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ABSTRACT 

Results from the OPPERA study provided evidence that risk factors such as neck muscle tension, 

prolonged jaw opening, and female gender increase the likelihood of developing 

temporomandibular joint disorders (TMJD), which are prevalent, debilitating orofacial pain 

conditions.  Peripheral and central sensitization, which mediate a lowering of the stimulus 

required for pain signaling, are implicated in the underlying pathology of chronic TMJD.  The 

goal of my study was to investigate cellular changes in the expression of proteins associated with 

the development of central sensitization.  Female Sprague-Dawley rats were injected with 

complete Freund’s adjuvant in the upper trapezius muscles to promote trigeminal sensitization. 

After 8 days, animals were subjected to near maximal jaw opening for 20 minutes, and spinal 

cord tissues were collected at several time points until day 28 post jaw opening. Changes in 

proteins associated with neuronal and glial cell activation were investigated in the medullary 

dorsal horn using immunohistochemistry.  Somewhat surprisingly, consistently increased protein 

expression was not observed in second-order nociceptive neurons, astrocytes, or microglia in the 

dorsal horn.  Thus, my results are suggestive that this novel model for inducing chronic TMJD 

pathology is mechanistically different from other reported inflammatory-induced TMJD models.  

Based on my results, I propose that this model that involves pain signaling in response to 

prolonged jaw opening in sensitized animals involves dysfunction of descending inhibitory 

signaling and likely involves changes in the expression of cytokines and miRNAs.   

 

KEYWORDS: temporomandibular joint disorder, trigeminal nerve, peripheral sensitization, 

central sensitization, risk factors, inflammatory mediators  
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INTRODUCTION 

 

Temporomandibular Joint Disorder 

Temporomandibular joint disorders (TMD) are common orofacial pain conditions that 

can affect the temporomandibular joint (TMJ) or jaw joint and muscles of mastication.46 TMD is 

the most prevalent type of orofacial pain and occurs in approximately 10% of the population 

over age of 18.44, 67 There is a higher prevalence of TMD associated with the female gender with 

increased prevalence in ages between 20 and 40, which corresponds to the time of childbearing 

and career development.47, 67 The common TMD symptoms experienced by millions of American 

adults include jaw pain/tenderness after or during mastication, jaw clicking, limited jaw 

movement, tinnitus, and an increased number of headaches or migraine. 5 

 

Risk Factors Associated with TMD 

TMD is often seen as a comorbid condition with other types of chronic pain including 

headaches and migraine, and neck and shoulder pain as well as psychological complaints such as 

depression and anxiety.74 Results from the Orofacial Pain Prospective Evaluation and Risk 

Assessment (OPPERA) Study provide evidence that prolonged jaw opening, neck muscle 

tenderness, and female gender are commonly reported risk factors associated with the 

development of chronic TMD.26 While genetic factors have been proposed to play a role in the 

etiology of chronic pain conditions, only a few genes with low correlative values have been 

associated with development of chronic TMD.68 One interpretation of these results is that TMD 

is a complex polygenetic disease that involves not only genes involved in pain signaling but 

likely genes that regulate the structure and function of key anatomical elements involved in 
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mastication including the jaw joint and associated muscles as well as biopsychosocial behaviors.  

While it has been shown that there is a low genetic predisposition present in TMD patients, it is 

now thought that progression to chronic TMD is dependent to a large degree on epigenetic 

changes that occur in response to one’s lifestyle and environment.22, 70 Some of the most 

common causes of TMD is direct trauma to the head during sporting activities or motor vehicle 

accidents and repeated near maximal jaw opening as occurs during yawning or singing.54, 67 

However, a routine visit to the dentist or orthodontist in which a patient is forced to hold open 

their jaw to near maximum for a prolonged duration should be considered a risk factor of 

development of TMD.  Prolonged jaw opening is common during procedures involving molar 

extractions, root canals, and orthodontics.  Given that on average females are not able to open 

their mouth as wide as males and their masticatory ligaments and tendons are not as thick, there 

is an increased risk of injury to the TMJ and associated structures in women.  Interestingly, neck 

muscle tenderness, a commonly reported condition in women, is considered a risk factor for the 

development of chronic TMD since these muscles can affect the functioning of the masticatory 

muscles.41, 75, 76 Neck muscle tension and tenderness that may exhibit multiple taut bands can 

occur from a multitude of factors including whiplash, improper sleep position, sports injury, 

overuse, improper positioning of the neck throughout the day or while sleeping, or unmanaged 

stress.  Pain and stiffness in shoulder and neck muscles, especially the upper trapezius, is often 

cited as a co-morbid condition with TMD patients. 

 

Trigeminal Nerve 

Similar to other orofacial pain conditions such as migraine and chronic rhinosinusitis, 

TMD involves sensitization and activation of the trigeminal nerve.11 The trigeminal nerve is the 

fifth cranial nerve and serves to provide sensory innervation of structures throughout the head 
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and face and provides a pathway for pain transmission from peripheral tissues to the spinal 

cord.63-66 The nerve is made up of three branches of which the first two branches the ophthalmic 

(V1) and maxillary (V2) only are comprised of sensory afferent neurons that respond to thermal, 

mechanical, and chemical stimuli.  While sensitization and activation of V1 and V2 branches are 

implicated in headache disorders, trigeminal neuralgia, and rhinosinusitis, the underlying 

pathology associated with TMD primarily involves activation of the third branch, which is 

referred to as the mandibular (V3) that possesses both sensory and motor neurons.61 The pain and 

inflammation associated with TMD involves activation of primary V3 trigeminal ganglion 

nerves that function to relay nociceptive signals from peripheral tissues such as the TMJ and 

associated muscles of mastication (masseter) to the upper cervical spinal cord.1, 6, 13 The 

nociceptive signal is transferred to second-order neurons in the medullary dorsal horn and then 

via the ascending pain pathway is transmitted to the thalamus and on to higher brain structures 

including the cortex for processing and coordinating a protective response to minimize further 

tissue damage and initiate repair mechanisms.57, 61   

 

