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ABSTRACT 

Detection of predators early in a predation sequence may allow prey to increase their probability 

of survival by taking evasive action. For aquatic species in ephemeral ponds visibility is often 

limited, so predation risk assessment via chemical cues can be useful. Most mole salamanders of 

the genus Ambystoma breed in vernal ponds, and larvae suffer high mortality rates due in part to 

high levels of predation. I tested whether larvae can assess predation risk by detecting chemicals 

(alarm cues) released from the skin of damaged conspecifics, and, if so, what factors influence 

the response to this alarm cue. Field-caught spotted salamander larvae (Ambystoma maculatum) 

responded with fright to the chemical cue of damaged conspecifics, but not to control cues. To 

investigate the ubiquity of this response throughout ontogeny, I conducted further experiments to 

examine effects of age and experience of cue donors and receivers on alarm responses. In a 

second experiment, I measured responses of neonate larvae to alarm substance from two 

different age classes of conspecifics, using heartrate as indicator of fright. The neonate larvae 

showed increased heartrate (fright) to the cue from older conspecifics, but not the cue from 

conspecifics from their own age class. My third experiment tested whether larval experience is 

required for response to the alarm cue.  In this experiment, lab-reared individuals did not 

distinguish between conspecific alarm cues and the control stimuli.  My study provides the first 

evidence for the production of chemical alarm cues by larval salamanders and indicates that 

alarm responses may vary due across ontogenetic development. 
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INTRODUCTION 

 

Interactions between an actively foraging predator and its prey are a part of the 

predation sequence: prey encounter, detection, pursuit, capture, handling, and 

consumption (Endler 1986). For a predator to secure a meal, it must outperform prey in 

each step of the sequence. However, if a prey individual can evade or escape the predator 

at any one of these steps, it may live a while longer. This inequality of outcomes—death 

vs. a lost meal—leads to what is known as the “life-dinner principle” (Dawkins and 

Krebs 1979): the prey’s higher cost of losing (death) should result in antipredator 

strategies being under stronger selection pressure than predators’ hunting strategies. 

Therefore, prey should remain a step ahead in the predator-prey arms race.  

The earlier in a predation sequence that a prey individual can detect a predator, 

the greater its odds of surviving the sequence (Lima and Dill 1990). A predatory 

encounter begins when one individual enters the potential detection field of the other.  

The best way for prey to survive an encounter is to avoid a physical interaction altogether 

by avoiding detection by the predator (Fuiman and Magurran 1994). Some prey species 

rely on morphological anti-predator tactics, such as camouflage, to avoid detection 

(Ydenberg and Dill 1986). Cryptic individuals can enhance the efficiency of their 

camouflage by becoming immobile or decreasing activity (Azevdo-Ramos et al. 1992).   

If detection and identification by the predator is inevitable, a prey individual may be able 

to use other tactics, such as avoiding capture by fleeing (Samia et al. 2016), subjugation 

by fighting the predator (Silva et al. 2018), or consumption by being armoured 

(Stankowich and Campbell 2016) or distasteful (Halpin and Rowe 2016). In addition to 
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the benefits of avoiding physical interactions with prey, escaping detection though 

camouflage, freezing or hiding is generally less energetically costly than later-stage 

defenses like fleeing or fighting.   

Virtually all antipredator defenses require individuals to cease other activities 

(e.g., foraging, searching for mates) during the encounter (Lima and Dill 1990). 

Therefore, fitness may be maximized by employing antipredator responses only when the 

risk level is high. Early detection of predators allows increased time for threat 

assessment. 

Predator detection can occur via a variety of cues, including visual, acoustic, 

tactile, or chemical cues. In addition to being alerted to the presence of potential 

predators, prey can often use these different sensory modalities to assess the level of risk 

by determining predator proximity and whether the predator is actively hunting (Ferrari et 

al. 2006). Prey that can glean detailed information about predators early in the predation 

sequence should gain some advantage and make better-informed decisions about how to 

allocate their time (antipredator vs. other behaviors). The effectiveness of different cue 

modalities can depend on a variety of factors, including habitat. For example, in a low 

visibility habitat, visual cues may be less reliable than they are in a clear habitat or at 

close range (Endler 1993).  

