b#A%. ~2!

The geometry of the hypotrochoid is illustrated in Fig. 13,
where the circle,M, rotates around the inside of the fixed
circle. The parametric equations of the coordinates are

x5~a2b!cosA1h cos$@~a2b!/b#A% ~3!

and

y5~a2b!sinA2h sin$@~a2b!/b#A%. ~4!

In the case of the Spirograph, each gear~or ring! has an
integral number of teeth. Thus the rolling gear must roll
throughn complete circles to return to its starting position
while it rolls around the fixed circle inm complete circles.
Since the number of teeth of each gear is proportional to its
respective radius, we may write their ratios as

m/n5a/b. ~5!

If we make this substitution for ‘‘a’’ in each of the four
equations above, we obtain, for the epitrochoid:

x5b@~m/n!11#cosA2h cos$@~m/n!11#A% ~6!

and

y5b@~m/n!11#sinA2h sin$@~m/n!11#A%. ~7!

And the equations for the hypotrochoid are

x5b@~m/n!21#cosA1h cos$@~m/n!21#A% ~8!

and

y5b@~m/n!21#sinA2h sin$@~m/n!21#A%. ~9!

A number of interesting curves result from particular rela-
tionships between the radii of the circles~or of the gear ra-
tios!. These curves may be obtained from each of these pairs
of equations with the proper substitution. Some of these are
summarized in Table I.
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John Holt Ibbetson,A Brief Account of Ibbetson’s Geometric Chuck,
Manufactured by Holzapffel & Co.~By the author, London, 1833!. Ibbet-
son wrote several books on ‘‘circular turning.’’ SeeNational Union Cata-
log Pre-1965 Imprints~Mansell, Chicago, 1973!, Vol. 263, p. 110. I have
not seen either reference. Proctor~Ref. 4, p. 194! refers to both of these in
a long quote about the ‘‘geometric chuck’’ written by Henry Perigal, who
had constructed a similar device by means of which several of the illus-
trations were made for Proctor’s book. L. W. Boord also drew several
illustrations for this book using a device similar to Perigal’s. Drach had

Fig. 12. Geometry of the epitrochoid.

Fig. 13. Geometry of the hypotrochoid.

Table I. Cases of special trochoids.

Condition Gear ratio (m/n) Name of curve

Epitrochoids
A. a5b 1 Lamaçon
B. a50 or 0 Circle

h50 Any
C. h5b Any Epicycloid

1. a5b 1 1. Cardioid
2. a52b 2 2. Nephroid

Hypotrochoids
A. a52b 2 Ellipse
B. h5b Any Hypocycloid

1. b50 Any 1. Circle with radiusa
2. a5b 1 2. Point
3. a52b 2 3. Line segment~special case

