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ABSTRACT

Measure theory is fundamental in the study of real analysis and serves as the basis for
more robust integration methods than the classical Riemann integrals. Measure the-
ory allows us to give precise meanings to lengths, areas, and volumes which are some
of the most important mathematical measurements of the natural world. This thesis is
devoted to discussing some of the major proofs and ideas of measure theory. We begin
with a study of Lebesgue outer measure and Lebesgue measurable sets. After a brief
discussion of non-measurable sets, we define Lebesgue measurable functions and the
Lebesgue integral. In the last chapter we discuss general outer measures and give two
specific examples of measures based on an outer measure and Carathéodory’s defini-
tion of measurable sets. Lebesgue-Stieltjes measures are important because they are
not limited to the identity function that gives rise to Lebesgue measure, and Hausdorff
measure is often able to distinguish a variety of sets whose Lebesgue measure are all
zero. The goal of this thesis is to present the proofs and ideas of fundamental measure
theory in a way that is accessible and helpful to senior level undergraduates and begin-
ning graduates in their quest to lay a solid foundation for further training in analysis.
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1. INTRODUCTION

Some of the most important ideas in mathematics are those of length, area, and

volume and the methods for finding them. Much of introductory calculus is devoted

to studying the integral as a way of calculating area. In many college and high school

classes, students are introduced to the Riemann integral as the main definition for in-

tegration. The Riemann integral is based on sums of areas of rectangles and is gen-

erally a good introduction into integration theory. There are numerous applications

of the Riemann integral and in many cases it is sufficient for evaluating and approx-

imating values associated with areas and volumes. However, when it comes to more

abstract functions the Riemann integral becomes less powerful.

A good example of a function that is not Riemann integrable is the Dirichlet

function D(x), which is defined on [0, 1] by

D(x) =


1 if x is rational,

0 if x is irrational.

This function is not Riemann integrable because it is nowhere continuous on [0, 1], but

the function is, as we will show later, Lebesgue integrable. In fact, we will see that the

Lebesgue integral of the function is 0. Some other drawbacks of the Riemann integra-

tion method are that it depends too much on the continuity of the underlying function

and on uniform convergence of a limit process. These drawbacks of the Riemann inte-

gral are the motivation for finding a more powerful and flexible integration method.

In working towards such an integration method, we come to the study of mea-

sures. Measures are generalizations of length, area, and volume. A measure is essen-

tially a set function that assigns a numerical value for a given set satisfying some de-

sirable conditions. With these measures we can define a more robust method of in-

tegration. One of the main topics of this thesis will be on systematically establishing
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Lebesgue measure theory and outlining the Lebesgue integral. Later on, we will focus

our discussion on other types of measures. As a survey thesis, much of the proofs and

theorems will be based on well-established works. Sometimes a specific text with ex-

clusive ideas will be cited. Unless otherwise stated the general theory will be sourced

from [1], [2], [3], [4]. We arrange the thesis as follows.

In Chapter 2 we discuss Lebesgue measure theory which entails constructing

the Lebesgue outer measure. Next we discuss Lebesgue measurable sets and the exis-

tence of non-measurable sets. We then study measurable functions and briefly overview

the Lebesgue integral.

In Chapter 3 we discuss other important measures. This requires that we de-

fine a general outer measure. Finally, we address some specific measures based on

Carathéodory’s definition of measurable sets. These measures are the Lebesgue-Stieltjes

measures and Hausdorff measures.
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2. LEBESGUE MEASURE

We will first give some definitions that serve as a foundation for Lebesgue mea-

sure theory. The first definition is that of a σ-algebra.

DEFINITION 2.1 Given a set X, a collection S of subsets of X is a σ-algebra if it

has the following properties:

1. ∅ ∈ S (the empty set is in S).

2. If T ∈ S, then TC ∈ S where TC is the complement of T .

3. If Vn ∈ S for n ∈ N, then
⋃∞
k=1 Vk ∈ S (countable union).

Simply put, a σ-algebra is a collection of subsets of X which is closed under the

set operations as specified above. Most of our discussion will focus on the real line R

that has a well-established order and topology. An important property that follows

from the definition of a σ-algebra and De Morgan’s law is that if Vn ∈ S for n ∈ N,

then
⋂∞
k=1 Vk ∈ S. We can say that a σ-algebra is closed under countable intersection.

DEFINITION 2.2 Let E ⊂ R. If E∩(a, b) 6= ∅ for any given open interval (a, b) ∈ R,

then we say E is dense in R.

In other words, E is said to be dense in R if between any two elements of R

there lies an element of E. For example, both the rationals and irrationals are dense in

R since between any two real numbers we can find a rational or an irrational number.

DEFINITION 2.3 A nonempty set E ⊂ R is said to be bounded above if there

exists a real number b such that x ≤ b for all x ∈ E. Such a number b is called an

upper bound of E.

Axiom 2.4 (Completeness axiom) For a nonempty set of real numbers that is bounded

above there exists among the set of upper bounds a least upper bound p where for

any upper bound b, we have p ≤ b. The least upper bound is often called the supre-

mum.
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DEFINITION 2.5 (Open sets) A set O is said to be open if for each x ∈ O there

exists an r > 0 such that (x− r, x+ r) ⊆ O.

THEOREM 2.6 Every nonempty open set is the disjoint union of a countable col-

lection of open intervals, meaning that for an open set O 6= ∅ there exists a countable

collection of disjoint open intervals {In}∞n=1 such that
⋃∞
n=1 In = O.

A collection of sets {Eλ}λ∈Λ is said to be a cover of a set E if E ⊆
⋃
λ∈ΛEλ.

If each Eλ is open, then we say {Eλ}λ∈Λ is an open cover. We say {Eλ}λ∈Λ is a finite

cover if |Λ| < ∞. We will mostly use the definition of open cover with respect to open

intervals on the real line. This definition is also related to the following theorem.

THEOREM 2.7 (Heine-Borel Theorem) Let F be a closed and bounded set of real

numbers. Then every open cover of F has a finite sub-cover.

2.1. Lebesgue Outer Measure

A set function is a function that assigns a real value to each set from a collec-

tion of sets. We now define a set function that generalizes the concept of length of an

interval. For a given interval I we denote the length by `(I) and define it as follows,

`(I) =


b− a if I = (a, b),

∞ if I is unbounded.

DEFINITION 2.8 For a set A of real numbers, let {Ik}∞k=1 be an open cover for A,

meaning that the union of the Ik’s contains A. We define the set function Lebesgue

outer measure, sometimes called an exterior measure, as

m∗(A) = inf
{ ∞∑
k=1

`(Ik) | A ⊆
∞⋃
k=1

Ik

}
.

Here the infimum is taken over all possible open covers of E. From the defini-
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tion, we note that m∗(∅) = 0. It is also clear that the outer measure of a countable

set is zero, which we will use in a later proposition. Outer measure is also monotone;

meaning if A ⊆ B, then m∗(A) ≤ m∗(B). It is straight forward to verify the following

excision property:

m∗(A) = m∗(A\B) where B is a countable set.

Some often used properties of Lebesgue outer measure are as follows.

PROPOSITION 2.9 The Lebesgue outer measure of an interval is its length. This

simply means that, `(I) = m∗(I).

PROPOSITION 2.10 Lebesgue outer measure is translation invariant. Let

S(R) = {s | s ⊂ R}.

If r ∈ R and A ∈ S(R), then m∗(A) = m∗(A+ r). Where A+ r = {a+ r : a ∈ A}.

Proof. If {Ik}∞k=1 is an open cover for A, then {Ik + r}∞k=1 is an open cover for A + r.

Since the length of an interval is translation invariant, i.e. `(Ik) = `(Ik + r), we have∑∞
k=1 `(Ik) =

∑∞
k=1 `(Ik + r). Therefore m∗(A) = m∗(A+ r).

Another property we want outer measure to have is countable additivity in

the following sense:

m∗

(
∞⋃
k=1

Ek

)
=
∞∑
k=1

m∗(Ek).

However, this is not to be the case. In fact, resorting to some ingenious ways of con-

struction, we can show the existence of two disjoint sets A and B such that1

m∗(A ∪B) < m∗(A) +m∗(B).

1We will later show that these sets A, B thus constructed are not Lebesgue measurable.
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As such, we can only prove the weaker property for outer measure, which is countable

subadditivity.

PROPOSITION 2.11 For a given countable collection of sets {Ek}∞k=1, the following

subadditivity holds true for outer measure:

m∗(
∞⋃
k=1

Ek) ≤
∞∑
k=1

m∗(Ek).

Outer measure becomes countably additive when it is restricted to what we will

define as measurable sets.

2.2. Lebesgue Measurable Sets

To do Lebesgue integrals, countable additivity is a necessary property. As such,

we settle upon a smaller σ-algebra L consisting of Lebesgue measurable sets. There

are several ways to restrict the outer measure m∗ on L so that countable additivity is

satisfied. We will use the method first proposed by the Greek mathematician Constan-

tine Carathéodory; see [3, pp. 35].