Lentic habitats such as wetlands or ephemeral pools are areas in which visual cues 

may be less efficient in detecting risk due to turbid water and high vegetation densities 

possibly obstructing the prey’s view. Aquatic prey often rely heavily on chemical cues 

that pass through or around obstructions and persist in the water column (Brönmark and 

Hansson 2000). In addition, chemical cues can allow the receiver access to information at 
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further distances or more accurately than permitted by visual and tactile cues (Hickman 

2004). Acoustic cues are an uncommon source of information in these habitats, as many 

of a pond’s inhabitants are unable to vocalize. For example, only one larval amphibian 

has been shown to vocalize (Natale et al. 2011). For these reasons, chemical cues are 

used by many aquatic species and have developed into sophisticated sources of 

information (e.g. Ferrari and Chivers 2009). 

Predators can be detected either directly via cues given from the predator (Garvey 

et al. 2016) or indirectly, via cues from conspecific (James and McClintock 2017) or 

heterospecific (Crane et al. 2013) individuals that have detected the predator (Wisenden 

2014).  Indirect cues are typically categorized as either “alarm” cues, which are released 

after damage to the individual, usually from an attack by a predator, or “disturbance” 

cues which do not require damage for release (Chivers et al. 2012).  Damaged-released 

cues are a reliable cue particularly because they not only indicate that a predator is nearby 

but also that it is actively hunting. 

Vertebrate chemical alarm cues were first documented in ostariophysan fishes 

(von Frisch 1938; reviewed by Smith 1992) and toad tadpoles (Kulzer 1954), with 

subsequent decades of research revealing that alarm substances are present in a wide 

range of non-ostariophysan fishes and larval anurans (reviews: Mathis 2009; Chivers and 

Smith 1998; Ferrari et al. 2010b). Generally, aquatic amphibians have received less 

attention than fishes, and, among amphibians, anurans have received considerably more 

attention than salamanders.  In reviews covering chemical alarm substances in aquatic 

species, only three publications investigate salamanders, two of which are adult newts in 

the family Salamandridae (Marvin and Hutchison 1995; Woody and Mathis 1998). In one 
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additional study of larval long-toed salamanders, Ambystoma macrodactylum, the authors 

(Wildy and Blaustein 2001) suggest that chemical alarm cues may be present, but their 

methodology did not allow them to distinguish between alarm cues per se and other diet-

based cues. Thus, there have been no studies definitively indicating the presence or 

response to conspecific alarm cues in larval salamanders to date.  

The site of alarm cue production is thought to be related to the skin in most 

species that have been studied (Ferrari et al. 2010b).  For the best-studied group, the 

ostariophysan fishes, the alarm substance is produced in club cells of the epidermis 

(Smith 1992). These cells have no ducts connecting them to the surface of the skin, 

indicating that alarm cues can only be released upon damage to the epidermis. In other 

species, including amphibians, the specific site of alarm cue production is not known. 

Adult amphibians have numerous epidermal glands (Fox 1994) that are potential sites of 

alarm cue production.  Prior to metamorphosis, the amphibian epidermis undergoes 

numerous changes in cellular composition during the transition from an aquatic to 

terrestrial life stage (e.g. Regueira et al. 2016; Warburg et al. 1994). For example, in 

salamanders, metamorphosis has been shown to cause a loss of certain larval epidermal 

cells, such as Leydig cells and accessory cells, while mitochondria-rich cells become 

indistinguishable (Perrotta et al. 2012). Changes in cell abundance and type are not 

isolated to the metamorphic period but occur throughout ontogeny until adulthood 

(Lewinson et al. 1983; Pederzoli et al. 2002). Ontogenetic shifts have been shown to 

affect the production or response to alarm cues in a variety of organisms but have been 

most widely studied in fishes (e.g. sculpin: Gall and Mathis 2011; chromis: Mitchell and 
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McCormick 2013; damselfish: Lönnstedt and McCormick 2011; minnow: Mirza and 

Chivers 2002). 

