Missouri State.

u N I VvV E R S I T Y BearWorkS

MSU Graduate Theses

Spring 2019

3d Canopy Model Reconstruction from Unmanned Aerial System
and Automated Single Tree Extraction

Hai Ha Duong
Missouri State University, Hai1979@live.missouristate.edu

As with any intellectual project, the content and views expressed in this thesis may be
considered objectionable by some readers. However, this student-scholar’s work has been
judged to have academic value by the student’s thesis committee members trained in the
discipline. The content and views expressed in this thesis are those of the student-scholar and
are not endorsed by Missouri State University, its Graduate College, or its employees.

Follow this and additional works at: https://bearworks.missouristate.edu/theses
(&) Part of the Geographic Information Sciences Commons, Programming Languages and

Compilers Commons, and the Spatial Science Commons

Recommended Citation

Duong, Hai Ha, "3d Canopy Model Reconstruction from Unmanned Aerial System and Automated Single
Tree Extraction” (2019). MSU Graduate Theses. 3360.
https://bearworks.missouristate.edu/theses/3360

This article or document was made available through BearWorks, the institutional repository of Missouri State
University. The work contained in it may be protected by copyright and require permission of the copyright holder
for reuse or redistribution.

For more information, please contact bearworks@missouristate.edu.

https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/theses
https://bearworks.missouristate.edu/theses?utm_source=bearworks.missouristate.edu%2Ftheses%2F3360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=bearworks.missouristate.edu%2Ftheses%2F3360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=bearworks.missouristate.edu%2Ftheses%2F3360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=bearworks.missouristate.edu%2Ftheses%2F3360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1334?utm_source=bearworks.missouristate.edu%2Ftheses%2F3360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bearworks.missouristate.edu/theses/3360?utm_source=bearworks.missouristate.edu%2Ftheses%2F3360&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu

3D CANOPY MODEL RECONSTRUCTION FROM UNMANNED AERIAL SYSTEM
AND

AUTOMATED SINGLE TREE EXTRACTION

A Master’s Thesis
Presented to
The Graduate College of

Missouri State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Natural and Applied Science, Geospatial Science and Computer Science

By
Hai Ha Duong

May 2019

3D CANOPY MODEL RECONSTRUCTION FROM UNMANNED AERIAL SYSTEM
AND AUTOMATED SINGLE TREE EXTRACTION

Geography, Geology and Planning

Missouri State University, May 2019

Master of Natural and Applied Science

Hai Ha Duong

ABSTRACT

This project aims to develop and assess methodology for spatial modeling and extracting
individual trees from high spatial resolution Digital Surface Model (DSMs) derived from
unmanned aerial system (UAS) or drone-based aerial photos. Those results could be used for
monitoring of vegetative response of forests, grasslands and vineyards to regional and localized
fluctuations in climate and seasonality. The primary objective of this research is to extract 3D
spatial information using drone-based aerial imagery through photogrammetric methods. UAS
flights were taken place at phenologically critical times over several locations owned and
managed by Missouri State University (MSU). The 3D DSM can be reconstructed from obtained
images through photogrammetric software. And then a computer programming language
(Python) is used to develop an algorithm to extract every single tree from 3D models. First, DSM
data is imported into Python as a raster data layer. Next, the watershed segmentation algorithm
with two different image filtering is used for single tree extraction, and the accuracy comparison
is conducted between the two methods. The number of the trees can be used to calculate
vegetative metrics and growth rate if multi-year data is available in the future. And time-series
data can be correlated with climate fluctuation and seasonality. This study can provide a new
approach for monitoring various types of natural and agricultural vegetation to aid in making
short-term and long-term management decisions.

KEYWORDS: image segmentation, watershed, tree extraction, reconstruct 3D model,
unmanned aerial system, UAS, DSM

1

3D CANOPY MODEL RECONSTRUCTION FROM UNMANNED AERIAL SYSTEM
AND

AUTOMATED SINGLE TREE EXTRACTION

By

Hai Ha Duong

A Master’s Thesis
Submitted to the Graduate College
Of Missouri State University
In Partial Fulfillment of the Requirements
Master of Natural and Applied Science

May 2019

Approved:

Xin Miao, PhD. Prof., Thesis Committee Chair
Jun Luo, PhD. Prof., Committee Member
Lloyd A. Smith, PhD. Prof., Committee Member

Julie Masterson, PhD., Dean of the Graduate College

In the interest of academic freedom and the principle of free speech, approval of this thesis
indicates the format is acceptable and meets the academic criteria for the discipline as
determined by the faculty that constitute the thesis committee. The content and views expressed
in this thesis are those of the student-scholar and are not endorsed by Missouri State University,
its Graduate College, or its employees.

il

ACKNOWLEDGEMENTS

I would like to express sincere gratitude to Prof. Dr. Xin Miao, Geography, Geology and
Planning Department at the Missouri State University for providing me an opportunity to work
on this topic along with the dedicate guidance and great help in so many difficult situations so
that I can complete this study.

I would like to thank Prof. Dr. Lloyd A. Smith, who has been very helpful and has
instructed me in numerous ways before and during my thesis. Special thanks and appreciation to
Prof. Dr. Jun Luo. His valuable support as one of my thesis committee was vital for successful
completion of my master thesis. I am very grateful to the members of Geography, Geology and
Planning Department, especially Prof. Dr. Douglas R. Gouzie, for their kind co-operation and
support which also helped me in completion of my thesis.

I would also like to thank my family and friends for all their advice and encouragement

during the thesis.

v

TABLE OF CONTENTS

Introduction Page 1
Study site Page 4
Equipment Page 5
Programming language Page 5

Methodology Page 7
3D modeling Page 7
Image segmentation and classification Page 16

Results and discussion Page 28

Conclusion Page 33

References Page 35

Appendices Page 38
Appendix A. Processing parameters Page 38
Appendix B. Source code with mean-shift filtering Page 40
Appendix C. Source code with Gaussian filtering Page 42
Appendix D. Source code of trees height calculation Page 45

LIST OF TABLES

Table 1. Control point RMSE Page 11
Table 2. Segmentation results Page 29

Table 3. RMSE of selected points Page 32

vi

LIST OF FIGURES

Figure 1. The conceptual model of original research project
Figure 2. Study site at Journagan Ranch

Figure 3. General flowchart of 3D canopy surface generation and tree
extraction.

Figure 4. Photos alignment in Agisoft PhotoScan

Figure 5. Camera information, locations and image overlap
Figure 6. Image residual distribution.

Figure 7. GCPs location

Figure 8. 3D dense point cloud of the study site

Figure 9. 3D Polygonal mesh of the study site

Figure 10. Texture or orthophoto of the study site.