DEFINITION 2.12 A set E is Lebesgue measurable if for any set A, we have

m∗(A) = m∗(A ∩ E) +m∗(A ∩ EC). (2.1)

For brevity, we will often shorten Lebesgue measure as simply measure.

Using this definition for Lebesgue measurable sets is helpful in many ways. For

one, we see that the empty set and R are measurable. We can show that if A and B

are Lebesgue measurable with A ∩B = ∅, then

1. A ∪B is measurable.

2. m∗(A ∪B) = m∗(A) +m∗(B).
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We will defer our proof of the first part until Proposition 2.17. For the second part, we

write

m∗(A ∪B) = m∗((A ∪B) ∩ A) +m∗((A ∪B) ∩ AC)

= m∗(A) +m∗(B) (using the absorption law).

Another interesting observation from this definition is that if E is measurable, then

so is EC , as can be shown by interchanging the places of E and EC in Equation 2.1.

Therefore, measurable sets are closed under operations of taking complements. This

means that measurable sets already fulfill the second property of a σ-algebra. We will

show later that the collection of measurable sets forms a σ-algebra.

Carathéodory’s definition of measurable sets, though arguably not one that

flows naturally, is very useful when it comes to showing a set is measurable in a sim-

ple and abstract form. To be clear, there are alternate definitions of what constitutes a

Lebesgue measurable set. Another commonly used definition is as follows,

DEFINITION 2.13 A subset E of R is said to be Lebesgue measurable if given ε >

0,∃ an open set G such that

E ⊂ G and m∗(G\E) < ε.

In the future, we will mainly consider Carathéodory’s definition.

DEFINITION 2.14 If E is a measurable set then its Lebesgue outer measure is de-

fined as Lebesgue measure which will be denoted m(E). That is,

m∗(E) = m(E) if E is a measurable set.

This brings us to our next set of propositions as they relate to this idea of a

Lebesgue measurable set.

PROPOSITION 2.15 If m∗(E) = 0, then E is measurable.
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Proof. Let m∗(E) = 0 for a set E. By the subadditivity of outer measure, we have

m∗(A) ≤ m∗(A ∩ E) +m∗(A ∩ EC).

We need to show the opposite inequality. Since outer measure is monotone,

m∗(A ∩ E) ≤ m∗(E) = 0 and m∗(A ∩ EC) ≤ m∗(A).

Thus,

m∗(A) ≥ m∗(A ∩ EC) = 0 +m∗(A ∩ EC) = m∗(A ∩ E) +m∗(A ∩ EC).

Therefore, E is measurable.

Since a countable set has outer measure zero, it follows from Proposition 2.15

that a countable set is measurable.

At this point we know measurable sets are closed with respect to complements.

To show that L is a σ-algebra, it suffices to show that the union of a countable collec-

tion of measurable sets is measurable. This requires two preliminary results.

PROPOSITION 2.16 The union of a finite number of measurable sets is measur-

able. In other words, if Ek is measurable for each k = 1, ..., n, then ∪nk=1Ek is measur-

able.

Proof. We will proceed by induction. First, suppose E1 and E2 are measurable sets

and let A be any set. By the subadditivity of outer measure,

m∗(A) ≤ m∗(A ∩ [E1 ∪ E2]) +m∗(A ∩ [E1 ∪ E2]C ]).
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We want to show the other direction. Since E1 and E2 are measurable we have,

m∗(A) = m∗(A ∩ E1) +m∗(A ∩ EC
1 )

= m∗(A ∩ E1) +m∗([A ∩ EC
1 ] ∩ E2) +m∗([A ∩ EC

1 ] ∩ EC
2 ).

Applying De Morgan law gives

m∗(A) = m∗(A ∩ E1) +m∗([A ∩ EC
1 ] ∩ E2) +m∗([A ∩ EC

1 ] ∩ EC
2 )

= m∗(A ∩ E1) +m∗([A ∩ EC
1 ] ∩ E2) +m∗(A ∩ [E1 ∪ E2]C ]).

Then using the subadditivity of outer measure and the fact that

[A ∩ E1] ∪ [A ∩ EC
1 ∩ E2] = A ∩ [E1 ∪ E2],

we have

m∗(A) = m∗(A ∩ E1) +m∗([A ∩ EC
1 ] ∩ E2) +m∗(A ∩ [E1 ∪ E2]C ])

≥ m∗(A ∩ [E1 ∪ E2]) +m∗(A ∩ [E1 ∪ E2]C ]).

Thus, we have both directions and m∗(A) = m∗(A ∩ [E1 ∪ E2]) + m∗(A ∩ [E1 ∪ E2]C ]).

That is, E1 ∪ E2 is measurable.

PROPOSITION 2.17 The finite additive property of measurable sets holds.

That is for a finite collection of disjoint measurable sets Ek and any set A we have,

m∗(A ∩ [
n⋃
k=1

Ek]) =
n∑
k=1

m∗(A ∩ Ek).

We can use mathematical induction to show that the result in Proposition 2.16

is true for a finite collection of {Ek}nk=1 of measurable sets. Suppose the (n − 1) case
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is true. Since we proved the union of two measurable sets is measurable and we know

n and the union of all Ek for k ≤ n − 1 are measurable, we can say their union is also

measurable. With Propositions 2.17 and 2.16, we can prove the following,

PROPOSITION 2.18 The union of a countable collection of measurable sets is

measurable.

Proof. Let E = ∪∞k=1Ek, where each Ek is measurable and Ei ∩ Ej = ∅ if i 6= j. Define

Fn = ∪nk=1Ek for n ∈ N. From the previous proposition we know that the union of

a finite number of measurable sets is measurable. Then using the additive property of

finite measurable sets, we have for some set A,

m∗(A ∩ Fn) =
n∑
k=1

m∗(A ∩ Ek).

Since Fn ⊆ E, we have EC ⊆ FC
n . Then using the monotonicity of outer measure,

m∗(A) = m∗(A ∩ Fn) +m∗(A ∩ FC
n )

≥ m∗(A ∩ Fn) +m∗(A ∩ EC)

= m∗(A ∩ [∪nk=1Ek]) +m∗(A ∩ EC)

=
n∑
k=1

m∗(A ∩ Ek) +m∗(A ∩ EC).

Since m∗(A) does not depend on n, the inequality holds for all the Ek’s and we can

take the sum over infinity. We know by subadditivity that

m∗(
∞⋃
k=1

Ek) ≤
∞∑
k=1

m∗(Ek).

10



Then, using the fact that E =
⋃∞
k=1Ek, we get

m∗(A) ≥
∞∑
k=1

m∗(A ∩ Ek) +m∗(A ∩ EC)

≥ m∗(A ∩ E) +m∗(A ∩ EC).

Thus E is measurable.

Thus the measurable sets are closed under countable union. We already know

that the empty set is measurable and that measurable sets are closed under comple-

ments. With this information, we can now say that the collection of measurable sets is

a σ-algebra.

PROPOSITION 2.19 Every interval is a measurable set.

Proof. Since we know that measurable sets are a σ-algebra, our next goal is to show

that if a σ-algebra of R contains intervals of the form (a,∞), then it contains all in-

tervals. Let S be a σ-algebra that contains such intervals. Since S is a σ-algebra, the

complement of (a,∞) is in S. Note that (a,∞)C = (−∞, a].

We need to show [b,∞), (a, b), [a, b), (a, b], [a, b] ∈ S. We know (b− 1
n
,∞) ∈ S for

all n ∈ N since it is of the form (a,∞), so we have [b,∞) = ∩∞n=1(b − 1
n
,∞). Thus the

complement (−∞, b) ∈ S. Then (a, b) = (−∞, b) ∩ (a,∞). Finally, (a, b] = (−∞, b] ∩

(a,∞), [a, b) = ∩∞n=1(a− 1
n
, b), [a, b] = [a,∞) ∩ (−∞, b].

Let I = (a,∞). Then for any set A we can split it into parts A1 = A ∩ IC and

A2 = A ∩ I such that A = A1 ∪ A2. By subadditivity of outer measure we have,

m∗(A) = m∗(A1 ∪ A2) ≤ m∗(A1) +m∗(A2).

We want to show the opposite inclusion. By definition of m∗(A) as an infimum, for
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any given ε > 0, there exists an open cover {Ik}∞k=1 for A such that

∞∑
k=1

`(Ik) < m∗(A) + ε.

Let I ′k = Ik∩IC and I ′′k = Ik∩I such that `(Ik) = `(I ′k)+`(I ′′k ). Since the countable sets

{I ′k}∞k=1 and {I ′′k}∞k=1 form open covers for A1 and A2, then by the definition of outer

measure we have

m∗(A1) ≤
∞∑
k=1

`(I ′k) and m∗(A2) ≤
∞∑
k=1

`(I ′′k ).

So then

m∗(A1) +m∗(A2) ≤
∞∑
k=1

`(I ′k) +
∞∑
k=1

`(I ′′k )

=
∞∑
k=1

`(I ′k) + `(I ′′k )

=
∞∑
k=1

`(Ik) < m∗(A) + ε.