of A!
4. a53b 3 4. Deltoid
5. a54b 4 5. Astroid
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referred to Perigal some years before. He wrote of curves shown in a
demonstration ‘‘... by Mr. Perigal at Lord Northampton’s scientific soire´e
in March 1846. The Royal Society, Astronomical Society and Royal In-
stitution, possess three volumes of various singular epicyclical curves ex-
ecuted by Mr. Perigal’s machinery, some of which are highly ornamen-
tal,... .’’ S. M. Drach, ‘‘An easy rule for formulizing all epicyclical curves
with one moving circle by the binomial theorem,’’ Philos. Mag. J. Sci.
Third Series34, 444–448~June, 1849!; the quotation appears on p. 448.
De Morgan referred to diagrams of trochoidal curves that had been drawn
by Perigal for thePenny Cyclopaedia; he also noted that Northampton
~Spencer Joshua Alwyne Compton, second Marquis of Northampton! was
president of the Royal Society from 1838 to 1849. Augustus De Morgan,
A Budget of Paradoxes, edited by David Eugene Smith~Open Court, Chi-
cago, 1915; Books for Libraries Press, Freeport, NY, 1969!, Vol. 2, 2nd
ed., pp. 19–20. A brief obituary of Perigal may be found in ‘‘Obituary:
Mr. Henry Perigal,’’ The Times~London!, 9 June 1898, p. 6. In spite of
these references to Perigal’s ‘‘machine’’ I have been unable to find further
description of it. Proctor also referred to Perigal’s invention of ‘‘... an
ingenious instrument, called the kinescope~sold by Messrs. R. & J. Beck,
of Cornhill!, by which all forms of epicyclics can be ocularly illustrated. A
bright bead is set revolving with great rapidity about a centre, itself re-
volving rapidly about a fixed centre,... and thus any epicyclic traced out.
The motions are so rapid that, owing to the persistence of luminous images
on the retina, the whole curve is visible as if formed of bright wire.’’
Reference 4, pp. 194–195. This description is virtually identical to an
apparatus attributed to Charles Wheatstone and described~and illustrated!
by Ganot who called it ‘‘Wheatstone’s photometer.’’Elementary Treatise
on Physics, Experimental and Applied, translated and edited from Ganot’s
Éléments de Physiqueby E. Atkinson~William Wood, New York, 1899!,
15th ed., p. 516. Its description is sufficiently different from the one de-
scribed by Wheatstone on 8 March 1833 before the Royal Institution,
which also made use of luminous points carried by a wheel moved by a
train of gears. See The Athen,um, 170–171~16 March 1833!. Wade
noted that this 1833 experiment had not seemed to have been published,
nor does he mention the ‘‘photometer.’’ Nicholas J. Wade,Brewster and
Wheatstone on Vision~Academic, London and New York, 1983!, p. 313.
Frick described the ‘‘reflection photometer’’~Reflexphotometer!, a nearly
identical apparatus, which he attributed to Wollaston. See Joseph Frick,
Dr. J. Fricks Physikalische Technik;..., Zweiter Band, Zweite Abteilung
~Friedrich Bieweg und Sohn, Braunschweig, 1909!, 7th ed., p. 1759. I
have been unable to find original references to either of these devices.
Wheatstone’s interest in acoustical phenomenon also led to his construc-
tion of machines to demonstrate wave motion. A discussion of this appears
in Howard A. L. Dawes, ‘‘Wheatstone’s wave machine: A physical model
of light,’’ in Making Instruments Count: Essays on Historical Scientific
Instruments presented to Gerard L’Estrange Turner, edited by R. G. W.
Anderson, J. A. Bennett, and W. F. Ryan~Variorum, Aldershot, Hamp-
shire, UK and Brookfield, VT, 1993!, pp. 127–138. This study has been
extended in Julian Holland, ‘‘Charles Wheatstone and the representation
of waves. I,’’ Rittenhouse13, 86–106~1999!; ‘‘Charles Wheatstone and
the representation of waves. II,’’ Rittenhouse~in press!. The most recent
biography of Wheatstone is Brian Bowers,Sir Charles Wheatstone FRS
1802–1875 ~HMSO, London, 1975!. Machines designed to demonstrate
wave motion are related to, but not the same as, harmonographs. I have
made no attempt to survey the literature of this extensive class of appara-
tus. However, Barus gives a detailed discussion of a complex apparatus of
his design in Carl Barus, ‘‘The objective presentation of harmonic motion
~with Plate II!,’’ Science, n.s.9, 385–405~17 March 1899!. All of this
must be supplemented by Thomas B. Greenslade, Jr., ‘‘Apparatus for natu-
ral philosophy: 19th century wave machines,’’ Phys. Teach.18, 510–517
~1980!.

7Thomas Sebastian Bazley,Index to the Geometric Chuck~Waterlow and
Sons, London, 1875!. The author wrote in his introduction: ‘‘The impres-
sion of this work consists of 150 copies only, probably about equivalent to
the number of persons who take an interest in this peculiar branch of
amateur mechanism; and as the lithographic stones were obliterated as the
successive transfers were completed, the book cannot be reprinted.’’~p. v!

