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Abstract: A model for the transmission dynamics of Ebola virus in a multipatch network setting is studied.
The model considers the contribution to the dynamics by people who are susceptible, infectious, isolated,
deceased but still infectious and not yet buried, as well as the dynamics of the pathogen at interacting nodes
or patches. Humans canmove between patches carrying the disease to any patch in a region of n communities
(patches). Both direct and indirect transmission are accounted for in this model. Matrix and graph-theoretic
methods and somecombinatorial identities are used to construct appropriate Lyapunov functions to establish
global stability results for both the disease-free and the endemic equilibrium of the model. While the model
is focused on Ebola, it can be adapted to the study of other disease epidemics, including COVID-19, currently
a�ecting all countries in the world.

Keywords: Ebola virus, global stability, Lyapunov functions, viral infections
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1 Introduction

The Ebola Virus Disease (EVD) is a rare but deadly disease that has mostly a�ected countries in West Africa.
It is caused by an infection with a group of viruses within the genus Ebolavirus, with the most common one
being the Zaire ebolavirus (simply known as Ebola virus). According to the CDC - Center for Disease Control
[6], Ebola virus was �rst discovered in 1976 in the Democratic Republic of Congo (DRC), and since then it
has caused outbreaks in several African countries. The 2014-2016 Ebola outbreak is the largest and started in
Guinea. From there, it quickly spread to neighboring countries, especially Liberia and Sierra Leone, a�ecting
nearly 30,000 people and causing over 11,000 deaths. Themore recent outbreak inDRC in 2018 reached about
3,000 cases, causing about 2,000 deaths. The numbers of deaths and countries a�ected could probably have
been much higher if the virus had started in countries that are fully connected to the world due to global-
ization. The corona virus disease (COVID-19), currently causing an unprecedented pandemic, illustrates the
importance of understanding the dynamics of a disease in an interconnected world (through a multipatch
model). The model studied here can be adapted to the dynamics of COVID-19 and other disease epidemics.

Ebola transmission can be direct (person-to-person) or indirect (person-environment-person). One must re-
mark that infected people who have been isolated can also transmit the disease. Due to funeral practices,
deceased people can also transmit the disease before they are buried. Infected people shed the pathogen in
the environment by leaving behind clothes, bedding or other objects contaminated with their body �uids.

Most of the current mathematical models to study Ebola dynamics consider some combination of the fol-
lowing cases: only one community or a network of communities (the vast majority of them consider only
one community); human mobility in a 2 or a multi-patch model; direct or indirect transmission (the majority
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addressing only direct transmission); inclusion (or omission) of the dynamics of pathogen concentration at
each community [2, 5, 8, 10, 13, 18, 20].

Mathematicalmodels of various disease epidemics typically focus on estimating the basic reproduction num-
ber, as a �rst indicator or predictor of the conditions underwhich the diseasewill be endemic or die out. Then,
the goal is to establish local andglobal stability properties of the equilibriumpoints (steady states), andgiving
an insight on possiblemeasures to be taken to prevent or control the epidemics. See, e.g. [1, 3, 7, 14, 16, 19, 22].
For theoretical and numerical analyses related to chemotaxis models from mathematical biology described
by classical PDEs, we refer the reader to [15, 26].

One very important factor to consider in mathematical models of EVD and related diseases is the persistence
of human mobility through di�erent communities (patches or nodes) in the metacommunity. Local authori-
ties are typically forced to impose lock down and even curfew measures to dramatically slow down human
mobility and therefore the transmission of the disease (this is currently happening with the COVID-19 pan-
demic). Human mobility increases both direct (person-to-person) and indirect (exposure to contaminated
environment) transmission, and it could dramatically increase the rate of spread to the point of collapsing
existing health care infrastructure.

The mathematical model in this work considers a number n of communities (nodes or patches) connected
by a human mobility network, to account for the fact that people move from node to node unintentionally
carrying the disease or being exposed to it. Due to this mobility and connectivity in the network, both direct
and indirect transmission happen simultaneously and the spread of the disease crosses city and country
borders. The more connected a country is to the rest of the world (mostly because of globalization), the more
likely the disease will spread across countries, close or far from the country where the diseases �rst started.