Response to alarm cues may also vary across ontogeny (Harvey and Brown 2004; 

Gall and Mathis 2011; Xia et al. 2017).  Ontogenetic variation in the presence or intensity 

of alarm responses could be due to experience. Increased experience with risk can lead to 

enhanced function of antipredator behaviors (Fraker 2009; Mirza and Chivers 2003).  

Consequently, older individuals may be better at responding to antipredator cues than 

younger individuals (Putman et al. 2015). The influence of experience on antipredator 

behavior can also be less intuitive. Two common risk factors are predation and starvation, 

and individuals that can balance these two risks should be more successful in terms of 

fitness. Individuals that experience a high background level of predation risk would risk 

starvation if they responded with increased antipredator behavior, and consequently 

lower levels of foraging, every time a predator was nearby.  Thus, the “risk allocation 

hypothesis” (Lima and Bednekoff 1999) leads to the prediction that animals in high-

predation populations should exhibit relatively low-level responses to the immediate 

threat of predation. In contrast, individuals that experience low background levels of 

predation risk should respond strongly to relatively rare immediate predatory threats 

because doing so does not appreciably increase the risk of starvation. Mitchell et al. 

(2016) found that high-risk Lithobates sylvaticus tadpoles did not reduce activity as much 

as low-risk tadpoles when exposed to conspecific alarm cues but exhibited neophobia in 

response to novel cues whereas tadpoles in the low-risk treatment did not. Prey have even 

been shown to “forget” (cease responding to) innate knowledge of certain predators if the 

risk associated with that predator is not reinforced (Ferrari et al. 2010a). 
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Some species respond to the chemical alarm substances of heterospecifics, 

forming an information-sharing species assemblage known as a prey guild. Prey guilds 

typically form when species are syntopic and share a common predator (Chivers et al. 

1997). Prey guilds should be advantageous to prey cohabitating in high densities, 

increasing the amount of information at their disposal and increasing the chances of early 

predator detection. Prey guilds have been shown to function in a variety of taxa, such as 

fishes (Mirza et al. 2003), salamanders (Chivers et al. 1997), and herbivorous mammals 

(Pays et al. 2014; Schmitt et al. 2016), and even across widely different taxonomic 

groups (e.g., fish and salamanders: Anderson and Mathis 2016; birds and mammals: Lea 

et al. 2008). Response to signals by individuals other than the intended (usually 

conspecific) receiver is referred to as “interceptive eavesdropping” (McGregor and Horn 

2014). 

Larvae of the study species, the spotted salamander (Ambystoma maculatum), 

occupy low-visibility and predator-dense temporary ponds throughout most of the eastern 

United States and into Canada (Zamudio and Savage 2003). Although larval spotted 

salamanders are not considered social, they are often found at high densities (Stenhouse 

1985; Shoop 1974) in ponds suggesting that nearest-neighbor distances are sufficient for 

detection of alarm cues released by conspecifics. Additionally, terrestrial juvenile spotted 

salamanders may possess an alarm cue contained within the skin (Hunt 2011). Spotted 

salamander larvae co-exist with high densities of other prey with which they share 

common predators. The close proximity to other species in the same prey guild provides 

spotted salamander larvae with the opportunity to eavesdrop on heterospecific alarm 

cues, such as those produced by American toad tadpoles (Anaxyrus americanus).  
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I hypothesized that larval spotted salamanders produce a cutaneous, damage-

released alarm substance that conspecifics respond to with antipredator behavior. I also 

hypothesized that the salamanders eavesdrop on alarm substances from syntopic prey in 

the same prey guild. In my first experiment, I investigated whether field-caught, free-

swimming spotted salamander larvae would respond with fright behavior (i.e. reduced 

movement, a freezing response) to (1) putative alarm substance from conspecifics and (2) 

the known alarm substance of American toad tadpoles (Anaxyrus americanus). Field-

caught larvae likely have experience with predators and with alarm cues.   

