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REVIEW
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ABSTRACT

Migraine involves brain hypersensitivity with
episodic dysfunction triggered by behavioral or
physiological stressors. During an acute
migraine attack the trigeminal nerve is acti-
vated (peripheral sensitization). This leads to
central sensitization with activation of the
central pathways including the trigeminal
nucleus caudalis, the trigemino-thalamic tract,
and the thalamus. In episodic migraine the
sensitization process ends with the individual

act, but with chronic migraine central sensiti-
zation may continue interictally. Increased
allostatic load, the consequence of chronic,
repeated exposure to stressors, leads to central
sensitization, lowering the threshold for future
neuronal activation (hypervigilance). Ostensi-
bly innocuous stressors are then sufficient to
trigger an attack. Medications that reduce sen-
sitization may help patients who are hypervig-
ilant and help to balance allostatic load. Acute
treatments and drugs for migraine prevention
have traditionally been used to reduce attack
duration and frequency. However, since many
patients do not fully respond, an unmet treat-
ment need remains. Calcitonin gene-related
peptide (CGRP) is a vasoactive neuropeptide
involved in nociception and in the sensitization
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of peripheral and central neurons of the
trigeminovascular system, which is implicated
in migraine pathophysiology. Elevated CGRP
levels are associated with dysregulated signaling
in the trigeminovascular system, leading to
maladaptive responses to behavioral or physio-
logical stressors. CGRP may, therefore, play a
key role in the underlying pathophysiology of
migraine. Increased understanding of the role of
CGRP in migraine led to the development of
small-molecule antagonists (gepants) and
monoclonal antibodies (mAbs) that target
either CGRP or the receptor (CGRP-R) to restore
homeostasis, reducing the frequency, duration,
and severity of attacks. In clinical trials, US Food
and Drug Administration-approved anti-CGRP-
R/CGRP mAbs were well tolerated and effective
as preventive migraine treatments. Here, we
explore the role of CGRP in migraine patho-
physiology and the use of gepants or mAbs to
suppress CGRP-R signaling via inhibition of the
CGRP ligand or receptor.

PLAIN LANGUAGE SUMMARY

Migraine is a neurological disease affecting one
in eight people. Symptoms include nausea and/
or sensitivity to light and sound, and a throb-
bing headache. Although certain genes may
increase the likelihood of migraine, environ-
mental stimuli and molecules that increase the
sensitivity of brain blood vessels and their
innervations also play a role. During a migraine
attack, nerves in the brain are activated, leading
to increased sensitivity to stimuli, lowering the
future threshold for activation, and making
patients hypervigilant. Chronic, repeated
exposure to certain stimuli can also lower this
activation threshold, such that relatively
innocuous stimuli can trigger an attack. Exces-
sive use of certain migraine treatments can
increase headache frequency over time and
produce unwanted side effects; thus, selective
agents are needed that specifically target the
systems and pathways affected in migraine
pathophysiology. Calcitonin gene-related pep-
tide (CGRP), produced and released by nerve

cells, is important in migraine pathophysiol-
ogy. CGRP binds smooth muscle cell receptors,
dilating blood vessels supplying the brain, and
also binds to peripheral nerve cells that trans-
mit pain signals to the spinal cord and brain.
CGRP levels are elevated during a migraine
attack. Medications targeting the CGRP path-
way may decrease sensitivity and potentially
normalize responses in hypervigilant patients.
Two commercially available oral drugs that
block CGRP receptors (‘gepants’) have reduced
symptoms during migraine attacks in clinical
trials. Four monoclonal antibodies (proteins
that bind a specific molecule) have also been
developed that target CGRP or the receptor and
have been shown to significantly reduce the
number of migraine days per month.

Keywords: Allostatic load; Calcitonin gene-
related peptide; CGRP; CGRP-R; CGRP
receptor; Hypervigilance; Migraine;
Monoclonal antibody; Treatment

Key Summary Points

Migraine is a common neurological
disorder affecting approximately 14% of
the population. There is an unmet need
for new therapeutics because many
patients do not respond to treatment.

Calcitonin gene-related peptide (CGRP)
plays a key role in migraine pathogenesis,
and recent therapeutic advances are based
around targeting CGRP or its canonical
receptor (CGRP-R).

Individuals affected by migraine have a
reduced threshold for central
sensitization: this is known as
hypervigilance. The combination of
central sensitization and migraine triggers
(allostatic load) results in migraine
attacks. Repeated migraine attacks, which
involve the release of CGRP to facilitate
peripheral and central sensitization,
probably contribute to increased allostatic
load.
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In this review, the evidence supporting the
role of CGRP in migraine is evaluated,
including its role in the sensitization of
peripheral and central neurons of the
trigeminovascular system as well as its
implication for hypervigilance and
allostatic load.

By inhibiting the release of pro-
inflammatory molecules within the
trigeminal ganglion and/or the dura and,
therefore, reducing peripheral
sensitization, anti-CGRP monoclonal
antibodies (mAbs) might indirectly
diminish central sensitization, reduce
allostatic load, and contribute to migraine
regression.

Use of anti-CGRP and anti-CGRP-R mAbs
for the treatment of migraine is
promising. A summary of the latest mAb
clinical trials and real-world data provides
an overview of the therapeutic landscape,
including erenumab-aooe, galcanezumab-
gnlm, fremanezumab-vfrm, and
eptinezumab-jjmr, which are approved by
the US Food and Drug Administration
(FDA) for the preventive treatment of
migraine.

An update is also provided on clinical
trials involving small-molecule CGRP
receptor antagonists known as gepants,
including ubrogepant and rimegepant,
which were recently approved by the FDA
for the acute treatment of migraine with
or without aura in adults, and two
additional therapeutic candidates
(atogepant and zavegepant [formerly
vazegepant]), which remain in
development.

INTERACTIVE INFOGRAPHIC

This article contains an interactive infographic
to help to illustrate the role of CGRP in
migraine. To view it, click here: https://go.sn.
pub/tsAHdE.

DIGITAL FEATURES

This article is published with digital features,
including a plain language summary, key sum-
mary points, interactive infographic, and video
to facilitate understanding of the article. To
view digital features for this article go to https://
doi.org/10.6084/m9.figshare.14061551.

INTRODUCTION

Migraine is among the most disabling disorders
globally; in 2016, an estimated 1 billion people
were affected [1]. The global age-standardized
prevalence was approximately 14%, with
approximately twice as many women than men
being affected [1]. Estimates in the USA indicate
an annual cost of approximately $36 billion
[2–4]. Prevalence increasesbetween theagesof 12
and 40 years and accounts for at least 1 day of
school or work lost every 3 months among up to
one-third of individuals [2, 4]. Social perceptions
ofmigrainemean that patientsmay be dismissed
as not having a serious disease. This perception is
shared by somephysicians [5],which exacerbates
the significant negative impact migraine has on
patients’ quality of life and ability to work [6].
Migraine features include moderate-to-severe
throbbing headache, nausea and/or vomiting,
and hypersensitivity to light and noise [7]. There
is an important and complex genetic component
to the disorder, but it remains unclear which
genes and loci are implicated in its pathogenesis
[8]. Migraine may be triggered by stress [9],
exposure to bright light [9], pungent or strong
odors [10], and barometric pressure changes [11].
Prodromal symptoms (e.g., fatigue, irritability,
difficulty concentrating, mood change, yawn-
ing, stiff neck, phonophobia, and nausea) and
postdromal symptoms (e.g., tiredness, weakness,
cognitive difficulties, and mood change) are
characteristic [12]. Migraine is classified as either
episodic migraine (EM;\ 15 days of headache
per month) or chronic migraine (CM;
for[ 3 months, headache for C 15 days per
month with features of a migraine headache
on C 8 days per month) [13, 14].

Acute migraine management aims to reduce
pain and symptoms and to restore physical and
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psychosocial function [6]. Possibly owing to a
lack of adequate preventive treatments, acute
therapies are frequently overused, which can
lead to medication-overuse headache. There-
fore, attempts are made to limit use of these
treatments to 2–3 days per week [15]. Preventive
migraine therapies are used for patients who
have frequent and/or debilitating attacks, in
whom acute medication fails to provide relief,
or in whom there is a risk of overuse of acute
medication [15]. The goals of preventive thera-
pies are to reduce migraine frequency, duration,
and/or severity of attacks, to improve respon-
siveness to acute therapy, to decrease use of
acute therapy, and to increase the patient’s
functional ability [16].

Traditional preventive therapies for migraine
are inadequate, with up to 86% of patients dis-
continuing treatment early [17–19]. A retro-
spective US claims analysis shows that
persistence with oral migraine preventive med-
ications decreases over time, with only 14% of
patients remaining on initial preventive treat-
ment at 12 months [18]. Additionally, in a US-
based survey, 39% of patients with migraine
reported that they had used preventive medi-
cation at some time, with only 12% indicating
that they were current users [20]. Thus, there
remains a considerable unmet need for effica-
cious, well-tolerated preventive therapies with
low potential for side effects.

The neuropeptide calcitonin gene-related
peptide (CGRP) is a vasodilatorwithmultiple sites
of action that is involved in nociception and
sensitization of peripheral and central neurons in
the trigeminovascular system, which is impli-
cated in migraine pathophysiology [7, 21–24].
Levels of CGRP in jugular venous blood and
cerebrospinal fluid are elevated in patients with
CMorEM[25–27], and these levels fall asmigraine
pain subsides upon triptan treatment, supporting
a relationship between CGRP and migraine [28].
In rodents, application of CGRP to the cranial
meninges triggered migraine-like signs of allody-
nia and pain in females but not in males: this
hypersensitivity may contribute to the higher
prevalence of migraine in females [29]. The
involvement of CGRP in migraine has been sub-
stantiatedbypreclinical andclinical trialsofdrugs
that block the activity of CGRP [30–34].

Additionally, CGRP infusion can trigger an attack
in susceptible patients who experience migraine
[35]. This review explores the role of CGRP in
migraine, including its involvement in allostatic
overload (i.e., when the beneficial acute stress
response toexternal stimuli becomesmaladaptive
owing to chronic exposure to stressors) [36] and
the use of monoclonal antibodies (mAbs) that
suppress CGRP receptor (CGRP-R) signaling,
potentially rebalancing allostatic load (Fig. 1).

This article is based on previously conducted
studies and does not contain any studies with
human participants or animals performed by
any of the authors.

MIGRAINE PATHOPHYSIOLOGY

Migraine consists of distinct phases; in * 30%
of patients it may be associated with aura (vi-
sual, sensory, motor, and language or brain
stem disturbances) [37, 38]. Phases include the
prodromal phase, probably mediated by the
hypothalamus with multiple neurotransmitters
believed to be involved (e.g., serotonin, orexin)
and a potential aura phase, associated with a
slow wave of neural depolarization called cor-
tical spreading depression (CSD) that may acti-
vate trigeminal afferents (although the precise
mechanism is unknown) [9, 12]. These are fol-
lowed by the headache phase, which is medi-
ated by activation of the trigeminovascular
system, and the postdromal phase, which is
associated with hyperperfusion in patients with
aura and with bilateral posterior cortical
hypoperfusion that persists after treatment in
patients without aura [12]. The final (interictal)
phase is characterized by reduced activation of
the spinal trigeminal nuclei (Fig. 2) [9].

CSD is associated with an increase in proin-
flammatory molecules and neuropeptides,
including CGRP, and can activate the trigemi-
novascular system [39, 40]. The relationship
between CSD and CGRP may be a contributory
factor in migraine [39]. Drugs targeting CGRP-R
signaling, including mAbs, reduce the activa-
tion of trigeminovascular neurons by CSD
[41, 42].

Migraine is regarded as a neurovascular dis-
ease, driven by both neurovascular changes and
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modulation of nociceptive input [2]. Activation
of the trigeminovascular system leads to an
inflammatory cascade involving the meninges,
meningeal blood vessels, and subsequent neural
dysfunction (Fig. 3) [37]. The headache phase of

migraine is thought to stem from activation of
nociceptors that innervate the intracranial vas-
culature [21]. Nociceptive innervation of this
vasculature consists of axons that originate in
the trigeminal ganglion and release vasoactive

Fig. 1 Role of CGRP in migraine. Some individuals have
a genetic predisposition to hypervigilance, thus having a
heightened awareness of sensory stimuli, which may have
provided an evolutionary advantage [151]. Association
with too many risk factors leads to increased CGRP levels,
which results in allostatic overload, making individuals
more sensitive to sensory triggers that initiate a migraine

attack [69]. mAbs targeting CGRP or the CGRP-R inhibit
CGRP signaling, potentially rebalancing allostatic load and
reducing the likelihood of a migraine attack. It remains to
be seen if there is a direct effect of anti-CGRP therapeutics
in helping to balance allostatic load. CGRP calcitonin
gene-related peptide, CGRP-R CGRP receptor, mAb
monoclonal antibody

Fig. 2 Migraine phases. Migraine consists of different
phases characterized by physiological changes in the brain
and trigeminovascular system. The headache phase is

associated with activation of the trigeminovascular system
and may last for * 4 to 72 h

Neurol Ther (2021) 10:469–497 473



neuropeptides such as CGRP and substance P
[21]. Axonal projections of neurons in the
trigeminovascular system transmit nociceptive
signals via second-order neurons in the trigem-
inal nucleus caudalis and ascending fiber tracts
to nuclei of the brain stem, hypothalamus, and
basal ganglia and are thus potentially relevant
to many symptoms of migraine (e.g., nausea,
vomiting, fatigue, anxiety, and depression).
Furthermore, relay trigeminovascular thalamic
neurons projecting into various regions of the
cortex could account for the location and
intensity of migraine pain as well as transient
symptoms such as clumsiness, loss of concen-
tration and memory, photophobia, and
phonophobia [40]. Perivascular CGRP in the
periphery and central nervous system (CNS)
may therefore act via the vessels innervated by
the trigeminovascular system, the thalamus,
and eventually the cortex to cause migraine
symptoms [2].