In this kind of network connectivity models, the condition that one or more of the individual basic repro-
duction numbers R0i , i = 1, . . . , n is greater than one, is not su�cient nor necessary for an outbreak in the
metacommunity to occur, and the disease can start and spread even if the basic reproduction number of each
community is less than one [11].

In this article, we show that for the corresponding system of 5n di�erential equations, if the general basic
reproduction number R0 satis�es R0 ≤ 1, then the disease-free equilibrium point is globally stable, and oth-
erwise it loses stability, in which case an endemic equilibrium exists and is globally stable. These stability
properties are proved using matrix and graph-theoretic methods and some combinatorial identities intro-
duced in [17, 21].

2 The Model

One of the main assumptions in this model is that people can move between the n nodes in the metacom-
munity, possibly carrying the disease and spreading it by direct person-to-person contact or by shedding the
pathogen in the environment. This assumption is even more relevant in a pandemic case, as currently seen
with COVID-19. While direct transmission is the main concern, indirect transmission is also a very important
factor and it can happen by direct exposure to objects and the environment which have been contaminated
by people living in the community or by travelers coming from any other community in the region. It is then
important to consider the rate of change of pathogen concentration in the environment in each community.

In this model, we consider three groups of humans who can transmit the disease: Infected who are mostly
freely moving around communities, infected people who have been isolated into some health facility or their
own homes, and dead people who are still infectious but have not yet been buried due to funeral practices in
some regions in Africa. For these groups, we take care of assigning di�erent (direct) transmissibility rates as
well as di�erent rates at which they release the pathogen in the environment.
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Following an approach by [11], we assume that individuals leave their original community or node i with
probabilitymS for susceptibles andmI for infectives, reach their target node jwith a probability Qij and come
back to node i. Clearly, 0 ≤ mS ,mI , Qij ≤ 1. It is natural to assume that the graph Γ(Q) is strongly connected,
meaning that people can potentially move from any node to any other node in the network. Clearly, the ma-
trix Q describing the connections between communities is stochastic, with Qii = 0 for each i = 1, . . . , n.
A possible explicit de�nition of Q following a gravity model (relative attraction of communities - related to
population size and distance between communities) is given in [11].

We let Si , Ii , Ji , Di , Bi represent the population densities of susceptibles, infectious, isolated, deceased but
still infectious and not yet buried and pathogen concentration respectively at the i-th community, with i =
1, ..., n. Assuming all parameters to be positive, and all variables nonnegative, the corresponding system of
5n di�erential equations is:

S′i = Λi −
[
(1 − ms)αip(Ci) + ms

n∑
j=1

Qij αjp(Cj)
]
Si

−
[
(1 − ms)βig(Bi) + ms

n∑
j=1

Qijβjg(Bj)
]
Si− µSi

I′i = θ
[
(1− ms)αip(Ci) + ms

n∑
j=1

Qij αjp(Cj)
]
Si

+ θ
[
(1− ms)βig(Bi) + ms

n∑
j=1

Qijβj g(Bj)
]
Si − ϕi Ii

J′i = (1− θ)
[
(1− ms)αip(Ci) + ms

n∑
j=1

Qij αj p(Cj)
]
Si

+ (1− θ)
[
(1− ms)βig(Bi) + ms

n∑
j=1

Qijβjg(Bj)
]
Si− ϕ̃iJi

D′i = ξi Ii + ξ̃iJi − µDDi

B′i = ri
[
(1 − mI)Ii + λ̃Ji + λDi +

n∑
j=1

mIQji Ij
]
− µBBi ,

(2.1)

where Λi is the constant recruitment into the i-th community, the function p(Ci) is given by p(Ci) =
p(Ii , Ji , Di) = Ii + τ̃Ji + τDi

Hi and it represents the probability of direct transmission; τ̃ and τ represent the trans-
missibility of isolated and dead but not buried respectively to susceptible humans; Hi is a constant bound
on the total population in the i-th community (see below); αi is the rate of direct transmission in node i,
g(Bi) = Bi

K+Bi (where K is the half-saturation constant) is the probability of indirect transmission due to expo-
sure to pathogen Bi in node i; βi is the rate of exposure to contaminated environment; µ is the natural human
death rate; ϕi = γi + ξi + µ represent the rates of recovery, disease-induced and natural death respectively of
infectious humans in node i; similarly for ϕ̃i = γ̃i + ξ̃i + µ with respect to isolated humans; θ represents the
fraction of infectious humanswho are not isolated; ri is the rate atwhich pathogens are released by infectious
individuals in the environment, in node i, with λ̃ and λ representing the di�erent contributions between in-
fected humans; µB is the decay rate of Ebola virus in node i. For some appropriate values of these parameters,
see [2, 11].