Building upon the results of the first experiment, my second experiment tested 

whether developmental stage affected (1) the presence of the alarm cue in the donor and 

(2) the ability to detect and respond to alarm cue by conspecific receivers. Focal larvae 

were lab-reared neonates, and cue donors were from two developmental stages (1-day-old 

and 1-month-old). Because the focal larvae were not free-swimming at this early stage of 

development, I measured heart rate to assess the presence of a fright response; 

Ambystoma respond to predator cues with increased heart rates (Shelton 2016). I 

hypothesized that the larvae would respond with an increased heart rate to the putative 

alarm substance from both the early-stage and late-stage conspecifics. 

In the third experiment I tested whether free-swimming, lab-reared larvae 

exhibited a fright response to conspecific alarm cues even though they had no experience 

with predators during the rearing period. As in the first experiment, I tested whether the 

lab-reared free-swimming larvae would respond with fright behavior (i.e. reduced 

movement, a freezing response).    
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METHODS 

 

Experiment 1: Field-Caught Larvae 

Spotted salamander larvae were collected from a pond in Compton Hollow 

Conservation Area (Webster CO., MO) in May 2016 and 2017 (n = 72, 84). American 

toad tadpoles (n = 100) were also collected each year from the same location. For a novel 

control stimulus, we used skin extracts from Ozark zigzag salamanders (Plethodon 

angusticlavius) collected from Drury-Mincy Conservation Area (Taney CO., MO) in 

November 2016 and November 2017 (n = 3, 3). In the lab, salamander larvae (total length 

(TL) 28.42 ± 0.614 mm) were housed individually in small plastic boxes (8 × 8 × 8 cm) 

containing water from their natal pond and were fed blackworms (Lumbriculus 

variegatus) every other day. American toad tadpoles (TL approx. 21 mm) were housed 

together in a 5.7-L plastic box (35.6 × 20.3 × 12.4 cm) and fed algae wafers every three 

days. Ozark zigzag salamanders (n =3, 2; SVL = 36.8 ± .86 mm) were housed in 

individual Petri dishes (13 cm diameter × 1.5 cm height) on moistened filter paper and 

kept in an environmental chamber at 15° ± 2° C. Ozark zigzag salamanders were fed 10 

Drosophila hydei once a week. Salamander larvae and toad tadpoles were kept at 20° ± 

2° C. All animals were kept at a 12:12 light cycle. 

All the following cue collection and experimental procedures were approved by 

the Missouri State University IACUC (Protocol #17-012).  For our novel control stimulus 

(terrestrial salamander), we prepared extracts using skin tissue that contained a small 

amount of adhering muscle tissue. The salamanders were euthanized (pithed and 

decapitated) before we removed the skin from the neck to the base of the tail. The 
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resulting tissue was macerated with a mortar and pestle. Stimuli from salamander larvae 

and toad tadpoles was obtained via whole body maceration after chilling donor animals in 

a freezer for approximately 15 minutes at -14° ± 2° C. Following maceration, stimuli was 

filtered through glass wool and diluted to a concentration of 0.0015g of tissue/1mL, as in 

Woody and Mathis (1998), to control stimulus strength across the species. The cue was 

frozen in 2.5-mL aliquots until the day of testing. Dechlorinated water was also frozen 

into 2.5 mL aliquots to serve as a blank control cue.  

Trials were conducted in the focal larva’s home chamber which was placed over a 

2.5 × 2.5 cm grid. The day before testing, pond water was replaced with 250 mL of 

dechlorinated water to eliminate any extraneous chemical cues present in the container. 

Focal larvae were allowed 24 h to acclimate in the dechlorinated water before testing. 