CGRP

CGRP is a member of the calcitonin peptide
family, which includes calcitonin, amylin,
adrenomedullin, and adrenomedullin 2/inter-
medin [43, 44]. There are two human isoforms
of CGRP, a and b, which differ by three amino
acids and share similar biological activities, but
are synthesized from two different genes on
chromosome 11 [45]. CGRP is widely expressed
[22, 33] and is best known for its vasodilatory
effects. Most relevant to its role in the patho-
physiology of migraine is its expression in
peripheral components (sensory neurons of
trigeminal and cervical dorsal root ganglia) and
in central components (e.g., parabrachial
nucleus, amygdala, and hypothalamus) [3, 45].
CGRP is primarily expressed in small, unmyeli-
nated sensory C fibers and myelinated Ad fibers
in the peripheral nervous system [22]. In

Fig. 3 Components of the trigeminovascular system. The
trigeminovascular system consists of sensory nerves with
their cell bodies in the trigeminal ganglion that innervate
the meningeal blood vessels. Activation of the trigemino-
vascular system leads to increased release of CGRP and
vasodilation of the meningeal vessels. Pain in the face and

head is primarily mediated by nociceptive afferents of the
ophthalmic division of the trigeminal nerve. Activation of
the meningeal afferents leads to activation of the trigem-
inal nucleus caudalis and subsequently rostral brain
structures involved in pain perception. CGRP calcitonin
gene-related peptide
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contrast to amino acid neurotransmitters,
which act on ionotropic receptors to alter
postsynaptic membrane potentials quickly,
neuropeptides are slower-acting neuromodula-
tors that act through G protein-coupled recep-
tors (GPCRs) [46]. CGRP acts as a modulator of
postsynaptic gain when released from trigemi-
nal nociceptors [46] and indirectly increases
vascular permeability by promoting the release
of substance P [47]. CGRP is stored in axonal
dense core vesicles and can be released from the
axon terminal or along the length of the axon,
unlike neurotransmitters, which are stored in
clear vesicles and released only at the axon ter-
minals. Neuropeptides such as CGRP also differ
from neurotransmitters in that they can func-
tion locally or more distally via diffusion in the
vasculature [48].

CGRP Receptors

The calcitonin receptor family comprises two
GPCRs: the calcitonin receptor and the calci-
tonin-like receptor (CLR). Additional receptor
diversity is provided by heterodimerization of
each of these GPCRs with one of three receptor
activity-modifying proteins (RAMPs), which
modify receptor binding characteristics. The
calcitonin receptor preferentially responds to
calcitonin but also associates with one of the
three RAMPs to form amylin receptors (AMY1–3)
[43]. CLR binds to its ligands (CGRP, adrenome-
dullin, or adrenomedullin 2) only when associ-
ated with RAMPs [43]. Thus, the functional
CGRP-R complex consists of two subunits: CLR
and RAMP1. An additional protein, known as
receptor component protein, can also enhance
signaling by this receptor complex [49].
Although the RAMP1-CLR complex is the CGRP-
R, recent studies have established that AMY1 acts
as a second CGRP-R and is present in the
trigeminovascular system (Fig. 4) [43, 50, 51].

CGRP-R is expressed on the trigeminal
afferents that project into the meninges; cell
bodies of trigeminal neurons, and satellite glial
cells located in the ganglion; astrocytes and
microglia within the CNS; and mast cells in the
meninges [3, 24]. In cell-based assays, CGRP-R
has high affinity for CGRP and lower affinity for

other calcitonin family ligands [43]. This
promiscuity in binding within the receptor
family may have important consequences for
therapies targeting CGRP-R signaling [43]. For
example, AMY1 is equally well activated by both
CGRP and amylin and may or may not be
involved in migraine [26, 43]. Furthermore, in
rat trigeminal neurons, CGRP has been shown
to act at AMY1 in addition to CGRP-R, poten-
tially implicating both receptors in CGRP ligand
signal processing [50]. However, to date, a role
for AMY1 in migraine has not been confirmed.
The role of amylin in migraine is unclear, and
an amylin and CGRP head-to-head provocation
study is ongoing (NCT03598075) [52].

CGRP Receptor Signaling Pathway

GPCR signaling in the CGRP-R-mediated path-
way is transduced via adenylate cyclase either to
modulate vasodilation in cerebral and menin-
geal arteries or to transmit nociceptive signals
centrally via the brain stem and midbrain to the
thalamus and higher cortical regions [23].
Activation of CGRP-R may also trigger alterna-
tive signaling pathways dependent on the
G proteins and other signaling proteins expres-
sed [26, 53, 54]. Upon ligand binding to CGRP-
R, the ligand-receptor complex is internalized
into the cell [43, 55, 56]; however, the cell-type
specificity and significance of CGRP-R internal-
ization are not fully understood [43], and cell
signaling may continue once the receptor is
internalized [43, 57]. AMY1 signaling in
response to CGRP and amylin is similar to that
of the CGRP-R, but a recent study suggests that
AMY1 regulation is distinct, because the recep-
tor does not internalize in response to CGRP or
amylin agonists [53, 55, 58, 59].

The action of a ligand can be subject to
functional selectivity at a given receptor
towards a specific signaling pathway (biased
agonism) [60]. Receptor conformations are not
binary; multiple subunit conformations can
exist, and different ligands may stabilize differ-
ent receptor conformations that interact with
various cellular signaling pathways. Thus, dif-
ferent ligands acting at the same receptor (e.g.,
CGRP or adrenomedullin at the CGRP-R) could
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activate distinct downstream cellular responses,
a phenomenon not related to their binding
affinity or efficacy [43]. If other ligands prove to
be involved in migraine pathophysiology, this
may have implications for the importance of
targeting the CGRP-R rather than the CGRP
ligand.

CGRP in Migraine

CGRP-Rs are ubiquitous in the smooth muscle
of the vasculature (human middle meningeal,
middle cerebral, pial, and superficial temporal
arteries) and in the trigeminal afferent terminals

Fig. 4 The calcitonin receptor family subunit composi-
tion. The histograms are indicative of relative ligand
activity upon binding for human receptors. AM adreno-
medullin, AM2 adrenomedullin 2, AMY amylin receptor,

CGRP calcitonin gene-related peptide, CLR calcitonin-like
receptor, CT calcitonin, CTR calcitonin receptor, RAMP
receptor activity-modifying protein
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(Fig. 5a). CGRP initiates and maintains periph-
eral and central sensitization by modulating
neurons, glia, and immune cells in the trigem-
inal pain signaling pathway (Fig. 5b) [3]. During

migraine, CGRP is released at various sites in the
trigeminovascular system, including trigeminal
afferent terminals that innervate the meninges,
trigeminal cell bodies in the ganglion, and

Fig. 5 CGRP receptor and ligand expression sites in the
trigeminovascular system. (a) Localization of the CGRP-R
has been confirmed in the smooth muscle of the
vasculature and in the trigeminal afferents. Some studies
have suggested the CGRP-R may also be present in
macrophages and fibroblasts. (b) CGRP released in the
trigeminal ganglion acts on satellite glia triggering

neurogenic inflammation. This initiates peripheral sensiti-
zation and, as a result, downstream central sensitization.
(c) CGRP is released at various sites in the trigeminovas-
cular system where it is involved in nociception and
vasodilation. CGRP calcitonin gene-related peptide,
CGRP-R CGRP receptor
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trigeminal efferent fibers that terminate in the
medulla and cervical spinal cord (Fig. 5c) [3, 24].
At synapses outside the CNS, CGRP causes
vasodilation via receptors on smooth muscle
cells, whereas, at synapses inside the CNS,
CGRP acts on second-order neurons to transmit
pain signals to higher cortical pain regions
[7, 61].

In the dura, CGRP mediates neurogenic
inflammation, immune cell recruitment (such
as mast cells and macrophages), and activation
of sensory neurons; it also activates neurons in
the trigeminal ganglion and signals in a retro-
grade manner from the spinal cord to neurons
and glia in the trigeminal ganglion, sensitizing
peripheral nociceptors [24, 62–64]. Neuron
activation activates second-order neurons and
glia, which promote central sensitization in the
dorsal horn and spinal trigeminal nucleus cau-
dalis [2, 62].

In sensory neurons within the trigeminal
ganglion, CGRP may increase its expression by a
paracrine mechanism involving release of
proinflammatory mediators from satellite cells
[3, 22]. Although CGRP released in the trigem-
inal ganglion is unlikely to cross the blood-
brain barrier (BBB), it may influence central
expression of pro-nociceptive compounds and
receptors [24]. Neurotrophic factors such as
brain-derived neurotrophic factor are stimu-
lated by CGRP, which may act to potentiate
central nociceptive neurotransmission [24].
Neurons expressing CGRP project from the
trigeminal ganglion to the trigeminal nucleus
caudalis, where CGRP induces release of gluta-
mate from trigeminal afferents, further facili-
tating nociception [24]. Together, these effects
provide a mechanism by which drugs acting on
CGRP-R signaling in the peripheral trigeminal
ganglion may modulate both peripheral and
central pain signaling through a peripheral site
of action, highlighting the potential for the use
of these drugs for migraine therapy. It is well
established that when peripheral activation is
switched off, central activation also decreases
[65].

CGRP mediates neuron-glial signaling via
gap junctions within the trigeminal ganglion
[24, 61]. Regional nonsynaptic cross-excitation
occurs within the trigeminal ganglion following

neuronal and glial activation. This may allow
for coordinated responses to noxious stimuli
that may also, however, sensitize neighboring
neurons [61]. Neuron-glial signaling probably
contributes to peripheral sensitization, which
drives central sensitization [40], facilitating a
lower threshold for neuronal activation in
patients with migraine. Peripheral and central
sensitization in patients may therefore lead to
hypersensitivity to sensory stimuli.

Hypervigilance, Anxiety-Like State,
and Allostatic Overload

Anxiety-like states and a persistent state of
hypervigilance are contributory risk factors for
migraine [66]. Individuals affected by migraine
have a hypervigilant or hyperexcitable nervous
system that is characterized by a lower sensory
activation threshold and hypersensitivity
towards sensory stimuli [67]. The resulting
sensitization and activation of trigeminal
nerves and the nociceptive pathway are
thought to play an important role in the
pathology of migraine [67]. The increased sen-
sitivity to sensory stimuli is caused by a state of
sensory neuron hyperresponsiveness or hyper-
excitability, which lowers pain threshold and
tolerance levels [38, 67]. In essence, a state of
hypervigilance is the same as a state of central
sensitization, in which the sensory activation
threshold is reduced.

The role of anxiety and hypervigilance in
migraine may be potentiated by CGRP-R sig-
naling. CGRP promotes sensitization of primary
and secondary trigeminal nociceptive neurons,
leading to an enhanced state of neuronal
excitability [67]. CGRP has also been implicated
in migraine-associated allodynia (a nociceptive
response to normally non-painful stimuli, such
as hair brushing) [67, 68]. Thus, it is possible
that CGRP plays a role in hypervigilance.
Cutaneous allodynia is considered to be a mar-
ker of central sensitization and can manifest
both during and between attacks in CM. Brains
of patients with CM remain hyperexcitable in
the interictal phase [69].

Over 50% of people with migraine experi-
ence an anxiety disorder over their lifetime [66].
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Infusion with CGRP has been demonstrated to
cause anxiety-like behavior and to induce neu-
ronal activation in the bed nucleus of the stria
terminalis (BNST) [70]. Furthermore, it has been
hypothesized that reciprocal connections
between the BNST and CGRP-containing cells
in the parabrachial nucleus may induce a per-
sistent state of anxiety via positive feedback
[71]. The BNST is continuous with the amygdala
and integrates physiological and behavioral
responses to stress and anxiety by acting as a
relay between limbic structures and the
hypothalamus [3, 72]. Neurons expressing
CGRP in the parabrachial nucleus relay pain
signals from the periphery to the amygdala,
thus encoding the affective component of pain
[73]. In rats, CGRP antagonism has been shown
to suppress grooming and shaking behaviors
induced by CSD, which could indicate that
CGRP is implicated in anxiety and/or pain per-
ception [74].