Trigeminal System  

The trigeminal system consists of the trigeminal ganglion, which is part of the peripheral 

nervous system, and the trigeminocervical complex located in the central nervous system.4 There 

are two main cell types that comprise the trigeminal system including neuronal cells that are 

responsible for conduction of sensory information from the peripheral tissues to the spinal cord 

and the associated glial cells that function to regulate the excitability state of the neurons.20 The 

sensory fibers of the primary trigeminal nerves transmit mechanical, thermal, and chemical 

information to the cell bodies located in the trigeminal ganglion. The pseudounipolar 
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morphology of the neurons within the ganglion can be differentiated into 2 types including large 

light and small dark neurons. While the large light neurons are myelinated, fast transducing A 

fibers that provide rapid reflexive response to harmful stimuli, the small dark neurons consist of 

C fibers that are unmyelinated and thus have slower transduction but are responsible for long-

term sensations and mediating prolonged inflammatory responses.  Another functional aspect of 

the ganglion is the supporting glial cells such as the Schwann cells that are associated with A 

fibers and are responsible for the production of the myelin sheath that promotes faster conduction 

within the peripheral nervous system.  Another prominent glial cell in the ganglion is the satellite 

glial cell, which surrounds the cell body of both A and C neurons, and as such form a functional 

unit.21, 23 Satellite glial cells help to maintain homeostasis by controlling the level of ions and 

neurotransmitters in the extracellular environment around the neuronal cell body by their 

selective uptake and thus regulating the excitability state of both types of neurons.18, 28 Increased 

communication between neuronal cell bodies and satellite glial cells via gap junctions and 

paracrine signaling is associated with more chronic pain states as characteristic of most orofacial 

disorders involving trigeminal nerve activation including TMD.  The central nervous system 

component of the trigeminal system consists of the second order neurons and the two main types 

of glial cells, which include astrocytes and microglia that are responsible for modulating the 

excitability level of spinal neurons.16, 50, 81 Similar to signaling in the trigeminal ganglion, 

activation of astrocytes and microglia that facilitate neuron-glia communication is implicated in 

the underlying pathology of chronic pain conditions by promoting and maintaining a heightened 

state of sensitivity referred to as central sensitization.14, 37, 56, 80  
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TMJD Pathology 

Following an injury to the jaw joint, inflammatory signals are released that activate 

primary afferent nerves of the trigeminal system, which can lead to the development of a 

sensitized state within the peripheral tissue.  During the sensitized state, neuronal cells can 

produce an increased pain response (hyperalgesia) to a normal stimulus but will result in a 

nociceptive response to sub-threshold, non-painful stimuli (allodynia) such as brushing one’s 

teeth or chewing.  These pathophysiological phenomena are mediated via cellular changes that 

lower the amount of stimuli required to activate the nociceptive neurons. Sensitization involves 

changes in the excitability of neurons by lowering the activation threshold to mechanical, 

thermal, or chemical stimuli through molecular changes promoted by persistent nociceptive 

input. This established sensitized state, which is maintained by release of pro-inflammatory 

cytokines and chemokines from activated glial cells can lead to a persistent (primed) state of 

hypersensitivity or hyperexcitability of trigeminal neurons.34, 42  

During states of hypersensitivity, there is a reduced electric threshold of activation 

required to open ion channels, delayed opening of inhibitory channels, or prolonged the opening 

of excitatory channels.  Prolonged peripheral sensitization can lead to central sensitization that 

has the potential to become a chronic pathological condition long after the initiating event.  

Constant input from the sensitized primary afferents leads to nociceptive neuronal 

hyperexcitability within the medullary horn of the trigeminal nucleus caudalis.56 A prolonged 

state of central sensitization is associated with pathological conditions characteristic of TMD.  

Unfortunately, in some susceptible individuals, peripheral sensitization promotes and sustains 

central sensitization that drives sensitization of higher-order neurons within the thalamus and 

development of a chronic pain state that is no longer physiological but rather pathophysiological 
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in nature.  Thus, while acute inflammation and sensitization of the trigeminal system are 

necessary to restore homeostasis following injury to the TMJ or associated masticatory 

structures, prolonged sensitization can lead to changes in pain processing pathways that are no 

longer associated with healing.  During these chronic pain conditions, there is a heightened 

nocifensive response in the absence of peripheral inflammation.   

 In response to peripheral activation of trigeminal nerves the neuropeptide calcitonin 

gene-related peptide (CGRP) and other inflammatory mediators facilitate excitation of second-

order neurons and glial cells involved in central sensitization and persistent pain.12, 62 Elevated 

CGRP levels in the spinal cord are known to promote the development of central sensitization 

due to changes in ion channels, receptors, and inflammatory genes in second-order neurons and 

glial cells.38 CGRP is involved in the initiation and maintenance of central sensitization by 

activation of CGRP receptors present on secondary neurons and glial cells within the spinal cord 

that couple to activation of protein kinase A (PKA).  Following activation of CGRP receptors, 

there is an increase in the secondary messenger cAMP, which then causes activation of the 

intracellular signaling protein PKA.  Persistent elevated active PKA levels leads to a sensitized 

state of second-order neurons as well as activation of astrocytes and microglia that establish a 

sustained primed state in which normally non-stimulating levels of neurotransmitters can now 

cause activation.71     

The central dogma of acute pain signaling is that peripheral sensitization promotes 

cellular changes that lead to central sensitization of second-order nociceptive neurons involved in 

pain transmission to the thalamus.4, 17, 61 However, in most chronic migraine and TMD patients, 

the current thought is that central sensitization is maintained without any evidence of peripheral 

tissue damage or trauma.  While peripheral sensitization results from interactions of nociceptors 
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with inflammatory substances released when a tissue is inflamed or damaged61, central 

sensitization can be maintained in the absence of trigeminal nociceptor activation.  In support of 

this notion, findings from our studies have provided evidence of bidirectional signaling within 

the trigeminal system.12 In this model, CGRP was injected intracisternally (upper spinal cord) to 

mimic higher CGRP levels reported in cerebral spinal fluid of chronic migraine patients.  