Thus, according to model (2.1), susceptible individuals can get infected via direct or indirect transmission in
any given community (including their own) where people are infected or the environment is contaminated.
If infected, susceptible people move to infectious and not isolated or infectious but isolated stages, from
which they either recover or die of natural or induced-disease causes. Infected individuals are able to shed
pathogens in their own community or the one they visit.

Denoting Ni = Si + Ii + Ji , for i = 1, . . . , n, we get N ′i ≤ Λi − µNi, and using a di�erential inequality in [12],
one can show that Ni ≤

Λi
µ =: Hi. Using this in the equation for D′i in (2.1), we get D′i ≤ biHi − µDDi, where
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bi = max{ξi , ξ̃i}, and hence Di ≤
biHi
µD

=: Li. If we letMi = max
Ii, Ji∈[0, Hi ]
Di∈[0, Ri ]

ri[ (1 −mI)Ii + λ̃Ji + λDi +
n∑
j=1

mIQji Ij ], we

get B′i ≤ Mi − µBBi, and therefore Bi ≤
Mi
µB

. Thus, the feasible region for model (2.1) is:

Γ =
{
(S1, . . . , Sn , I1, . . . , In , J1, . . . Jn , D1, . . . , Dn , B1, . . . , Bn) ∈ R5n

+ : Ni ≤ Hi , Di ≤ Li , Bi ≤
Mi
µB

}
.

(2.2)

Observe that if we write system (2.1) as z′i = Fi(z), with i = 1, . . . , 5n, then zi = 0 clearly implies Fi(z) ≥ 0, and
hence the nonnegative cone (zi ≥ 0, i = 1, . . . , 5n) is invariant. This implies that the feasible region Γ in (2.2)
is compact and (positively) invariant.

System (2.1) has a unique disease-free equilibrium point (DFE):

E0 = (S0i , I0i , J0i , D0
i , B0i ) =

(
Λi
µ , 0, 0, 0, 0

)
∈ R5n

+ . (2.3)

The system also has an endemic equilibrium point, which will be discussed in Section 4.

3 Global Stability Analysis of the DFE
In this section we establish conditions for the epidemics to persist or die out. In addition to the role played
by the problem parameters and by the density of each population (people and pathogen), the mobility of
infected people throughout the network also plays a key role. We start by studying the stability properties of
the disease-free equilibrium (2.3).

For global stability analysis of the DFE, system (2.1) is written as a compartmental model; that is, we split the
variables into two compartments: a disease compartment x ∈ R4n and a nondisease compartment y ∈ Rn :

x = [ I1, . . . , In , J1, . . . Jn , D1, . . . Dn , B1, . . . , Bn ]T , and y = [ S1, . . . , Sn ].T

For i = 1, . . . , n, denote

Ri = (1− ms)αip(Ci) + ms

n∑
j=1

Qijαjp(Cj), Ti = (1 − ms)βig(Bi) + ms

n∑
j=1

Qijβjg(Bj),

and hi = ri
[
(1 − mI)Ii + λ̃Ji + λDi +

n∑
j=1

mIQji Ij
]
. Then, we let

F(x, y) =



θR1S1 + θT1S1
...

θRnSn + θTnSn
(1 − θ)R1S1 + (1 − θ)T1S1

...
(1 − θ)RnSn + (1 − θ)TnSn

ξ1I1 + ξ̃1J1
...

ξn In + ξ̃nJn
h1
...
hn



, V(x, y) =



ϕ1I1
...

ϕn In
ϕ̃1J1
...