Migraine is a disorder of allostatic load [75],
triggered by risk factors including stress, sleep
deprivation, light, odors, and noise (Fig. 1).
Allostasis is the body’s ability to respond to
stressful events and it involves hormonal and
neural mediator activation and behavior modi-
fication. When behavioral or physiological
stressors become more severe or frequent, the
prolonged exposure dysregulates allostasis,
leading to allostatic overload [76]. Structural
and functional brain networks are altered, and
the responses to stressors become abnormal
[69].

People with migraine have a high allostatic
load, which is more prevalent in EM (50%) than
CM (33%) [75]. Allostatic load is moderate or
high in most patients, and higher than in peo-
ple without migraine [75]. In migraine, four
main processes are involved in allostatic over-
load: (1) repeated stress; (2) failure to habituate
to repeated stressors; (3) inability to stop the
stress response normally; and (4) altered stress
response that ultimately leads to compensatory
responses, such as photophobia [69]. Central
sensitization and factors that trigger a migraine
attack both contribute to an individual’s allo-
static load and, as sensitization increases, the
need for an attack trigger decreases. Over time,
sensitization levels and exposure to triggers will

vary within an individual and between indi-
viduals [40]. For migraine treatments to be
effective, they need to inhibit or stop persistent
central sensitization.

Migraine may provide an evolutionary
mechanism that enforces a rebalancing of allo-
static load in response to a hypersensitive/hy-
pervigilant state, thus relieving hypothalamic
and cortical overload [69]. According to this
model, it may be that CNS-driven changes in
descending inhibitory pain modulation path-
ways enable more peripheral sensory informa-
tion to reach the brain via the trigeminal-
thalamus ascending pain pathway, potentially
improving survival prospects by increasing vig-
ilance, but also increasing allostatic load. CGRP
may play a key role in migraine by increasing
allostatic load mediated by risk factors; there-
fore, rebalancing CGRP-mediated signaling may
treat or prevent attacks (Fig. 1) [40, 77]. As a key
player in migraine pathophysiology, CGRP-R
signaling was recognized as a potential thera-
peutic target, leading to the development of
small-molecule antagonists and mAbs that tar-
get either CGRP or CGRP-R [2, 23, 26]. By
inhibiting the release of pro-inflammatory
molecules within the trigeminal ganglion and/
or the dura and, therefore, reducing peripheral
sensitization, CGRP mAbs might indirectly
diminish central sensitization, reducing allo-
static load and contributing to migraine
regression.

Development of CGRP Antagonists

Several therapeutics are used to treat migraine:
acute treatment includes nonsteroidal anti-in-
flammatory drugs and oral serotonin (5-hy-
droxytryptamine receptor 1B/1D) agonists
known as triptans [15], whereas drugs such as
anticonvulsants, antidepressants, antihyper-
tensives, and botulinum toxins are used for
migraine prevention [78]. Many of these drugs,
which were not designed specifically for
migraine, can have multiple side effects [15]
and have poorly understood mechanisms of
action [79]. Furthermore, poor adherence and
frequent treatment-switching limit the effective
use of these medications [17–20].
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Until recently, first-line treatment for
migraine focused on the relief of acute pain
with triptans [80]. Triptans may provide effec-
tive pain relief during acute migraine; however,
a substantial proportion of patients remain
unresponsive [26]. Triptans act to constrict
cerebral blood vessels and to inhibit activation
of peripheral nociceptors on trigeminal affer-
ents to reduce CGRP release [80–82]. In clinical
trials, it was shown that plasma CGRP levels
were reduced in patients whose migraine pain
subsided following treatment with sumatriptan,
but not in those who did not experience pain
relief [31]. CGRP levels also correlated positively
with pain intensity [31].

Most migraine preventives inhibit fast
synaptic transmission, whereas drugs targeting
neuropeptide pathways such as CGRP modulate
neuronal activity [46]. CGRP release may be
initiated by a Ca2?-dependent process involving
soluble N-ethylamide-sensitive factor attach-
ment protein receptor (SNARE), which pro-
motes vesicle docking and membrane fusion or,
alternatively, by a Ca2?- and SNARE-indepen-
dent process [83]. Although triptans may inhi-
bit Ca2? signaling and although botulinum
toxin type A prevents vesicular fusion through
cleavage of the SNARE protein SNAP-25, CGRP
release at the proximal axon of sensory neurons
independent of these mechanisms remains
unaffected [83]. This may explain why some
patients with migraine do not respond to these
therapies and supports the use of agents that
block CGRP-R signaling rather than CGRP
release.

Consequently, the ‘gepants’ were developed;
these are mostly oral, small-molecule CGRP-R
antagonists [84], six of which have been studied
clinically for the treatment of acute migraine:
olcegepant, telcagepant, MK-3207, BI 44370 TA,
rimegepant, and ubrogepant [85]. A seventh
gepant, atogepant, is in development for EM
prevention [85]. Gepants do not directly cause
vasoconstriction [86, 87], lending further
weight to the argument that migraine is not
purely a vascular disorder [26]. In clinical trials,
the first-generation gepant, telcagepant,
demonstrated efficacy for the treatment of acute
migraine compared with placebo and triptans
[88, 89]. However, liver toxicity limited its use

as a preventive treatment. Other first-genera-
tion gepants (olcegepant, MK-3207, and BI
44370 TA) also showed promising results in
clinical trials [90–92], but were discontinued
owing to liver toxicity and to difficulties in
developing oral formulations [85]. Elevated
aminotransferase levels were attributable to off-
target effects by a toxic metabolite not pro-
duced by second-generation gepants [84, 93],
unleashing the potential of these agents as
preventive treatments for migraine. Ubrogepant
has recently been approved in the USA for the
acute treatment of migraine with or without
aura in adults [94], based on positive results
from Phase 3 studies, including a recent trial in
which significantly more patients taking ubro-
gepant were symptom-free 2 h after taking the
drug compared with patients taking placebo
(21.2% vs. 11.8%, respectively, p\ 0.001) [95].
The efficacy of rimegepant has been demon-
strated in Phase 3 clinical trials in acute
migraine, with patients experiencing freedom
from pain at 2 h after dosing, sustained pain
relief for up to 48 h, and a reduction in associ-
ated symptoms such as photophobia and nau-
sea [84, 96]. A further Phase 3 trial reported
results with a new formulation of rimegepant as
an orally disintegrating tablet (ODT), which was
superior to placebo when comparing propor-
tions of patients free from pain and bothersome
symptoms 2 h post dose (21% vs. 11%, respec-
tively, p\ 0.0001) [97]. Rimegepant ODT was
recently approved by the US Food and Drug
Administration (FDA) for the acute treatment of
migraine with or without aura in adults [98].

Two gepants remain in development: ato-
gepant and zavegepant (formerly known as
vazegepant). Atogepant is the only gepant with
positive Phase 3 trial data for migraine preven-
tion, with statistically significant reductions in
monthly headaches from baseline versus pla-
cebo (least squares mean differences: - 0.7
to - 1.4 days; p\ 0.05) and no reported signal
for hepatotoxicity [99, 100].

Positron emission tomography has shown
central CGRP-R occupancy by gepants (telcage-
pant) is not required for their therapeutic effect
in migraine, suggesting that large molecules
such as mAbs, which cross the BBB very ineffi-
ciently, are a viable option [101]. Areas of the
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hypothalamus, pituitary, and circumventricular
organs, such as the area postrema, are outside of
the BBB, and so are accessible to mAbs. Despite
their efficacy, early issues with tolerability of
gepants drove the search for alternative agents
with improved safety profiles, with a focus on
mAbs [26].

Anti-CGRP and Anti-CGRP-R Monoclonal
Antibodies

Therapeutic mAbs are highly selective for their
target molecule, binding a single epitope with
high affinity [26, 102] and not binding to other
antibodies or targets. This largely overcomes the
problem of off-target effects and toxicities
associated with small-molecule drugs and their
metabolites [26]. Therapeutic mAbs are used to
treat several diseases, including cancer and
autoimmune disorders [103]. They can trigger
target cell destruction, as in some types of can-
cer treatment where the objective is to stimulate
the patient’s immune system to attack the
cancer cells [104]. Other types of mAb do not
cause cell destruction, but instead bind to either
a ligand or a receptor, modifying cell signaling
pathways [104]; mAbs targeting CGRP-R sig-
naling belong to this group. To reduce the
likelihood of an immune reaction to therapeu-
tic antibodies, which is characteristic of anti-
bodies generated in mice, antibody engineering
techniques have allowed the development of
chimeric, humanized, or fully human mAbs
[104].

mAbs targeting CGRP-R signaling are well
suited for migraine prevention, not only
because they target a pathway relevant to the
disease, but also because they require infrequent
administration relative to small-molecule drugs
[26]. As only a small proportion of any circu-
lating mAb will typically reach the CNS [105],
targets within the CGRP-R signaling pathway
are likely to be peripheral (vasculature, dura, or
trigeminal ganglion) [106]. For CGRP-R signal-
ing, one antibody reversibly targeting the
CGRP-R, where it occupies the CGRP ligand-
binding site (erenumab-aooe [26, 107]), and
three targeting the CGRP ligand (fre-
manezumab-vfrm, galcanezumab-gnlm, and

eptinezumab-jjmr) have been approved by the
FDA for migraine prevention (Table 1, Fig. 6)
[108]. Although many trials are ongoing, thus
far the evidence for the clinical efficacy and
tolerability profile of erenumab-aooe has been
most comprehensively reported. Anti-CGRP-R
signaling mAbs are efficacious in EM and CM in
clinical trials of up to 6 months’ duration
(Table 2) and are generally well tolerated. Ere-
numab-aooe has also been shown to be effective
and well tolerated longer term in both EM and
CM. In a 52-week open-label extension study in
patients with CM who continued treatment
after a 12-week double-blind period, treatment
with erenumab-aooe (70 mg or 140 mg once
monthly) was associated with changes in
monthly migraine days (MMD; mean [95%
confidence interval, CI]) from parent study
baseline of - 9.3 [- 10.0 to - 8.6] at week 52;
MMD were reduced to 8.8 from 18.1 at parent
study baseline. At week 52, respective reduc-
tions in MMD of C 50%, C 75%, or 100% from
parent-study baseline were observed in 59.0%,
33.2%, and 8.9% of patients still on study [109].
In an analysis of 5-year data from patients with
EM who continued open-label treatment fol-
lowing a 12-week double-blind period, treat-
ment with erenumab-aooe (70 mg or 140 mg
once monthly) was associated, on average, with
5.3 fewer MMD at year 5, an average reduction
of 62.3% from baseline. Moreover, reductions in
MMD of C 50%, C 75%, or 100% at 5 years,
based on the last 4-week period of assessment,
were observed in 71.0%, 47.1%, and 35.5% of
patients, respectively [110]. Notably, erenumab-
aooe is efficacious in patients with EM in whom
multiple preventive treatments have been
unsuccessful (LIBERTY trial) [17], a patient
population under investigation by others
(FOCUS and CONQUER trials; patients with CM
or EM). In the LIBERTY trial, which included
patients with EM in whom two to four previous
preventive treatments had been unsuccessful,
30% of patients treated with erenumab-aooe
140 mg had C 50% reduction from baseline in
mean number of MMD at week 12 compared
with 14% of patients in the placebo group (odds
ratio [OR] [95% CI]: 2.7 [1.4–5.2]; p = 0.002)
[17]. Post hoc analyses of pivotal, double-blind,
placebo-controlled trials of erenumab-aooe in
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patients with CM or EM are consistent with
these findings. Thus, 41% of patients with CM
in whom two or more prior preventive medi-
cations failed had C 50% reduction from base-
line in mean number of MMD at 12 weeks when
treated with erenumab-aooe 140 mg compared
with 14% of patients receiving placebo (OR
[95% CI]: 4.2 [2.2–7.9]) [111]. Similarly, in
patients with EM in whom two or more prior
preventive medications failed, 36% of patients
treated with erenumab-aooe 140 mg had C 50%
reduction from baseline in mean number of
MMD (averaged over months 4 to 6) compared

with 11% of patients in the placebo group (OR
[95% CI]: 4.5 [1.7–12.4]) [112].