Figure 11. DSM generated from dense cloud

Figure 12. The exported DSM to geotiff format

Figure 13. 3D visualization of DSM

Figure 14. Canopy height model of the study site

Figure 15. Result of thresholding

Figure 16. Result of segmentation when using mean shift filtering
Figure 17. Result of local maxima classification after applying Gaussian filter
Figure 18. Image segmentation result

Figure 19. 3D scatter plot of local maxima and trees height
Figure 20. Results from two pre-processing filters

Figure 21. Result when applying mean-shift filters

Figure 22. Difficulty of segmentation

Figure 23. Sum of Square Error graph

vii

Page 3
Page 4

Page 7

Page 8

Page 9

Page 10
Page 11
Page 12
Page 12
Page 13
Page 14
Page 15
Page 15
Page 19
Page 22
Page 24
Page 26
Page 26
Page 27
Page 29
Page 29
Page 30

Page 31

INTRODUCTION

The application of modern technology in environment monitoring is growing rapidly in
the past ten years. Geospatial science is one of the areas where many modern technologies are
applied and has grown stronger together with the development of science and technology.
Specifically, remote sensing of vegetation becomes an important technique to monitor the
vegetation growth rate that largely affected by climate change over seasons and years. It is
important to monitor the vegetation change process so that timely response is taken before it is
too late. Previously, scientists have used remote sensing satellites or airplanes to take images for
tracking the variability of the vegetation. However, the cost of this method of implementation is
high by purchasing satellite images, aerial photos, or getting digital data by LiDAR, the
frequency of updating data is low, and the resolution of images is not high enough and affected
largely by weather conditions. (Bertram ef al., 2014). This surveying process, therefore, lacking
consistency. Another method is the analysis of satellite images has been using with higher
resolution. For the purpose of observation, these images have to have accuracy, frequently
updated and there is no cloud cover in the relevant spectrum bands. The images with above
mentioned technical requirements are very expensive and therefore also very difficult to use for
processing and interpretation. To observe the regular overall changes on the large area, remote
sensing method using satellite images is still being considered as the optimal choice.

In the past decade, 3D modelling of landscape based on photogrammetry becomes
popular with the rapid development of computing power. Among these researches, most aerial

photos were captured by Unmanned Aerial Vehicles (UAVs) or drone-based systems.

The use of UAV has been broadly used in the field of geoscience for monitoring changes
in terrain, vegetation, and urban landscape. The image data obtained in this way usually has high
resolution. The increased intelligence of the flying device makes the process easier and does not
need to be manually operated for a long time. In addition, the weather conditions do not heavily
affect the operation of the unmanned aircraft system even in a cloudy day or sunny day.
Especially, the use of unmanned aircraft to take aerial photos is convenient for a small study site
with a much lower cost than LiDAR system. Moreover, technology is being used in unmanned
aerial vehicles can support the accessibility of the area or viewpoint which previously were
inaccessible, especially in the areas are often considered dangerous for local scientists such as
embankment, steep cliff, easy subsidence terrain and the areas with high density of vegetation.
Besides that, at the same time, it can give users the photographs and video images or also can
have such a substantial support for media operations and archives.

Previously, there were many researches on image processing including vegetation
extraction, canopy cover detection, and species recognition. However, those studies have mainly
used 2D images for classification. This research project will use the drone-based aerial imagery
through photogrammetric methods, reconstruct the 3D digital surface model (DSM), which can
be used for visualization, terrain parameter extraction, and relief map generation. It helps the
terrain analysis in geomorphology and physical geography, and the 3D model can be easily
exported to a 3D printer. Specifically, the DSM can be used for vegetation analysis in this study.

This study is a part of a more comprehensive research of modeling the response of a
black walnut -dominant mixed hardwood stand to seasonal fluctuations in climate. In the original
proposed research project, we use UAS flights to gather hyperspectral and RGB aerial data

during critical phenological shifts in the growing season and try to correlate vegetation stress

metrics and select seasonal climate variables (Figure 1). One of the challenges is to extract the
trees from canopy surface (DSM) with a high accuracy instead of manual counting. It can
significantly reduce the image processing time and increase the reliability.

In the current study, I will mainly generate a high-resolution 3D canopy model through

aerial photogrammetry, and further develop an algorithm to count the individual trees with a

reasonable accuracy from DSM.
The study includes the following objectives:

1. After acquiring aerial photos from a drone system, 3D DSM is generated through
photogrammetric software (Agisoft PhotoScan Professional ver.1.2.6.).

2. Develop a watershed segmentation algorithm for automated single tree extraction
from DSM through Python programming.

3. Assess and compare the accuracies of results from two pre-processing filters.

(UAS-based hyperspectral) { SONY NEX 7
sensor and camera system !

|

|

=z

|
|
!

Hyperspectral
signatures

Reflectance

3D canopy maodel Wavelength

S — R JC

Climate changes \
Canopy height Species identification

I
[: i j ;
; Short and long term trends in Modeling 5 | Growth rate

| temperature and precipitation | L [
e e e e o ——— ———

-

* Canopy cover/crown closure
= Foliage growth

* Vegetation indexes

| "
I Vegetative metrics
|

_________ C________
Ancillary data BTt e
: s Topographic parameters : o ____ | ________ .
| (elevation, slope and aspects) : 'In situ data :
: ¢ Soil data ! I Used to verify the remote sensing |
\ ® Season (time) /fl {Eﬂased vegelative melrics ,’I

Figure 1. The conceptual model of original research project.

This study can provide a new approach for monitoring the stress of various natural and
agricultural vegetation so as to aid in making short-term and long-term management decisions. It
can further help developing a statistical model to correlate tree growth rate with climate changes

in Missouri.

Study Site

The study site is in Journagan Ranch, including several grassland, forestland, and
vineyard locations owned and managed by Missouri State University (MSU). The chosen study
site located near Mountain Grove, MO (Figure 2). A high abundance of black walnut (Juglans
nigra) is dominated in this site. Black walnut is an appropriate environmental indicator of
climate-induced stress due to its sensitivity to drought, which is a property from its evolutionary
adaptation to semi-moist soils. Most importantly, the black walnut trees were planted
approximately 60 years ago without significant human interference. The study site is relatively
flat, and most of trees form clusters and develop a dense canopy. Since it is quite time
consuming and labor intensive to count the trees in the field, a computer-aided assessing

approach is needed to acquire a relatively reliable and accurate result.