Since this holds for each ε > 0, it also holds for ε = 0. Thus we have

m∗(A) = m∗(A ∩ IC) +m∗(A ∩ I).

The proof is complete.

2.3. Non-measurable Sets

So far we have gained a basic understanding of measurable sets, we now dis-

cuss the existence of non-measurable sets. Our goal is to prove that any measurable

set with positive measure contains a non-measurable subset.

DEFINITION 2.20 For a nonempty family X of nonempty sets and for every set

A ∈ X, a choice function is a function f : X →
⋃
A∈X A that has the property that

12



f(A) ∈ A. [i.e. a choice function is a function f on X defined as above such that for

all A ∈ X we have f(A) ∈ A].

For example, if we had a set X = {{1, 2}, {3, 4}{5, 6}} then we can define a

choice function f such that f({3, 4}) ∈ {3, 4}. If we want the choice function f to

return the max of the set, then f({3, 4}) = 4 and so on.

THEOREM 2.21 (Axiom of Choice) For a nonempty family X of nonempty sets

there exists a choice function.

In many cases the axiom is not necessary, such as in the example above where

a choice function can be clearly defined. It is essential, however, in cases where there

is not a clear distinction between elements in a set that would yield a choice function.

The axiom is then necessary in order to make an arbitrary choice in such sets. An-

other important definition is that of cosets of the rationals.

DEFINITION 2.22 Let E be a set real numbers and x, y ∈ R. Then x, y are called

rationally equivalent if the difference between them is rational. That is, x ∼ y iff

x − y ∈ Q. This set forms a rational equivalence relation on E in the sense that it is

reflexive, symmetric, and transitive.

DEFINITION 2.23 A coset of Q in R is any set of the form

x+Q = {x+ q | q ∈ Q}

for a chosen x ∈ R.

From the two definitions we see that if two numbers are rationally equivalent,

then they are in the same coset of Q in R. We will now prove a lemma that is needed

to show there exists non-measurable sets.

LEMMA 2.24 Let E ⊂ R be a measurable set with positive outer measure. Then

the set of differences {d | d = x − y where x, y ∈ E} contains an interval centered at

the origin.

13



Proof. Given ε > 0, it follows from the definition of outer measure that there exists an

open set G such that E ⊂ G and

m(G) < (1 + ε) ·m(E).

By Theorem 2.6, we know every nonempty open set is the disjoint union of a countable

collection of open intervals, so for some intervals Ik we can write G =
⋃
Ik. Let Ek =

E ∩ Ik. Then,

E =
⋃

(E ∩ Ik) =
⋃

Ek.

It follows that each Ek is measurable. Then by the additive property of measurable

sets, m(G) =
∑
m(Ik) and m(E) =

∑
m(Ek). Since m(G) < (1 + ε) ·m(E), we have

m(Ij) < (1 + ε) ·m(Ej) for some j. Let ε = 1
3
. Then we have Ij ⊂ Ej and simplifying

gives m(Ej) >
3
4
·m(Ij). Now, if we translate Ej by some d such that m(d) < 1

2
m(Ij),

then the translated set has points in common with Ej. If not, then Ej ∪ (Ej + d) is

contained in an interval of length m(Ij) + m(d). Since measure is translation invariant

we have m(Ej) + m(Ej + d) ≤ m(Ij) + m(d). but this is false if m(d) < 1
2
m(Ij) since

m(Ej) >
3
4
·m(Ij). Thus we have proved our claim.

THEOREM 2.25 There exists non-measurable sets

Proof. For some x ∈ R, let Ex = {x+ q | q ∈ Q} the cosets of Q with R. By the Axiom

of Choice, define the CE as the choice set of exactly one element from each equivalence

class of Ex. Note, the number of distinct equivalence classes is uncountable and the

classes themselves are countable since Q is countable, so the union of all classes is un-

countable. In other words,
⋃
x∈REx = R. Since any element in CE must differ by an

irrational number, the set

{d | d = x− y where x, y ∈ CE}
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cannot contain an interval since Q is dense in R. It follows from the lemma then that

CE is not measurable or m(CE) = 0. Since
⋃
x∈REx = R, m(CE) is not zero. Thus CE

is non-measurable.

COROLLARY 2.26 Any set E of real numbers with positive outer measure contains

a non-measurable subset.

Proof. Let E be a set of real numbers with positive outer measure. Let C be the non-

measurable set in the previous theorem. For r ∈ R, let Cr denote the translate of C

by r. Then each Cr is disjoint and the union is the real line. That is E = ∪(E ∩ Cr).

From this we have m∗(C) ≤
∑
m∗(C ∩ ER). If m∗(C) > 0, then there exists some r

such that C ∩ Er is not measurable.

2.4. Lebesgue Measurable Functions

In this subsection, we introduce the definitions of measurable functions and

prove some basic properties of measurable functions.

DEFINITION 2.27 Let f be a function defined on a measurable domain E taking

values in the extended real line. We say f is a Lebesgue measurable function (or sim-

ply a measurable function) if for every real number c the set

{x ∈ E | f(x) > c}

is measurable.

Essentially, for a function to be measurable it must have a domain E that is

measurable and for all c ∈ R the set {x ∈ E | f(x) > c} is measurable.

THEOREM 2.28 Let f be a real-valued function defined on a measurable set E.

Then f is measurable if and only if any of the following equivalent statements holds.

For each c ∈ R,
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1. The set {x ∈ E | f(x) > c} is measurable.

2. The set {x ∈ E | f(x) ≥ c} is measurable.

3. The set {x ∈ E | f(x) < c} is measurable.

4. The set {x ∈ E | f(x) ≤ c} is measurable.

Proof. From the definition of measurable sets, we know that the complement of a mea-

surable set is measurable. Note that the set in Statements 1 and 4 are complements

and so are those in Statements 2 and 3. It suffices to show that Statement 1 implies

Statement 2 and vice versa. We also know that the intersection of a countable collec-

tion of measurable sets and the union of a countable collection of measurable sets are

measurable. Thus we have for x ∈ E,

{x | f(x) ≥ c} =
∞⋂
n=1

{
x

∣∣∣∣ f(x) > c− 1

n

}
,

which shows Statement 1 implies Statement 2. Moreover, we write

{x | f(x) > c} =
∞⋃
n=1

{
x

∣∣∣∣ f(x) ≥ c+
1

n

}
,

which shows Statement 2 implies Statement 1. Thus, all four statements are equiva-

lent.

Note that Statement 1 in Theorem 2.28 is our definition for a function being

measurable. Thus, the result of the Theorem 2.28 allows us to interchangeably use any

statement to show a function is measurable.

COROLLARY 2.29 Let f be a real valued function defined on a measurable set E.

If f is a measurable function, then for any c ∈ R the sets

{x ∈ E | f(x) = c} and {x ∈ E | f(x) =∞}
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are measurable.

Proof. We know that the countable intersection of measurable sets is measurable. Thus,

{x ∈ E | f(x) ≤ c} ∩ {x ∈ E | f(x) ≥ c} = {x ∈ E | f(x) = c}.

We also have

{x ∈ E | f(x) =∞} =
∞⋂
n=1

{x ∈ E | f(x) > c}.

This completes the proof.

PROPOSITION 2.30 Let f be a real valued function defined on a measurable set

E. If f is measurable, then |f | is measurable.

Proof. Let x ∈ E. For any c ∈ R we have the following,

{x | |f(x)| < c} = {x | f(x) < c} ∪ {x | f(x) > −c}.

Thus |f | is measurable.

DEFINITION 2.31 Let f be a real valued function defined on a set E. If S ⊂ R,

then the inverse image of S under f is defined by

f−1(S) = {x ∈ E | f(x) ∈ S}.

THEOREM 2.32 A function f defined on a measurable domain E is measurable if

and only if for every open set O ∈ R, the inverse image f−1(O) is measurable.

Proof. The sufficiency is obvious. To prove the necessity, suppose that f is measur-

able, and O is an open set. We want to show f−1(O) is measurable. By Theorem 2.6,

the set O can be written as O =
⋃∞
k=1(ak, bk) with ak, bk ∈ R and ak < bk. However, we
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know f−1((ak, bk)) = {x ∈ E | f(x) ∈ (ak, bk)} is measurable by Theorem 2.28. Since

f−1(O) =
∞⋃
k=1

{x ∈ E | f(x) ∈ (ak, bk)},

it again follows from Theorem 2.6 that f−1(O) is measurable.

DEFINITION 2.33 A property is said to hold almost everywhere (a.e.) on a

measurable set E provided it holds on E\E0 where E0 ⊂ E for which m(E0) = 0.

THEOREM 2.34 If f is measurable and if g = f a.e., then g is measurable, and for

any a ∈ R,

m({x ∈ E | g > a}) = m({x ∈ E | f > a}).

Proof. Let Z = {x ∈ E | f 6= g}, then

{x ∈ E | g > a} ∪ Z = {x ∈ E | f > a} ∪ Z.