Results from a postmarketing study in 78
patients with EM and CM demonstrated ere-
numab-aooe (70 mg) to be highly effective and
well tolerated. In the EM patient group, a
reduction of 3.8 MMD was reported at 4 weeks
compared with baseline; in the CM patient
group, reductions of 12.2 and 15.0 MMD from
baseline were reported at 4 and 8 weeks,
respectively [113]. Furthermore, in a real-world
cohort of 65 individuals with severe migraine, a
reduction in MMD of C 50% was commonly

Table 1 FDA-approved anti-CGRP and anti-CGRP-R mAb characteristics

Feature Erenumab-aooe [116] Fremanezumab-
vfrm [117]

Galcanezumab-gnlm [118] Eptinezumab-jjmr
[118]

Target CGRP-R CGRP ligand CGRP ligand CGRP ligand

Source Fully human Humanized Humanized Humanized

Isotype IgG2 IgG2 IgG4 IgG1

Half-life 28 days [152] 31 days 25–30 days [152] 27 days

Glycosylation Glycosylated Both No information available No information available

Formulation Tris buffer or acetate

buffer, and sorbitol or a

suitable substitute

L-histidine,

sucrose, PS80,

EDTA

L-histidine, hydrochloride

monohydrate, NaCl,

PS80, and water

L-histidine, L-histidine

hydrochloride

monohydrate, PS80,

sorbitol, and water

Viscosity No information available High No information available No information available

Administration

route

Subcutaneous Subcutaneous Subcutaneous Intravenous

Administration

dose and

frequencya

70 mg, 140 mg

QM

225 mg, QM

675 mg, Q3M

240 mg initial dose then

120 mg QM

100 mg Q3M; some

patients may benefit

from 300 mg Q3M

Adverse events Injection-site reactions,

hypersensitivity reactions

(rash, swelling/edema,

urticaria), constipation,

cramps/muscle spasms,

pruritus

Injection-site

reactions

(pain,

induration,

erythema,

pruritus, rash)

Injection-site pain,

injection-site reactions,

vertigo, constipation,

pruritus, hypersensitivity

reactions (rash, urticaria,

dyspnea)

Hypersensitivity

reactions,

(angioedema, urticaria,

facial flushing, rash)

CGRP calcitonin gene-related peptide, CGRP-R CGRP receptor, EDTA ethylenediaminetetraacetic acid, FDA US Food
and Drug Administration, IgG immunoglobulin G, mAb monoclonal antibody, PS polysorbate, Q3M every 3 months, QM
monthly
a Doses and frequencies studied in registrational trials
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observed in 40–50% of individuals within dif-
ferent patient subgroups when treated with
erenumab-aooe. The cohort included patients
who would have been excluded from random-
ized controlled trials (i.e., those with more
chronic, frequent, severe, and refractory
migraine). For example, subgroups included
patients with CM of duration[10 years,
patients in whom[3 prophylactic medications
had failed, and patients scoring[ 60 on the six-
item Headache Impact Test [114].

Initial results (6 months) from a 1-year open-
label extension trial in 312 patients treated with
fremanezumab have also been reported.
Patients with EM taking monthly doses of fre-
manezumab experienced reductions in MMD
from 8.9 at baseline to 5.3 at 12 weeks and 4.0 at
6 months; patients on quarterly doses reported
decreases in MMD from 9.2 at baseline to 5.3 at
12 weeks and 4.2 at 6 months. Patients with CM
taking monthly doses of fremanezumab repor-
ted a decrease in MMD from 16.2 at baseline to
11.4 at 12 weeks and 8.3 at 6 months; patients
on quarterly doses experienced reductions in
MMD from 16.4 at baseline to 11.9 at 12 weeks
and 9.9 at 6 months [115].

Overall, mAbs have long elimination half-
lives, approximately 27–31 days for the mAbs
approved for the treatment of migraine
[116–118]. Physiological antibody concentra-
tions are maintained, at least in part, by the
neonatal fragment crystallizable receptor,
which protects mAbs and other immunoglobu-
lin G molecules from lysosomal degradation,
providing a salvage pathway that returns
approximately two-thirds of immunoglobulin
antibodies to the cell surface, the remainder
being degraded [119].

Although the immunogenic potential of
therapeutic antibodies is reduced by human-
ization, erenumab-aooe is the only fully human
antibody [26]. Further differentiating erenu-
mab-aooe from the ligand-targeted mAbs is the
fact that those are CGRP-release dependent,
whereas receptor-targeted strategies are release
independent. It may be that, for migraine pre-
vention, receptor-targeted strategies will pro-
vide a more sustained modulation of CGRP-R
signaling than ‘waiting’ for ligand release to
drive a feed-forward cycle.

CGRP expression is increased in RAMP1-de-
ficient mice [120]. Conversely, CGRP-R

Fig. 6 mAbs targeting CGRP or CGRP-R. CGRP-R
signaling may be reduced by mAbs that target either
CGRP or the CGRP-R. Although the CGRP-R is depicted
as a CLR-RAMP1 complex, it is not known if all CGRP
binding sites are formed by this complex. The CGRP-
responsive receptor AMY1 has been found in the

trigeminal ganglion and brainstem, although a role of
AMY1 in migraine has not been confirmed [50]. AMY
amylin receptor, CGRP calcitonin gene-related peptide,
CGRP-R CGRP receptor, CLR calcitonin-like receptor,
mAb monoclonal antibody, RAMP receptor activity-
modifying protein
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Table 2 Efficacy of FDA-approved mAbs in clinical trials for prevention of migraine

Name Dose Primary endpoint Efficacy outcome, mean change

Erenumab-aooe

STRIVE

[135]

(EM)

70 mg SC QM for

24 weeks

140 mg SC QM for

24 weeks

Monthly migraine days (change from

baseline to months 4 through 6)

Active (n = 312) - 3.2 (SE 0.2)

days; p\ 0.001

Active (n = 318) - 3.7 (SE 0.2)

days; p\ 0.001

Placebo (n = 316) - 1.8 (SE 0.2)

days

ARISE

[136]

(EM)

70 mg SC QM for

12 weeks

Monthly migraine days (change from

baseline in the last 4 weeks of the trial)

Active (n = 282) - 2.9 (SE 0.2)

days; p\ 0.001

Placebo (n = 288) - 1.8 (SE 0.2)

days

Phase 2 in

EM

[153]

7 mg SC QM for

12 weeks

21 mg SC QM for

12 weeks

70 mg SC QM for

12 weeks

Monthly migraine days (change from

baseline in the last 4 weeks of the trial)

Active 7 mg (n = 107) - 2.2

(SE 0.4) days; p = NS

Active 21 mg (n = 102) - 2.4

(SE 0.4) days; p = NS

Active 70 mg (n = 104) - 3.4

(SE 0.4) days; p = 0.021

Placebo (n = 153) - 2.3 (SE 0.3)

days

Phase 2 in

CM

[154]

70 mg SC QM for

12 weeks

140 mg SC QM for

12 weeks

Monthly migraine days

(change from baseline in the last 4 weeks of

the trial)

Active 70 mg (n = 191) - 6.6

(SE 0.4) days; p\ 0.0001

Active 140 mg (n = 190) - 6.6

(SE 0.4) days; p\ 0.0001

Placebo (n = 286) - 4.2 (SE 0.4)

days

Fremanezumab-vfrm

Phase 3 in

EM

[155]

225 mg SC QM for

12 weeks

675 mg SC Q3M for

12 weeks

Monthly migraine days (change during the

12-week trial period, after first dose)

Active (n = 287) - 3.7 (95%

CI - 4.15 to - 3.18) days;

p\ 0.001

Active (n = 288) - 3.4 (95%

CI - 3.94 to - 2.96) days;

p\ 0.001

Placebo (n = 290) - 2.2 (95%

CI - 2.68 to - 1.71) days
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Table 2 continued

Name Dose Primary endpoint Efficacy outcome, mean change

Phase 3 in

CM

[156]

675 mg SC at baseline

and 225 mg SC QM

for 12 weeks

675 mg SC Q3M for

12 weeks

Monthly migraine days (change during the

12-week trial period, after first dose)

Active 675 mg ? 225 mg

(n = 375) - 4.6 (SE 0.3) days;

p\ 0.001

Active 675 mg (n = 375) - 4.3

(SE 0.3) days; p\ 0.001

Placebo (n = 371) - 2.5 (SE 0.3)

days

Galcanezumab-gnlm

EVOLVE-

1 [157]

(EM)

120 mg SC QM for

6 months

Monthly migraine days (change from

baseline during the treatment period)

Active (n = 210) - 4.7 (error

NR) days; p\ 0.001

Placebo (n = 425) - 2.8 (error

NR) days

EVOLVE-

2 [158]

(EM)

120 mg SC QM for

6 months

Monthly migraine days (change from

baseline during the treatment period)

Active (n = 231) - 4.3 (SE 0.3)

days; p\ 0.001

Placebo (n = 461) - 2.3 (SE 0.2)

days

REGAIN

[159]

(CM)

120 mg SC QM for

6 months

Monthly migraine days (change from

baseline during the 3-month double-blind

treatment period)

Active (n = 273) - 4.8 (SE 0.4)

days; p\ 0.001

Placebo (n = 538) - 2.7 (SE 0.4)

days

Eptinezumab-jjmr

PROMISE-

1 [142]

(EM)

30 mg IV Q3M for up to

four administrations

100 mg IV Q3M for up

to four administrations

300 mg IV Q3M for up

to four administrations

Monthly migraine days (change from

baseline during weeks 1–12)

Active 30 mg (n = 223) - 4.0

(95% CI - 4.41 to - 3.61)

days; p = 0.0046a

Active 100 mg (n = 221) - 3.9

(95% CI - 4.28 to - 3.47)

days; p = 0.0182

Active 300 mg (n = 222) - 4.3

(95% CI - 4.70 to - 3.90)

days; p = 0.0001

Placebo (n = 222) - 3.2 (95%

CI - 3.60 to - 2.79) days
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expression is elevated in a-CGRP knockout mice
[121]. Thus, upregulation of CGRP-R or AMY1

expression might be anticipated in response to
chronic ligand depletion or receptor blockade
in humans. If this occurs and receptor density
increases, the observed efficacy of CGRP-R-tar-
geted mAbs may increase over time because
receptors remain saturated. The binding of
antibodies to CGRP or to CGRP-R may result in
the formation of distinct receptor conforma-
tions that signal through unique pathways
(novel signaling bias), although this requires
further investigation [122].

CGRP Receptor Signaling Monoclonal
Antibody Safety

Given the widespread role of CGRP, it might be
expected that CGRP-R signaling blockade could
result in safety concerns; however, the clinical
trial data for anti-CGRP and anti-CGRP-R mAbs
showed only mild drug-related adverse events,
including injection-site reactions, hypersensi-
tivity reactions (such as erythema or pruritus),
and constipation (Table 1) [116–118]. Analysis
of 5-year data from patients with EM partici-
pating in an open-label extension after a
12-week double-blind phase showed no new
safety signals and no increase in the incidence
of adverse events or of serious adverse events

with longer-term erenumab-aooe use compared
with the double-blind treatment phase [110]. A
pooled analysis of four double-blind random-
ized trials and their extension studies in 2375
patients who received at least one dose of ere-
numab-aooe (70 mg or 140 mg; cumulative
exposure, 2641 patient-years) found that ere-
numab-aooe had a favorable and stable adverse
event profile for over 3 years in patients with
EM or CM. Exposure-adjusted adverse event
rates with erenumab-aooe were similar to pla-
cebo during the double-blind phase, except
injection site-reactions (17.1 vs. 10.8 per 100
patient-years), constipation (7.0 vs. 3.8 per 100
patient-years), and muscle spasm (2.3 vs. 1.2 per
100 patient-years). Adverse events reported
during the long-term extensions were similar to
those in the double-blind treatment phase, and
rates of injection-site reactions, constipation,
and muscle spasm were lower [123].

Furthermore, studies have explored any
potential cardiovascular impact of erenumab-
aooe. No differences between erenumab-aooe
and placebo were observed for any endpoint
during treadmill testing or the 12-week safety
follow-up in a clinical trial of patients with
ischemic cardiovascular disease [124], nor were
any differences in arterial blood pressure
observed in healthy volunteers in a placebo-
controlled study of concomitant administration
of erenumab-aooe and sumatriptan [125]. The

Table 2 continued

Name Dose Primary endpoint Efficacy outcome, mean change

PROMISE-

2 [143]

(CM)

100 mg IV Q3M for two

administrations

300 mg IV Q3M for two

administrations

Monthly migraine days (change from

baseline during weeks 1–12)

Active 100 mg (n = 356) - 7.7

(error NR) days; p\ 0.0001

Active 300 mg (n = 350) - 8.2

(error NR) days; p\ 0.0001

Placebo (n = 366) - 5.6 (error

NR) days

CI confidence interval, CM chronic migraine, EM episodic migraine, FDA US Food and Drug Administration, IV
intravenous, mAb monoclonal antibody, NR not reported, NS nonsignificant, Q3M every 3 months, QM monthly, SC
subcutaneous, SE standard error
a Not statistically significant per hierarchy testing
CM defined as C 15 days/month in all trials; EM defined as 4–14 migraine days/month except in fremanezumab-vfrm
trials in which it was defined as\ 15 days/month
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cardiovascular, cerebrovascular, and peripheral
vascular safety of erenumab-aooe in patients
with CM or EM was investigated in a pooled
analysis of four double-blind, placebo-con-
trolled studies and their open-label extensions.
A total of 2443 patients were included; of these,
1043 received placebo, 893 erenumab-aooe
70 mg, and 507 erenumab-aooe 140 mg. The
incidence of vascular adverse events was similar
between placebo and erenumab-aooe over
12 weeks, and the emergence of adverse events
did not increase over time (up to 256 weeks)
[126]. The lack of cardiovascular adverse effects
associated with CGRP-R blockade suggests
redundancy in the CGRP-R system (both CGRP
and amylin bind to AMY1 with high affinity) or
compensatory vasodilatory mechanisms
[124, 127, 128]. However, the potential for car-
diovascular adverse effects following CGRP
ligand blockade cannot be ruled out based on
results from these studies alone. Development
of hypertension and worsening of pre-existing
hypertension have been reported following the
use of erenumab-aooe in the postmarketing
setting. Many of these patients had pre-existing
hypertension or risk factors for hypertension. In
most cases, the onset or worsening of hyper-
tension was reported after the first dose and
were more frequently reported within seven
days of dose administration although they
could occur at any time during treatment. There
were cases of hypertension requiring pharma-
cological treatment and, in some cases, hospi-
talization. Per the Aimovig (erenumab-aooe) US
Prescribing Information, patients treated with
erenumab-aooe should be monitored for new-
onset or worsening of pre-existing hypertension
and treatment discontinuation considered if an
alternative etiology cannot be established [116].