Somewhat surprisingly, elevated CGRP levels resulted in cellular changes associated with 

central sensitization but also mediated increased neuron-glia communication with the ganglion 

associated with the development and maintenance of peripheral sensitization of nociceptive 

neurons. The evidence of bidirectional signaling within the trigeminal system may explain how 

trigeminal peripheral nociceptive neurons become sensitized during chronic orofacial pain 

conditions many days/weeks after resolution of inflammation.  Thus, peripheral nociceptor 

sensitization can occur even in the absence of any physical trauma or signs of inflammation. 

As previously stated, there are several inflammatory molecules involved in the process of 

initiating and maintaining neuronal sensitization.  CGRP, which is expressed in both peripheral 

and central neurons, is a known prominent inflammatory mediator that functions as a potent 

vasodilator and potentiates protein extravasation, stimulates the release of cytokines from 

satellite glial cells, performs autocrine signaling to stimulate synthesis of itself in the trigeminal 

ganglion neurons, and reduces the threshold for depolarization of nociceptive neurons and glia.3 

Chronic elevation of CGRP peripherally would lead to persistent pain and destruction of the TMJ 

capsule, which is common in TMD. Within the spinal cord, central sensitization involves 

increased interactions between neurons and spinal glia cells, specifically astrocytes and 

microglia. Astrocytes are the most abundant cells within the brain and regulate the neuronal 

environment by maintaining the blood-brain barrier and modulating ion, fluid, and 



 8   
 

neurotransmitter concentrations. Astrocytes can promote and sustain sensitization of central 

neurons through the release of cytokines, chemokines, and other pro-inflammatory mediators 

while microglia perform functions similar to peripheral macrophages within the brain and spinal 

cord.49 When activated these specialized immune-like cells release inflammatory cytokines and 

chemokines that can promote and sustain a persistent sensitized or primed state of neurons 

characteristic of chronic pain conditions.  These pro-inflammatory molecules often cause 

activation of the nuclear transcription factor NF-κB, which binds to the promoter of cytokines 

and chemokines to enhance their expression and hence, sustain elevated levels.43 Astrocytes and 

microglia work together to control the excitability state of secondary nociceptive neurons by 

maintaining a balance within the extracellular environment around the neurons.  Towards this 

end, these cells are known to express transport proteins for the uptake of potassium ions and 

glutamate, which are molecules that promote activation of neuronal cells involved in pain 

transmission.82 In addition, elevated levels of glial fibrillary associated protein (GFAP) and 

ionized calcium binding adaptor molecule 1 (Iba1) are associated with activated astrocytes and 

microglia.7, 55  

 

Hypothesis and Goals of Research 

Animal models of acute and chronic orofacial pain have been developed that mimic 

human clinical pain conditions to study the cellular and molecular mechanisms involved in 

mediating inflammation and pain signaling involving the trigeminal system.  Many of these 

models rely on the injection of inflammatory agents into the joint capsule or masticatory 

muscles.8, 9, 23, 24, 40 Thus, these models are mimicking a traumatic peripheral event that elicits an 

inflammatory reaction to promote tissue injury and minimize jaw activity.  Interestingly, almost 
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all animal studies involving TMD pathology have been performed only in male animals, yet, 

TMD is more prevalent in females.  More recently in our laboratory, we developed a chronic 

model of TMD pathology based on risk factors known to promote chronic TMD in humans, 

which included neck muscle tension/inflammation, prolonged jaw opening, and female gender 

(Figure 1).  The model involves neck muscle inflammation prior to prolonged jaw opening.  The 

neck muscle inflammation promotes a sensitized state of trigeminal nociceptors such that 

prolonged jaw opening results in a sustained increase in trigeminal nociception to mechanical 

stimulation of the masseter muscle (Figure 2).  The goal of my thesis project was to investigate 

the changes in key signaling proteins in neuronal and glial cells involved in initiating and 

maintaining the prolonged state of sensitization observed in this novel model of chronic TMD 

pathology.  Based on previous studies in our laboratory, I hypothesized that there would be an 

increase in the pro-inflammatory proteins within the upper spinal cord to promote central 

sensitization, and hence lower the activation threshold required for peripheral activation.    

  

To test my hypothesis, I propose the following goals that involve utilizing 

immunohistochemistry to investigate changes in protein expression in spinal cord tissues in a 

novel model of chronic TMJD:  

1. Determine changes in the levels of CGRP since it is implicated in the establishment of 

central sensitization.  

2. Study expression of PKA, the downstream intracellular pathway activated by CGRP in 

mediating central sensitization in neurons and glial cells.  

3. Determine if astrocytes and microglia are activated in this chronic model.  
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4. Determine changes in the levels of the transcription factor NF-ΚB since increased 

expression of this protein is associated with stimulated release of cytokines and 

chemokines.  
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Figure 1 Schematic Representation of a Chronic TMJD Model. See text for more details. Neck 

muscle inflammation leads to sensitization among the ascending pain signaling pathway causing 

the brain to detect the painful sensation. A second risk factor (prolonged jaw opening) is 

introduced leading to more sensitized inflammation which activates the second order neurons 

and glia cells causing pain signaling along the primary afferent neurons which leads to greater 

ascending pain modulation and increased sensitization.  
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A)             

  
B) 

 
 
 
Figure 2 Neck Muscle Pathology and Prolonged Jaw Opening Mediated Sustained Sensitized 

Masseter Nociceptive State. The average number of head withdrawals in response to mechical 

stimultion over the masseter muscle.  See text for more details.  (A) Male nociceptive state.  (B) 

Female nociceptive state. 
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METHODS  

Animals and Reagents 

Animal protocols were approved by the Institutional Animal Care and Use Committee at 

Missouri State University (IACUC ID: 17.001.0) and conducted in compliance with all 

guidelines established by the National Institutes of Health Animal Welfare Act. Adult female 

Sprague-Dawley rats (250-300g) were purchased from Charles River Laboratories Inc. 

(Wilmington, MA) or purchased from Missouri State University (internal breeding colonies). 