Since f is measurable, {x ∈ E | g > a} ∪ Z is measurable. Since this set differs from

{x ∈ E | g > a} by a set of measure zero, g is also measurable. Because Z is a set of

measure zero, we have

m({x ∈ E | g > a}) = m({x ∈ E | g > a} ∪ Z)

= m({x ∈ E | g > a}).

This completes the proof.

It is important to note that if f is measurable on E, then it is measurable on

any measurable set E1 ⊂ E. This is true since

{x ∈ E1 | f > a} = {x ∈ E | f > a} ∩ E1.
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THEOREM 2.35 If f and g are measurable functions on E, then so is f + g.

Proof. Since g is measurable, for any fixed a ∈ R we have a−g is measurable. Let {rk}

be the set of rational numbers. Then,

{x ∈ E | f > g} = ∪k{x ∈ E | f > rk > g}

= ∪k{x ∈ E | f > rk} ∩ {x ∈ E | g < rk}.

So {x ∈ E | f > g} is measurable. Then we have

{x ∈ E | f + g > a} = {x ∈ E | f > a− g}.

Thus f + g is measurable.

COROLLARY 2.36 If f and g are measurable functions on E and λ1 and λ2 are

real numbers, then λ1f + λ2g is measurable. This is the so called linearity of measur-

able functions.

THEOREM 2.37 If f and g are measurable functions on E, then so is f · g.

Proof. Observe that

f · g =
1

2
[(f + g)2 − f 2 − g2].

Since linear combinations of measurable functions are measurable, it suffices to show

that the square of a measurable function is measurable. Let c ∈ R. We will consider

two cases for c. For c ≥ 0,

{x ∈ E | f 2 > c} = {x ∈ E | f >
√
c} ∪ {x ∈ E | f < −

√
c}.

Since a finite union of measurable sets is measurable, we have proven our first case.
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Now if c < 0, then our inequality will always be true for all x ∈ E. So,

{x ∈ E | f 2 > c} = E.

Thus f 2 is measurable and the desired result follows.

THEOREM 2.38 Let φ be a continuous function on R and let f be finite a.e. in E.

If f is measurable, then so is φ(f).

Proof. Let f be finite almost everywhere on E. Since φ is continuous, for any open

set G we have φ−1(G) is open (a proof of this can be found in [1, pp. 25-26]). With

Theorem 2.32, it suffices to show that for every open set G ∈ R,

{x ∈ E | φ(f(x)) ∈ G} (2.2)

is measurable. So {x ∈ E | φ(f(x)) ∈ G} = f−1(φ−1(G)). Since φ−1(G) is open

and f is measurable we can then apply Theorem 2.32 to conclude that Equation 2.2 is

measurable.

We have now shown that the composition of a continuous function with a mea-

surable function is measurable. It is interesting to note that if we were to remove the

continuous requirement from φ, the composition may not be measurable. In fact, there

exists two measurable functions f and g such that f ◦ g is not measurable. We refer

interested readers to [1, pp. 59].

In defining the Lebesgue integral later on we will need to first talk about the

idea of max and min as well as the limit process. For a finite set of functions {fk}nk=1

with a domain E, we can define the max as

max{f1, ..., fn} = max{f1(x), ..., fn(x)} for each given x ∈ E.
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The min function would be defined similarly. In the following, we show that the max

function is measurable.

PROPOSITION 2.39 For a finite family of measurable functions {fk}nk=1 with a

common domain E, the max{f1, ..., fn} and min{f1, ..., fn} are measurable.

Proof. For any c ∈ R, we have

{x ∈ E | max{f1, ..., fn} > c} =
n⋃
k=1

{x ∈ E | fk(x) > c}.

By Proposition 2.16, the finite union of measurable sets is measurable. The proof of

the other part is similar.

Some other important functions that will be used later are defined as follows,

f+(x) = max{f(x), 0},

f−(x) = max{−f(x), 0}.

We can see that if f is measurable on E, then so are f+ and f−. These two functions

play an important role in Lebesgue integration. The function f can be expressed as

the difference of the two functions, that is f = f+ − f−. The next step in our study

of measurable functions is in convergence, which plays an important role in analysis.

There are multiple ways to consider whether a sequence of functions converges. In de-

veloping our theory towards Lebesgue integration, we follow many of the same steps

taken in an introductory analysis course.

DEFINITION 2.40 Let {fn} be a sequence of functions with a common domain E.

For a function f on E and A ⊂ E, we have the following,

1. {fn} converges to f pointwise on A provided

lim
n→∞

fn(x) = f(x) for all x ∈ E.
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2. {fn} converges to f pointwise a.e. on A provided it converges to f pointwise on

A\B, where m(B) = 0.

3. {fn} converges to f uniformly on A provided for each ε > 0, there exists an N

such that

|f(x)− fn(x)| < ε on A for all n ≥ N , and all x ∈ A.

For more information on pointwise convergence, see [5, pp. 204-211].

LEMMA 2.41 For a measurable subset E0 of E, f is measurable on E if and only if

the restrictions of f to E0 and E\E0 are measurable.

Proof. For any c ∈ R,

{x ∈ E | f(x) > c} = {x ∈ E0 | f(x) > c} ∪ {x ∈ E\E0 | f(x) > c}.

Since measurable sets are closed under countable union, the above equation shows

both directions. This completes the proof.

PROPOSITION 2.42 Let {fn} be a sequence of measurable functions on E that

converges pointwise a.e. on E to the function f . Then f is measurable.

Proof. Let E0 ⊂ E where m(E0) = 0 and {fn} converges to f pointwise on E\E0.

Since m(E0) = 0, it follows from Lemma 2.41 that we can replace E by E\E0. With-

out loss of generality, we assume fn(x) converges to f(x) for all x ∈ E. Let c ∈ R. We

want to show that {x ∈ E | f(x) < c} is measurable. For x ∈ E, f(x) < c if and only if

there exists natural numbers n and k such that fj(x) < c − 1/n for all j ≥ k. However

since each fj is measurable, then so is {x ∈ E | fj(x) < c − 1/n}. Since a countable

intersection of measurable sets is measurable, for any k, the set

∞⋂
j=k

{x ∈ E | fj(x) < c− 1/n}
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is also measurable. Furthermore, since a countable union of measurable sets is measur-

able we have

{x ∈ E | f(x) < c} =
⋃

1≤k,n<∞

[ ∞⋂
j=k

{x ∈ E | fj(x) < c− 1/n}
]

is measurable. Thus, f is measurable.

We can see, in the context of pointwise limits of sequences, measurable func-

tions are more robust than continuous functions; in the case of continuous functions, it

is not guaranteed that the pointwise limit of the sequence is continuous. For example,

consider the piecewise function

fn(x) =


0 if x < 0,

x if 0 < x < 1/n,

1 if x ≥ 1/n.

The function fn is continuous on R for each n ∈ N. However, for each x ∈ R, we have

limn→∞ fn(x) = f(x), where

f(x) =


0 if x ≤ 0,

1 if x > 0,

(2.3)

which is discontinuous at x = 0. This example shows that a sequence of continuous

functions can converge pointwise to a discontinuous function.

DEFINITION 2.43 Let E be any set. The characteristic function of E is defined

by

χE(x) =


1 if x ∈ E,

0 if x 6∈ E.

It is interesting to note that the characteristic function has the property that
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for a set E, χE is measurable if and only if E is measurable. This also implies that

there exists non-measurable functions.

DEFINITION 2.44 A real valued function s defined on a measurable set X is called

simple provided it is measurable and takes only a finite number of values.

It follows from the definition that finite linear combinations and finite prod-

ucts of simple functions are again simple functions. In notation we can say that if

s is a simple function taking on distinct values a1, ..., an on disjoint measurable sets

E1, ..., En, then we can write s as a linear combination of characteristic functions as

follows

s(x) =
n∑
k=1

ak · χEk(x).

Simple functions play an important role in the Lebesgue integration method, we will

show that any measurable function can be represented as a pointwise limit of a se-

quence of simple functions. Before we show that any measurable function can be rep-

resented as the limit of a sequence of simple functions, we show that any measurable

function can be approximated arbitrarily well by simple functions as shown in the fol-

lowing lemma.

LEMMA 2.45 Let f be a measurable real-valued function on domain E and suppose

that f is bounded on E. Then for each ε > 0, there exists simple functions φε and ψε

defined on E such that

φε ≤ f ≤ ψε and 0 ≤ ψε − φε < ε.

Proof. Since f is bounded on E, there exists an M ≥ 0 such that |f | ≤ M . Let (c, d)

be an open bounded interval containing f(E). Let y0 < y1 < ... < yn−1 < yn be a

partition of the closed bounded interval [c, d] given by

c = y0 < y1 < ... < yn = d
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where yk − yk−1 < ε for 1 ≤ k ≤ n. In other words, we want the distance between each

pair of adjacent yk−1, yk in our partition to be less than the given ε. We then define

Ik := [yk−1, yk) and Ek := f−1(Ik) for 1 ≤ k ≤ n.