Approved anti-CGRP-R signaling mAbs are
administered by subcutaneous injection, via
autoinjectors (erenumab-aooe and gal-
canezumab-gnlm), prefilled syringe (fre-
manezumab-vfrm), or intravenous infusion
(eptinezumab-jjmr) [116–118, 129]. Injection-
site reactions after subcutaneous administration
are common, resulting in localized pain, pruri-
tus, and erythema [130], and rates appear to be
higher with fremanezumab-vfrm and gal-
canezumab-gnlm than with erenumab-aooe,

with 26–30%, 6–21%, and 3–6% of patients,
respectively, reporting injection-site pain in
Phase 3 trials [116–118]. Fewer injection-site
reactions with erenumab-aooe, together with
the availability of an autoinjector, may have a
positive effect on adherence, although this will
need confirmation in dedicated studies. Reac-
tions may be linked to the immunogenicity of
the drug or excipients such as polysorbate-re-
lated activation of complement or reactive
degradation products [131]. Additionally, drug
volume, viscosity, sugar concentration, pH, and
having L-histidine as an excipient may all con-
tribute to the variability of injection-site
reactions.

CGRP may have a role in regulating utero-
placental blood flow, other vascular adaptations
during pregnancy, and relaxation of uterine
smooth muscle, resulting in potential compli-
cations in pregnancy [132]. However, to date,
no adverse effects have been observed on preg-
nancy in rats and rabbits (fremanezumab-vfrm,
galcanezumab-gnlm, and eptinezumab-jjmr), or
monkeys (erenumab-aooe) following anti-
CGRP-R signaling mAb administration at doses
higher than used clinically [116–118, 129].

The gastrointestinal tract is highly inner-
vated by enteric neurons expressing CGRP,
which is thought to affect intestinal blood flow,
smooth muscle relaxation, and slow wave
amplitude [133, 134]. Constipation was repor-
ted as an adverse event in erenumab-aooe clin-
ical trials in 1–3% of patients [116, 135], and
constipation rates did not increase with longer-
term treatment (B 5 years) [110]. Suspected
cases of constipation with serious complications
have been observed in a postmarketing setting,
although the incidence has not been reported
[116]. For context, no cases of serious consti-
pation were reported with erenumab-aooe dur-
ing Phase 3 trials, which accumulated over 300
person-years [135, 136]. An incidence of serious
constipation in people initiating migraine
treatment of 0.63 per 100 person-years has been
reported [137]. It is important to monitor and to
manage patients receiving erenumab-aooe as
clinically appropriate if cases of constipation
with serious complications occur [116],
although these cases are likely to be uncom-
mon. Constipation is also now listed as a side
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effect of galcanezumab [138], implying that
constipation may be a class effect. This side
effect is consistent with preclinical studies
showing that CGRP causes diarrhea in mice
[139]. None of the approved CGRP-R and CGRP
ligand mAbs are contraindicated in patients
with impaired hepatic or renal function, and
such impairment is not expected to alter the
pharmacokinetics of the drugs [116–118]. The
lack of any hepatotoxic effects in this drug class
is in sharp contrast to those effects observed
with repeated exposure to certain early gepants
[23].

A known phenomenon of therapeutic anti-
bodies is the development of neutralizing anti-
bodies [140]. Pooled data from erenumab-aooe
clinical trials showed that only a small propor-
tion of patients developed anti-erenumab-aooe-
binding antibodies (70 mg, 6.3% [56/884];
140 mg, 2.6% [13/504]), only three of whom
had neutralizing antibodies. By the end of the
study,[ 50% of patients who developed bind-
ing antibodies reverted to negative status and
the mean change in MMD did not appreciably
differ between patients who did or did not
develop anti-erenumab-aooe-binding antibod-
ies [141]. Furthermore, anti-erenumab-aooe-
binding antibodies had no impact on safety,
and the concentrations of erenumab-aooe
overlapped with those of patients who were
antibody negative [141]. In placebo-controlled
studies of galcanezumab-gnlm, 4.8% of patients
(33/688) developed anti-drug antibodies [118];
in a 12-month open-label trial, 12.5% of
patients (16/128) developed anti-drug antibod-
ies, most of which were neutralizing [118]. For
fremanezumab-vfrm, placebo-controlled trials
revealed that 0.4% of patients (6/1701) devel-
oped anti-drug antibodies, while in an ongoing
open-label study, 1.6% of patients (30/1888)
developed anti-drug antibodies [117]. In
patients receiving eptinezumab 100 mg or
300 mg every 3 months in Phase 3 trials (PRO-
MISE-1 and PROMISE-2), the incidence of anti-
eptinezumab antibodies was 20.6% (92/447) in
PROMISE-1 (up to 56 weeks) and 18.3% (129/
706) in PROMISE-2 (up to 32 weeks)
[129, 142, 143]. The impact of neutralizing
antibody development on clinical efficacy has
not been shown.

Drug-drug interactions are unlikely to occur
between mAbs and other medications, because
mAbs are degraded into peptides or amino
acids, although the potential for issues arising
with concomitant treatment with mAbs and
other preventive therapies for migraine is not
known. Additionally, it is unknown if there are
issues with switching between receptor- and
ligand-binding CGRP mAbs [140].

FUTURE DIRECTIONS
FOR MONOCLONAL ANTIBODIES
FOR MIGRAINE

Migraine presents with an abundance of non-
pain signs and symptoms. Patients receiving
anti-CGRP-R signaling treatments commonly
experience improvements in other neurological
abnormalities of migraine, including reduced
sensory aura and improved cognition. However,
no longitudinal data are available to indicate
the long-term effects (e.g., rebound pain, dis-
ease modification) of anti-CGRP-R signaling
mAbs [128]. Since the introduction of these
agents, patients increasingly mention that the
‘brain fog’ associated with migraine has lifted,
with many remarking that this change is more
noticeable between than during attacks.

Anti-CGRP-R signaling mAbs are likely to be
used effectively in combination with other
migraine-preventive treatments, which have
different molecular targets. Anti-CGRP-R sig-
naling mAbs might be expected to decrease
signaling between attacks, protecting against
trigeminal nerve hypersensitivity, although
longitudinal studies are required to demon-
strate this. Additionally, although there is some
evidence that the integration of anti-CGRP-R
signaling mAbs may reduce the use of acute
migraine treatments [144], further research is
needed to evaluate the efficacy and safety of
these mAbs in combination with other stan-
dard-of-care medications. Further to this, a post
hoc analysis has been performed on erenumab-
aooe Phase 2 trial data in patients with CM and
medication overuse in whom preventive treat-
ment had previously failed. Erenumab-aooe
reduced the number of MMD and moderate-
severe headache days, reduced the use of acute

488 Neurol Ther (2021) 10:469–497



migraine medication, and increased the pro-
portion of patients achieving nonmedication
overuse status versus placebo [144]. Moreover,
in a Phase 3 trial, fremanezumab-vfrm reduced
the number of days of acute headache medica-
tion use over a 12-week period versus placebo in
patients with medication overuse at baseline
[145]. It will also be necessary to assess anti-
CGRP-R signaling mAbs in children, adoles-
cents, during pregnancy, and in similar head-
ache conditions [146].

It has been shown that lower injection fre-
quency and increased efficacy are key drivers of
patient adherence [147]. Efficacious mAbs with
relatively infrequent dosing may therefore be
well received by some patients compared with
small molecules or botulinum toxin type A,
based on their frequency of administration or
number of injections per dose (31–39 injec-
tions/dose for botulinum toxin type A) [148].
Further studies on adherence in a real-world
setting are needed.

The involvement of other receptors and
pathways (such as AMY1, the pituitary adeny-
late cyclase-activating peptide system, the
serotonin-5-HT1F receptor, purinergic receptors,
hyperpolarization-activated cyclic nucleotide-
gated channels, adenosine triphosphate-sensi-
tive potassium channels, and the glutaminergic
system [149]) and the potential for treatments
that work synergistically (such as concomitant
small-molecule CGRP-R antagonists and CGRP-
based mAbs [150]) could also be assessed.
Approved anti-CGRP-R signaling mAbs are
effective for approximately 50% of patients
[116–118, 129] and may encourage future
development of centrally and peripherally act-
ing CGRP drugs. Combining medications that
have peripheral effects with treatments that
target central processes may be a good combi-
nation therapy approach for migraine control.

CONCLUSION

There is an unmet need for preventive migraine
therapies, and targeting CGRP-R signaling offers
much potential. Several mAbs that target the
CGRP-R or ligand are approved by the FDA and
have proven to be efficacious and well tolerated

in pivotal clinical trials. These migraine-specific
treatments may help patients who are hyper-
vigilant and to reduce allostatic load. Further
evidence is required to determine if there are
any real-world differences between ligand- and
receptor-targeted therapies and to optimize
their use. It will be interesting to discover to
what degree these therapies are disease-modi-
fying and, if so, whether this results from an
ability to modulate allostatic load.

ACKNOWLEDGEMENTS

We are grateful to Herman Ng for his helpful
review and additions to the final manuscript
draft.

Funding. This publication, including the
journal’s Rapid Service Fee, was supported by
Novartis Pharmaceuticals Corporation, East
Hanover, NJ, USA, as part of a collaboration
between Novartis and Amgen Inc.

Medical Writing and/or Editorial Assis-
tance. The authors gratefully acknowledge Kim
Wager and Angela Pozo Ramajo (Oxford Phar-
maGenesis Ltd, Oxford, UK) for providing
medical writing and medical editing support.
Medical writing assistance was supported by
Novartis Pharmaceuticals Corporation, East
Hanover, NJ, USA.

Authorship. All authors were equally
responsible for the design/conceptualization of
the study; acquisition, analysis/interpretation
of data; and drafting/revising the manuscript
for intellectual content.

Disclosures. Andrew Blumenfeld serves as a
consultant and/or a promotional speaker for
Alder, Allergan, Amgen, Biohaven, electroCore,
Lilly, Novartis, Promius, Supernus, Teva, and
Theranica. Paul L. Durham serves as a consul-
tant for Novartis and has received grant support
from Alder BioPharmaceuticals, CBD Life Sci-
ences, electroCore, and Teva. Alexander Feok-
tistov serves on speaker bureaus for Allergan,
Amgen, electroCore, Promius Pharma, Supernus

Neurol Ther (2021) 10:469–497 489



Pharmaceuticals, and Teva. He also serves on
advisory boards for Amgen and Lilly. Debbie L.
Hay serves as a consultant for Intarcia Thera-
peutics and Merck, and has received grant sup-
port from Alder BioPharmaceuticals and Living
Cell Technologies. Andrew F. Russo serves as a
consultant for Alder BioPharmaceuticals,
Amgen, Lilly, Novartis, PharmNovo, and
Schedule 1 Therapeutics, and receives grant
support from Alder BioPharmaceuticals. Ira
Turner serves as a consultant (advisory boards/
speaker bureaus) for Allergan, Amgen, Bio-
haven, Depomed, electroCore, Impax, Lilly,
Novartis, Promius, Supernus, and Teva. He also
receives research support from Alder BioPhar-
maceuticals, Allergan, Amgen, ATI, Biohaven,
electroCore, Lilly, and Teva.

Compliance with Ethics Guidelines. This
article is based on previously conducted studies
and does not contain any studies with human
participants or animals performed by any of the
authors.

Data Availability. Data sharing is not
applicable to this article as no data sets were
generated or analyzed for this review.

Open Access. This article is licensed under a
Creative Commons Attribution-Non-
Commercial 4.0 International License, which
permits any non-commercial use, sharing,
adaptation, distribution and reproduction in
any medium or format, as long as you give
appropriate credit to the original author(s) and
the source, provide a link to the Creative
Commons licence, and indicate if changes were
made. The images or other third-party material
in this article are included in the article’s
Creative Commons licence, unless indicated
otherwise in a credit line to the material. If
material is not included in the article’s Creative
Commons licence and your intended use is not
permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view
a copy of this licence, visit http://
creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

1. GBD 2016 Headache Collaborators. Global, regio-
nal, and national burden of migraine and tension-
type headache, 1990–2016: a systematic analysis for
the Global Burden of Disease Study 2016. Lancet
Neurol. 2018;17(11):954–76.

2. Russo AF. CGRP-based migraine therapeutics: how
might they work, why so safe, and what next? ACS
Pharmacol Transl Sci. 2018;2(1):2–8.