Animals were housed in clean, plastic cages (VWR, West Chester, PA) in an animal holding 

room maintained at ambient temperature (22-24 C) with access to food and water ad libitum. The 

holding room was on a 12-hour light/dark cycle starting at 7 A.M. These animals were allowed 

to acclimate in this environment at least one week before use.  Complete Freund’s adjuvant 

(CFA, Sigma Aldrich, St. Louis, MO) was prepared as a 1:1 emulsion in 0.9% saline solution 

(Fisher-Scientific, Pittsburgh, PA) immediately prior to use.  

 

Model of Chronic TMJD 

 CFA was administered bilaterally into the upper trapezius muscles of young adult 

Sprague-Dawley female rats to induce low-grade neck muscle inflammation (Figure 3).  Prior to 

the injection of CFA, animals were anesthetized with 5% isoflurane (Webster Veterinary, 

Devens, MA) using oxygen as the carrier gas and a Vetequip isoflurane mixing apparatus 

connected to the animal chamber.  Upon completion of anesthetization, the rats were placed 

ventral surface down and a nose cone apparatus was used to deliver a constant flow of 3% 

isoflurane. A total of 100 µl CFA was delivered via five 10 µl intramuscular injections in both 
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the right and left upper trapezius muscles using a 26 ½ gauge needle (Becton Dickinson, 

Franklin Lakes, NJ) and a 50 µl Hamilton syringe (Hamilton Company, Reno, NV).  

 Following the CFA injections, eight days later the animals were subjected to prolonged 

jaw opening as described previously30, 31 (Figure 4) to induce injury to the TMJ and associated 

muscles, ligaments, and tendons anesthetized animals (5% isoflurance vs 3%). Under anesthesia 

via inhalation of 5% isoflurane, animals were placed dorsal side down and attached to a nose 

cone apparatus delivering a steady flow of 3% isoflurane. A commercially available mouth 

retractor (Fine Scientific Tools, Foster City, CA), was positioned around the top and bottom 

incisors. The retractor arms were separated until near maximal jaw opening was achieved and 

then maintained for 20 minutes in this position.  Using a CaliMax Vernier Caliper (Wiha Tools, 

Montecillo, MN) the opening measurements were taken from the gingival line on the lingual 

surface of the upper incisors to the gingival line on the lingual surface of the lower incisor. On 

average, the maximum opening capacity without subluxation of the joint was approximately 20 

mm for adult female Sprague-Dawley rats.  Upon placement of the retractor, the animals were 

returned to the animal chamber and were maintained in an anesthetized state with 3% isoflurane 

for the duration of the jaw opening procedure. The breathing patterns and body temperatures 

were monitored throughout the application, and the procedure was aborted if either physiological 

parameter varied significantly from normal levels.  Following mechanical stressing, the retractor 

was released, removed, and the animal was allowed to recover in its cage prior to further 

experimentation.  

  

Immunohistochemistry   

 

The methods utilized for immunohistochemistry were similar to prior studies from our 
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lab.12, 40 The brain stem and upper spinal cord (6 mm posterior to the obex) were removed at 2 

hours, 1 day, 14 days, and 28 days post prolonged jaw opening (Figure 5). The tissues were 

immediately placed in 4% paraformaldehyde to preserve them for immunohistochemistry.  

To investigate cellular changes in protein expression in neuronal and glial cells, 

immunohistochemical staining of tissues was performed. The tissues were incubated in 4% 

paraformaldehyde at 4°C overnight then were transferred into 15% sucrose for 1 hour at 4°C or 

until they sank to the bottom of the centrifuge tube. Following the 15% sucrose incubation 

tissues were moved to 30% sucrose and incubated at 4°C overnight.  The tissues were removed 

from the sucrose and stored at -20°C until sectioning.  Prior to sectioning, tissues were embedded 

in Optimal Cutting Temperature compound (OCT; Sakura Finetek, Torrance, CA).  Transverse 

sections 14 µm thick were taken between 4 and 5 mm caudal to the obex (about 75 sections from 

top of tissue) using a cryostat (Richard Allan Scientific Co, San Diego, CA) set to -24°C. Tissue 

sections were placed on Superfrost Plus microscope slides (Fisher Scientific, Pittsburg, PA) with 

the caudal side facing down and stored at -20°C.  

The slides containing sectioned tissues from naïve and each experimental condition were 

rehydrated by incubation in 1X Phosphate Buffered Saline (PBS; 10 mM phosphate, 138 mM 

NaCl, 27 mM KCl) for 5 minutes then blocked and permeabilized in a solution of 0.1% Triton 

X-100 in 5% donkey serum (Jackson ImmunoResearch Laboratories, West Grove, PA) for 20 

minutes at room temperature. During this incubation, primary antibodies of interest were 

prepared according to the manufacturer’s recommended dilutions (Table 1) in 5% donkey serum. 

Following the donkey + triton incubation, slides were thoroughly rinsed with PBS, and the 

primary antibodies were incubated with tissues for either 3 hours at room temperature or 

overnight at 4°C in a humidified chamber. After the primary antibody incubation, the slides were 
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rinsed with PBS and 1% Tween 20.  The tissues were then incubated with Alexa Fluor-

conjugated secondary antibodies prepared in PBS at a 1:200 dilution for 1 hour at room 

temperature to visualize immunoreactive proteins.  Vectashield medium (H-1200) containing 4’, 

6- diamidino-2-phenylindole was used to mount the tissue sections and visualize cell nuclei 

using fluorescent microscopy.  

A Zeiss Axiocam mRm camera (Carl Zeiss, Thornwood, NY) mounted on a Zeiss Imager 

Z1 fluorescent microscope equipped with an ApoTome was used to collect 100X images of the 

medullary horn of the spinal cord tissue (Figure 6). Once the images were acquired, they were 

analyzed using Image J software as previously described.12, 40 Fluorescent intensity was 

measured in ten rectangular regions of approximately equal area in laminas I-III in the medullary 

horn. Five random acellular regions outside of the region of interest were measured and the 

average of these values was subtracted from the medullary horn values to account for 

background signal. SPSS Statistics 21 software (IBM, North Castle, NY) was used to determine 

outliers. It was determined using a parametric independent sample T-test that most of the data 

was normally distributed, so a Shapiro-Wilk test was used followed by a Leavean’s test to 

determine equal or unequal variances.  For the data that was not normally distributed a 

nonparametric test was used to determine statistically significance followed by a Mann-Whitney 

U post hoc test. All statistical tests was conducted utilizing SPSS Statistics. 
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Table 1 Summary of Antibodies and Conditions Used for Immunohistochemistry  

 
Protein Dilution Incubation 

time 

Incubation 

Temperature 

Company Catalog 

number  

CGRP 1:1000 3 Hours 20-22°C Sigma-Aldrich, 

Inc. 