ϕ̃nJn
µDD1

...
µDDn
µBB1

...
µBBn



.
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In general, one denotes by Fi the rate secondary infections increase the i-th disease compartment, and by
Vi the rate disease progression, death and recovery decrease the i-th compartment [25]. Also note that all
the conditions in [21] and [25]: Fi(0, y) = 0,Vi(0, y) = 0,Fi(x, y) ≥ 0,Vi(x, y) ≤ 0 whenever xi = 0, and∑

Vi(x, y) ≥ 0, for i = 1, ..., 4n hold.

With this notation, model (2.1) can be split into disease/nondisease systems:

x′ = F(x, y) − V(x, y), y′ = G(x, y), (3.1)

where the nondisease system y′ = G(x, y) is then de�ned by the �rst n di�erential equations S′i in (2.1).

Denote y0 = ( Λ1µ , · · · ,
Λn
µ ). Then, following [21, 24], we let

F =
[
∂Fi
∂xj

(0, y0)
]
, and V =

[
∂Vi
∂xj

(0, y0)
]
, 1 ≤ i, j ≤ 4n. (3.2)

Thus, the matrices F and V have the following form

F =


θE1 θE2 θE3 θE4

(1 − θ)E1 (1 − θ)E2 (1 − θ)E3 (1 − θ)E4
D D̃ 0 0
E5 λ̃I λI 0

 ,

V =


diag(ϕ1, . . . , ϕn)

diag(ϕ̃1, . . . , ϕ̃n)
µD I

µB I

 ,
where each Ei (i = 1, . . . , 5) is a positive, square matrix of order n, I represents the n × n identity matrix, and
D =diag(ξ1, . . . , ξn), D̃ =diag(ξ̃1, . . . , ξ̃n). Thus, we have that F ≥ 0, V is invertible, and also V−1 ≥ 0.

The basic reproduction number R0 of (2.1), de�ned as the expected number of secondary cases produced
by an infected individual in a completely susceptible population [9, 24], is the spectral radius ρ of the Next
Generation Matrix (NGM): R0 = ρ(FV−1). On the other hand, one can readily see that the matrix V−1F is
nonnegative and irreducible, guaranteeing that R0 is a positive eigenvalue of V−1F (and of FV−1) and that
there exists a positive left eigenvector ω of V−1F corresponding to R0 [4]. This eigenvector ω will be used in
the de�nition of a Lyapunov function below, which in turn is used to prove the following stability result.

Theorem 1. If R0 ≤ 1, then the disease-free equilibrium point E0 (2.3) is globally asymptotically stable (GAS)
in Γ.

Proof. Following the matrix-theoretic method in [21], we set

f (x, y) := (F − V)x − F(x, y) + V(x, y),
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which gives

f (x, y) =



θR1(S01 − S1) + θ[(1 − mS)β1B1(
S01
K −

S1
K+B1 ) + mS

n∑
j=1
Q1jβjBj(

S01
K −

S1
K+Bj )]

...

θRn(S0n − Sn) + θ[(1 − mS)βnBn(
S0n
K −

Sn
K+Bn ) + mS

n∑
j=1
QnjβjBj(

S0n
K −

Sn
K+Bj )]

(1 − θ)R1(S01 − S1) + (1 − θ)[(1 − mS)β1B1(
S01
K −

S1
K+B1 ) + mS

n∑
j=1
Q1jβjBj(

S01
K −

S1
K+Bj )]

...

(1 − θ)Rn(S0n − Sn) + (1 − θ)[(1 − mS)βnBn(
S0n
K −

Sn
K+Bn ) + mS

n∑
j=1
QnjβjBj(

S0n
K −

Sn
K+Bj )]

0
...
0



.

Observe that we have f (x, y) ≥ 0 and that f (0, y) = 0. Then, by applying Theorem 2.1 in [21], we see that

Q = ωTV−1x

is a Lyapunov function for (2.1) in Γ, when R0 ≤ 1.
To prove global stability, �rst consider R0 < 1. One can verify that the n-dimensional disease-free system
associated to (2.1) has the unique equilibrium point y0= ( Λ1µ , · · · ,

Λn
µ ), and that this equilibrium point is GAS

inRn+. One can also see that f (0, y0) = 0 in Γ. Then, applying the �rst part of Theorem 2.2 in [21], we conclude
that if R0 < 1, then the DFE (2.3) is GAS in Γ.
Now let R0 = 1. Observe that

Q′ = ωTV−1x′ = ωTV−1(F − V)x − ωTV−1f (x, y) = (R0 − 1)ωTx − ωTV−1f (x, y).