8Reference 7, pp. 14–15.
9Edward C. Pickering, ‘‘On the experiment of Lissajous,’’ J. Franklin Inst.
3rd Ser.57, 55–58~January, 1869!. A variation on this design was sold
much later under the name, ‘‘Sinograph’’~automatic sine curve tracer!,
suggested by W. C. Dod and Eugene Albaugh.Scientific Instruments,
Laboratory Apparatus and Supplies~Central Scientific Company, Chi-
cago, 1936!, p. 1165; Cat. No. 75510, $40.00. Thomas B. Greenslade, Jr.

has kindly provided the following biographical note on Pickering:

—A prominent example@of an important figure in 19th century
American science# is Edward Charles Pickering~1846–1919!,
who spent the last forty two years of his life as the Director of the
Harvard Observatory. He prepared for college at the Boston Latin
School, and was awarded his S. B. degree from Harvard’s
Lawrence Scientific School at the age of nineteen. After a year of
teaching mathematics at Lawrence Scientific School, he crossed
the Charles River in 1866 to join the faculty of the new Massa-
chusetts Institute of Technology, which at that time was on the
south side of the river in Boston. For one year he was an assistant
instructor of mathematics, and from 1868 to 1877 he was the
Thayer professor of physics at M.I.T.

Additional information on Pickering may be found in Howard Plotkin,
‘‘Pickering, Edward Charles,’’Dictionary of Scientific Biography~Scrib-
ner’s, New York, 1974!, Vol. X, pp. 599–601; Bessie Zaban Jones and
Lyle Gifford Boyd, The Harvard College Observatory: The First Four
Directorships, 1839–1919 ~Harvard U.P., Cambridge, 1971!.

10A. E. Donkin, ‘‘On an instrument for the composition of two harmonic
curves,’’ Rep. Br. Assoc. Adv. Sci.43, 45–46~1873!; Donkin noted here
that ‘‘The instrument is constructed by Messrs. Tisley and Spiller, of Bro-
mpton Road, to whom several improvements on the original model are
due.’’ A further discussion, with an illustration, is in: A. E. Donkin, ‘‘On
an instrument for the composition of two harmonic curves,’’ Proc. R. Soc.
London 22, 196–199~19 February 1874!. Tyndall, in his lectures on
sound, referred to Donkin’s apparatus reported here and noted: ‘‘I saw the
apparatus as a wooden model, before it quitted the hands of its inventor,
and was charmed with its performance. It is now constructed by Messrs.
Tisley and Spiller.’’ John Tyndall,Sound~Appleton, New York and Lon-
don, 1903!, 3rd ed., p. 422. Further discussion may be found in W. F.
Donkin,Acoustics~Clarendon, Oxford, 1884!, 2nd ed., pp. 50–56. A simi-
lar apparatus is described by E. W. Blake, ‘‘A machine for drawing com-
pound harmonic curves,’’ Am. J. Otology1, 81–86~plus plates! ~April,
1879!. An abstract was published in Nature~London! 20, 103–105~29
May 1879!. Blake noted that Donkin’s apparatus could draw the combi-
nation of only two curves; his could draw the combination of three. A
biography of W@illiam# F@ishburn# Donkin, who was Savilian professor of
astronomy at Oxford, may be found in William Jerome Harrison,
‘‘Donkin, William Fishburn,’’ Dictionary of National Biography~Oxford
U.P., London!, Vol. V, p. 1125. His son, A@rthur# E@dward# Donkin may
be found in Joseph Foster,Alumni Oxonienses~Joseph Foster, London,
1887!, Vol. 1, p. 378; I have been unable to find more on him. Following
are references to other devices for drawing harmonic curves which ap-
peared in the literature about this period of time. These are brief and, even
when illustrated, are not completely clear as to their design or of the
curves that they draw: J. C. E. Ellis, ‘‘A machine for tracing curves de-
scribed by points of a vibrating string;...,’’ Proc. Cambridge Philos. Soc.2,
256–260~26 February 1872!; John Trowbridge, ‘‘Simple apparatus for
illustrating periodic motion,’’ Proc. Am. Acad. Arts Sci.15, 232–234
~1880!; Charles H. Chandler, ‘‘An improved harmonograph,’’ Trans.
Wisc. Acad. Sci., Arts, Lett.10, 61–63~1895!; Walter P. White, ‘‘Appa-
ratus for drawing harmonic curves,’’ Sch. Sci. Math.3, 503–506~March
1904!.