[T Forest
| Grassland
| Riparian

Figure 2. Study site at Journagan Ranch (coordinates: 37°02'17.0"N 92°15'11.7"W)

Equipment

A Sony a7R II camera was mounted to a DJI Spreading Wings S1000+ airframe using a
Pixhawk autopilot board, and the flight was conducted on June 6, 2017. The attitude of the UAV
was measured by the XSens MTi-G-710 onboard IMU, which recorded the GPS location, roll,
pitch, and yaw of the aircraft during the flight. Flight plans were designed with over 80% overlap
between neighboring photos on the same flight strip. Ground data including diameter at breast
height (DBH), stand-level statistics were collected in the previous works. And pre-defined
Ground Control Points (GCPs) were collected using a handheld Trimble Nomad unit with a
Trimble Pro 6H receiver for aerial photo registration and accuracy assessment. The geo-
positional accuracy is sub-meter under WGS 1984 (UTM Zone 15N) projection system (Kim et
al., 2016; Gupta and Shukla, 2017). GCP marks on the ground can be visually checked on aerial
photos. The flying height is 120m with a constant speed of 10m/s. The UAS platform has
retractable landing gear, vibration dampers, angled arms, and a gimbal mount that offers a 360-

degree view from camera.

Programming Language

There are many programming languages are being used which have different
characteristics, such as imperative, modular, object-oriented, functional, relational, constrain and
logical (Sebesta, 2002). Among them, Python is an open source language with a good object-
oriented support and a rich library set (Caeiro et al., 2014). The most popular and powerful
libraries which have been using in geoscience are Geospatial Data Abstraction Library (GDAL),
OpenCV, Scikit-image, SciPy and RasterlO. Moreover, the Python programming language is

supported in ArcGIS - the actual industrial standard in geospatial science field. Besides, the

integrated numeric processing interface module has been developed which provides capabilities
similar to Matlab and other array-based languages (Caeiro ef al., 2014). Therefore, Python

programming is used for this study.

METHODOLOGY

The process of 3D model reconstruction begins with flight planning, aerial photo
collection, and then followed by dense point cloud generation through photogrammetric
software, polygonal mesh generate, and Digital Surface Model (DSM) generation. Next, Python
is used to conduct image segmentation and classification, and each tree can be finally extracted.
The general flowchart of 3D canopy surface generation and tree extraction is illustrated in Figure

3.

& 1 I

Preparation N
- Flight planning Data acquisition
- Waypoints and ground - Digital images
control points selection capturing
- Camera calibration

3D model

- Image processing
- Generate DEM

Image segmentation &
classification
- Importing to programming application
- Applying segmentation method
- Extract single tree from DEM

Figure 3. General flowchart of 3D canopy surface generation and tree extraction.

3D Modeling
The 3D geometry regeneration including the following main steps (Gupta and Shukla, 2018)
1. Photogrammetry or Structure-from-Motion (SfM): the attitude of camera such as

position, orientation, and focal length should be reconstructed by tie points between
images. Then a sparse point-based 3D presentation can be generated.

2. Multi View Stereo (MVS): uses the estimated camera parameters to find the visual
relationships between images, and a dense 3D geometry can be reconstructed.

3. Surface Reconstruction: surface mesh has been produced by taking dense point cloud as
input data.

Image Processing. All the obtained aerial images have been used as input data for the
photogrammetry software (Agisoft PhotoScan 1.2.6). GPS information has been tagged and
recorded in each image file with the Exchangeable image file format (Exif). Starting from these

initial positions, the images alignment are conducted through matching tie points. Figure 4 shows

an alignment for all taken images in the image processing software.

Figure 4. Photos alignment in Agisoft PhotoScan.

One crucial step in the 3D reconstruction procedures is checking the overlapping of
obtained images to ensure that there are at least two images for any given ground target. Figure 5
below shows the lists of focal length, resolution, image size, altitude of the camera,

magnification of images and the size of each pixel after image alignment together with camera

locations and overlapping of the images. Figure 6 shown the image registration residual or
alignment errors of the aerial photos.

The coordinate of GCPs are used for 3D model geo-registration and accuracy assessment.
The GCPs in the study site is shown in Figure 7. The Root-Mean-Square Error (RMSE) of GCPs

are calculated and illustrated in Table 1.

=9
|]
=8
a7
mG
ms
4

mZ
m1

Number of images: 85 Camera stations: 85
Flying altitude: 155m Tie points: 82,777
Ground resolution: 3.77 cm/pix Projections: 234,411
Coverage area: 0.4 km? Reprojection error: 1.15 pix

Camera information

Camera model Resolution Focal length Pixel size Pre-calibrated

ILCE-7R 7360 x 4144 Unknown 4.76 x4.76 ym No

Figure 5. Camera information, locations and image overlap

s “h
1

L

ILCE-TR

BS images

Frecaibrated

Mo

Fixel Size
A.T6 x 4.T6 pm

Focal Length

TI60 x 4144

Fesoluticn

3230.06

F ranmme

-F 59146

B1:
B2

58

000554891

P1:

S000253342

SD000190302

0 0D0BES0E4

P2:

K2
K3
o

F3a:

Fi;

Figure 6. Image residual distribution.

10

—_—
® Control paints © Check paints 200m

Figure 7. GCPs location

Table 1. Control points

RMSE of each selected control points

Label X error (cm) Y error (cm) Z error (cm) Total (cm) Image (pix)

1 -7.98183 2.69812 -1.64752 8.58509 0.266
2 0.33093 -4.68569 -6.44085 7.97109 0.546
3 -0.196367 -2.77745 -5.70547 6.34864 0.245
4 1.6136 0.608453 1.66136 2.39459 0.127
5 8.00002 2.9977 7.79079 11.5621 0.406
Total 5.10784 3.04323 5.29543 7.96196 0.324

11

Through image alignment and interpolation, the dense point cloud of the canopy model
can be generated. The dense point cloud can be converted to polygonal mesh or triangle mesh

models (TIN). The 3D dense point cloud of the study site draped with aerial photos is displayed

in the Figure 8. And the 3D TIN of the study site is illustrated in Figure 9.

Figure 8. 3D dense point cloud of the study site

Figure 9. 3D Polygonal mesh of the study site

12

Based on the 3D dense point cloud and Polygonal mesh, the software can generate a
mosaicked orthophoto as the texture for the 3D canopy model, as shown in Figure 10.

Generate Digital Elevation Model (DSM). The DSM in Figure 11 can be generated
based on the dense cloud or mesh model. During DSM generation progress, the coordinate
system should be specified in accordance with the system used for the model referencing.

The DSM must be export to the Geotiff format in order to be used in other software. The
Geotiff format is a metadata standard that allows geographic information embedded in TIFF
files. The information includes map projections, coordinate systems, ellipsoids, and datum.
GeoTIFF format is fully compliant with TIFF 6.0, so the GeoTIFF format files can still be
opened by the software which is not able to read and interpret specialized metadata. The

exported Geotiff image is displayed as in the Figure 12.

Figure 10. Texture or orthophoto of the study site.

13

There are several ways to visualize the DSM generated from PhotoScan. In this study, I
use ArcScene 10.4 to display a 3D visualization scene when setting a base height of the image on
the surface model. And then an image segmentation method can be used to recognize and

classify individual trees effectively (Figure 13).