Since each Ik is an interval and f is measurable, from Proposition 2.32 and Lemma

2.41 we see that each Ek is measurable. We then define the simple functions φε and ψε

on E as follows,

φε =
n∑
k=1

yk−1 · χEk and ψε =
n∑
k=1

yk · χEk ,

where χEk is the characteristic function for Ek. Let x ∈ E. Since f(E) is contained in

[c, d], there exists a unique 1 ≤ k ≤ n such that yk−1 ≤ f(x) < yk and therefore

φε(x) = yk−1 ≤ f(x) < yk = ψε(x).

Since yk − yk−1 < ε, we have our approximation property.

THEOREM 2.46 (The Simple Approximation Theorem) An extended real-valued

function f on a measurable set E is measurable if and only if there exists a sequence

of simple functions {fk} on E that converges pointwise on E to f and has the prop-

erty that

|fk| ≤ |f | on E for all n.

If f is non-negative, we may choose {fk} to be an increasing sequence.

Proof. Suppose that there is a sequence {fk} of simple functions on E that converges

pointwise on E to f . Since simple functions are measurable, from Proposition 2.42, we

see that f is measurable.

Now suppose f is measurable. Lets first show that if f ≥ 0 then we may choose

{fk} to be an increasing sequence. If f ≥ 0, then for each k ∈ N we subdivide the
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values of f between [0, k] by partitioning the interval into subintervals

[
j − 1

2k
,
j

2k

]
for j = 1, ..., k2k.

Now let

fk(x) :=


j−1
2k

if f(x) ∈ [ j−1
2k
, j

2k
) for j = 1, ..., k2k,

k if f(x) ≥ k.

Each fk is a simple function defined in the domain of f with fk ≤ fk+1. This is true

since increasing from fk to fk+1 each time divides the subinterval in half. If we have

f(x) <∞, then there exists a k such that f(x) < k. It follows that

0 ≤ f(x)− fk(X) ≤ 1

2k
.

If f(x) = ∞, then fk(x) = k, which approaches infinity. We can apply our increasing

function to f+ and f− denoting those sequences of simple functions as {f ′k} and {f ′′k }

where f ′k → f+ and f ′′k → f−. Then f ′k − f ′′k is simple with

f ′k − f ′′k → f+ − f− = f.

Let Ik,j = [ j−1
2k
, j

2k
). Thus for f ≥ 0,

fk =
k2k∑
j=1

j − 1

2k
· χIk,j + k · χ(f≥k).

This equation defines a measurable function since each fk is measurable. Thus we have

our sequence of simple functions converging pointwise on E to f .

Next we study two important theorems: Egorov’s theorem and Lusin’s theorem.

The basic idea of Egorov’s theorem is that if a sequence of measurable functions con-

verges pointwise to a real-valued function on a domain E of finite measure, then for
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any ε > 0, there exists a measurable set E1 ⊂ E such that

1. m(E\E1) < ε,

2. the sequence converges to its limit function uniformly on E1.

Before we go into the formal statement and proof of Egoroff’s theorem, it will be help-

ful to establish a lemma.

LEMMA 2.47 Suppose E has finite measure. Let {fk} be a sequence of measurable

functions on E that converges pointwise on E to a real-valued function f . Then for

any given ε, δ > 0, there exists a set A ⊂ E with an integer N where

|fn − f | < ε on A for all n ≥ N and m(E\A) < δ.

Proof. Let ε, δ > 0 be given. Since f is a real-valued function and is measurable, |fk −

f | is defined for each k. Then the set {x ∈ E | |f(x)− fk(x)| < ε} is measurable. Since

the intersection of a countable collection of measurable sets is measurable, the set

En =
⋂
k≥n

{x ∈ E | |f(x)− fk(x)| < ε}

= {x ∈ E | |f(x)− fk(x)| < ε for all k ≥ n}

is also measurable. From this we see that En ⊂ En+1, so {En}∞n=1 is an ascending col-

lection of measurable sets with E =
⋃∞
n=1En. Then by the continuity of measure, for

which one can find a proof at [1, pp. 44-45], m(E) = limn→∞m(En). Since m(E) <∞,

we may choose a sufficiently large N such that m(EN) > m(E)− δ, which implies that

m(E)−m(EN) < δ. Let A := EN . Then we have

|fn(x)− f(x)| < ε, x ∈ A, n ≥ N.

Then by the excision property, m(E\A) = m(E) − m(A) < δ. This proves our last
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property and thus the lemma.

THEOREM 2.48 (Egoroff’s Theorem) Assume E has finite measure. Let {fn} be a

sequence of measurable functions on E that converges pointwise on E to a real-valued

function f . Then for each ε > 0, there is a closed set F contained in E for which

{fn} → f uniformly on F and m(E\F ) < ε.

Proof. Let ε > 0. We will use Lemma 2.47 to create a closed set Fm ⊂ E for m ≥ 1

and an integer Km,ε such that

|fk − f | <
1

m
on Fm if k > Km,ε and m(E\Fm) <

ε

2m
.

The set F :=
⋂∞
m=1 Fm is closed. Since F ⊂ Fm for all m, we can say that fk converges

uniformly to f on F . Finally, E\F = E\
⋂∞
m=1 Fm =

⋃∞
m=1(E\Fm). Then using the

countable subadditivity of measure and the geometric series, we have

m(E\F ) ≤
∑

m(E\Fm)

=
∑ ε

2m
< ε.

This completes the proof.

We know that continuous functions are measurable. Lusin’s theorem seeks to

give some clarification to the converse of this statement; its goal is to give a continuity

property that we can apply to measurable functions. We will start by proving the spe-

cial case for simple functions, and then use the special case to prove the general result,

which is Lusin’s Theorem.

PROPOSITION 2.49 Let f be a simple function defined on a measurable domain

E. Then for each ε > 0, there exists a continuous function g on R and a closed set
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F ⊂ E such that

f = g on F and m(E\F ) < ε.

Proof. Suppose f is a simple function on E. Let a1, a2, ..., an be a finite number of dis-

tinct values from f taken on measurable subsets of E denoted E1, E2, ..., En respec-

tively. Then {Ek}nk=1 is disjoint since each ak is distinct. Let ε > 0 be given. Now

choose closed sets F1, F2, ..., Fn such that for each 1 ≤ k ≤ n, we have

Fk ⊆ Ek and m(Ek\Fk) <
ε

n
. (2.4)

Then the set F :=
⋃n
k=1 Fk is closed, since it is a union of a finite collection of closed

sets. Since {Ek}nk=1 is disjoint and by the finite additivity of measurable sets,

m(E\F ) = m

(
n⋃
k=1

[Ek\Fk]

)
=

n∑
k=1

m(Ek\Fk) < ε.

Define a function g on F to take the values of ak on Fk for 1 ≤ k ≤ n. Since {Fk}nk=1

is disjoint, g is well defined. Also, g is continuous on F since for x ∈ Fi there exists an

open interval containing x that is disjoint from the closed set

⋃
k 6=i

Fk.

Thus on the intersection of this open interval with F the function g is constant. To ex-

tend g to be a continuous function on R, we first note that the set R\F is open, and

therefore can be written as a union of at most countably many disjoint open intervals

whose end points are in F . We then use linear interpolation to complete this exten-

sion.

THEOREM 2.50 (Lusin’s Theorem) Let f be a real-valued measurable function on

E. Then for each ε > 0, there exists a continuous function g on R and a closed set
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F ⊂ E such that

f = g on F and m(E\F ) < ε.

Proof. Let m(E) < ∞. The case m(E) = ∞ can be solved using the extension argu-

ment we employed in the proof of Proposition 2.49. By Theorem 2.46, there exists a

sequence {fn} of simple functions defined on E that converge pointwise to f on E. Let

n be a natural number. We want to use Proposition 2.49, so let f be replaced by fn

and ε replaced by ε
2n+1 . Then choose a function gn on R and a closed set Fn ⊂ E such

that

fn = gn on Fn and m(E\Fn) <
ε

2n
.

By Egoroff’s Theorem (Theorem 2.48) there exists a closed set F0 ⊂ E such that {fn}

converges to f uniformly on F0 and m(E\Fn) < ε
2n

. Define F :=
⋂∞
n=0 Fn. By De

Morgan’s law and the countable subadditivity of measure,

m(E\F ) = m

(
[E0\F ] ∪

∞⋃
n=0

[E\Fn]

)
≤ ε

2
+
∞∑
n=1

ε

2n+1
= ε.

The set F is closed since it is the intersection of closed sets. Each fn is continuous on

F since F ⊆ Fn and fn = gn on Fn. Finally, {fn} converges to f uniformly on F

since F ⊆ F0. Furthermore, the uniform limit of a sequence of continuous functions

is continuous, so the restriction of f to F is continuous on F . So there is a continuous

function g defined on R whose restriction to F is f . Thus g is the desired function.

2.5. Lebesgue Integral

We begin our study of the Lebesgue integral by reviewing some basic terms

from the Riemann integral. This will also help us when we make comparison of the

two integrals later on.

Let f be a bounded real-valued function defined on a closed bounded interval
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[a, b]. We then define a partition of [a, b] as P = {x0, x1, ..., xn} with

a = x0 < x1 < ... < xn = b.