Larvae were randomly assigned to one of the four treatment groups (n=30 per treatment). 

Larval movements were recorded as lines crossed for 4 min (PRE). Then, randomly-

selected stimulus aliquots were added to the chamber and allowed to disperse for 30 s, 

and movements were recorded for an additional 4 min (POST). The observer was blind to 

the stimulus identity.   

All statistical analyses were performed using Minitab 17.1.0 statistical software. I 

calculated a response index as the change in number of moves (POST – PRE) and 

compared the treatments with a Kruskal-Wallis nonparametric ANOVA. Post-hoc 

comparisons were conducted using Mann-Whitney U tests with α adjusted to 0.025 using 

a Bonferroni correction to control for compounding experiment-wise error (Holm 1979). 

To determine whether size influenced responses, I used a Pearson correlation analysis to 

test for correlations between total length and number of moves for data from 2017.    
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Experiment 2: Neonate Heartrate 

Spotted salamander egg masses (n = 6), were collected on 26 April 2018 from a 

pond in Compton Hollow Conservation Area (Webster CO., MO). Spotted salamander 

egg masses were housed in 5.7-L plastic shoebox containers (35.6 × 20.3 × 12.4 cm) in 

pond water collected from their natal pond. Larvae hatched from 26 April – 6 May 2018 

in the lab. Upon hatching, larvae were individually housed in freezer boxes containing 

pond water and stored in an environmental chamber, with a 12:12 light/dark cycle and at 

15 ± 2° C. Neonates do not require food for several days because they feed on post-

hatching yolk.  Neonates were tested 30 April 2018 and 6 May 2018, 1–4 days post-

hatching, at Harrison developmental stage 39–42 (Harrison 1969).  

We used terrestrial Southern Red-backed salamanders, Plethodon serratus, (n = 3, 

40 ± 1.53 mm) as cue donors for the novel odor control treatment. These salamanders 

were collected from Reis Biological Station (Crawford Co., MO) in May 2017 and 

maintained in the lab in the same way as the P. angusticlavius in experiment 1. Control 

extracts were prepared as in experiment 1.   

Spotted salamander alarm cue was prepared from two age classes.  Neonates (n = 

46) from six clutches were sacrificed on the day of hatching (26 April 2018) to provide 

the “young” larvae alarm cue. Larvae were chilled for approximately 15 min in a freezer 

at -14 ± 2° C before being macerated via mortar and pestle. For the “old” larvae alarm 

cue, lab-reared 1-mo-old larvae (n=29) from different clutches (total clutches = 12) were 

also chilled, pithed, and macerated with a mortar and pestle. Macerated tissues were 

diluted to a 1:100 g/mL cue strength (stronger than in experiment 1, see: Shelton 2016), 
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filtered with glass wool to remove particulate matter, and frozen in 1 mL aliquots to be 

defrosted prior to each trial.  

Trials were conducted with neonate larvae placed individually in small dishes (19 

mm radius and 9 mm height) in 1 mL of well water. Each neonate (n=20 per treatment) 

was allowed 20 min to acclimate in the dish before being placed under a dissecting 

microscope for observation. In neonates, the blood pulses through gill capillaries 

simultaneously with heart beats (Shelton 2016).  Gill pulses were counted for 1 min, a 1-

mL aliquot of randomly-selected stimulus was added to the dish, and gill pulses were 

then immediately counted for an additional minute. Larvae that moved during any point 

of the trial were omitted from data analysis because physical activity can affect heartrate. 

Data were analyzed as in experiment 1, although no Pearson correlation was run on 

length data due to small size of larvae and lack of variation in developmental stage. 