11Nature~London! 20, 187~19 June 1879!; an identical report was published
in Mon. J. Sci., 3rd ser.1, 508–509~July, 1879!.

12The Oxford English Dictionary~Clarendon, Oxford, 1989!, Vol. VI, 2nd
ed., p. 1125. The citation is to the Mon. J. Sci. report. As has been noted
previously, however, this term had been used to describe a pendulum
apparatus developed and advertised by Tisley two years earlier. See Ref. 1,
and Ref. 28 therein.

13George M. Hopkins,Experimental Science, Elementary Practical and Ex-
perimental PhysicsVol. II ~Munn, New York, 1911!, 27th ed., pp. 133–
136.

14Rigge also provided a description of this apparatus based on Hopkins’
account. He noted that the cycloidotrope in the physical cabinet at Creigh-
ton University had been purchased in 1883 from J. H. Steward, of London,
for one pound ten shillings. William F. Rigge, S. J.,Harmonic Curves
~The Creighton University Press, Omaha, NE, 1926!, pp. 74–75.

15Reference 13, pp. 133–135. Kerr also described a similar, but somewhat
more elaborate, apparatus called a ‘‘geometric pen’’ which was also de-
veloped by Pumphrey. See Richard Kerr, ‘‘The Geometric Pen,’’ in Jo-
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seph Goold, Charles E. Benham, Richard Kerr, and L. R. Wilberforce,
Harmonic Vibrations and Vibration Figures, edited by Herbert C. Newton
~Newton & Co., Scientific Instrument Makers, London, 1909!, pp. 184–
194. It was available for purchase from Newton & Co. for £18 18s.

16Marc Dechevrens, ‘‘Le campylographe, machine a` tracér des courbes,’’ C.
R. Acad. Sci.130, 1616–1620~11 June 1900!.

17Marc Dechevrens, ‘‘Vision ste´réoscopique des courbes trace´es par les ap-
pareils phases,’’ C. R. Acad. Sci.131, 408–410~15 August 1900!.

18Marc Dechevrens, ‘‘Le campylographe: Appareil a` dessiner des courbes
géométriques, des figures ste´réoscopiques et des dessins artistiques,’’ Re-
vue des Questions Scientifiques, 2nd Ser.19, 21–46~January, 1901!.

19L. Reverchon, ‘‘Le ‘campylographe’ du Pere Marc Dechevrens S.J.’’ La
Nature28, 540–542~1900!.

20‘‘The campylograph,’’ Sci. Am. Suppl50, 20874~15 December 1900!.
21Reference 14, p. 78.
22Reference 19, p. 540; Ref. 20, p. 20874. A much simplified apparatus, but

one very similar to Dechevrens’, was described by O. Herrera, ‘‘Mechani-
cal device to draw Lissajous figures,’’ Phys. Teach.29, 284–285~1991!.
Only one pulley is adjustable, and it must be replaced for each change in
the angular speed of the system. The pulleys are connected by means of
strings.

23Reference 14, pp. 79–81. Rigge’s account of the campylograph is based
on his correspondence with Dechevrens. He noted that he had not had
access to the articles cited above, even though he had heard of them.
Dechevrens was known principally as a meteorologist and as an authority
on the theory of cyclones, for which he is still cited. See: Gisela Kutzbach,
The Thermal Theory of Cyclones: A History of Meteorological Thought in
the Nineteenth Century~American Meteorological Society, Boston, 1979!,
pp. 137–138; theNational Union Catalog Pre-1965 Imprints~Mansell,
Chicago, 1973!, Vol. 136, p. 247 provides a suggestive list of his work. He
was born 26 July 1845 and died 6 December 1923; he had worked at the
St. Louis Observatory in Jersey, Channel Islands from 1887 until his
death. A brief biography may be found in J. de Moidrey, S. J., ‘‘Bio-
graphical sketch of Marc Deschevrens@sic#, S. J.,’’ Terr. Magn. Atmos.
Electr.30, 147 ~1925!.