Define ∆xi = xi − xi−1. For 1 ≤ i ≤ n, let Mi = sup{f(x) | xi ≤ x ≤ xi−1} and

mi = inf{f(x) | xi ≤ x ≤ xi−1}. We define the upper and lower Darboux sums, see [3,

pp. 120-121], for f with respect to P as the following:

U(f, P ) =
n∑

1=1

Mi ·∆xi,

L(f, P ) =
n∑

1=1

mi ·∆xi.

At this point we define the upper and lower Riemann integrals of f over [a, b] in terms

of the upper and lower Darboux sums respectively by

(R)

∫ b

a

f = inf{U(f, P ) | P is a partition of [a, b]},

(R)

∫ b

a

f = sup{L(f, P ) | P is a partition of [a, b]}.

We use the (R) to distinguish it from the Lebesgue integral to be defined. Since f is

bounded and [a, b] has finite length, the upper and lower integrals are also finite.

DEFINITION 2.51 If f is a bounded real-valued function over the interval [a, b]

and the upper and lower Riemann integrals are equal, then we say f is Riemann in-

tegrable over [a, b]. The common value of the Riemann integral of f over [a, b] is de-

noted by

(R)

∫ b

a

f.

DEFINITION 2.52 A real-valued function ψ defined on [a, b] is called a step func-

tion if there exists a partition P = {x0, x1, ..., xn} and numbers c1, c2, ..., cn such that
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for 1 ≤ i ≤ n,

ψ(x) = ci if x ∈ (xi−1, xi).

We see that a property of a step function ψ is that

L(ψ, P ) = U(ψ, P ).

This means that the step function ψ thus defined is Riemann integrable, which serves

as a starting point for our study of the Lebesgue integral. We will denote the Lebesgue

integral using the integral sign without the (R). The Lebesgue integral is usually de-

fined by stages, see [4, pp. 49-50]. Though the purpose of this work is not to cover the

Lebesgue integral in depth, we give an overview of its construction for simple func-

tions. Let ψ be a simple function on E. Then ψ takes on the distinct values a1, ..., an

on E. Since ψ is measurable, so is ψ−1(ai) = {x ∈ E | ψ(x) = ai}. Let Ei = ψ−1(ai).

We can represent ψ as the following:

ψ =
n∑
i=1

ai · χEi on E.

This is known as the canonical form, which is a unique decomposition of ψ.

DEFINITION 2.53 If ψ is a simple function defined on a measurable set E of finite

measure with ψ(x) =
∑n

i=1 ai · χEi being its canonical form, we define the integral of

ψ by ∫
E

ψ(x) =
n∑
i=1

ai ·m(Ei).

LEMMA 2.54 Let {Ei}ni=1 be a finite disjoint collection of measurable subsets of a

set of finite measure E. For 1 ≤ i ≤ n, let ai be a real number.

If φ =
n∑
i=1

ai · χEi on E, then

∫
E

φ =
n∑
i=1

ai ·m(Ei).
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Lemma 2.54 is needed to show the linearity and monotonicity of integration

given in the following proposition.

PROPOSITION 2.55 Let φ and ψ be simple functions defined on a measurable set

E of finite measure. Then for any α, β ∈ R,

∫
E

(αφ+ βψ) = α

∫
E

φ+ β

∫
E

ψ.

Moreover, if φ ≥ ψ on E, then

∫
E

φ ≤
∫
E

ψ.

DEFINITION 2.56 Let f be a bounded measurable function defined on a measur-

able set E of finite measure. We define the lower and upper Lebesgue integral

respectively by

L`(f) := sup

{∫
E

φ

∣∣∣∣ φ is simple and φ ≤ f on E

}
,

Lu(f) := inf

{∫
E

ψ

∣∣∣∣ ψ is simple and ψ ≥ f on E

}
.

From this definition we see that the lower and upper integrals are finite with

the property that L`(f) ≤ Lu(f).

DEFINITION 2.57 A bounded function f on a domain E of finite measure is said

to be Lebesgue integrable over E provided L`(f) = Lu(f). The common value of

L`(f) and Lu(f) is called the Lebesgue integral and is denoted
∫
E
f .

For an example of the usefulness of the Lebesgue integral over the Riemann in-

tegral we can examine the Dirichlet function. Define D on [0, 1] by

D(x) =


1 if x is rational,

0 if x is irrational.
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This function is not Riemann integrable because it is nowhere continuous. However,

the set E of rational numbers on [0, 1] is a measurable set of measure zero. Thus, the

Dirichlet function D is the function χE. Thus, D is Lebesgue integrable over [0, 1] with

∫
[0,1]

D =

∫
[0,1]

1 · χE = 1 ·m(E) = 0.

The next result we want to prove is related to bounded measurable functions.

THEOREM 2.58 Let f be a bounded measurable function on a set of finite measure

E. Then f is integrable over E.

Proof. Let n ∈ N. By Lemma 2.45 with ε = 1
n
, there exist two simple functions φn and

ψn defined on E for which

φn ≤ f ≤ ψn on E, and 0 ≤ ψn − φn ≤
1

n
on E.

By Proposition 2.55,

∫
E

ψn −
∫
E

φn =

∫
E

[ψn − φn] ≤ 1

n
·m(E).

With
∫
E
ψn −

∫
E
φn ≥ 0. But we have,

0 ≤ inf

{∫
E

ψ

∣∣∣∣ ψ is simple, ψ ≥ f

}
− sup

{∫
E

φ

∣∣∣∣ φ is simple, φ ≤ f

}
≤
∫
E

ψn −
∫
e

φn

≤ 1

n
·m(E).

The inequality holds for every n ∈ N and m(E) finite. Thus the upper and lower

Lebesgue integrals are equal and thus the function f is integrable on E, proving our

theorem.
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3. OTHER MEASURES

The process we will use for constructing the following measures will be based

on an outer measure, the development of these measures follows the same general steps

as Lebesgue measure. A measure constructed this way is known as a Carathéodory

measure. In the case of Lebesgue measure, we first established a primitive set func-

tion for the length of an interval `(I). We then extended the length function to a set

function for the outer measure, m∗, that was defined for every subset of real numbers.

Once m∗ was established, we restricted the outer measure to a collection of Lebesgue

measurable sets L, which were a σ-algebra. Then m∗ restricted to measurable sets was

called a Lebesgue measure and denoted by m.

3.1. Outer Measure

We begin by giving some some properties that must be fulfilled in order for a

set function to be an outer measure.

DEFINITION 3.1 A function Γ = Γ(A) which is defined for every subset A of our

space P is an outer measure if it satisfies the following:

1. Γ(A) ≥ 0, Γ(∅) = 0.

2. Γ(A1) ≤ Γ(A2) if A1 ⊆ A2.

3. Γ(
⋃
Ak) ≤

∑
Γ(Ak) for any countable collection of sets {Ak}.

We can see from this definition that Lebesgue outer measure is an outer mea-

sure. This definition gives flexibility when it comes to defining a class of measurable

sets and the corresponding measure. We have at this point only talked about the space

of R, and the focus of our discussion will continue to be on R. For measurable sets,

we will use a similar definition to Carathéodory’s in Definition 2.12. We can restate

Carathéodory’s definition here in terms of Γ.
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DEFINITION 3.2 Given an outer measure Γ, E ∈ P is Γ − measurable, or simply

measurable, if for every A ⊂ P ,

Γ(A) = Γ(A ∩ E) + Γ(A ∩ EC).

THEOREM 3.3 Let Γ be an outer measure on the subsets of our space P .

1. The family of Γ-measurable subsets of P forms a σ-algebra.

2. If {Ek} is a countable collection of disjoint measurable sets, then

Γ(
⋃
Ek) =

∑
Γ(Ek) and Γ(A) =

∑
Γ(A ∩ Ek) + Γ(A\

⋃
Ek).

Interested readers can find a proof of Theorem 3.3 at [2, pp. 194-195].

DEFINITION 3.4 A Borel σ-algebra B is the smallest σ-algebra generated by the

open sets in Rn. The sets of B are called Borel sets and a measure is called a Borel

measure if every Borel set is measurable.

We will also want to define the distance between sets. For two sets A1 and A2,

the distance between the two is defined by

d(A1, A2) = inf{d(x, y) | x ∈ A1, y ∈ A2}.

DEFINITION 3.5 For an outer measure Γ on some space P , we say that Γ is a

Carathéodory outer measure if whenever we have two sets A1 and A2 such that

d(A1, A2) > 0, we also have

Γ(A1 ∪ A2) = Γ(A1) + Γ(A2). (3.5)

A measure is also a Borel measure provided the the above property holds. Equation

3.5 is the familiar additive property from Lebesgue measure.
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3.2. Lebesgue-Stieltjes Measure

We now consider a case of Carathéodory outer measure known as Lebesgue-

Stieltjes measure. One of the benefits of this measure is that it clears the connection

between measures and monotone functions. We will again restrict ourselves to R when

discussing this measure.