 

Experiment 3: Lab-raised Larvae 

Spotted salamander egg masses (n = 12), were collected on 12 March 2018 from a 

pond in Compton Hollow Conservation Area (Webster CO., MO). Egg masses were kept 

in 5.7-L plastic boxes (35.6 × 20.3 × 12.4 cm) filled with pond water and kept near a 

natural light source. Larvae hatched from 20 March – 28 March 2018. Upon hatching, 

salamander larvae were individually housed in small plastic boxes (8 × 8 × 8 cm) filled 

with well water and kept at 20 ± 2° C with a 12:12 light cycle.  Larvae were initially fed 

water fleas, Daphnia spp., netted from water from their natal pond and then switched to a 

diet of blackworms (Lumbriculus variegatus) three times a week.  
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American toad tadpoles (n = 14) were collected from Compton Hollow 

Conservation Area on 21 May 2018. Tadpoles were maintained in a group tank (37.85 L) 

in lab and fed algae pellets twice a week.  

I used the same alarm cue and novel odor cues as were used during Experiment 2, 

with the addition of American toad tadpole alarm cues (as in Experiment 1), and I diluted 

them to the strength (0.0015g/1mL) used in Experiment 1 so that the two experiments 

could be better compared. Test trials were conducted in the same manner as experiment 1 

(n=20 per treatment), with movement recorded as lines crossed over a 2.5 × 2.5 cm grid. 

Data were analyzed as in experiment 1.  
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RESULTS 

 

Experiment 1: Field-Caught Larvae 

Change in number of moves from pre-stimulus to post-stimulus activity differed 

significantly among treatments (H = 18.55, df = 3, P < 0.001; Figure 1). Larvae showed a 

significant decrease in movement when exposed to conspecific cues compared to tadpole 

alarm (post-hoc comparison, W = 715.5, P = 0.0031), Plethodon skin control (W = 642.5, 

P = 0.0001) and blank (W = 1108.5, P = 0.0041) cues. There was no difference among 

the other treatments (P > 0.15). There was no effect of length on activity levels across 

treatments (Pearson’s r = -0.221, P = 0.089) or within treatment groups (P > 0.10). 

 

Experiment 2: Neonate Heartrate 

Change in gill pulse rate from pre-stimulus to post-stimulus differed significantly 

among treatments (H = 11.92, df = 3, P = 0.008; Figure 2). Post-hoc comparisons showed 

that larvae exposed to the 1-mo old conspecific cue had a significantly higher gill pulse 

rate than those exposed to the 1-day-old conspecific cue (post-hoc comparison, W = 

472.5, P = 0.0092), the Plethodon skin control (W = 460.5, P = 0.0235) and the blank (W 

= 504.5, P = 0.0018) cues. There was no difference in activity response among the other 

treatments (P > 0.1). 

 

Experiment 3: Lab-raised Larvae 

There were no significant differences in change in number of moves among 

stimuli (H = 7.30, df = 4, P = 0.121; Figure 3). There was a significant correlation of 
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larval length and activity in the blank treatment group (Pearson’s r = -0.530, P = 0.020). 

There was no significant effect of larvae length on cross-treatment activity (Pearson’s r = 

-0.037, P = 0.732) or within the Plethodon, toad tadpole, 1-mo-old larvae, or 1-day-old 

larvae treatments (P’s > 0.05). 
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Figure 1. Change in activity from pre-stimulus period to post-stimulus period in 

Experiment 1, measured as number of moves (mean ± 1 SE). Treatments were water with 

no other added stimulus (blank), skin extracts from a terrestrial salamander (Plethodon 

angusticlavius), and whole-body extracts from Spotted Salamander larvae and American 

toad tadpoles. Significance of post-hoc comparisons is indicated by different letters. 
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Figure 2. Change in heartrate from pre-stimulus period to post-stimulus period in 

Experiment 2, measured in gill pulses (mean ± 1 SE). Treatments were water with no 

other added stimulus (blank), skin extracts from a terrestrial salamander (Plethodon 

serratus), and whole-body extracts from Spotted Salamander larvae at 1-month and 1-day 

of age. Significance of post-hoc comparisons is indicated by different letters. 
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Figure 3. Change in activity from pre-stimulus period to post-stimulus period in 