3. Durham PL. Diverse physiological roles of calci-
tonin gene-related peptide in migraine pathology:
modulation of neuronal-glial-immune cells to pro-
mote peripheral and central sensitization. Curr Pain
Headache Rep. 2016;20(8):48.

4. Lipton RB, Stewart WF, Diamond S, Diamond ML,
Reed M. Prevalence and burden of migraine in the
United States: data from the American Migraine
Study II. Headache. 2001;41(7):646–57.

5. Young WB, Park JE, Tian IX, Kempner J. The stigma
of migraine. PLoS ONE. 2013;8(1):e54074.

6. Brandes JL. Migraine and functional impairment.
CNS Drugs. 2009;23(12):1039–45.

7. Eftekhari S, Edvinsson L. Possible sites of action of
the new calcitonin gene-related peptide receptor
antagonists. Ther Adv Neurol Disord. 2010;3(6):
369–78.

8. de Vries B, Anttila V, Freilinger T, Wessman M,
Kaunisto MA, Kallela M, et al. Systematic re-evalu-
ation of genes from candidate gene association
studies in migraine using a large genome-wide
association data set. Cephalalgia. 2016;36(7):
604–14.

9. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoff-
mann J, Schankin C, Akerman S. Pathophysiology
of migraine: a disorder of sensory processing.
Physiol Rev. 2017;97(2):553–622.

10. Silva-Neto RP, Peres MF, Valenca MM. Odorant
substances that trigger headaches in migraine
patients. Cephalalgia. 2014;34(1):14–21.

11. Okuma H, Okuma Y, Kitagawa Y. Examination of
fluctuations in atmospheric pressure related to
migraine. SpringerPlus. 2015;4:790.

12. Charles A. The evolution of a migraine attack—a
review of recent evidence. Headache. 2013;53(2):
413–9.

13. Headache Classification Committee of the Interna-
tional Headache Society (IHS). The international

490 Neurol Ther (2021) 10:469–497

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


classification of headache disorders, 3rd edition
(beta version). Cephalalgia. 2013;33(9):629–808.

14. Headache Classification Committee of the Interna-
tional Headache Society (IHS). The international
classification of headache disorders, 3rd edition.
Cephalalgia. 2018;38(1):1–211.

15. Miller S. The acute and preventative treatment of
episodic migraine. Ann Indian Acad Neurol.
2012;15(Suppl 1):S33–9.

16. Silberstein SD. Practice parameter: evidence-based
guidelines for migraine headache (an evidence-
based review): report of the Quality Standards Sub-
committee of the American Academy of Neurology.
Neurology. 2000;55(6):754–62.

17. Reuter U, Goadsby PJ, Lanteri-Minet M, Wen S,
Hours-Zesiger P, Ferrari MD, et al. Efficacy and tol-
erability of erenumab in patients with episodic
migraine in whom two-to-four previous preventive
treatments were unsuccessful: a randomised, dou-
ble-blind, placebo-controlled, phase 3b study. Lan-
cet. 2018;392:2280–7.

18. Hepp Z, Dodick DW, Varon SF, Chia J, Matthew N,
Gillard P, et al. Persistence and switching patterns
of oral migraine prophylactic medications among
patients with chronic migraine: a retrospective
claims analysis. Cephalalgia. 2017;37(5):470–85.

19. Reuter U. A review of monoclonal antibody thera-
pies and other preventative treatments in migraine.
Headache. 2018;58(Suppl 1):48–59.

20. Diamond S, Bigal ME, Silberstein S, Loder E, Reed M,
Lipton RB. Patterns of diagnosis and acute and
preventive treatment for migraine in the United
States: results from the American Migraine Preva-
lence and Prevention study. Headache. 2007;47(3):
355–63.

21. Noseda R, Burstein R. Migraine pathophysiology:
anatomy of the trigeminovascular pathway and
associated neurological symptoms, CSD, sensitiza-
tion and modulation of pain. Pain. 2013;154(Suppl
1):S44–53.

22. Brain SD, Grant AD. Vascular actions of calcitonin
gene-related peptide and adrenomedullin. Physiol
Rev. 2004;84(3):903–34.

23. Edvinsson L. CGRP receptor antagonists and anti-
bodies against CGRP and its receptor in migraine
treatment. Br J Clin Pharmacol. 2015;80(2):193–9.

24. Messlinger K. The big CGRP flood—sources, sinks
and signalling sites in the trigeminovascular sys-
tem. J Headache Pain. 2018;19(1):22.

25. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive
peptide release in the extracerebral circulation of
humans during migraine headache. Ann Neurol.
1990;28(2):183–7.

26. Edvinsson L. The CGRP pathway in migraine as a
viable target for therapies. Headache. 2018;58(Suppl
1):33–47.

27. Cernuda-Morollon E, Larrosa D, Ramon C, Vega J,
Martinez-Camblor P, Pascual J. Interictal increase of
CGRP levels in peripheral blood as a biomarker for
chronic migraine. Neurology. 2013;81(14):1191–6.

28. Sarchielli P, Pini LA, Zanchin G, Alberti A, Maggioni
F, Rossi C, et al. Clinical-biochemical correlates of
migraine attacks in rizatriptan responders and non-
responders. Cephalalgia. 2006;26(3):257–65.

29. Avona A, Burgos-Vega C, Burton MD, Akopian AN,
Price TJ, Dussor G. Dural calcitonin gene-related
peptide produces female-specific responses in
rodent migraine models. J Neurosci. 2019;39(22):
4323–31.

30. Hansen JM, Hauge AW, Olesen J, Ashina M. Calci-
tonin gene-related peptide triggers migraine-like
attacks in patients with migraine with aura.
Cephalalgia. 2010;30(10):1179–86.

31. Juhasz G, Zsombok T, Jakab B, Nemeth J, Szolcsanyi
J, Bagdy G. Sumatriptan causes parallel decrease in
plasma calcitonin gene-related peptide (CGRP)
concentration and migraine headache during
nitroglycerin induced migraine attack. Cephalalgia.
2005;25(3):179–83.

32. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK,
Sperling B, Olesen J. CGRP may play a causative role
in migraine. Cephalalgia. 2002;22(1):54–61.

33. Russo AF. CGRP as a neuropeptide in migraine:
lessons from mice. Br J Clin Pharmacol. 2015;80(3):
403–14.

34. Goadsby PJ, Edvinsson L. The trigeminovascular
system and migraine: studies characterizing cere-
brovascular and neuropeptide changes seen in
humans and cats. Ann Neurol. 1993;33(1):48–56.

35. Guo S, Vollesen AL, Olesen J, Ashina M. Premoni-
tory and nonheadache symptoms induced by CGRP
and PACAP38 in patients with migraine. Pain.
2016;157(12):2773–81.

36. McEwen BS. Stressed or stressed out: what is the
difference? J Psychiatry Neurosci. 2005;30(5):315–8.

37. Bohm PE, Stancampiano FF, Rozen TD. Migraine
headache: updates and future developments. Mayo
Clin Proc. 2018;93(11):1648–53.

Neurol Ther (2021) 10:469–497 491



38. Dodick DW. A phase-by-phase review of migraine
pathophysiology. Headache. 2018;58(Suppl 1):
4–16.

39. Close LN, Eftekhari S, Wang M, Charles AC, Russo
AF. Cortical spreading depression as a site of origin
for migraine: role of CGRP. Cephalalgia. 2018;2:
428–34.

40. Burstein R, Noseda R, Borsook D. Migraine: multiple
processes, complex pathophysiology. J Neurosci.
2015;35(17):6619–29.

41. Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P,
Ayata C, et al. Cortical spreading depression as a
target for anti-migraine agents. J Headache Pain.
2013;14:62.

42. Melo-Carrillo A, Strassman AM, Nir RR, Schain AJ,
Noseda R, Stratton J, et al. Fremanezumab—a
humanized monoclonal anti-CGRP antibody—in-
hibits thinly myelinated (Ad) but not unmyelinated
(C) meningeal nociceptors. J Neurosci. 2017;37(44):
10587–96.

43. Hay DL, Garelja ML, Poyner DR, Walker CS. Update
on the pharmacology of calcitonin/CGRP family of
peptides: IUPHAR Review 25. Br J Pharmacol.
2018;175(1):3–17.

44. Hendrikse ER, Bower RL, Hay DL, Walker CS.
Molecular studies of CGRP and the CGRP family of
peptides in the central nervous system. Cephalalgia.
2018;2:2.

45. Russell FA, King R, Smillie SJ, Kodji X, Brain SD.
Calcitonin gene-related peptide: physiology and
pathophysiology. Physiol Rev. 2014;94(4):
1099–142.

46. van den Pol AN. Neuropeptide transmission in
brain circuits. Neuron. 2012;76(1):98–115.

47. Schlereth T, Schukraft J, Kramer-Best HH, Geber C,
Ackermann T, Birklein F. Interaction of calcitonin
gene related peptide (CGRP) and substance P (SP) in
human skin. Neuropeptides. 2016;59:57–62.

48. Iyengar S, Ossipov MH, Johnson KW. The role of
calcitonin gene-related peptide in peripheral and
central pain mechanisms including migraine. Pain.
2017;158(4):543–59.

49. Evans BN, Rosenblatt MI, Mnayer LO, Oliver KR,
Dickerson IM. CGRP-RCP, a novel protein required
for signal transduction at calcitonin gene-related
peptide and adrenomedullin receptors. J Biol Chem.
2000;275(40):31438–43.

50. Walker CS, Eftekhari S, Bower RL, Wilderman A,
Insel PA, Edvinsson L, et al. A second trigeminal
CGRP receptor: function and expression of the

AMY1 receptor. Ann Clin Transl Neurol. 2015;2(6):
595–608.

51. Walker CS, Hay DL. CGRP in the trigeminovascular
system: a role for CGRP, adrenomedullin and amy-
lin receptors? Br J Pharmacol. 2013;170(7):
1293–307.

52. Hay DL. Amylin. Headache. 2017;57(Suppl 2):
89–96.

53. Walker CS, Raddant AC, Woolley MJ, Russo AF, Hay
DL. CGRP receptor antagonist activity of olcegepant
depends on the signalling pathway measured.
Cephalalgia. 2018;38(3):437–51.

54. Walker CS, Conner AC, Poyner DR, Hay DL. Regu-
lation of signal transduction by calcitonin gene-re-
lated peptide receptors. Trends Pharmacol Sci.
2010;31(10):476–83.

55. Gingell JJ, Hendrikse ER, Hay DL. New insights into
the regulation of CGRP-family receptors. Trends
Pharmacol Sci. 2019;40:71–83.

56. Manoukian R, Sun H, Miller S, Shi D, Chan B, Xu C.
Effects of monoclonal antagonist antibodies on
calcitonin gene-related peptide receptor function
and trafficking. J Headache Pain. 2019;20(1):44.

57. Yarwood RE, Imlach WL, Lieu T, Veldhuis NA,
Jensen DD, Klein Herenbrink C, et al. Endosomal
signaling of the receptor for calcitonin gene-related
peptide mediates pain transmission. Proc Natl Acad
Sci USA. 2017;114(46):12309–14.

58. Bower RL, Yule L, Rees TA, Deganutti G, Hendrikse
ER, Harris PWR, et al. Molecular signature for
receptor engagement in the metabolic peptide
hormone amylin. ACS Pharmacol Transl Sci.
2018;1(1):32–49.

59. Gingell JJ, Rees TA, Hendrikse ER, Siow A, Rennison
D, Scotter J, et al. Distinct patterns of internaliza-
tion of different calcitonin gene-related peptide
receptors. ACS Pharmacol Transl Sci. 2020;3(2):
296–304.

60. Kenakin T. Functional selectivity and biased recep-
tor signaling. J Pharmacol Exp Ther. 2011;336(2):
296–302.

61. Thalakoti S, Patil VV, Damodaram S, Vause CV,
Langford LE, Freeman SE, et al. Neuron-glia signal-
ing in trigeminal ganglion: implications for
migraine pathology. Headache. 2007;47(7):
1008–23.

62. Cady RJ, Glenn JR, Smith KM, Durham PL. Calci-
tonin gene-related peptide promotes cellular chan-
ges in trigeminal neurons and glia implicated in

492 Neurol Ther (2021) 10:469–497



peripheral and central sensitization. Mol Pain.
2011;7:94.

63. Koyuncu Irmak D, Kilinc E, Tore F. Shared fate of
meningeal mast cells and sensory neurons in
migraine. Front Cell Neurosci. 2019;13:136.

64. Cornelison LE, Hawkins JL, Durham PL. Elevated
levels of calcitonin gene-related peptide in upper
spinal cord promotes sensitization of primary
trigeminal nociceptive neurons. Neuroscience.
2016;339:491–501.

65. Schwedt TJ, Chiang CC, Chong CD, Dodick DW.
Functional MRI of migraine. Lancet Neurol.
2015;14(1):81–91.

66. Minen MT, Begasse De Dhaem O, Kroon Van Diest
A, Powers S, Schwedt TJ, Lipton R, et al. Migraine
and its psychiatric comorbidities. J Neurol Neuro-
surg Psychiatry. 2016;87(7):741–9.