 

C 8189 

GFAP 1:5000 3 Hours 20-22°C Abcam, Inc. 

 

Ab53554  

 

Iba-1 1:1000 3 Hours 20-22°C Wako Chemicals 

USA, Inc. 

 

019 - 19741 

NeuN 1:1000 3 Hours 20-22°C EMD Millipore, 

Corp. 

 

MAB377 

 

P-ERK 1:500 OVN 4°C Bioworld 

Technology, Inc. 

 

BS5016 

 

PKA 1:500 3 Hours 20-22°C Abcam, Inc. 

 

Ab76238 

 

cFos 1:500 OVN 20-22°C Abcam, Inc. Ab190289 

CNX43 1:500  OVN 20-22°C 

 

Abcam, Inc.    Ab11370 

NF-ΚB 1:500  OVN 20-22°C AbCam, Inc.    Ab16502 

RAMP1 1:500 OVN 20-22°C Bioss     Bs-1567R 

Alexa-Fluor 488 1:200 1 Hour 20-22°C JacksonImmuno 

Research, Inc. 

125719 

 

      

Alexa-Fluor 647 1:200 1 Hour 20-22°C JacksonImmuno 

Research, Inc.  

122180 

DAPI N/A N/A N/A Vector 

Laboratories 

 

H-1200 
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A) 

 

           B) 

           

 

Figure 3 Induction of Prolonged Neck Muscle Inflammation.  (A) This figure depicts the ten 
different injection sites of CFA in the Trapezius muscle. (B) Image of the setup for 
anesthetizing the animals.   
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Figure 4 Mechanically-Induced Chronic TMJD Model. (A) Picture of lower jaw being 
retracted to near maximum jaw opening. (B) Animals resting in chamber after retraction 
distance was set. (C) Close-up image illustrating the position of retractor during procedure. 
(D) Picture of isoflurane control condition.  
 
 

 

 

 

 

 

 

 

 

 



 20   
 

 

 

 

 

 

 

 

 

 

 

Figure 5 Experimental Timeline for Immunohistochemistry Studies.  
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Figure 6 Identification of the Neuronal and Glial Cell Nuclei in the Rat Upper Spinal Cord. (A) 

Entire upper spinal cord section from an untreated animal stained with DAPI to identify all 

nuclei at 40X magnification. (B) Magnification (100X) of neuron containing the medullary horn 

stained with DAPI. (C) Trigeminal nerve pathway showing sensory innervation pattern in the 

head and face and projection through ganglion to upper spinal cord region known as spinal 

trigeminal nucleus (http://www.orofacialpain.org.uk/education/trigeminal-nerve/).  Arrow 

indicates region of spinal cord shown in panels A and B.   

 

  

B

A



 22   
 

RESULTS 

 
CGRP 

Temporal changes in the expression of the pro-inflammatory neuropeptide CGRP in 

neuronal cells located in the spinal trigeminal nucleus were investigated using 

immunohistochemistry.  In spinal cord tissues from naïve animals, CGRP staining was detected 

predominantly in the outer lamina of the medullary dorsal horn at the 2 hour and 14 day time 

points (Figures 7 and 8).  The relative intensity of CGRP staining was not elevated over naïve 

levels 2 hours or 14 days post jaw opening in sensitized animals (M+J; where M refers to neck 

muscle injections and J refers to prolonged jaw opening).  A summary of the fold-change ± SEM 

of the relative intensity of CGRP immunostaining compared to naïve levels, whose mean was set 

equal to one, is shown in Table 2 for all conditions.  At 2 hours post prolonged jaw opening, 

there were no significant changes in the localization pattern or intensity of staining in the M+J 

animals when compared to naïve levels (fold 1.06, p = 0.202).  The same was true of day 14 

animals with no significant changes detected in the staining intensity or pattern for CGRP in the 

M+J animals (fold 0.98, p = 0.748).  Similarly, no differences were observed in CGRP levels in 

M+J animals (fold 0.89, p = 0.447) and naïve animals at day 28.  However, a small yet 

significant increase in the intensity of CGRP immunostaining in M+J animals was found one day 

post jaw opening when compared to naïve levels (fold 1.30, p = 0.007).    

 

PKA 

Levels of PKA in the medullary dorsal horn were evaluated to determine if increased 

intracellular signaling downstream of CGRP receptor activation could be mediating sensitization 

of trigeminal nociceptive neurons.  In naïve animals, low levels of PKA immunostaining were 
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detected within the medullary horn of the upper spinal cord in a pattern similar to that of CGRP 

(Figure 9 and 10).  In contrast to the CGRP results, no significant differences in PKA staining 

pattern or intensity was observed between the M+J treated animals and naïve animals at any time 

point.  A summary of the average fold-change ± SEM of the relative intensity of PKA 

immunostaining in M+J animals compared to naïve levels (mean set equal to one) is shown in 

Table 3 for all conditions. At 2 hours post prolonged jaw opening, there were no significant 

changes in the intensity in the M+J animals (fold 1.02, p = 0.844). The same was true of day 14 

animals with no significant changes in the intensity in the M+J animals (fold 1.20, p = 0.086). 

Similarly, no significant changes were observed in the relative staining intensity between the 

M+J animals (fold 0.88, p = 0.401) and the naïve animals for day 1 or day 28 (fold 1.10, p = 

0.237) post prolonged jaw opening.    