Then, Q′ = 0 implies f (x, y) = 0, as ω is strictly positive and all diagonal entries of V−1 are also strictly
positive. Then, we get Si = S0i and Bi = 0 = B0i , for i = 1, . . . , n – see notation in (2.3). One can show that the
remaining 3n-dimensional system in Ii , Ji and Di has the unique equilibrium (I0i , J0i , D0

i ) = (0, 0, 0) ∈ R3n,
and that this equilibrium is GAS in R3n

+ . But we already have Si = S0i and Bi = B0i ; thus, the largest and only
invariant set where Q′ = 0 is the DFE. Using LaSalle’s invariance principle, one concludes that the DFE (2.3)
is GAS in Γ, when R0 = 1.

Existence of an Endemic Equilibrium. In Theorem 1, we proved that if R0 ≤ 1, then the disease-free equi-
librium point (DFE) is globally asymptotically stable in the given feasible region Γ. When this condition is
reversed; that is, when we instead have R0 > 1, the DFE loses stability (see, e.g. Theorem 1 in [25]). As noted
in the proof of Theorem 2.2 in [21], this instability implies uniform persistence of (2.1), and by Theorem D.3 in
[23], the invariance of Γ and the uniform persistence imply the existence of an endemic equilibrium (EE). We
will denote this endemic equilibrium point of (2.1) as

E* := (S*i , I*i , J*i , D*i , B*i ) ∈ R5n
+ . (3.3)

In Theorem 3 below, we show that the condition R0 > 1 also implies that the EE is globally asymptotically
stable.

4 Global stability of endemic equilibrium

To study global stability of the EE (3.3), we use a graph-theoretic method as presented in [21]. First, we sum-
marize some basic terminology and results from [17, 21] on directed graphs, including a technique for the
construction of a Lyapunov function.
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A pair (i, j) is called an arc from vertex i to vertex j. Given a weighted digraph Γ(A) with p vertices, the p × p
weight matrix A is de�ned with aij > 0 equal to the weight of arc (j, i) if it exists, and aij = 0 otherwise. The
Laplacian L of Γ(A) is de�ned as

lij =

 −aij , i ≠ j,∑
k≠i
aik , i = j.

Let ci be the cofactor of lii. If Γ(A) is strongly connected, then ci > 0, for all i = 1, . . . , p. The following
combinatorial identities are useful in �nding explicit expressions for ci:
If aij > 0 and the out-degree of vertex j satis�es d+(j) = 1, for some i, j, then

ciaij =
p∑
k=1

cjajk . (4.1)

If aij > 0 and the in-degree of vertex i satis�es d−(i) = 1, for some i, j, then

ciaij =
p∑
k=1

ckaki . (4.2)

The following theorem provides a graph-theoretic technique to construct a Lyapunov function D.

Theorem 2. [17, 21] For a given open set E ⊂ Rm, and a function f : E → Rm, consider the system

ż = f (z), (4.3)

and assume that
(i) There exist functions Di : E → R, Gij : E → R, and constants aij ≥ 0 such that

D′i = D′i |(4.3) ≤
p∑
j=1

aijGij(z), with z ∈ E, i = 1, . . . , p,

(ii) Each directed cycle C of Γ(A) satis�es ∑
(s,r)∈ S(C)

Grs(z) ≤ 0, z ∈ E,

where S(C) denotes the set of all arcs in C.

Then, there exist constants ci ≥ 0, i = 1, . . . , p (as de�ned above), such that the function

D(z) =
p∑
i=1

ciDi(z)

satis�es D′ |(4.3) ≤ 0; that is, D(z) is a Lyapunov function for (4.3).