24Robert E. Moritz, ‘‘The cyclo-harmonograph: An instrument for drawing
large classes of important higher plane curves,’’ Sci. Am. Suppl.82,
84–85~5 August 1916!.

25Robert E. Moritz, ‘‘On the construction of certain curves given in polar
coordinates,’’ Am. Math. Monthly24, 213–220~May, 1917!. The figure is
from p. 216.

26Reference 25, p. 216.
27Reference 25, p. 217.
28Reference 24, p. 84. More detailed drawings of the construction of the

apparatus are given here.
29Reference 25, p. 217. Moritz also wrote an extensive mathematical study

of this class of curves in Robert W. Moritz,Cyclic-Harmonic Curves: A
Study in Polar Coordinates~University of Washington Press, Seattle, WA,
1923!. A brief biographical sketch is available inWho Was Who in
America~A. N. Marquis, Chicago, 1943!, Vol. 1, p. 866.

30A. C. Banfield, ‘‘The photo-ratiograph: A new instrument for the study of
vibrations,’’ Sci. Am. Monthly3, 44–45~January, 1921!. It is noted that
this article is of the ‘‘Courtesy ofLondon Illustrated News,’’ which I have
not seen. A short summary was published in ‘‘Novel instrument records
vibrations,’’ Illustrated World35, 453 ~May, 1921!.

31Reference 30, p. 45.
32L. Pearce Williams, ed.,Album of Science: The Nineteenth Century~Scrib-

ners, New York, 1978!, p. 10.
33A. Frederick Collins,Experimental Mechanics~D. Appleton, New York

and London, 1931!, pp. 71–74. The author noted that the ‘‘Wondergraph’’
had previously been sold by the E. J. Horsman Company of New York;
however, it was no longer available at the time of his writing.

34C. L. Stong, ‘‘The amateur scientist,’’ Sci. Am.212, 128–129~May,
1965!.

35A. D. Bulman,Models for Experiments in Physics~Crowell, New York,
1966!, pp. 12–31.

36M. J. Hoferer, S. J. ‘‘The kukulograph,’’ Sci. Am.148, 31 ~January,
1933!.

37Kenner Products Co., Cincinnati, OH, copyright, 1967. The versions on
the current market are copyright by Hasbro, Inc., Pawtucket, RI. All ref-
erences here are to the first design, which has greater versatility for the
purposes described. A later version came with a curved triangular wheel
for tracing different curves. General Mills Fun Group, Inc., Cincinnati,
OH, copyright, 1972. This wheel is known as a ‘‘Reuleaux triangle.’’ Its

properties have recently been described in James A. Flaten, ‘‘Curves of
constant width,’’ Phys. Teach.37, 418–419~1999!. I have not examined
the curves which may be drawn with this. The earlier versions came with
pins to fasten the wheels to cardboard, which, in the wisdom of hindsight,
are not now considered appropriate for young children to use. The later
versions do not use pins. The term, ‘‘Spirograph,’’ was introduced in an
entirely different context in 1890. It was: ‘‘An instrument which provides
a continuous tracing of the movements of the lungs during respiration.’’
The Oxford English Dictionary~Clarendon, Oxford, 1989!, Vol. XVI, 2nd
ed., p. 262.

38Robert J. Whitaker, ‘‘Mathematics of the Spirograph,’’ Sch. Sci. Math.88,
554–564~1988!.

39The Project Physics Course: Teacher Resource Book~Holt, Rinehart and
Winston, New York, Toronto, 1971!, pp. 143–147. This apparatus was
reviewed by Margaret Foster, ‘‘Turntable oscillators—An evaluation,’’
Phys. Teach.9, 55–58~1971!, with responses from the manufacturers.

40Ernst Mach, ‘‘Uber eine Vorrichtung zur mechanisch-graphischen Darstel-
lung der Schwingungscurven,’’ Ann. Phys. Chem.129, 464–466~1866!.
Mach referred to Wheatstone’s kaleidophone and noted that it was pro-
duced by Ko¨nig.