Model Ortho [E]

425n1l

390 m

356 m

195m

Figure 11. DSM generated from dense cloud. Resolution is 15.1 cm/pix, and Point density is 44
points/m?.

The Appendix A shows all the processing parameters of the photogrammetric software. It

included the point clouds, DSM and reconstruction parameters.

14

Figure 12. The exported DSM to geotiff format

Figure 13. 3D visualization of DSM

15

Image Segmentation and Classification

I decide to use Python as the programming language for image processing and
segmentation. As an open source package, it allow users to different image processing modules,
and supported by numerical and scientific libraries and code optimization toolboxes (Caeiro et
al., 2014).

Python version 3.7 is the newest version which has been used in this research. Before
proceeding to the image processing stages, the required libraries have been successfully installed
such as gdal, numpy, matplotlib, pillow and some supporting modules such as ImagePy, Scikit-
image and OpenCV.

Libraries Installation. The first step in image processing is how the system and
programming software can read DSM’s digital format. scikit-image which is a library module
includes image processing features as important as the filters, the processing algorithm image
segmentation; rasterio a library module for the purpose of processing the image dataset in the
form of numbers, the one-dimensional array, two-dimensional or multidimensional. With
powerful capabilities of an open-source software, users can gain access to a massive treasure
shared library for free. Here, the modules and libraries like GDAL (Geospatial Data Abstraction
Library) (GDAL Development Team, 2018) version 2.2.4, OpenCV, numPy, Scikit-image,
RasterlO has been installed.

The modules GDAL, OpenCV and Scikit-Image shall help the researcher by reading the
DSM image into the memory as a floating-point array, then they can process the data as numeric
data and after that display the results as images. With the numeric data, the researcher can apply

different image filtering by using filtering modules which are integrated in OpenCV and Scikit-

16

image in order to get better result when applying different filtering methods to segment the
image and then find locations of trees.

Image Segmentation and Classification. The image segmentation is an important topic
in computer vision and image processing field. Image segmentation is the process of image
processing by dividing the image into the small objects similar to a set of local pixel
representation. The goal of segmentation is to simplify and separate the image into a number of
objects which are more meaningful and easier to identify comparing to the real world (Sonka et
al., 1999).

In the past, there were some researches have been done before with several methods for
tree detection and segmentation. In case there is no overlapping parts of trees on the image or
canopy surface model, trees are separable by thresholding. This algorithm is convenient and
efficient to segment objects in an image or DSM. According to those researches, obtaining
individual tree information requires that trees are able to be visually delineated in the remotely
sensed data (Strimbus, 2015). Most of those methods have used object-oriented image analysis
methods such as image segmentation (Laliberte et al., 2004; Laliberte et al., 2007), multi-
resolution segmentation, feature extraction, object identification like Spatial Wavelet Analysis
(SWA) (Falkowski et al., 2006) and object-oriented classification.

However, among these studies, the image data is used primarily obtained from LiDAR.
For example, the height of the coniferous trees and crowns diameter can be estimated through
two-dimensional spatial wavelet approach for LIDAR (Falkowski et al., 2006). And single-tree
identification is also realized for LiDAR data to simulate the annually increase of current stem
volume (Bottai et al., 2013). A segmentation based on graph is developed to extract trees from

airborne LiDAR data (Strimbus, 2015). And a method to determine the location of each tree is

17

developed by using local maximum detection (Pouliot et al., 2002). Alternatively, I develop a
method to extract each tree from the photogrammetry-based DSM in this study.

Moreover, in practice there are many instances where the same objection on the surface
convex, concave or overlap, not separately such as the digital surface images of vegetation areas.
In these cases, the thresholding and contour detection algorithm may not work accurately then
the other image segmentation algorithms will be applied together.

The watershed segmentation is chosen as the foundation of this algorithm. The watershed
segmentation will detect all local minima on the DSM, which sometimes generates an
overwhelming number of small segments (Zhao and Popescu, 2007). However, this algorithm is
successfully applied for Developing Efficient Procedures for Automated Sinkhole Extraction
from Lidar DEMs (Miao et al., 2013), where the DEMs shown the sinkholes as concave areas.
Furthermore, some other methods like hierarchical watershed transform (HWT) algorithm to
segment the canopy height model (CHM) which is obtained by examining the “dynamic”
properties of local maxima (Zhao and Popescu, 2007).

In this study, the watershed segmentation has been applied assuming the 3D canopy
model is an upside-down watershed. The detection of local maxima has been chosen instead of
local minima. The canopy height model (CHM), in theory can be identified by determining the
difference between DSM and bare ground digital terrain model (DTM):

CHM =DSM - DTM

However, in this study, the DTM data of the study site has not been found, therefore, the
DTM is assumed to be a relatively flat surface with the average altitude is zero, or in this case the
CHM is equivalent to the DSM. From now on in this study, the DSM will be used as the CHM in

every process related to the canopy height. Figure 14 shows the CHM of the study site.

18

The watershed segmentation algorithm has been studied for transformation and rewritten
in the Python programming language, which will instructs the computer to read all the pixel
values (in essence, the altitude values) as ndarray package (Hoyer and Hamman, 2017) that can
read them uses rasterio (Gillies et al., 2013). It will provide multidimensional arrays and datasets
with metadata (Annala, 2018) and then merge them together according to the segmentation to
determine positive areas that identify individual tree. In Python, the Scikit-image (van der Walt.,
2014; Pereira et al., 2015), GDAL and OpenCV are used for processing numeric data contained
in the DSM raster (Pedregosa ef al., 2011).

In this study, the watershed segmentation algorithm has been applied with two different

filtering techniques, i.e. mean shift filter with adaptive thresholding and Gaussian filter.

420
410
400
390
380
370

360

Figure 14. Canopy height model of the study site

19

Watershed Segmentation with Mean Shift Filtering and Adaptive Thresholding. In the

method which using mean shift filter and adaptive thresholding, the DSM image has been
imported by using reading function of OpenCV. It will return the DSM image as a numpy array.
After imported, due to the limitation of the filter which only support 8-bit imagery, the imported
DSM image has been converted to 8-bit image by using gdal.translate function.

The mean shift filtering algorithm is a data clustering algorithm that is commonly used in
the computer vision and image processing. One of the interesting properties of this filter is that it
can largely preserve the edges so as to enhance the image segmentation.

Syntax:
cv2.pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevell,

termcrit]]])

where src is source image (8-bit only), sp is the spatial window radius, sr is the color window

radius, maxLevel is the maximum level of the pyramid for the segmentation and termcrit is
termination criteria when stop meanshift iterations.