With these tools at hand, we can give a result on global stability of the endemic equilibrium of system (2.1).
In the theorem below, we use the functions p(Ej) and g(Bj) as de�ned in (2.1). We also use the following
notations:

bij =
{

(1 − mS)αi , j = i
mSQijαj , j ≠ i

, cij =
{

(1 − mS)βi , j = i
mSQijβj , j ≠ i,

and hi as in Section 3.

Theorem 3. If R0 > 1, then the EE of system (2.1) is globally asymptotically stable (GAS ) in int ( Γ).
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Proof. For i = 1, . . . , n, de�ne

Qi = Si − S*i − S*i ln
(
Si
S*i

)
+ Ii − I*i − I*i ln

(
Ii
I*i

)
+ Ji − J*i − J*i ln

(
Ji
J*i

)
.

Then, taking derivatives, and solving for Λi , ϕi and ϕ̃i at the equilibrium equations in (2.1), we have
Q′i =

(
1 − S*i

Si

)
S′i +

(
1 − I*i

Ii

)
I′i +

(
1 − J*i

Ji

)
J′i

=
(
1 − S*i

Si

)[ n∑
j=1
bij(S*i p(C*j ) − Sip(Cj)) +

n∑
j=1
cij(S*i g(B*j ) − Sig(Bj)) − µ(Si − S*i )

]

+
(
1 − I*i

Ii

)[
θ

n∑
j=1
bij(Sip(Cj) − S*i p(C*j )

Ii
I*i
) + θ

n∑
j=1
cij(Sig(Bj) − S*i g(B*j )

Ii
I*i
)
]

+
(
1 − J*i

Ji

)[
(1− θ)

n∑
j=1
bij(Sip(Cj) − S*i p(C*j )

Ji
J*i
) + (1− θ)

n∑
j=1
cij(Sig(Bj) − S*i g(B*j )

Ji
J*i
)
]

≤
n∑
j=1
bijS*i p(C*j )

[
1 − Sip(Cj)

S*i p(C*j )
− S*i
Si +

p(Cj)
p(C*j )

+ θ ( Sip(Cj)S*i p(C*j )
− Ii
I*i
− Sip(Cj)
S*i p(C*j )

I*i
Ii + 1)

+ (1− θ)( Sip(Cj)S*i p(C*j )
− Ji
J*i
− Sip(Cj)
S*i p(C*j )

J*i
Ji + 1)

]
+

n∑
j=1
cijS*i g(B*j )

[
1 − Sig(Bj)

S*i g(B*j )
− S*i
Si +

g(Bj)
g(B*j )

+ θ ( Sig(Bj)S*i g(B*j )
− Ii
I*i
− Sig(Bj)
S*i g(B*j )

I*i
Ii + 1)

+ (1− θ)( Sig(Bj)S*i g(B*j )
− Ji
J*i
− Sig(Bj)
S*i g(B*j )

J*i
Ji + 1)

]
=

n∑
j=1
bijS*i p(C*j )

[
2 − S*i

Si +
p(Cj)
p(C*j )

−
(
θ IiI*i + (1 − θ)

Ji
J*i

)
− Sip(Cj)
S*i p(C*j )

(
θ I

*
i
Ii + (1 − θ)

J*i
Ji

)]
+

n∑
j=1
cijS*i g(B*j )

[
2 − S*i

Si +
g(Bj)
g(B*j )

−
(
θ IiI*i + (1 − θ)

Ji
J*i

)
− Sig(Bj)
S*i g(B*j )

(
θ I

*
i
Ii + (1 − θ)

J*i
Ji

)]

≤
n∑
j=1
bijS*i p(C*j )

[
ln Si

S*i
+ ln

(
S*i p(C*j )
Sip(Cj)

Ii Ji
θI*i Ji+(1 −θ)J*i Ii

)
+ p(Cj)
p(C*j )

− θJ*i Ii+(1 −θ)I*i Ji
I*i J*i

]
+

n∑
j=1
cijS*i g(B*j )

[
ln Si

S*i
+ ln

(
S*i g(B*j )
Sig(Bj)

Ii Ji
θI*i Ji+(1 −θ)J*i Ii

)
+ g(Bj)
g(B*j )

− θJ*i Ii+(1 −θ)I*i Ji
I*i J*i

]

≤
n∑
j=1
bijS*i p(C*j )