 

NF-κB  

Levels of transcription factor, NF-κB, were evaluated to determine if cytokine activation 

could be involved in promoting the sensitized state of trigeminal nociceptive neurons, which was 

examined using immunohistochemistry.  In the upper spinal cord of the naïve animals, low levels 

of NF-κB immunostaining were detected within the medullary horn (Figure 11 and 12). The 

sensitized animals, which were the M+J treated animals, showed no significant differences from 

the naïve animals.  A summary of the fold-change ± SEM of the relative intensity of NF-κB 

immunostaining compared to the naïve levels is shown in Table 4 for all conditions. At 2 hours 

post prolonged jaw opening, there were no significant changes in the intensity of the staining in 

the M+J animals when compared to the naïve animals (fold 0.81, p = 0.261).  The same was true 

of day 14 animals with no significant changes in the intensity or pattern for NF-κB in the treated 
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animals compared to the naïve animals (fold 0.98, p = 0.874).  The same was true for M+J 

animals (fold 0.86, p = 0.265) and naïve animals at day 28 post prolonged jaw opening. The 

staining patterns of NF-κB for day 1 was not determined in this study.   

 

GFAP 

Examination of astrocyte activity in the upper spinal cord was completed through 

analysis of GFAP immunostaining levels. In naïve animals, low levels of GFAP immunostaining 

were detected within the medullary horn of the upper spinal cord (Figure 13 and 14). Summaries 

of the average fold-change ± SEM of the relative intensity of GFAP immunostaining compared 

to naïve levels (mean set equal to one) for all conditions are shown in Table 5. The M+J treated 

animals showed no significant differences from the naïve animals.  At 2 hours post-prolonged-

jaw opening, there were no significant changes in the intensity in the M+J animals (fold 0.78, p 

= 0.343).  The same was true of day 14 animals with no significant changes in the intensity in 

the treated animals (fold 1.40, p = 0.073).  There were no significant changes in the intensity 

between the M+J animals (fold 0.98, p = 0.879) and the naïve animals for day 1 shown in Table 

2 (staining not pictured). The same was true for M+J animals (fold 0.83, p = 0.303) and naïve 

animals at day 28 post prolonged jaw opening.  

 

Iba1 

Activation of microglia within the upper spinal cord was assessed through 

immunostaining of the microglial marker Iba1. In naïve animals, low levels of PKA 

immunostaining were detected within the medullary horn of the upper spinal cord (Figure 15 and 

16).  Summaries of the average fold-change ± SEM of the relative intensity of Iba1 
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immunostaining compared to naïve levels (mean set equal to one) for all conditions are shown in 

Table 6. The M+J treated animals showed no significant differences from the naïve animals.  At 

2 hours post-prolonged-jaw opening, there were no significant changes in the intensity in the 

M+J animals (fold 0.95, p = 0.717).  The same was true of day 14 animals with no significant 

changes in the intensity in the treated animals (fold 1.01, p = 0.462).  There were no significant 

changes in the intensity between the M+J animals (fold 1.40, p = 0.418) and the naïve animals 

for day 1 shown in Table 2 (staining not pictured). The same was true for M+J animals (fold 

0.75, p = 0.448) and naïve animals at day 28 post prolonged jaw opening.  
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Table 2 Summary of Fold Changes in CGRP Expression in the Medullary Horn of the Upper 

Spinal Cord. All data are reported as the average fold change when compared to naïve levels, 

which was made equal to 1 ± the standard error of the mean. 

 

Protein Time point Naïve M+J 

CGRP 2hr 1.00 ± 0.02 1.06 ± 0.05 

CGRP Day 1 1.00 ± 0.05 1.30 ± 0.04 * 

CGRP Day 14 1.00 ± 0.03 0.98 ± 0.05 

CGRP Day 28 1.00 ± 0.04 0.89 ± 0.07 

* = significantly different from the naïve 
Significant is defined by p < 0.05 
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Figure 7 No Significant Changes in CGRP Levels in the Upper Spinal Cord 2 hours after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of CGRP in naïve (top) and M+J 

(bottom) (M+J; where M refers to neck muscle injections and J refers to prolonged jaw opening) 

animals. Sections were co-stained with the nuclear dye DAPI (right panels) and merged imaged 

of CGRP and DAPI staining is shown in the middle panels.  
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Figure 8 No Significant Changes in CGRP Levels in the Upper Spinal Cord 14 days after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of CGRP in naïve (top) and M+J 

(bottom) animals. Sections were co-stained with the nuclear dye DAPI (right panels) and merged 

imaged of CGRP and DAPI staining is shown in the middle panels.  
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Table 3 Summary of Fold Changes in PKA Expression in the Medullary Horn of the Upper 

Spinal Cord. All data are reported as the average fold change when compared to naïve levels, 

which was made equal to 1 ± the standard error of the mean. 

 
Protein Time point Naïve M+J 

PKA 2hr 1.00 ± 0.04 1.02 ± 0.09 

PKA Day 1 1.00 ± 0.04 0.88 ± 0.16 

PKA Day 14 1.00 ± 0.09 1.20 ± 0.10 

PKA Day 28 1.00 ± 0.09 1.10 ± 0.03 

Significant is defined by p < 0.05 
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Figure 9 No Significant Changes in PKA Levels in the Upper Spinal Cord 2 hours after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of PKA in naïve (top) and M+J 

(bottom) animals. Sections were co-stained with the nuclear dye DAPI (right panels) and merged 

imaged of PKA and DAPI staining is shown in the middle panels.  
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Figure 10 No Significant Changes in PKA Levels in the Upper Spinal Cord 14 days after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of PKA in naïve (top) and M+J 

(bottom) animals. Sections were co-stained with the nuclear dye DAPI (right panels) and merged 

imaged of PKA and DAPI staining is shown in the middle panels.  
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Table 4 Summary of Fold Changes in NF-ΚB Expression in the Medullary Horn of the Upper 

Spinal Cord. All data are reported as the average fold change when compared to naïve levels, 

which was made equal to 1 ± the standard error of the mean. 