At each pixel (X, Y) of the input image, the function performed iterations mean, mean
neighborhood pixel (X, Y) in space common space to be considered:

x,y): X—sp <x<X+spY-sp<y<Y+sp

In the surrounding area of the average value of space (X', Y') and average vector is
found, and it act as neighborhood centers on the next iteration:

XY)2X,Y)

After repetition, the value of the original pixels which are the points from where the
repetition started, are set to the last values. Whenever maxLevel > 0, firstly gaussian pyramids of

varying maxLevel + 1 was built and on the process to be run on smallest layer. Then, the results

20

are transmitted to the larger layer and the repetitions are only running back on the pixels in
which the color of different layers more than s compared with lower resolution layer of the
pyramid. That makes the boundary of the region. Note that the result would be different than the
results obtained by running the mean shift procedure on the entire original image (i.e. when
maxLevel == 0) (“OpenCV development team”, n.d.).

In the next step, the approximate estimate of the trees can be found by using image
binarization of adaptive Image thresholding algorithm (Yousefi, 2011). Aiming to smoothen
image before applying thresholding, the mean-shift filter has been applied and the original image
has been converted into grayscale.

Using the adaptive thresholding in Python, the code would be defined as in the following:

1. gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
2. thresholding = cv2.threshold(gray, 255,
cv2.ADAPTIVE_THRES_MEAN_C,cv2.THRESH_BINARY,25, 5)

3. cv2.imshow("Thresholding", thresholding)

Then, in the Figure 15, viewers can see the result of the adaptive thresholding
application.

For segmentation of trees in a digital surface model image, the watershed algorithm will
be applied by computing the Euclidean Transform Distance to the closest zero (usually
background pixel’s value) for each of the foreground pixels by using:

Distance = ndimage.distance transform_edt(thresh)

After that, finding the local maxima (when using this algorithm for extracting the trees,
the local maxima will be used instead of local minima as in watershed) by using function
peak local max() which has been integrated in the module scikit-image.

Syntax:

21

skimage.feature.peak local max(image, min distance=I,
threshold abs=None, threshold rel=None, exclude border=True,
indices=True, num peaks=inf, footprint=None, labels=None,
num peaks per label=inf)

The peak local max routine will find peaks in an image and render output as coordinate
list or boolean mask. Those peaks are understood as the local maxima in a region of
2*min_distance+1 (in this case, it is considered that those peaks are separated by at least

min_distance. In case multiple local maxima are found with identical pixels within the defined

region, the output will return all coordinates of those pixels.

N Threshold

Figure 15. Result of thresholding

On the other hand, in case providing the minimum intensity of peaks, the maximum of

the two is chosen as the minimum intensity threshold of them (“Scikit-image development

22

team”, n.d.). The local maxima can be found on the Canopy Height Model (CHM) where the

local maxima is considered equivalent to the top of the tree (Figure 17).

localMax = peak_local max(image, indices=False, min_distance=10, labels=thres

holding)

Then apply the watershed function:
Markers = cv.watershed (image, markers)
where image 1s used as input array and markers is used as output array. The code for applying

watershed segmentation algorithm:

1. Dist = ndimage.distance_transform_edt(thresh)

2. localMax = peak_local max(image, indices=False, min_distance=10, labels=thres
holding)

3. markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]

4. labels = watershed(Dist, markers, mask=thresh)

Then the watershed function will return the result as an array which has the same
dimension of the original image and each pixel has a unique value. It will be known as the pixel
which has the same value will be in the same object.

Finally, given the contour of the objects by drawing a boundary surrounding each object
which has been identified before and display them on to output screen as shown in Figure 16. In
order to visualize those detected objects, a loop over unique values procedure is being done by
for-loop function. The complete code of Python programming of this method is shown in

Appendix B.

23

Figure 16. Result of segmentation when using mean shift filtering

Watershed Segmentation with Gaussian Filtering. The remaining method of image

filtering is to apply Gaussian filter before handling the watershed segmentation procedure.
During the study period, I found that the identification of the point with maximum height of each
zone will be affected to the accuracy level when the computer even has recognized the low shrub
instead of only high trees. Therefore, surface smoothing help researcher eliminate this point.

In order to get the best result, the parameters of the Gaussian filter are adjusted gradually
until the results are close to the reality while visually compared with the original aerial
photographs taken at the study site.

Gaussian filtering basically is a kernel defined as

_x2+y?
e 202

Gip(x; v, 0)=
(x; ¥, 0) Py

24

where x, y is the distance from the original point in the horizontal and vertical axis respectively
and o is the standard deviation of the Gaussian distribution. When applied this formula in two
dimensions, it creates a surface that contours are concentric circles with Gaussian distribution
from the center point. The value of this distribution is used to build convolution matrix is applied
to the original image (Shapiro, L. G. and Stockman, G. C., 2000).

The new value of each pixel is set to weighted average number of pixels of that
neighborhood. The original pixel values received the heaviest weight (Gaussian highest value)
and the neighboring pixels get smaller weights. By this way, it will smooth out many
unnecessary local variations on the CHM, so that larger tree’s boundaries will be enhanced.

Syntax:

scipy.ndimage.gaussian filter (input, sigma, order=0, output=None,
mode="reflect', cval=0.0, truncate=4.0)
where input is the array file which was imported by using rasterio and the important sigma
parameter which decide the smoothness of filtering process. After applying the Gaussian filter
and peak local maxima process, the result has been shown in the Figure 17.

After that, apply the same procedures of the watershed segmentation to get the image to
be segmented. The result of image segmentation in case of using Gaussian filter was displayed as
an image in Figure 18 and scattered as 3D model in Figure 19a. By visually examining with the
help of original aerial photos and mosaicked orthophotos, the tree extracted from Gaussian-based
watershed segmentation is significantly more accurate comparing to mean-shift filtering

watershed segmentation. The Appendix C included all the codes of this method.

25

H Figure 3

Original Peak local max

& €| +/Q|=]

Figure 17. Result of local maxima classification after applying Gaussian filter

Figure 18. Image segmentation result

26

The tree height is calculated based on the tree distribution from Gaussian watershed

segmentation. The top of trees are considered as the local maxima which have been found, the

coordinates of those local maxima points are extracted through peak local max function. By

using the value of these coordinates, the pixel value on the original DSM are extracted. Since

there is no database about the DTM, level ground is assumed, and the tree height results are

obtained by subtracting the ground elevation values from DSM values. The result can be seen in

Figure 19b. The code of this method is in the Appendix D.

3000

€2 +Ql=

= 100091 | y=41373 | =d25.002

€3 #Q=

x=AT2068 | y=TE0T2 | 2=556.512

Figure 19. a. 3D model of local maxima; b. 3D model of trees height

27

RESULTS AND DISCUSSION

Based on the results obtained from the two cases have applied different filters which are
mean-shift filter and Gaussian filter, the results obtained have been listed in Table 2. The
Gaussian filter is more effective and accurate than mean-shift filter in identifying trees by
visually examining the results with aerial photos, mosaiced orthophoto and ground reference data

(Figure 20, 21).