[
ln
(
θJ*i Ii+(1 −θ)I*i Ji

I*i J*i

)
+ p(C*j )
p(Cj)

θJ*j Ij+(1 −θ)I*j Jj
I*j J*j

− 1 − ln
(
θJ*j Ij+(1 −θ)I*j Jj

I*j J*j

)
+ p(Cj)
p(C*j )

− θJ*i Ii+(1 −θ)I*i Ji
I*i J*i

]
+

n∑
j=1
cijS*i g(B*j )

[
ln
(
θJ*i Ii+(1 −θ)I*i Ji

I*i J*i

)
+ g(B*j )
g(Bj)

Bj
B*j
− 1 − ln Bj

B*j
+ g(Bj)

g(B*j )
− θJ*i Ii+(1 −θ)I*i Ji

I*i J*i

]

=
n∑
j=1
bijS*i p(C*j )

[(
p(Cj)
p(C*j )

− 1
)(

1 − p(C*j )
p(Cj)

θJ*j Ij+(1 −θ)I*j Jj
I*j J*j

)
+ ln

(
θJ*i Ii+(1 −θ)I*i Ji

I*i J*i

)
− ln

(
θJ*j Ij+(1 −θ)I*j Jj

I*j J*j

)
− θJ*i Ii+(1 −θ)I*i Ji

I*i J*i
+ θJ*j Ij+(1 −θ)I*j Jj

I*j J*j

]
+

n∑
j=1
cijS*i g(B*j )

[(
g(Bj)
g(B*j )

− 1
)(

1 − g(B*j )Bj
g(Bj)B*j

)
+ ln

(
θJ*i Ii+(1 −θ)I*i Ji

I*i J*i

)
− ln Bj

B*j

− θJ
*
i Ii+(1 −θ)I*i Ji

I*i J*i
+ Bj
B*j

]
≤

n∑
j=1
bijS*i p(C*j )

[
ln
(
θJ*i Ii+(1 −θ)I*i Ji

I*i J*i

)
− ln

(
θJ*j Ij+(1 −θ)I*j Jj

I*j J*j

)
− θJ

*
i Ii+(1 −θ)I*i Ji

I*i J*i
+ θJ*j Ij+(1 −θ)I*j Jj

I*j J*j

]
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+
n∑
j=1
cijS*i g(B*j )

[
ln
(
θJ*i Ii+(1 −θ)I*i Ji

I*i J*i

)
− ln Bj

B*j
− θJ*i Ii+(1 −θ)I*i Ji

I*i J*i
+ Bj
B*j

]

=:
2n∑
j=1
aijGij , where aij =

{
bij S*i p(C*j ), 1 ≤ j ≤ n
cij S*i g(B*j ) n + 1 ≤ j ≤ 2n,

with corresponding functions Gij within both sets of brackets above. Similarly, for i = 1, . . . , n, de�ning:

Qn+i = Bi − B*i − B*i ln
B*i
Bi

,

we have:
Q′n+i = h*i

[
1 − Bi

B*i
+ hi
h*i
− hi
h*i
B*i
Bi

]
≤ h*i

[
ln
(
h*i
hi (θ

Ii
I*i
+ (1 − θ) JiJ*i )

)
− ln

(
θ IiI*i + (1 − θ)

Ji
J*i

)
+ ln Bi

B*i
− Bi
B*i
+ hi
h*i

]
≤ h*i

[
h*i (θJ*i Ii+(1 −θ)I*i Ji)

hi I*i J*i
− 1 − ln θJ*i Ii+(1 −θ)I*i Ji

I*i J*i
+ ln Bi

B*i
− Bi
B*i
+ hi
h*i

]
= h*i

[ (
hi
h*i
− 1
)(

1 − h*i (θJ*i Ii+(1 −θ)I*i Ji)
hi I*i J*i

)
+ θJ*i Ii+(1 −θ)I*i Ji

I*i J*i

− ln θJ*i Ii+(1 −θ)I*i Ji
I*i J*i

− Bi
B*i
+ ln Bi

B*i

]
≤ h*i

[
θJ*i Ii+(1 −θ)I*i Ji

I*i J*i
− ln θJ*i Ii+(1 −θ)I*i Ji

I*i J*i
− Bi
B*i
+ ln Bi

B*i

]
=: an+i,i Gn+i,i .