Experiment 3, measured as number of moves (mean ± 1 SE). Treatments were water with 

no other added stimulus (blank), skin extracts from a terrestrial salamander (Plethodon 

serratus), and whole-body extracts from Spotted Salamander larvae at 1-month and 1-day 

of age and American toad tadpoles. 
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DISCUSSION 

Spotted salamander larvae decreased activity when exposed to the cue of 

macerated conspecifics but did not do so upon exposure to other stimuli. A decrease in 

movement is considered a typical fright response in amphibian prey (e.g. Bourdeau and 

Johansson 2012; Mathis et al. 2003; Mathis et al. 2008) and has been shown to increase 

survival of some aquatic amphibians in the presence of predators (Azevedo-Ramos et al. 

1992). Because this response was not found in any of our controls (blank, terrestrial 

salamander, tadpoles), we infer that the response is specific to damaged tissue from 

conspecifics and not to general disturbance or to tissues (e.g., blood, muscle proteins, 

etc.) that would also be released due to damage in other species.  

My study is the first to show direct evidence that larval salamanders produce 

chemical alarm cues. The most recent review of alarm cue presence in aquatic taxa lists 

larvae of one other mole salamander, Ambystoma macrodactylum, as having an alarm cue 

based on the findings of Wildy and Blaustein 2001 (Ferrari et al. 2010b). However, the 

design of their study did not separate the effects of visual and chemical cues, and the 

authors had only hypothesized that their results might be due to a chemical alarm cue. 

Therefore, other cues—the sight or the scent of the predator—cannot be ruled out from 

possible causes for the fright reaction the authors observed. It is likely that chemical 

alarm cues play a role in detection of predation risk throughout the life of spotted 

salamanders.  Hunt (2011) reported that post-metamorphic juveniles of this species 

exhibited avoidance behavior to damaged conspecific skin, indicating that responses to 

alarm cues persist into the terrestrial phase.  In addition, one other member of this family, 
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Ambystoma macrodactylum, responded to chemical cues from damaged skin as adults 

(Chivers et al. 1996). 

Spotted salamander larvae did not react with fright to the alarm cue of American 

toad tadpoles, contrary to my hypothesis that individuals would respond to alarm cues 

from other species in the prey guild. This hypothesis was based on their co-occurrence in 

the same ponds and at least some shared predators (e.g., odonates: Skelly and Werner 

1990).  Response to alarm cues from heterospecifics in the same prey guild have been 

reported for several other species (Anderson and Mathis 2016; Mathis and Smith 1993; 

Crane et al. 2013).  Although spotted salamanders and toad tadpoles occupy the same 

pond, they may not share the same microhabitat. Beiswenger (1977) found that American 

toads spend most of their active periods in shallow waters near the edge of the pond, and 

my observations indicate that this is also the case at my study pond. In contrast, spotted 

salamander larvae tended to occupy dense grasses and floating vegetation located 

approximately one meter from the shoreline (personal observation). In at least some 

species (e.g. Pollock et al. 2003), responses to alarm cues from heterospecific prey guild 

members requires experience.  I hypothesize that differences in microhabitat use limits 

the opportunity for learning in this species pair.   

For tadpoles of another amphibian, Rana clamitans, the alarm cue is produced by 

skin cells (Fraker et al. 2009).  Because I prepared the alarm cue using whole body 

macerations of spotted salamander larvae, I am unable to determine the origin of the 

alarm cue in my study. Few studies outside of ostariophysan fishes have investigated the 

location of alarm cue production, but research shows the location may not be consistent 

among taxa (Smith 1979; Meuthen et al. 2018). Moreover, although tissues were 
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damaged in my study, we do not know whether such damage is required for release of the 

alarm cue. Although damage is required for alarm cue release in ostariophysan fishes 

(Smith 1992), alarm cues can be released voluntarily in R. clamitans tadpoles and in adult 

terrestrial salamanders of the genus Plethodon (Fraker et al. 2009, Watson et al. 2004).  