To construct this measure, consider a reasonable function f which is finite and

monotonically increasing on R. For each half open interval of the form (a,b], we define

a primitive set function λ as

λ(a, b] := λf ((a, b]) = f(b)− f(a).

Note that λ ≥ 0 since f is increasing. Already we see a distinction from Lebesgue mea-

sure; for Lebesgue our primitive set function was length `(I) for an interval I, which

again returned ∞ if I is unbounded and if I = (a, b), it returned b − a. The function

` can be thought of as the set function for the identity function, namely f(x) = x. We

now extend λ to an outer measure. If A is a nonempty subset of R and f is defined as

above, let

Λ∗(A) := Λ∗f (A) = inf
∑

λ(ak, bk],

where the inf is taken over all countable collections {(ak, bk]} such that we have A ⊂⋃
(ak, bk], with Λ∗(∅) = 0.

THEOREM 3.6 Λ∗ is a Carathéodory outer measure on R.

Proof. We want to show that Λ∗ fulfills the three properties given in Definition 3.1

as well as Definition 3.5. From the definition of Λ∗ and since f is increasing we have

Λ∗(∅) = 0 and Λ∗ ≥ 0 respectively. We want to show that if A1 ⊂ A2, then

Λ∗(A1) ≤ Λ∗(A2).
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It is clear if either A1 = ∅ or Λ∗(A2) = ∞. Otherwise, choose {(ak, bk]} a cover for

A2, that is A2 ⊂
⋃

(ak, bk] and
∑
λ(ak, bk] < Λ∗(A2) + ε. Then A1 ⊂

⋃
(ak, bk] since

A1 ⊂ A2. Thus Λ∗(A1) ≤
∑
λ∗(ak, bk] and

Λ∗(A1) < Λ∗(A2) + ε.

The result follows from letting ε→ 0.

We want to show Λ∗ is subadditive. Let {Aj}∞j=1 be a collection of nonempty

subsets of R and let A :=
⋃
Aj. Assume that Λ∗(Aj) < +∞ for each j. Choose

{(ajk, b
j
k]} as a cover for each Aj. That is,

Aj ⊂
⋃
k

(ajk, b
j
k], with

∑
k

λ(ajk, b
j
k] < Λ∗(Aj) +

ε

2j
.

Since A =
⋃
Aj, we have A ⊂

⋃
j,k(a

j
k, b

j
k] and

Λ∗(A) ≤
∑
j,k

λ(ajk, b
j
k] <

∑
j

[
Λ∗(Aj) +

ε

2j

]
=
∑
j

Λ∗(Aj) + ε.

It follows then that Λ∗(A) ≤
∑

Λ∗(Aj), and therefore Λ∗ is an outer measure. Lastly,

we want to show that Λ∗ is a Carathéodory outer measure. To begin, if a = a0 < a1 <

... < aN = b, then

λ(a, b] = f(b)− f(a) =
N∑
k=1

[f(ak)− f(ak−1)] =
N∑
k=1

λ(ak−1, ak].

From the definition of Λ∗, we can always choose an arbitrarily small (ak, bk]. Thus, if

A1 and A2 satisfy d(A1, A2) > 0, then given ε > 0, choose {(ak, bk]} such that each

(ak, bk] has length less than d(A1, A2) with

A1 ∪ A2 ⊂
⋃

(ak, bk] and
∑

λ(ak, bk] ≤ Λ∗(A1 ∪ A2) + ε.
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Therefore we can split {(ak, bk]} into coverings for A1 and A2 respectively. Thus, we

have Λ∗(A1) + Λ∗(A2) ≤
∑
λ(ak, bk]. Since ε is arbitrary, we have

Λ∗(A1) + Λ∗(A2) ≤ Λ∗(A1 ∪ A2).

From the definition of Λ∗, we always have

Λ∗(A1) + Λ∗(A2) ≥ Λ∗(A1 ∪ A2).

Thus we have equality and Λ∗ is a Carathéodory outer measure.

We call Λ∗f the Lebesgue-Stieltjes outer measure corresponding to f . Sim-

ilar to our construction Lebesgue measure, Λ∗f restricted to the sets which are Λ∗f -

measurable is called the Lebesgue-Stieltjes measure, which is denoted by Λf or

simply Λ. An interesting property of Lebesgue-Stieltjes measure is that Λ∗x which cor-

responds to the identity function f(x) = x is the same as ordinary Lebesgue outer

measure, namely

λf ((a, b]) = f(b)− f(a) = b− a = `((a, b]).

DEFINITION 3.7 An outer measure Γ defined on Rn is said to be regular if for

every E ⊂ Rn, there exists a Γ-measurable set B such that E ⊂ B and that Γ(A) =

Γ(E).

THEOREM 3.8 Let Λ∗ be a Lebesgue-Stieltjes outer measure. If A is a subset of R,

there is a Borel set B with A ⊂ B such that Λ∗(A) = Λ(B).

The proof of Theorem 3.8 as well as further information on the subject of Lebesgue-

Stieltjes measure can be found at [2, pp. 199-200]. The importance of this theorem

comes in the fact that Lebesgue-Stieltjes measure is regular, which is a nice character-

istic when it comes to constructing an integral based on Λ.
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3.3. Hausdorff Measure

Hausdorff measure has many uses, in particular as a mechanism to distinguish

sets of Lebesgue measure zero. The most common example is the Cantor set between

[0, 1] has Hausdorff dimension of log(2)
log(3)

and a measure of 1. For readers not familiar

with the Cantor set, a construction of the Cantor set as well as some properties of the

Cantor-Lebesgue function can be found at [1, pp. 51-53]. We now set about construct-

ing Hausdorff measure.

DEFINITION 3.9 The diameter of a set E on Rn is defined as

diam(E) := sup{|x− y| | x, y ∈ E}.

To define Hausdorff outer measure, fix α > 0, and let A be any subset of Rn.

Given ε > 0, let

H(ε)
α (A) = inf

{
∞∑
k=1

diam(Ak)
α

∣∣∣∣∣ A ⊂
∞⋃
k=1

Ak and diam(Ak) < ε

}
. (3.6)

We may assume that each Ak in a given covering are disjoint and that A =
⋃
Ak. If

ε′ < ε, each covering of A by sets with diameters less than ε′ is also such a cover for

ε. Hence, as ε decreases, the collection of coverings decreases, and H
(ε)
α (A) increases.

That is, f : ε→ H
(ε)
α (A) is non-decreasing. Hence, we can define

Hα(A) := lim
ε→0

H(ε)
α (A). (3.7)

Other texts use the more general definition of Hausdorff that requires a normalization

constant

α(s) :=
πs/2

Γ( s
2

+ 1)
for s ≥ 0
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where Γ(z) =
∫∞

0
tz−1e−tdt, see [6]. Define Hs

δ (E) as follows,

Hs
δ (E) := inf

{
∞∑
n=1

α(s)

(
diam(cn)

2

)s ∣∣∣∣∣ E ⊂
∞⋃
n=1

cn, diam(cn) ≤ δ

}
.

This notation is necessary for higher dimensions, see [7], but when the dimension s = 1

we get α(1) = π1/2

Γ( 1
2

+1)
= 2 and Hs

δ (E) becomes what we see in Equation 3.6. With our

main focus on the real line, we will use Equation 3.6 and 3.7 as our primary definition

for Hausdorff outer measure.

THEOREM 3.10 For α > 0, Hα is a Carathéodory outer measure on Rn.

Proof. From the definition of Hα, we have Hα ≥ 0 and Hα(∅) = 0. If A1 ⊂ A2, then

any covering of A2 is also a covering of A1. So, H
(ε)
α (A1) ≤ H

(ε)
α (A2). Letting ε → 0,

we have Hα(A1) ≤ Hα(A2). We next want to show Hα is subadditive. Let A =
⋃
Ak,

and choose a cover of Ak for each k. Now the union of the covers for each Ak is also a

cover for A. Then,

H(ε)
α (A) ≤

∑
H(ε)
α (Ak) ≤

∑
Hα(Ak).

Letting ε→ 0, we get Hα ≤
∑
Hα(Ak). Finally, we need to show if d(A1, A2) > 0, then

Hα(A1 ∪ A2) = Hα(A1) +Hα(A2). From subadditivity we have

Hα(A1 ∪ A2) ≤ Hα(A1) +Hα(A2).

We need to show Hα(A1 ∪ A2) ≥ Hα(A1) + Hα(A2). Fix ε > 0 with ε < d(A1, A2). Let

{Bk} be a cover for A1 ∪ A2 with the property diam(Bk) < δ where δ < ε, let

B′k = A1 ∩Bk and B′′k = A2 ∩Bk.

Then the sets {B′k} and {B′′k} are covers for A1 and A2 respectively with {B′k} and
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{B′′k} being disjoint. Hence,

∑
j

diam(B′j)
α +

∑
k

diam(B′′k)α ≤
∑
i

diam(Bi)
α.

To get to Hα from our inequality, what remains to do is to take the infimum over the

coverings and the limit as δ → 0. This gives us our inequality and thus,

Hα(A1 ∪ A2) ≥ Hα(A1) +Hα(A2).