With the coe�cients aij > 0 found above, we can construct the digraph Γ(A) shown in Figure 1 so that along
any cycle C, we get

∑
(s,r)∈ S(C)

Grs = 0. More speci�cally, Gij + Gji = Gn+i, i + Gi,n+i = Gij + Gn+i,i + Gj,n+i = 0.

Then, we can let

Q :=
n∑
i=1

ciQi +
n∑
i=1

cn+iQn+i ,

for some constants ci ≥ 0, i = 1, . . . , 2n. Also observe that the in-degree of node n + i satis�es d−(n + i) = 1,
so that from (4.2) we get cn+i =

n∑
j=1
cjaj,n+i/an+i,i. On the other hand, note that Gi,n+j + Gn+j,j = Gij. Then,

following the same approach used in [21], we get

Q′ ≤
n∑
i=1
ci

n∑
j=1
aijGij +

n∑
i=1
ci

n∑
j=1
ai,n+j Gi,n+j +

n∑
i=1

n∑
j=1
cjaj,n+iGn+i,i

=
n∑
i=1

n∑
j=1
ci
(
aij + ai,n+j

) [
ln
(
θJ*i Ii+(1 −θ)I*i Ji

I*i J*i

)
− ln

(
θJ*j Ij+(1 −θ)I*j Jj

I*j J*j

)
− θJ*i Ii+(1 −θ)I*i Ji

I*i J*i
+ θJ*j Ij+(1 −θ)I*j Jj

I*j J*j

]
.

In addition, one can show that the endemic equilibrium (S*i , I*i , J*i , D*i , B*i ) is the largest (and only) invariant
set for which Q̃′ = 0. Then, using LaSalle’s invariance principle we conclude that such equilibrium is globally
asymptotically stable in int(Γ), and thus unique.
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   n + i

   n + j
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   j

Figure 1: Digraph of model (2.1).

5 Final Remarks

In this work, we have introduced a generalmultipatchmodel of Ebola dynamics. Themodel considers ameta-
community of n nodes (cities, countries, etc.) interconnected by a human mobility network. The EVD can
spread through direct (person-to-person) or indirect (humans exposed to contaminated environment) trans-
mission. As humans move from their original community or node i to community or node j, they can either
get infected through contact with infected people (included those isolated and dead but not yet buried) or
with contaminated environment in node j, or they can infect susceptible people by shedding pathogens in
community j, and go back to their node i.

Using matrix and graph-theoretic techniques from [17, 21], it was shown that when the basic reproduction
number R0 satis�es R0 ≤ 1, the disease-free equilibrium point is globally stable, whereas for R0 > 1 it loses
stability and an endemic equilibrium exists; it was then proved that such endemic equilibrium is unique and
globally stable in the interior of a feasible region Γ.

Model (2.1) is general in the sense that it includes the following cases: If all αi = 0, then only indirect trans-
mission is possible; if all βi = 0, then only direct transmission is possible; if θ = 1, λ̃ = τ̃ = 0 and all ϕ̃i = 0,
then isolated but still infectious people are not considered in the model; if λ = τ = 0 and all ξi = ξ̃i = 0,
then dead individuals who are still infectious but not yet buried are not considered; if mS = mI = 0, then
transmission is only possible within a given patch; �nally, if n = 1, then the model reduces to one isolated
community (and if n = 2, then it is simply a two-patch model).

Some extensions and generalizations of this model are possible for future research, including but not limited
to: more general incidence functions for direct and indirect transmission, studying possible control strate-
gies, and including exposed, recovered or other individuals as a separate groups. A promising new avenue of
research is adapting these and other techniques to the study of the dynamics of the most recent corona virus
disease COVID-19 that has caused a pandemic a�ecting thewholeworld, with over 30million cases and about
555,000 deaths in the US alone, as of thewriting of this article. Mathematicalmodels can be very helpful tools
in understanding the dynamics of disease epidemics and providing with a rigorous analysis of those factors
which are the most crucial into preventing a disease to spread beyond control.
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