67. Hawkins JL, Moore NJ, Miley D, Durham PL. Sec-
ondary traumatic stress increases expression of
proteins implicated in peripheral and central sen-
sitization of trigeminal neurons. Brain Res.
2018;1687:162–72.

68. Lapp HS, Sabatowski R, Weidner K, Croy I, Gossrau
G. C-tactile touch perception in migraineurs—a
case–control study. Cephalalgia. 2020;40(5):
478–92.

69. Borsook D, Maleki N, Becerra L, McEwen B. Under-
standing migraine through the lens of maladaptive
stress responses: a model disease of allostatic load.
Neuron. 2012;73(2):219–34.

70. Sink KS, Walker DL, Yang Y, Davis M. Calcitonin
gene-related peptide in the bed nucleus of the stria
terminalis produces an anxiety-like pattern of
behavior and increases neural activation in anxiety-
related structures. J Neurosci. 2011;31(5):1802–10.

71. Kimble M, Boxwala M, Bean W, Maletsky K, Halper
J, Spollen K, et al. The impact of hypervigilance:
evidence for a forward feedback loop. J Anxiety
Disord. 2014;28(2):241–5.

72. Crestani CC, Alves FH, Gomes FV, Resstel LB, Correa
FM, Herman JP. Mechanisms in the bed nucleus of
the stria terminalis involved in control of auto-
nomic and neuroendocrine functions: a review.
Curr Neuropharmacol. 2013;11(2):141–59.

73. Han S, Soleiman MT, Soden ME, Zweifel LS, Palmi-
ter RD. Elucidating an affective pain circuit that
creates a threat memory. Cell. 2015;162(2):363–74.

74. Filiz A, Tepe N, Eftekhari S, Boran HE, Dilekoz E,
Edvinsson L, et al. CGRP receptor antagonist MK-
8825 attenuates cortical spreading depression

induced pain behavior. Cephalalgia. 2019;39(3):
354–65.

75. Di Tillo E, Cevoli S, Zenesini C, Fontana C, Grandi
S, Tossani E, et al. Allostatic load in migraine
patients: a pilot study using an integrated psycho-
somatic and biochemical approach. Cephalalgia.
2019;39:322.

76. Chapman CR. Painful Multi-Symptom Disorders: A
Systems Perspective. In: Kruger L, Light AR, editors.
Translational Pain Research: From Mouse to Man.
Frontiers in Neuroscience. Boca Raton (FL) 2010.

77. Borsook D, Dodick DW. Taking the headache out of
migraine. Neurol Clin Pract. 2015;5(4):317–25.

78. Silberstein SD. Preventive migraine treatment.
Continuum (Minneap Minn). 2015;21(4 Head-
ache):973–89.

79. Ramachandran R, Yaksh TL. Therapeutic use of
botulinum toxin in migraine: mechanisms of
action. Br J Pharmacol. 2014;171(18):4177–92.

80. Negro A, Koverech A, Martelletti P. Serotonin
receptor agonists in the acute treatment of
migraine: a review on their therapeutic potential.
J Pain Res. 2018;11:515–26.

81. Ahn AH, Basbaum AI. Where do triptans act in the
treatment of migraine? Pain. 2005;115(1–2):1–4.

82. Edvinsson L. Aspects on the pathophysiology of
migraine and cluster headache. Pharmacol Toxicol.
2001;89(2):65–73.

83. Durham PL, Masterson CG. Two mechanisms
involved in trigeminal CGRP release: implications
for migraine treatment. Headache. 2013;53(1):
67–80.

84. Holland PR, Goadsby PJ. Targeted CGRP small
molecule antagonists for acute migraine therapy.
Neurotherapeutics. 2018;15(2):304–12.

85. Negro A, Martelletti P. Gepants for the treatment of
migraine. Expert Opin Investig Drugs. 2019;28(6):
555–67.

86. Edvinsson L, Chan KY, Eftekhari S, Nilsson E, de
Vries R, Saveland H, et al. Effect of the calcitonin
gene-related peptide (CGRP) receptor antagonist
telcagepant in human cranial arteries. Cephalalgia.
2010;30(10):1233–40.

87. Gupta S, Mehrotra S, Avezaat CJ, Villalon CM,
Saxena PR, Maassen Van Den Brink A. Characteri-
sation of CGRP receptors in the human isolated
middle meningeal artery. Life Sci. 2006;79(3):
265–71.

Neurol Ther (2021) 10:469–497 493



88. Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan
X, et al. Efficacy and tolerability of MK-0974 (tel-
cagepant), a new oral antagonist of calcitonin gene-
related peptide receptor, compared with zolmitrip-
tan for acute migraine: a randomised, placebo-
controlled, parallel-treatment trial. Lancet.
2008;372(9656):2115–23.

89. Ho TW, Mannix LK, Fan X, Assaid C, Furtek C, Jones
CJ, et al. Randomized controlled trial of an oral
CGRP receptor antagonist, MK-0974, in acute
treatment of migraine. Neurology. 2008;70(16):
1304–12.

90. Diener HC, Barbanti P, Dahlof C, Reuter U, Habeck
J, Podhorna J. BI 44370 TA, an oral CGRP antagonist
for the treatment of acute migraine attacks: results
from a phase II study. Cephalalgia. 2011;31(5):
573–84.

91. Hewitt DJ, Aurora SK, Dodick DW, Goadsby PJ, Ge
YJ, Bachman R, et al. Randomized controlled trial of
the CGRP receptor antagonist MK-3207 in the acute
treatment of migraine. Cephalalgia. 2011;31(6):
712–22.

92. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall
D, Meier U, et al. Calcitonin gene-related peptide
receptor antagonist BIBN 4096 BS for the acute
treatment of migraine. N Engl J Med. 2004;350(11):
1104–10.

93. Kish T. Emerging therapies for patients with diffi-
cult-to-treat migraine. PT. 2018;43(10):616–21.

94. Prescribing information: Ubrelvy (ubrogepant).
Madison, NJ: Allergan Inc, 2020 (package insert).
Available at: https://media.allergan.com/products/
Ubrelvy_pi.pdf. Accessed 9 Feb 2021.

95. Dodick DW, Lipton RB, Ailani J, Lu K, Finnegan M,
Trugman JM, et al. Ubrogepant for the treatment of
migraine. N Engl J Med. 2019;381(23):2230–41.

96. Tepper SJ. Anti-calcitonin gene-related peptide
(CGRP) therapies: update on a previous review after
the American Headache Society 60th Scientific
Meeting, San Francisco, June 2018. Headache.
2018;58(Suppl 3):276–90.

97. Croop R, Goadsby PJ, Stock DA, Conway CM, For-
shaw M, Stock EG, et al. Efficacy, safety, and toler-
ability of rimegepant orally disintegrating tablet for
the acute treatment of migraine: a randomised,
phase 3, double-blind, placebo-controlled trial.
Lancet. 2019;394(10200):737–45.

98. Biohaven Pharmaceuticals. Nurtec ODT (rimege-
pant) Prescribing information. Available at: https://
www.accessdata.fda.gov/drugsatfda_docs/label/
2020/212728s000lbl.pdf. Accessed 9 Feb 2021.

99. Goadsby PJ, Dodick DW, Ailani J. et al. Orally
administered atogepant was efficacious, safe, and
tolerable for the prevention of migraine: results
from a phase 2b/3 study. Presented at the 62nd
Annual Scientific Meeting of the American Head-
ache Society, July 11–14, 2019, Philadelphia, PA,
USA.

100. Allergan. Allergan’s Oral CGRP Receptor antagonist
atogepant demonstrates robust efficacy and safety
in episodic migraine prevention in a Phase 2b/3
Clinical Trial. https://www.prnewswire.com/news-
releases/allergans-oral-cgrp-receptor-antagonist-
atogepant-demonstrates-robust-efficacy-and-safety-
in-episodic-migraine-prevention-in-a-phase-2b3-
clinical-trial-300663770.html. Accessed 9 Feb 2021.

101. Hostetler ED, Joshi AD, Sanabria-Bohorquez S, Fan
H, Zeng Z, Purcell M, et al. In vivo quantification of
calcitonin gene-related peptide receptor occupancy
by telcagepant in rhesus monkey and human brain
using the positron emission tomography tracer
[11C]MK-4232. J Pharmacol Exp Ther. 2013;347(2):
478–86.

102. Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F.
Monoclonal versus polyclonal antibodies: distin-
guishing characteristics, applications, and infor-
mation resources. ILAR J. 2005;46(3):258–68.

103. Shepard HM, Phillips GL, Thanos CD, Feldmann M.
Developments in therapy with monoclonal anti-
bodies and related proteins. Clin Med (Lond).
2017;17(3):220–32.

104. Suzuki M, Kato C, Kato A. Therapeutic antibodies:
their mechanisms of action and the pathological
findings they induce in toxicity studies. J Toxicol
Pathol. 2015;28(3):133–9.

105. Yu YJ, Watts RJ. Developing therapeutic antibodies
for neurodegenerative disease. Neurotherapeutics.
2013;10(3):459–72.

106. Johnson KW, Morin SM, Wroblewski VJ, Johnson
MP. Peripheral and central nervous system distri-
bution of the CGRP neutralizing antibody [125I]
galcanezumab in male rats. Cephalalgia.
2019;39(10):1241–8.

107. Garces F, Mohr C, Zhang L, Huang CS, Chen Q,
King C, et al. Molecular insight into recognition of
the CGRPR complex by migraine prevention ther-
apy Aimovig (Erenumab). Cell Rep. 2020;30(6):
1714–23.

108. Silberstein S, Lenz R, Xu C. Therapeutic monoclonal
antibodies: what headache specialists need to know.
Headache. 2015;55(8):1171–82.

109. Tepper SJ, Ashina M, Reuter U, Brandes JL, Dolezil
D, Silberstein SD, et al. Long-term safety and

494 Neurol Ther (2021) 10:469–497

https://media.allergan.com/products/Ubrelvy_pi.pdf
https://media.allergan.com/products/Ubrelvy_pi.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212728s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212728s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212728s000lbl.pdf
https://www.prnewswire.com/news-releases/allergans-oral-cgrp-receptor-antagonist-atogepant-demonstrates-robust-efficacy-and-safety-in-episodic-migraine-prevention-in-a-phase-2b3-clinical-trial-300663770.html
https://www.prnewswire.com/news-releases/allergans-oral-cgrp-receptor-antagonist-atogepant-demonstrates-robust-efficacy-and-safety-in-episodic-migraine-prevention-in-a-phase-2b3-clinical-trial-300663770.html
https://www.prnewswire.com/news-releases/allergans-oral-cgrp-receptor-antagonist-atogepant-demonstrates-robust-efficacy-and-safety-in-episodic-migraine-prevention-in-a-phase-2b3-clinical-trial-300663770.html
https://www.prnewswire.com/news-releases/allergans-oral-cgrp-receptor-antagonist-atogepant-demonstrates-robust-efficacy-and-safety-in-episodic-migraine-prevention-in-a-phase-2b3-clinical-trial-300663770.html
https://www.prnewswire.com/news-releases/allergans-oral-cgrp-receptor-antagonist-atogepant-demonstrates-robust-efficacy-and-safety-in-episodic-migraine-prevention-in-a-phase-2b3-clinical-trial-300663770.html


efficacy of erenumab in patients with chronic
migraine: results from a 52-week, open-label
extension study. Cephalalgia. 2020;40(6):543–53.

110. Ashina M, Goadsby PJ, Reuter U, Silberstein S,
Dodick DW, Xue F, et al. Long-term efficacy and
safety of erenumab in migraine prevention: results
from a 5-year, open-label treatment phase of a
randomized clinical trial. Eur J Neurol. 2021;28(5):
1716–25.

111. Ashina M, Tepper S, Brandes JL, Reuter U, Boudreau
G, Dolezil D, et al. Efficacy and safety of erenumab
(AMG334) in chronic migraine patients with prior
preventive treatment failure: a subgroup analysis of
a randomized, double-blind, placebo-controlled
study. Cephalalgia. 2018;38(10):1611–21.

112. Goadsby PJ, Paemeleire K, Broessner G, Brandes J,
Klatt J, Zhang F, et al. Efficacy and safety of erenu-
mab (AMG334) in episodic migraine patients with
prior preventive treatment failure: a subgroup
analysis of a randomized, double-blind, placebo-
controlled study. Cephalalgia. 2019;39(7):817–26.

113. Barbanti P, Aurilia C, Egeo G, Fofi L. Erenumab:
from scientific evidence to clinical practice-the first
Italian real-life data. Neurol Sci. 2019;40(Suppl 1):
177–9.

114. Jenkins B, Cheng S, Hutton E. Will refractory
patients respond to erenumab in the real world?
J Neurol Neurosurg Psychiatry. 2019;90:A10.

115. Robblee J, VanderPluym J. Fremanezumab in the
treatment of migraines: evidence to date. J Pain Res.
2019;12:2589–95.