41Joseph Frick,Dr. J. Fricks Physikalische Technik;..., Zweiter Band,
Zweite Abteilung~Friedrich Bieweg und Sohn, Braunschweig, 1909!, 7th
ed., pp. 1703–1708.

42Dayton Clarence Miller,The Science of Musical Sounds~Macmillan, New
York, 1926!, 2nd ed., pp. 6–12.

43The figure of Sto¨hrer’s apparatus, reproduced as Fig. 10, comes from
Adolf F. Weinhold,Physikalische Demonstrationen~von Quandt & Ha¨n-
del, Leipzig, 1905!, p. 296; extensive discussion of its operation is on pp.
295–298. See, also, Thomas B. Greenslade, Jr., Ref. 6, particularly pp.
516–517. Additional discussion may be found in Joseph Frick,Dr. J.
Fricks Physikalische Technik;..., Erster Band, Zweite Abteilung~Friedrich
Bieweg und Sohn, Braunschweig, 1905!, 7th ed., p. 1325. Frick also in-
cluded examples of several other curve drawing devices, pp. 1324–1326.

44Reference must be made, however, to A. B. Kempe,How to Draw a
Straight Line: A Lecture on Linkages~Macmillan, London, 1877; re-
printed, National Council of Teachers of Mathematics, Reston, VA, 1977!.
A study of linkages is important in many aspects of machine design. In the
present context see, for example, Robert R. Reid and Du Ray E. Strom-
back, ‘‘Mechanical Computing Mechanisms,’’ inMechanisms, Linkages,
and Mechanical Controls, edited by Nicholas P. Chironis~McGraw–Hill,
New York, 1965!, pp. 120–137. A recent textbook related to the subject is
Homer D. Eckhardt,Kinematic Design of Machines and Mechanisms
~McGraw–Hill, New York, 1998!.

45Reference 14, p. 81.
46William F. Rigge, ‘‘A compound harmonic motion machine. I,’’ Sci. Am.

Suppl. 85, 88–91 ~9 February 1918!; ‘‘A compound harmonic motion
machine. II,’’ 85, 108–110~27 September 1919!; H. Volta, ‘‘Une machine
a tracer les courbes,’’ La Nature46, 196–199~27 September 1919!. The
completed machine is described in Ref. 14, pp. 81–91. The majority of
Rigge’s book discusses the mathematics of the various curves that can be
drawn with the machine and provides examples of these. Brief biographies
of Rigge~9 September 1857–31 March 1927! may be found in Rev. James
McCabe, S. J., ‘‘William F. Rigge,’’ Pop. Astr.35, 247–249~May, 1927!,
and in Francis A. Tondorf, ‘‘Rigge, William Francis,’’Dictionary of
American Biography~Scribner’s, New York, 1935!, Vol. XV, pp. 601–
602. From 1896 until his death he was director of the Creighton University
Observatory. In addition he taught physics and mathematics. For most of
his professional life he contributed extensively to professional and popular
journals, writing on astronomy, physics, mathematics, and the history of
astronomy. This writer is currently compiling a bibliography of his writ-
ings and intends to write a more detailed account of his machine, based on
actual examination of it.

47Reference 14, pp. 87–91.
48‘‘Obituary: Professor Blackburn,’’The Times~London!, 12 October 1909.
49Reference 14, pp. 91–93.
50Reference 14, p. 11.
51Reference 14, pp. 122–132.
52H. Martyn Cundy and A. P. Rollett,Mathematical Models~Clarendon,

Oxford, 1961!, 2nd ed., p. 244.
53Thomas B. Greenslade, Jr., ‘‘19th Century textbook illustrations. XXVII.

Harmonographs,’’ Phys. Teach.17, 256–258~1979!; ‘‘19th Century text-
book illustrations—LI: The kaleidophone,’’ibid. 30, 38–39~1992!; ‘‘All
about Lissajous figures,’’31, 364–370~1993!; ‘‘The double-elliptic har-
monograph,’’36, 90–91~1998!.
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54S. Tolansky, ‘‘Complex curvilinear designs from pendulums,’’ Leonardo
2, 267–274~1969!.