 
Protein Time point Naïve M+J 

NF-ΚB 2hr 1.00 ± 0.12 0.81 ± 0.12 

NF-ΚB Day 1 ND ND 

NF-ΚB Day 14 1.00 ± 0.09 0.98 ± 0.08 

NF-ΚB Day 28 1.00 ± 0.06 0.86 ± 0.11 

Significant is defined by p < 0.05 
ND = not determined  
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Figure 11 No Significant Changes in NF-ΚB Levels in the Upper Spinal Cord 2 hours after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of NF-ΚB in naïve (top) and M+J 

(bottom) animals. Sections were co-stained for neuronal nuclear expression of NeuN (right 

panels) and merged imaged of NF-ΚB and NeuN staining is shown in the middle panels.  
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Figure 12 No Significant Changes in NF-ΚB Levels in the Upper Spinal Cord 14 days after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of NF-ΚB in naïve (top) and M+J 

(bottom) animals. Sections were co-stained for neuronal nuclear expression of NeuN (right 

panels) and merged imaged of NF-ΚB and NeuN staining is shown in the middle panels.  
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Table 5 Summary of Fold Changes in GFAP Expression in the Medullary Horn of the Upper 

Spinal Cord. All data are reported as the average fold change when compared to naïve levels, 

which was made equal to 1 ± the standard error of the mean. 

 
Protein Time point Naïve M+J 

GFAP 2hr 1.00 ± 0.17 0.78 ± 0.16 

GFAP Day 1 1.00 ± 0.18 0.98 ± 0.05 

GFAP Day 14 1.00 ± 0.09 1.40 ± 0.17 

GFAP Day 28 1.00 ± 0.16 0.83 ± 0.09 

Significant is defined by p < 0.05 
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Figure 13 No Significant Changes in GFAP Levels in the Upper Spinal Cord 2 hours after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of GFAP in naïve (top) and M+J 

(bottom) animals. Sections were co-stained with the nuclear dye DAPI (right panels) and merged 

imaged of GFAP and DAPI staining is shown in the middle panels.  
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Figure 14 No Significant Changes in GFAP Levels in the Upper Spinal Cord 14 days after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of GFAP in naïve (top) and M+J 

(bottom) animals. Sections were co-stained with the nuclear dye DAPI (right panels) and merged 

imaged of GFAP and DAPI staining is shown in the middle panels.  
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Table 6 Summary of Fold Changes in Iba1 Expression in the Medullary Horn of the Upper 

Spinal Cord. All data are reported as the average fold change when compared to naïve levels, 

which was made equal to 1 ± the standard error of the mean. 

 
Protein Time point Naïve M+J 

Iba1 2hr 1.00 ± 0.17 0.95 ± 0.16 

Iba1 Day 1 1.00 ± 0.20 1.40 ± 0.33 

Iba1 Day 14 1.00 ± 0.37 1.01 ± 0.47 

Iba1 Day 28 1.00 ± 0.33 0.75 ± 0.06 

Significant is defined by p < 0.05 
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Figure 15 No Significant Changes in Iba1 Levels in the Upper Spinal Cord 2 hours after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of Iba1 in naïve (top) and M+J 

(bottom) animals. Sections were co-stained with the nuclear dye DAPI (right panels) and merged 

imaged of Iba1 and DAPI staining is shown in the middle panels.  
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Figure 16 No Significant Changes in Iba1 Levels in the Upper Spinal Cord 14 days after 

Undergoing Prolonged Jaw Opening after CFA Capsule Injection. Images (100X) from the 

representative region of medullary horn stained for expression of Iba1 in naïve (top) and M+J 

(bottom) animals. Sections were co-stained with the nuclear dye DAPI (right panels) and merged 

imaged of Iba1 and DAPI staining is shown in the middle panels.  
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DISCUSSION 

 

 

The goal of my thesis research was to investigate the cellular mechanisms associated with 

sustained mechanical sensitivity in the masseter muscle in a novel model of TMJD pathology.  

To mediate persistent pain signaling of trigeminal neurons, adult female rats that had ongoing 

neck muscle inflammation were subjected to near maximal jaw opening.  I hypothesized that the 

underlying pathology would involve the development of central sensitization and a subsequent 

lowering of the activation threshold of trigeminal neurons by increasing expression of pro-

inflammatory proteins and neuron-glia interactions.  However, a somewhat surprising finding of 

my study was the lack of evidence to support my hypothesis, which however supports the notion 

that our chronic TMJD model is not mechanistically similar to other established inflammation-

induced TMJD models.  Previous studies from our laboratory utilized injection of the 

inflammatory mediator, complete Freund’s adjuvant, into both TMJ capsules to cause prolonged 

joint inflammation and enhanced trigeminal nociception for up to 14 days in non-sensitized 

animals.8, 9, 23, 24, 40 The CFA-induced TMJD model is likely relevant to human situations when 

there is direct injury to the TMJ that would occur from a blow to the face during a sporting event 

or a car accident.  In response to tissue injury of the joint and disc, neurogenic inflammation 

would result in the release of potent vasodilators and pro-inflammatory molecules such as CGRP 

and nitric oxide and cause release of cytokines and chemokines from the synoviocytes and 

recruitment of immune cells to facilitate tissue repair.10, 35, 36, 59, 69, 73 In the model of TMJD used 

in my study, neck muscle inflammation is initiated one week prior to prolonged jaw opening to 

simulate known reported risk factors for the development of chronic TMJD in humans.53, 67 Our 

laboratory developed this chronic model to investigate the cellular and molecular changes that 

lead to a prolonged state of trigeminal nociceptor sensitization.  Based on my results, 
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development of chronic TMJD in sensitized animals exposed to prolonged jaw opening, which 

can occur while yawning, singing, or having a routine dental procedure, does not involve 

upregulation of proteins associated with maintenance of central sensitization or activation of 

astrocytes or microglia.  Hence, this is a unique TMJD model that promotes trigeminal 

sensitization via a different mechanism that does not follow the typical inflammatory peripheral 

to central sensitization neuron-glia signaling pathway reported in acute TMJD models.61 Thus, 

my findings may help to explain why patients with severe neck stiffness and evidence of taut 

bends in the trapezius muscles do not respond as well to commonly used anti-inflammatory 

medications such as nonsteroidal anti-inflammatory drugs or NSAIDs.27   

A key feature of our chronic TMJD model is trapezius neck muscle inflammation, which 

is a common complaint of orofacial pain patients prior to and during major pain episodes.  