Table 2. Segmentation results

Number of segments (trees) recognized

Method Number
With mean-shift filtering 1676
With Gaussian filtering 775

There are several limitations of applying DSM watershed segmentation algorithm. The
main challenge lies in that it is difficult to determine the true points of local maxima. DSM is not
precise enough to separated clearly between neighboring trees if the canopy is dense. When two
or more trees are too close the algorithm can only identify one tree (Figure 22A). Sometimes in
the same tree there are two widespread branches with different heights, the algorithm can

mistakenly identify two individual trees (Figure 22C).

28

A B

Figure 20. Results from two pre-processing filters
A. Mean shift filter B. Gaussian filter

420
410
400
390
380
370

360

A B

Figure 21. Result when applying mean shift filter (A); and the Canopy Height model (B)

29

LOCAL MAXIMA

DIGITAL SURFACE MODEL {DSM LOCAL MAKX A

DIGITAL SURFACE MODEL {DSM

A \Dlerr.:._ ELEVATION MODEL (DEM 5 \
DIGITAL ELEVATION MODEL (DEM

LOCAL MAIMA

DIGITAL SURFACE MODEL (DS

D \BIEITAL ELEVATION MODEL {DEM;

LOCAL MAKIMA

DIGITAL SURFACE MODEL (DS

\BIEITAL ELEVATION MODEL (DEM;

Figure 22. A — Two plants too close then only one being recognized; B — Three separately plants
then they can be recognized accurately; C — One tree but with two different widespread elevation
then to be recognized as two; D — Two individual plants then they can be recognized accurately.

30

In order to provide an accuracy statistic about the segmentation results, the Root Mean
Square Error (RMSE) statistic method is implemented. Because of the actual quantity of trees on
the study site is not provided and cannot be counted at the site, there are thirty individual trees
has been chosen on the DSM to perform the statistic base on the pixel values on the images.

The Root Mean Square Error is calculated by:

1 2
RMSE = \/; lev(ho(x,y) - h(x.y))

Where:

e N is the sample size, N = 30

e ho,y)is the pixel value on the DSM

e hy)is the pixel value with the coordinates (x,y) on the filtered image

Figure 23 is the error graph of the Sum of Square Error and the RMSE result is shown in
the Table 3. They show that the mean-shift filter image has a large deviation from the DSM

when the Gaussian filter image has a low deviation from the DSM. This proves that the

segmentation result using mean-shift filter has larger error, quite similar to the result which is

shown in the images.

Mean-shift, sum of square error Gaussian, sum of square error
100000 6000
4000 1
50000
2000 1
@ w
= =
]] e foecestes o eee e eee ese| s
> 0 emasf [- ez ewE ;..-.l .[-i .} > 0 - e o .
T T
E= =
a a
—2000 -
—50000
—4000 -
—100000 4 —6000 1
T T T T T T T T T T T T T T
o 5 10 15 20 25 30 o 5 10 15 20 25 30
Point Point
|| Mo
#® €[> #Q=

Figure 23. Sum of Square Error graph

31

Table 3. RMSE result of the selected trees

Sum of Square Error

Point X Y SSE Mean-shift SSE Gaussian

1 4400 2749 16.6726 0.1863
2 3510 5096 987.2629 0.0014
3 4119 2349 0.000 0.1983
4 3807 2660 3,897.8307 1,240.3818
5 4505 3032 1,460.4981 0.0002
6 5440 4650 44,035.4136 0.1755
7 6094 5007 109,814.5252 0.0050
8 2961 2794 9,394.1762 0.0046
9 2931 4739 96.9264 0.0061
10 4549 5868 72,602.2781 0.0000
11 3391 2289 0.000 0.000
12 4386 3284 2,042.9759 0.0001
13 3575 2066 0.000 0.000
14 4169 3299 1,835.8797 9.4503
15 5431 4650 48,996.3565 1.1732
16 5416 5066 2,966.8317 2.8147
17 3382 2274 0.000 0.000
18 3486 1963 0.000 0.000
19 4303 3121 489.4793 0.0085
20 3456 1859 0.000 0.000
21 5416 4234 17,537.2958 17.5914
22 5075 4116 72,653.7790 0.0054
23 5550 4012 69,024.2689 0.0006
24 3219 1695 0.000 0.000
25 4778 3596 5,058.9543 36.3215
26 3486 4041 8.7788 0.2045
27 3560 2779 2,168.9752 0.0008
28 5194 4368 85,534.7314 3.5016
29 2951 2482 0.000 6,824.5219
30 2951 2601 10,770.3037 0.0003
Root Mean Square Error of Mean-Shift filter: 136.79598
Root Mean Square Error of Gaussian filter: 16.46871

32

CONCLUSIONS

The motivation of the study is to reconstruct 3D digital surface model from the captured
images from unmanned aerial system through photogrammetry, and then extract individual trees
through image segmentation approach. As a modern photogrammetric software, Agisoft
PhotoScan is provide an excellent result by identifying tie points efficiently, and further generate
dense point clouds and DSM. The result of 3D image reconstruction is evaluated as successful
when the 3D scene of the study site has been reconstructed comparing to GCPs.

The watershed segmentation is tested with mean-shift filter and Gaussian filters to extract
individual trees from the derived DSM. Watershed segmentation algorithm has simplified
memory access, least computational complexity and good segmentation results compared to the
other image segmentation algorithms. Segmentation results are visually acceptable when using
Gaussian filter. However, the performance of the mean-shift filter is not satisfactory.

There is still an over-segmentation phenomenon after the pre-processing and
segmentation steps, and hence a post processing step is necessary to remove the over-
segmentations. The implemented watershed segmentation algorithm has the potential to use for
different studies on monitoring various types of natural and agricultural vegetation area when
using the data from aerial photos, which is much easier and cheaper than using the data from
LiDAR technology.

In this study, due to conditions and limitations which were not allowing to involve in
measurement at the study site, inspection and measurement on the images collected, so this study
cannot provide more detailed accuracy assessment in terms of tree counting. However, the

method and open-source Python codes provided in the study shows the potential to accelerate the

33

time-consuming labor work and will benefit scientists in surveying and monitoring the growth

rate of the woodland or forests.

34

REFERENCES

AgiSoft, 2017. PhotoScan Professional (Software). Available at
http://www.agisoft.com/downloads/installer/

Annala, L., M. Eskelinen, J. Himéldinen, A. Rithinen, and I. P6l6nen, 2018. Practical approach
for hyperspectral image processing in Python. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3, pp.45-52.

Bertram, T., T. Bock, A. Bulgakov, and A. Evgenov, 2014. Generation the 3D Model Building
by Using the Quadcopter. Proceedings of the 31st International Symposium on
Automation and Robotics in Construction and Mining (ISARC).