My second experiment investigated whether response to the alarm cue required 

experience. Based on my results, larval experience with alarm cues is not required for 

detection and response to the alarm cue.  However, because the eggs were collected from 

ponds, I cannot rule out whether our results were influenced by their experience as 

embryos.  Spotted salamanders are known explosive breeders, congregating at vernal 

ponds when temperature and precipitation conditions align in the spring (Semlitsch and 

Pechmann 1985). Due to the variable weather patterns throughout much of their range, 

breeding events can occur in two or three separate events throughout the season (Harris 

1980).  The eggs collected for the second experiment were laid during one of the later 

breeding events of the season, as I had collected eggs from the first experiment nearly a 

month prior. This temporal separation would provide the opportunity for embryos to be 

exposed to the alarm cue of considerably older larvae being preyed upon within the same 

pond. Thus, I am unable to determine whether the response is innate or a learned 

response from exposure to alarm cues while still in egg.  

The second experiment also tested whether developmental stage of the cue donor 

(1-day vs. 1-mo old donors) had any effect on the presence of alarm cue. Gill pulse rates 

of neonates were significantly higher when exposed to the alarm stimulus of 1-month-old 

larvae in comparison to the controls or to the 1-day-old larvae. Therefore, although the 

larvae were able to recognize and respond to alarm cues within days of emerging from 
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their egg, the alarm cue may not be present until larvae are more fully developed. Other 

studies have compared responses of receivers to conspecific alarm cues from different 

aged cue donors, but the nature of the results were different from our study, with most 

test animals responding with fright to the cue from their own age class and ages most 

similar to their own, and a lack of response to alarm cues from much older or younger 

individuals (e.g. snails: Ichinose 2002; fishes: Lönnstedt and McCormick 2011, Mitchell 

and McCormick 2013). Responding only to alarm cues from individuals most similar to 

their own age/size would be adaptive in cases where predation risk is size-dependent. We 

see two possible explanations for the lack of response toward 1-day-old conspecific alarm 

cues by our newly-hatched larvae. First, if the alarm substance is indeed epidermal in 

origin, perhaps the glands that produce the substance are not fully developed in day-old 

larvae. The epidermal surface cells in larval salamanders undergo dramatic changes as 

early as hatching up until metamorphosis, potentially indicating differences between the 

cue prepared from 1-day-old larvae and 1-month-old larvae (Lewinson et al. 1983). 

Second, an alarm cue may be present in 1-day-old individuals but is chemically different 

from the alarm cue in 1-mo-old larvae. If the response to alarm cues is a learned 

response, then perhaps the 1-day-old larvae lacked the experience with the alarm cue 

from younger larvae that would be needed to recognize the younger conspecific alarm 

cue as an indicator of risk. 

In contrast to the field-caught larvae in experiment 1, lab-reared individuals in 

experiment 3 showed no significant difference in activity in response to either of the 

conspecific alarm cues. This result is surprising given that larvae that emerged from eggs 

in the lab did exhibit a change in a metabolic response (heart rate as measured by gill 
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pulse rate) in response to the alarm cue. This result may indicate that the behavioral 

response to alarm cue requires experience in spotted salamander larvae. If true, the results 

from our second experiment may be due to embryonic learning that occurred when the 

eggs were still in the pond, as mentioned previously. In bronze frog tadpoles, behavioral 

responses to the conspecific alarm cue required experience (Batabyal et al. 2014).  

My data confirm the presence of a chemical alarm substance in larval spotted 

salamanders and suggest that production of the cue may not develop until several days to 

a month post-hatching. Physiological responses to the alarm cue are either innate or result 

from embryonic learning. Behavioral responses occurred in field-caught but not in lab-

reared larvae, suggesting that experience as larvae may be important. These results 

provide a foundation for future studies that examine the interactions between genes, 

development and embryonic and larval experience on responses to predation risk in 

aquatic species.   
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