Anatomically, there is convergence of sensory stimuli from the primary trigeminal neurons and 

neck muscle neurons at the level of the upper spinal cord such that both sets of these neurons can 

cause activation of the ascending nociceptive second order neurons.2, 51, 60, 78 Interestingly, the 

signaling pathways involved in muscle pain in general and neck muscle pain in particular have 

not been well studied.  Although not a focus of my study, my results are suggestive that neck 

muscle inflammation promotes a sensitized state of trigeminal nociceptors that does not involve 

cellular and molecular changes implicated in central sensitization and facilitation of ascending 

pain signaling from second order trigeminal neurons to the thalamus and higher brain structures.  

Furthermore, my results provide evidence that astrocytes and microglial cells are not activated in 

response to neck muscle inflammation or following prolonged jaw opening in our chronic TMJD 

model.  This finding is quite surprising given the large number of studies that implicate 

activation of astrocytes and microglia in the initiation and maintenance of a persistent or primed 
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state of nociceptive neurons.16, 48, 57, 77, 79, 80 Alternatively, neck muscle inflammation likely 

mediates downregulation or dysregulation of the inhibitory descending pain modulation 

pathway, which would result in an enhanced or hyperexcitable state of the trigeminal system 

(Figure 17).  With respect to pain modulation and establishing threshold levels, nociceptive 

neuron sensitivity could be enhanced because of changes in the ascending signaling pathway via 

increased ion channel and receptor activity and increased neuron-glia interactions, which could 

be thought of as a gain-of-function.11, 19, 32, 52, 56 However, a loss of function would also be 

expected to play a major role in modulating the activation threshold of trigeminal neurons to 

peripheral stimuli, which can occur if there is a reduction or loss of signaling in the descending 

inhibitory pathway.  Hence, dysregulation of the descending pathway would generate a 

hypervigalent nervous system that would be more responsive to inflammatory stimuli.  I can only 

speculate that neck muscle inflammation mediates increased sensitization as a protective 

mechanism since most of the major senses are located in the head and face.  Therefore, if one 

does not have full range of motion of one’s head because of neck inflammation, the nervous 

system responds by increasing the sensitivity of incoming peripheral stimuli to facilitate a 

hypervigalent state characteristic of TMD and migraine patients.  The descending inhibitory 

pathway plays an important physiological role by quieting the nervous system and controlling 

the amount of sensory input that reaches the higher brain centers.  Thus, minimizing the 

allostatic load on the system.  This inhibitory pathway is activated turning states of deep sleep, 

meditation involving deep breathing, and in response to our natural endorphins and even 

morphine to inhibit peripheral sensory stimuli from reaching higher brain areas.11 This pathway 

is also responsible in part to the “runner’s high” that allows elite athletes to block pain signaling 

and is elicited during extreme cases of stress when the fight and flight response is initiated.  
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Recent studies in our laboratory have provided evidence that non-invasive vagus nerve 

stimulation (nVNS) activates this pathway and is able to inhibit trigeminal nociceptor sensitivity 

in a model of chronic migraine.29 The mechanism is likely to involve activation of the 

periaquaductal grey and rostral ventral medulla pathway and release of serotonin to cause 

activation of inhibitory interneurons within the spinal cord.  Upon activation of serotonin 

receptors, these interneuronal cells release the inhibitory neurotransmitter GABA (gamma-

aminobutyric acid), which upon binding to GABA receptors on the second order neurons, 

mediates an increase in intacellular chloride levels to cause hypopolarization and effectively 

prevent activation of ascending nociceptive neurons.  Whether the inclusion of grape seed 

extract, which we have shown inhibits the development of a sensitized trigeminal system and 

pain signaling in response to prolonged jaw opening in our chronic TMJD model, functions 

similarly to nVNS to enhance facilitation of the descending inhibitory pathway will be a focus of 

future studies.  

 In summary, I did not observe an increase in the expression of proteins implicated in the 

development of central sensitization in neurons or glial cells in the medullary dorsal horn at any 

time point following prolonged jaw opening in sensitized animals.   Specifically, CGRP and 

PKA were not consistently elevated even though these proteins are reported to promote the 

development of central sensitization in other pain models.62, 71 Similarly, I investigated changes 

in the transcription factor NF-ΚB since it has been reported to stimulate the synthesis of pro-

inflammatory cytokines including TNF-α, IL-1β, and IL-6 and contribute to central 

sensitization.15, 25, 33, 39, 45, 58, 72 However, I did not see an increase in the level of nuclear 

localization of NF-ΚB in neurons or glial cells.  Additionally, I did not detect changes in the 

levels of GFAP or Iba1, which are biomarkers of activated astrocytes and microglia, 
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respectively.  Although not reported in my thesis, I also looked at the expression of several other 

pro-inflammatory proteins including the transcription factor c-Fos, the gap junction protein 

connexin 43, and the activated forms of the mitogen-activated protein kinases P-ERK (phospho-

ERK) and P-p38 (phospho-p38), but did not observe increased levels in our chronic TMJD 

model.   

 In conclusion, results from my study did not support my hypothesis that the prolonged 

sensitization observed in our chronic TMJD models would be mediated by pro-inflammatory 

proteins implicated in central sensitization and glial cell activation.  Rather, my findings support 

the notion that the underlying pathology in our TMJD model likely involves dysregulation of the 

descending inhibitory pathway.  In future studies it will be of interest to investigate in our model 

if there are corresponding changes in cytokine mRNA and protein levels, which can be studied 

using microarray analysis, qPCR, and specific ELISA.  Other studies will focus on understanding 

the cellular and molecular mechanisms by which dietary inclusion of a grape seed extract 

enriched in polyphenols and nVNS function to inhibit trigeminal mechanical sensitivity in our 

chronic TMJD model.    
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Figure 17 Dysregulation of Descending Modulation Likely Mediating Trigeminal Sensitization 

in Chronic TMJD Model. See text for detailed description.  
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