Bottai, L., L. Arcidiaco, M. Chiesi, F. Maselli, 2013. Application of a single-tree identification
algorithm to LiDAR data for the simulation of stem volume current annual increment - J.
Appl. Remote Sens., 7, p. 073699

Caeiro, J., M. Piedade, and E. Ataide, 2014. Image Processing and a Python-GIMP Based
Algorithm Development Environment.

Falkowski, M.J., A.M.S. Smith, A.T. Hudak, P.E. Gessler, L.A. Vierling, and N.L. Crookston,
2006. Automated estimation of individual conifer tree height and crown diameter via

two-dimensional spatial wavelet analysis of LIDAR data. Canadian Journal of Remote
sensing. 32(2):153-161.

GDAL Development Team, 2018. Gdal - geospatial data abstraction library, version 2.2.3.
Official website: http://www.gdal.org

Gillies, S. ef al.., 2013—. Rasterio: geospatial raster /o for Python programmers. Source code
available at https://github.com/mapbox/rasterio.

Gupta, S. and D. Shukla, 2018. Application of drone for landslide mapping, dimension
estimation and its 3D reconstruction. Journal of the Indian Society of Remote Sensing.

Hoyer, S. and J. Hamman, 2017. Xarray: N-D labeled arrays and datasets in Python. Journal of
Open Research Software. Source code available at https://github.com/pydata/xarray.

Iovan, C., D. Boldo, and M. Cord, 2008. Detection, segmentation and characterization of
vegetation in high-resolution aerial images for 3D city modelling, The International

Archives of the Photogrammetry, Remote sensing and Spatial information Science. Vol.
XXXVII. Part B2a, Beijing.

35

Kim, C., H. Moon, and W. Lee, 2016. Data management framework of drone-based 3D model
reconstruction of disaster site. ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLI-B4, pp.31-33.

Laliberte, A.S., A. Rango, K.M. Havstad, J.F. Paris, R.F. Beck, R. McNeely, and A.L. Gonzalez,
2004. Object-oriented image analysis for mapping shrub encroachment from 1937 to
2003 in Southern New Mexico, Remote sensing of Environment, 93(1-2):198-210.

Laliberte, A.S., E.L. Fredrickson, and A. Rango, 2007. Combining decision trees with
hierarchical objecto-oriented image analysis for mapping arid rangelands.
Photogrammetric Engineering and Remote sensing, 73(2):197-207.

Miao, X., X. Qiu, S. Wu, J. Luo, D. R. Gouzie, and H. Xie, 2013. Developing Efficient
Procedures for Automated Sinkhole Extraction from Lidar DSMs. Photogrammetric
Engineering & Remote Sensing, 79(6), 545-554. doi:10.14358/pers.79.6.545

OpenCV development team. (n.d.). Retrieved from https://docs.opencv.org/3.0-
beta/modules/imgproc/doc/filtering.html

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay, 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, pp. 2825-2830.

Pereira, P. J., H. Weinacker, B. Koch, and M. B. Schimalski, 2015. Scikit-image for trees local
maxima detection.

Pouliot, D.A., D.J. King, F.W. Bell, and D.G. Pitt, 2002. Automated tree crown detection and
delineation in high-resolution digital camera imagery of coniferous forest regeneration.
Remote Sens. Environ. 82,322-334.

Scikit-image development team (n.d.). Retrieved from https://scikit-
image.org/docs/dev/api/skimage.feature.html#skimage.feature.peak local max

Sebesta R. W., 2002. Concepts of Programming Languages. Sth Edition, Addison-Wesley.
Shapiro, L. G. and G. C. Stockman, 2000. Computer Vision, page 137, 150. Prentice Hall.

Sonka M., V. Hlavac, and R. Boyle, 1993. Image Processing, Analysis, and Machine Vision.
PWS Publishing.

Strimbu, V. F., and M. B. Strimbu, 2015. A graph-based segmentation algorithm for tree crown
extraction using airborne LiDAR data - ISPRS Journal of Photogrammetry and Remote
Sensing, ISSN: 0924-2716, Vol: 104, Page: 30-43

36

The Scipy community (n.d.). Retrieved from
https://scipy.github.io/devdocs/generated/scipy.ndimage.gaussian_filter.html#scipy.ndim
age.gaussian_filter

van der Walt, S., J. L. Sch”onberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E.
Gouillart, T. Yu, and the scikitimage contributors, 2014. Scikit-image. image processing
in Python. Peer] 2, pp. e453. Source code available at https://github.com/scikit-
image/scikit-image.

Yousefi, J., 2011. Image Binarization using Otsu Thresholding Algorithm, University of Guelph,
Ontario, Canada

Zhao, K., and S. Popescu, 2007. Hierarchical watershed segmentation of canopy height model

for multi-scale forest inventory, Proceedings of the ISPRS Workshop on Laser Scanning
2007 and SilviLaser 2007, 12-14 September, Espoo, Finland, pp.436—441.

37

APPENDICES

Appendix A. Processing Parameters
General
Cameras 85
Aligned cameras 85
Markers 5
Coordinate system WGS 84 / UTM zone 15N (EPSG::32615)
Point Cloud
Points 82,777 of 89,122
RMS reprojection error 0.263878 (1.15117 pix)
Max reprojection error 3.58127 (53.9042 pix)
Mean key point size 4.2145 pix
Effective overlap 2.99841
Alignment parameters
Accuracy High
Pair preselection Generic
Key point limit 40,000
Tie point limit 4,000
Constrain features by mask No
Adaptive camera model fitting Yes
Matching time 8 minutes 55 seconds

Alignment time 1 minutes 27 seconds

38

Optimization parameters

Parameters f, bl, k1, k2, p1, p2

Optimization time 6 seconds

Depth Maps

Count 85

Reconstruction parameters

Quality Medium

Filtering mode Moderate

Processing time 10 minutes 19 seconds

Dense Point Cloud

Points 22,528,566

Reconstruction parameters

Quality Medium

Depth filtering Moderate

Depth maps generation time 10 minutes 19 seconds
Dense cloud generation time 7 minutes 36 seconds
DEM

Size 8,185 x 8,176

Coordinate system WGS 84 / UTM zone 15N (EPSG::32615)
Reconstruction parameters

Source data Dense cloud

Interpolation Enabled

Processing time 3 minutes 21 seconds

39

Software

Version 1.2.6 build 2834

Platform Windows 64 bit

Appendix B. Source code with mean-shift filtering

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

from skimage.feature import peak_local_max

from skimage.morphology import watershed

from scipy import ndimage

import cv2

from osgeo import gdal

import numpy as np

from skimage.feature import peak_local_max

from scipy.ndimage import gaussian_filter, distance_transform_edt
import matplotlib.pyplot as plt

import imutils

from skimage import data

image = cv2.imread('C:/Users/Duong Ha Hai/Documents/All in US/MSU/Thesis
/Python code/thesis new8bit.tif'")

shifted = cv2.pyrMeanShiftFiltering(image, 2, 20) #/Support 8-

bit only

img = cv2.resize(image, (600, 600))

cv2.imshow('Input', img)

sht = cv2.resize(shifted, (600, 600))

cv2.imshow('Shifted', sht)

print('Shift ', shifted.dtype)

40

20.