So Hα is a Carathéodory outer measure on Rn.

We say Hα is the Hausdorff outer measure of dimension α on Rn. One way

to think of Hα(E), see [4, pp. 324], is as the α-dimensional mass of E among the sets

of dimension α. Hausdorff measure is denoted the same as Hausdorff outer measure.

We can also see that 0 ≤ Hα(E) ≤ ∞ for all subsets E ⊂ Rn.

PROPOSITION 3.11 Hα is regular.

Proof. To show that Hα is regular, without loss of generality, assume the covering sets

in the definition of H
(ε)
α are closed. Let E ⊂ Rn with Hα < ∞. Then H

(ε)
α < ∞ for all

ε > 0. For each k ∈ N, let{Ck
n}∞n=1 be a cover of E such that diam(Ck

n) ≤ 1
k

and

∞∑
n=1

diam(Ck
n)s < Hs

1
k
(E) +

1

k
.

Let Ek =
⋃∞
n=1 E

k
n and B =

⋂∞
k=1Ek. Then B is a Borel set with E ⊂ B.

THEOREM 3.12 For Hα(A) we have the following properties:

1. If 0 ≤ Hα(A) < +∞, then Hβ(A) = 0 for β > α.

2. If Hα(A) > 0, then Hβ(A) = +∞ for β < α.
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Proof. Let ε > 0. Property (2) is the contrapositive of (1), so the properties are equiv-

alent. To prove (1), let A =
⋃
Ak with diam(Ak) < ε. If β > ε, then we have

H
(ε)
β (A) ≤

∑
diam(Ak)

β < εβ−α
∑

diam(Ak)
α.

Therefore,

H
(ε)
β (A) ≤ εβ−αH

(ε)
β (A).

Letting ε→ 0, we get Hβ(A) = 0 if Hα(A) < +∞. Thus completing our proof.

We have already shown that Hα is a Borel measure in Theorem 3.10 by showing

Hα was a Carathéodory outer measure. Hausdorff measure also has the property that

if {Ej} is a countable family of disjoint Borel sets, and E =
⋃∞
j=1, then

Hα(E) =
∞∑
j=1

Hα(Ej).

PROPOSITION 3.13 Hausdorff measure has the following properties:

1. the quantity H0(A) counts the number of points in A. This is known as a count-

ing measure.

2. H1(A) = m(A) on R where m(A) is the Lebesgue measure.

3. if α > n, then Hα(A) = 0 for all A ⊂ Rn.

Proof. For (1), if α = 0 we have

H0(A) = lim
ε→0

inf

{∑
k

diam(Ak)
0

∣∣∣∣∣ A ⊂⋃
k

Ak and diam(Ak) < ε

}

= lim
ε→0

inf

{∑
k

1

∣∣∣∣∣ A ⊂⋃
k

Ak and diam(Ak) < ε

}
.
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For (2), if α = 1,

m(A) = inf

{∑
k

diam(Ak)

∣∣∣∣∣ A ⊂⋃
k

Ak

}

≤ inf

{∑
k

diam(Ak)

∣∣∣∣∣ A ⊂⋃
k

Ak and diam(Ak) < ε

}

= H
(ε)
1 .

To show the opposite of the inequality, let Ik = [εk, ε(k + 1)]. Then we have⋃
k∈Z Ik = R and for any collection {cn}∞n=1, diam(cn ∩ Ik) ≤ ε. Further,

diam(cn) ≥
∑
k

diam(cn ∩ Ik).

Now,

m(A) = inf

{∑
n

diam(cn)

∣∣∣∣∣ A ⊂⋃
n

cn

}

≥ inf

{∑
n

∑
k

diam(cn ∩ Ik)

∣∣∣∣∣ A ⊂⋃
n

cn

}

≥ H
(ε)
1 (since A ⊂

⋃
k,n

(cn ∩ Ik).

It follows that m(A) ≥ H1(A). Thus we have equality.

For (3), let α > n. We show Hα(C) = 0 for the unit cube C in Rn. The result

follows as any set can be covered by unit cubes. Divide C into mn cubes of side length

1
m

and diameter
√
n
m

. Then

H
(
√
n
m

)
α (C) ≤

mn∑
n=1

(√
n

m

)α
= n

α
2mn−α.

We can see that n
α
2mn−α → 0 as m→∞ if α > n. This implies Hα(C) = 0.
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DEFINITION 3.14 Let E ⊂ Rn. the Hausdorff dimension of E is defined as

Hdim(E) = inf{0 ≤ α <∞ | Hα(E) = 0}

= sup{0 ≤ α <∞ | Hα(E) = +∞}.

From the definition of Hausdorff dimension and Theorem 3.12 we have that

there exists a unique α such that

Hβ(E) =


∞ if β < α,

0 if β > α.

In other words, there exists a critical value of α at which Hα(E) jumps from ∞ to 0.

We say that the set E has Hausdorff dimension α and write it as α = dimE. At this

value for α, we can say that Hα(E) in general satisfies 0 ≤ Hα(E) ≤ ∞. The final

proposition we want to prove is that the Cantor set has Hausdorff dimension of log2
log3

. In

order to find the Hausdorff dimension of the Cantor set, we will use the scaling prop-

erty for Hausdorff measure, see [8, pp. 27]. If F ⊂ Rn and λ > 0, then

Hα(λF ) = λαHα(F ). (3.8)

Where λF = {λx | x ∈ F}. We will follow the proof presented in [8, pp. 31-32].

PROPOSITION 3.15 For the Cantor set F , Hdim(F ) = log2
log3

.

Proof. We will consider two different approaches to finding Hdim(F ). We start with a

heuristic calculation. The Cantor set F splits into a left part FL = F∪[0, 1
3
] and a right

part FR = F ∩ [2
3
, 1] with both parts being disjoint. Both FR and FL are geometrically

similar to F and scaled by a ratio 1
3

with F = FL ∪ FR. Thus, for any α we have

Hα(F ) = Hα(FL) +Hα(FR) =

(
1

3

)α
Hα(F ) +

(
1

3

)α
Hα(F ),
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by the scaling property in Equation 3.8. Assuming that at the critical value we have

α = dimF , then 0 < hα(F ) < ∞. Dividing both sides of Equation 3.3 by Hα(F ) gives

1 = 2(1
3
)α. Finally, taking the log of both sides and solving for α gives α = log2

log3
.

For the more rigorous calculation, we call the intervals of length 3−k for k =

0, 1, 2, ... that make up the sets Ek in the construction of F basic intervals. The cov-

ering {Ui} of F consisting of the 2k intervals of Ek of length 3−k gives that H3−k
α (F ) ≤∑

diam(Ui)
α = 2k3−kα = 1 if α = log2

log3
. Letting k → ∞ gives Hα(F ) ≤ 1. To prove

Hα(F ) ≥ 1
2
, we need to show that

∑
diam(Ui)

α ≥ 1

2
= 3−α (3.9)

for any cover {Ui} of F . We may assume that the {Ui} are intervals. By expanding

them and using the compactness of F , we only have to show Equation 3.9 if {Ui} is a

finite collection of closed subintervals of [0,1]. For each Ui, let k ∈ Z such that

3−(k+1) ≤ diam(Ui)
−α. (3.10)

Then Ui can intersect at most one basic interval of Ek since the separation of these

basic intervals is at least 3−k. If j ≥ k then, by construction and using Equation 3.10,

Ui intersects at most 2j−k = 2j3−αk ≤ 2j3αdiam(Ui)
α basic intervals of Ej. If we choose

a large j such that 3−(j+1) ≤ diam(Ui)
α for all Ui, then since the {Ui} intersects all 2j

basic intervals of length 3−j, counting intervals gives

2j ≤
∑

2j3αdiam(Ui)
α.

This equation reduces to Equation 3.9. This completes the proof.

This concludes our brief introduction to Hausdorff measure and dimension.

Hausdorff measure is fundamental in many disciplines including fractal geometry, in-
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terested readers can refer to [8, pp. 25-34] for more information. Hausdorff measure

is an extensive subject. We have hopefully given a solid foundation to preface further

study of the theory.
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4. CONCLUSION

In this thesis we have illustrated some of the fundamental theorems that show-

case the power and versatility of measure theory with specific examples in Lebesgue,

Lebesgue-Stieltjes, and Hausdorff. We constructed Lebesgue outer measure, defined

Lebesgue measurable sets, and gave a basic construction of the Lebesgue integral. We

saw how the Lebesgue integral fixed some of the problems with the Riemann inte-

gral. For example, the Dirichlet function is measurable with Lebesgue measure even

though the function is not Riemann integrable. In the last chapter, we defined abstract

outer measure and a way of creating a measure from an outer measure. We also dis-

cussed two very important measures based on the definition of measurable sets given

by Carathéodory. The measures we discussed were the Lebesgue-Stieltjes measure and

Hausdorff measure which built on the measure theory given by Lebesgue. We have

shown that measure theory is of core importance to the continual development of in-

tegration theory.
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