116. Prescribing information: Aimovig (erenumab-aooe).
Thousand Oaks, CA: Amgen Inc. and Novartis
Pharmaceuticals Corporation, 2020 (package
insert). Available at: https://www.pi.amgen.com/*/
media/amgen/repositorysites/pi-amgen-com/
aimovig/aimovig_pi_hcp_english.ashx. Accessed 9
Feb 2021.

117. Prescribing information: Ajovy (fremanezumab-
vfrm). North Wales, PA: Teva Pharmaceuticals USA,
Inc., 2020 (package insert). Available at: https://
www.ajovy.com/globalassets/ajovy/ajovy-pi.pdf.
Accessed 9 Feb 2021.

118. Prescribing information: Emgality (galcanezumab-
gnlm). Indianapolis, IN: Eli Lilly and Company,
2019 (package insert). Available at: https://uspl.lilly.
com/emgality/emgality.html#pi. Accessed 9 Feb
2021.

119. Ryman JT, Meibohm B. Pharmacokinetics of mon-
oclonal antibodies. CPT Pharmacometr Syst Phar-
macol. 2017;6(9):576–88.

120. Mishima T, Ito Y, Nishizawa N, Amano H, Tsujikawa
K, Miyaji K, et al. RAMP1 signaling improves lym-
phedema and promotes lymphangiogenesis in
mice. J Surg Res. 2017;219:50–60.

121. Wan Y, Ceci L, Wu N, Zhou T, Chen L, Venter J,
et al. Knockout of a-calcitonin gene-related peptide
attenuates cholestatic liver injury by differentially
regulating cellular senescence of hepatic stellate
cells and cholangiocytes. Lab Invest. 2019;99(6):
764–76.

122. Wootten D, Christopoulos A, Marti-Solano M, Babu
MM, Sexton PM. Mechanisms of signalling and
biased agonism in G protein-coupled receptors. Nat
Rev Mol Cell Biol. 2018;19(10):638–53.

123. Ashina M, Kudrow D, Reuter U, Dolezil D, Silber-
stein S, Tepper SJ, et al. Long-term tolerability and
nonvascular safety of erenumab, a novel calcitonin
gene-related peptide receptor antagonist for pre-
vention of migraine: a pooled analysis of four pla-
cebo-controlled trials with long-term extensions.
Cephalalgia. 2019;39(14):1798–808.

124. Depre C, Antalik L, Starling A, Koren M, Eisele O,
Lenz RA, et al. A randomized, double-blind, pla-
cebo-controlled study to evaluate the effect of ere-
numab on exercise time during a treadmill test in
patients with stable angina. Headache. 2018;58(5):
715–23.

125. de Hoon J, Van Hecken A, Vandermeulen C, Her-
bots M, Kubo Y, Lee E, et al. Phase 1, randomized,
parallel-group, double-blind, placebo-controlled
trial to evaluate the effects of erenumab (AMG 334)
and concomitant sumatriptan on blood pressure in
healthy volunteers. Cephalalgia. 2019;39(1):
100–10.

126. Kudrow D, Pascual J, Winner PK, Dodick DW, Tep-
per SJ, Reuter U, et al. Vascular safety of erenumab
for migraine prevention. Neurology. 2020;94(5):
e497–510.

127. Maassen Van Den Brink A, Meijer J, Villalon CM,
Ferrari MD. Wiping out CGRP: potential cardiovas-
cular risks. Trends Pharmacol Sci. 2016;37(9):
779–88.

128. Dodick DW. CGRP ligand and receptor monoclonal
antibodies for migraine prevention: evidence review
and clinical implications. Cephalalgia. 2019;39(3):
445–58.

129. Lundbeck Seattle BioPharmaceuticals. Vyepti (epti-
nezumab-jjmr) Prescribing Information, 2020.
Available at: https://www.accessdata.fda.gov/
drugsatfda_docs/label/2020/761119s000lbl.pdf.
Accessed 9 Feb 2021.

Neurol Ther (2021) 10:469–497 495

https://www.pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/aimovig/aimovig_pi_hcp_english.ashx
https://www.pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/aimovig/aimovig_pi_hcp_english.ashx
https://www.pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/aimovig/aimovig_pi_hcp_english.ashx
https://www.ajovy.com/globalassets/ajovy/ajovy-pi.pdf
https://www.ajovy.com/globalassets/ajovy/ajovy-pi.pdf
https://uspl.lilly.com/emgality/emgality.html#pi
https://uspl.lilly.com/emgality/emgality.html#pi
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761119s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761119s000lbl.pdf


130. Mitsikostas DD, Reuter U. Calcitonin gene-related
peptide monoclonal antibodies for migraine pre-
vention: comparisons across randomized controlled
studies. Curr Opin Neurol. 2017;30(3):272–80.

131. Singh SK, Mahler HC, Hartman C, Stark CA. Are
injection site reactions in monoclonal antibody
therapies caused by polysorbate excipient degra-
dants? J Pharm Sci. 2018;107(11):2735–41.

132. Yallampalli C, Chauhan M, Thota CS, Kondapaka S,
Wimalawansa SJ. Calcitonin gene-related peptide in
pregnancy and its emerging receptor heterogeneity.
Trends Endocrinol Metab. 2002;13(6):263–9.

133. Deen M, Correnti E, Kamm K, Kelderman T, Papetti
L, Rubio-Beltran E, et al. Blocking CGRP in migraine
patients—a review of pros and cons. J Headache
Pain. 2017;18(1):96.

134. Pawlik WW, Obuchowicz R, Biernat J, Sendur R,
Jaworek J. Role of calcitonin gene related peptide in
the modulation of intestinal circulatory, metabolic,
and myoelectric activity during ischemia/reperfu-
sion. J Physiol Pharmacol. 2000;51(4 Pt 2):933–42.

135. Goadsby PJ, Reuter U, Hallstrom Y, Broessner G,
Bonner JH, Zhang F, et al. A controlled trial of ere-
numab for episodic migraine. N Engl J Med.
2017;377(22):2123–32.

136. Dodick DW, Ashina M, Brandes JL, Kudrow D,
Lanteri-Minet M, Osipova V, et al. ARISE: a Phase 3
randomized trial of erenumab for episodic
migraine. Cephalalgia. 2018;38(6):1026–37.

137. Chia V, Park A, Goli V, Win N, Navetta NS, Xue F.
Incidence of constipation in patients treated with
commonly used migraine medications. Presented at
the 19th Congress of the International Headache
Society (ICH); September 5–8, 2019; Dublin,
Ireland.

138. Eli Lilly. Emgality - summary of product character-
istics. Available at: https://www.ema.europa.eu/en/
documents/product-information/emgality-epar-
product-information_en.pdf. Accessed 9 Feb 2021.

139. Kaiser EA, Rea BJ, Kuburas A, Kovacevich BR, Garcia-
Martinez LF, Recober A, et al. Anti-CGRP antibodies
block CGRP-induced diarrhea in mice. Neuropep-
tides. 2017;64:95–9.

140. Zhou H, Mascelli MA. Mechanisms of monoclonal
antibody-drug interactions. A Rev Pharmacol Toxi-
col. 2011;51:359–72.

141. Vargas B, Starling A, Silberstein S, Zhou Y, Trotman
M-L, Xue F, et al. Erenumab immunogenicity: a
pooled analysis of phase 2 and phase 3 migraine
prevention clinical trials (P4.098). Neurology.
2018;90(15):98.

142. Ashina M, Saper J, Cady R, Schaeffler BA, Biondi
DM, Hirman J, et al. Eptinezumab in episodic
migraine: a randomized, double-blind, placebo-
controlled study (PROMISE-1). Cephalalgia.
2020;40(3):241–54.

143. Lipton RB, Goadsby PJ, Smith J, Schaeffler BA,
Biondi DM, Hirman J, et al. Efficacy and safety of
eptinezumab in patients with chronic migraine:
PROMISE-2. Neurology. 2020;94(13):e1365–77.

144. Tepper SJ, Diener HC, Ashina M, Brandes JL, Fried-
man DI, Reuter U, et al. Erenumab in chronic
migraine with medication overuse: Subgroup anal-
ysis of a randomized trial. Neurology. 2019;92(20):
e2309–20.

145. Silberstein SD, Cohen JM, Seminerio MJ, Yang R,
Ashina S, Katsarava Z. The impact of fremanezumab
on medication overuse in patients with chronic
migraine. J Headache Pain. 2020;21:114.

146. Szperka CL, VanderPluym J, Orr SL, Oakley CB,
Qubty W, Patniyot I, et al. Recommendations on
the use of anti-CGRP monoclonal antibodies in
children and adolescents. Headache. 2018;58(10):
1658–69.

147. Poulos C, Kinter E, Yang JC, Bridges JF, Posner J,
Gleissner E, et al. A discrete-choice experiment to
determine patient preferences for injectable multi-
ple sclerosis treatments in Germany. Ther Adv
Neurol Disord. 2016;9(2):95–104.

148. Allergan. Botulinum toxin type A - summary of
product characteristics. Available at: https://www.
medicines.org.uk/emc/product/859/smpc. Accessed
9 Feb 2021.

149. Haanes KA, Edvinsson L. Pathophysiological
mechanisms in migraine and the identification of
new therapeutic targets. CNS Drugs. 2019;33(6):
525–37.

150. Mullin K, Kudrow D, Croop R, Lovegren M, Conway
CM, Coric V, et al. Potential for treatment benefit of
small molecule CGRP receptor antagonist plus
monoclonal antibody in migraine therapy. Neurol-
ogy. 2020;94(20):e2121–5.

151. Loder E. What is the evolutionary advantage of
migraine? Cephalalgia. 2002;22(8):624–32.

152. Corrigendum: CGRP ligand and receptor mono-
clonal antibodies for migraine prevention: Evidence
review and clinical implications. Cephalalgia.
2019;39(8):1069.

153. Sun H, Dodick DW, Silberstein S, Goadsby PJ, Reuter
U, Ashina M, et al. Safety and efficacy of AMG 334
for prevention of episodic migraine: a randomised,

496 Neurol Ther (2021) 10:469–497

https://www.ema.europa.eu/en/documents/product-information/emgality-epar-product-information_en.pdf
https://www.ema.europa.eu/en/documents/product-information/emgality-epar-product-information_en.pdf
https://www.ema.europa.eu/en/documents/product-information/emgality-epar-product-information_en.pdf
https://www.medicines.org.uk/emc/product/859/smpc
https://www.medicines.org.uk/emc/product/859/smpc


double-blind, placebo-controlled, phase 2 trial.
Lancet Neurol. 2016;15(4):382–90.

154. Tepper S, Ashina M, Reuter U, Brandes JL, Dolezil D,
Silberstein S, et al. Safety and efficacy of erenumab
for preventive treatment of chronic migraine: a
randomised, double-blind, placebo-controlled
phase 2 trial. Lancet Neurol. 2017;16(6):425–34.

155. Dodick DW, Silberstein SD, Bigal ME, Yeung PP,
Goadsby PJ, Blankenbiller T, et al. Effect of fre-
manezumab compared with placebo for prevention
of episodic migraine: a randomized clinical trial.
JAMA. 2018;319(19):1999–2008.

156. Silberstein SD, Dodick DW, Bigal ME, Yeung PP,
Goadsby PJ, Blankenbiller T, et al. Fremanezumab
for the preventive treatment of chronic migraine.
N Engl J Med. 2017;377(22):2113–22.

157. Stauffer VL, Dodick DW, Zhang Q, Carter JN, Ailani
J, Conley RR. Evaluation of galcanezumab for the
prevention of episodic migraine: the EVOLVE-1
randomized clinical trial. JAMA Neurol. 2018;75(9):
1080–8.

158. Skljarevski V, Matharu M, Millen BA, Ossipov MH,
Kim BK, Yang JY. Efficacy and safety of gal-
canezumab for the prevention of episodic migraine:
results of the EVOLVE-2 Phase 3 randomized con-
trolled clinical trial. Cephalalgia. 2018;38(8):
1442–54.

159. Detke HC, Goadsby PJ, Wang S, Friedman DI, Selzler
KJ, Aurora SK. Galcanezumab in chronic migraine:
the randomized, double-blind, placebo-controlled
REGAIN study. Neurology. 2018;91(24):e2211–21.

Neurol Ther (2021) 10:469–497 497


	Hypervigilance, Allostatic Load, and Migraine Prevention: Antibodies to CGRP or Receptor
	Recommended Citation
	Authors

	Hypervigilance, Allostatic Load, and Migraine Prevention: Antibodies to CGRP or Receptor
	Abstract
	Plain Language Summary
	Interactive Infographic
	Digital Features
	Introduction
	Migraine Pathophysiology
	CGRP
	CGRP Receptors
	CGRP Receptor Signaling Pathway
	CGRP in Migraine
	Hypervigilance, Anxiety-Like State, and Allostatic Overload
	Development of CGRP Antagonists
	Anti-CGRP and Anti-CGRP-R Monoclonal Antibodies
	CGRP Receptor Signaling Monoclonal Antibody Safety

	Future Directions for Monoclonal Antibodies for Migraine
	Conclusion
	Acknowledgements
	References