21.

22

23.

24,

25

26.

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43,

44,

gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)

cv2.THRESH_BINARY, 25, 5)

thr = cv2.resize(thresh, (600, 600))

cv2.imshow(' Threshold', thr)

print(Dist.shape)

ds = cv2.resize(Dist, (600, 600))

cv2.imshow('EDT', ds)

localMax = peak_local max(Dist, indices=False, labels=thresh)

coordinates = peak_local_max(image, min_distance=3)

print(coordinates)

markers = ndimage.label(localMax)[0]
labels = watershed(Dist, markers, mask=thresh)

print("[INFO] {} unique segments found".format(len(np.unique(labels))-

1))

.thresh = cv2. adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,

.print('Thres ', thresh.dtype)

.Dist = distance_transform_edt(thresh)

for label in np.unique(labels):

continue

mask = np.zeros(gray.shape, dtype="uint8")

mask[labels == label]

255

41

45. contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAI

N_APPROX_SIMPLE)[-2]

46. circle = max(contours, key=cv2.contourArea)

47. ((x, y), r) = cv2.minEnclosingCircle(circle)

48. cv2.circle(image, (int(x), int(y)), int(r), (@, 255, 9), 2)

49, cv2.putText(image, "+", (int(x) - 10, int(y)), cv2.FONT_HERSHEY_COMP

LEX, 0.6, (@, @, 255), 2)

50.

51.fig, ax = plt.subplots(figsize = (8,8))

52.ax.imshow(image, cmap=plt.cm.gray)

53. ax.autoscale(False)

54.ax.plot(labels[:, 1], labels[:, @], 'o', markersize=7, markeredgewidth=1,
markeredgecolor="r"', markerfacecolor="'None")

55.ax.set_title('Tree segmented')

56.ax.set_axis_off()

57.

58. plt.show()

Appendix C. Source code with Gaussian filtering

1. from _ future__ import print_function

2. from skimage.feature import peak_local_max
3. from skimage.morphology import watershed
4. from scipy import ndimage

5. from skimage import img_as_float

6. import rasterio

7. from rasterio.plot import plotting_extent

42

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34

from osgeo import gdal

import numpy as np

import cv2

import matplotlib.pyplot as plt

from scipy.ndimage import gaussian_filter, median_filter

import imutils

with rasterio.open('C:/Users/Duong Ha Hai/Documents/All in US/MSU/Thesis

/Python code/Thesis.tif') as dsm:

dsm_im = dsm.read(1, masked=True)

bounds

plotting_extent(dsm)

im_gaus = gaussian_filter(dsm_im, sigma=13.5)

fig, ax

plt.subplots(figsize = (8,8))

dsm_plot = ax.imshow(dsm_im, cmap="'plasma"')

fig.colorbar(dsm_plot, fraction=.023, ax=ax)

ax

ax

thresh = cv2.threshold(im_gaus, ©, 255, cv2.THRESH _BINARY)[1]

.set_title("Canopy Height Model - CHM")

.set_axis_off()

fig, ax = plt.subplots(figsize = (8,8))

ax

ax

ax

ax

.imshow(thresh, cmap=plt.cm.gray)
.autoscale(False)
.set_title('Thresh")

.set_axis_off()

.Dist = ndimage.distance_transform_edt(im_gaus)

43

35.

36.

37

38.

39

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

530

54.

localMax = peak_local_max(im_gaus, min_distance=3, indices=False)

. markers = ndimage.label(localMax)[Q]

labels = watershed(Dist, markers, mask=dsm_im)

.numbers = len(np.unique(labels))

print('Numbers of detected trees = ', numbers)
fig, ax = plt.subplots(figsize = (8,8))
ax.imshow(dsm_im, cmap=plt.cm.gray)
ax.autoscale(True)
ax.set_title('Tree top')
ax.set_axis_off()
for label in np.unique(labels):

if label == 0:

continue

mask = np.zeros(dsm_im.shape, dtype="uint8")

mask[labels == label] = 255

contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.

CHAIN_APPROX_SIMPLE)[-2]

circle = max(contours, key=cv2.contourArea)

((x, ¥), r) = cv2.minEnclosingCircle(circle)
cv2.circle(dsm_im, (int(x), int(y)), int(r), (@, 255, @), 2)
ax.plot((int(x), int(y)),'o", markersize=int(r), markeredgewidth

=1, markeredgecolor="r"', markerfacecolor="None")

44

Appendix D. Source code of tree height calculation

23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

24.

import gdal

import numpy as np

import scipy

import scipy.ndimage as ndimage

from osgeo import gdal

import rasterio

from scipy.ndimage import gaussian_filter, median_filter

from skimage.feature import peak_local_max

with rasterio.open('C:/Users/Duong Ha Hai/Documents/All in US/MSU/Thesis
/Python code/thesis.tif', 'r') as ds:

arr = ds.read(1, masked=True) # read all raster values
with rasterio.open('C:/Users/Duong Ha Hai/Documents/All in US/MSU/Thesis
/Python code/thesis.tif', 'r') as img:

h = img.read() # read all raster values

im_gaus = gaussian_filter(arr, sigma=13.5)

coordinates = peak_local_max(im_gaus, min_distance=3)

X =0

X

[]

for i in range(9,coordinates.shape[0]):
x = coordinates[i,Q]

X.append(x)

. print(X)

45

25.print ("++++")

26.

27.y = 0

28.Y = []

29.for i in range(9,coordinates.shape[0]):
30. y = coordinates[i,1]

31. Y.append(y)

32.

33.z2 = 0

34.Z =[]

35.m = 0

36.n = 0

37.for i in range (0,len(X)):

38. m= X[i]

39. n = Y[i]

40. z = h[o,m,n]

41. Z.append(z)

42.

43.print('The tree is respectively with coordinates: ')
44.7i = np.zeros(len(X))

45.dx = np.ones(len(X))

46.dy = np.ones(len(Y))

47.dz = Z

48. fig = plt.figure()

49. ax = Axes3D(fig)

50. ax.bar3d(X,Y,Zi, dx, dy, dz, color='r',zsort="max")
51. ax.scatter3D(X,Y,Z,c=Z,cmap=plt.cm.jet)
52. plt.show()

46

	3d Canopy Model Reconstruction from Unmanned Aerial System and Automated Single Tree Extraction
	Recommended Citation

	Microsoft Word - Hai Duong - Thesis Template 2018-2019(1) - Final draft - revised 2.docx