55While dated, Ronald Pearsall,Collecting and Restoring Scientific Instru-
ments~Arco, New York, 1974! is useful. The author provides an extensive
glossary of the names of different instruments; strangely, no form of har-
monograph is among them. This should be supplemented by Gerard L’E.
Turner, Antique Scientific Instruments~Blandford, Poole, Dorset, UK,
1980!; Nineteenth-Century Scientific Instruments~Southby Publications,
University of California Press, Berkeley, 1983!. Both are illustrated with a
number of colored plates of apparatus.

56J. Dennis Lawrence,A Catalog of Special Plane Curves~Dover, New
York, 1972!, p. 65.

57E. H. Lockwood,A Book of Curves~Cambridge U.P., Cambridge, 1967!,
pp. 139–140.

58Reference 57, pp. 146–148.
59Reference 57, pp. 139–140. The distinction between ‘‘epitrochoids’’ and

‘‘epicycloids’’ and between ‘‘hypotrochoids’’ and ‘‘hypocycloids’’ is not
consistent among all authors. Proctor emphasizes the distinction~Ref. 4,

pp. 92–134!; as does Rigge, who follows Proctor~Ref. 14, pp. 94–121!.
As noted above, Lawrence and Lockwood make the distinction. Sharp, in
his useful discussion of these curves encountered in the gears of a bicycle,
makes the same distinction. Archibald Sharp,Bicycles & Tricycles: An
Elementary Treatise on Their Design and Construction~Longmans,
Green, New York, 1896; MIT Press Paperback, Cambridge, MA, 1979!, p.
27. However, neither Pedoe nor Maor mention ‘‘trochoids’’ in their dis-
cussion of cycloidal curves: Dan Pedoe,Geometry and the Liberal Arts
~St. Martins Press, New York, 1976!, pp. 218–241; Eli Maor,Trigonomet-
ric Delights ~Princeton U.P., Princeton, NJ, 1998!, pp. 95–107.

60The following is summarized from my discussion in Ref. 38. This was
strongly dependent on Proctor, Ref. 4; Rigge, Ref. 14; Lawrence, Ref. 56;
and Lockwood, Ref. 57. Since this article was published, the following
have appeared which refer to various aspects of the curves produced by the
Spirograph: Joseph D. Romano, ‘‘Foucault’s pendulum as a Spirograph,’’
Phys. Teach.35, 182–183~March, 1997!; Maor, Ref. 59, pp. 93–107;
Dennis Ippolito, ‘‘The mathematics of the Spirograph,’’ Math. Teach.92,
354–358~April, 1999!.

WHEN WILL SCIENCE END?

A question that is sometimes asked is, When will science end? It may be worth while to devote
a little attention to the other question, How can it end? Usually a scientific advance is considered
to consist of a surprising new discovery—which means, in terms of the present theory, that some
old hypothesis is rejected by a significance test, and possibly that a new one is put in its place. The
steady improvement in accuracy due to improved methods of experiment and observation, and to
the combination of increasing numbers of observations, is less spectacular, but it also is a genuine
advance, and usually plays an important part in the definite changes made in hypotheses. If we
should ever reach a stage where all laws were known, science need not end; for the relevant
parameters could be determined with ever-increasing accuracy by increasing the numbers of
observations. The conclusion seems to be, therefore, that science cannot end. It must always either
discover new laws or increase the accuracy of the estimates of the parameters in the old ones.
Human interest might fail, however, if the new laws were not such as to arouse it; or if the
accuracy already obtained was as great as was needed. A stage might be reached, for instance,
when all advances consisted of the discovery of internal correlations between observational errors.
As a rule such correlations decrease the more widely separated the observations are, and the
uncertainty of an estimate from a mean will diminish, though less rapidly thann21/2. But for the
same reason the uncertainty of a prediction ton observations will diminish less rapidly thann21/2

and there will be less need for increase of accuracy in the estimates used to make it. I think,
therefore, that it is impossible for science to end, but it is possible for it to become uninteresting.
But that will not be for some time yet.

Harold Jeffreys,Theory of Probability~Clarendon Press, Oxford, 1939!, p. 355.
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