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ABSTRACT 

Territorial defense in many species must be balanced with trade-offs in activities such as 

reproduction and predator avoidance. Adjusting behavior based on current assessments of 

predation risk and the cost of maintaining or gaining a territory is one way that individuals can 

balance trade-offs to maximize fitness. I conducted two experiments to determine how Ozark 

zigzag salamanders, Plethodon angusticlavius, adjust their territorial behavior-based predation 

risk. First, I tested whether male and female territorial intruders changed their competitive 

behavior according to whether predation risk is assessed via unimodal (chemical) or multimodal 

(chemical + physical) cues. Females and males responded differently to unimodal and 

multimodal cues with females generally responding similarly to all predator cues, and males 

responding to multimodal cues in an additive manner. Second, I determined whether predation 

risk affected competitive behavior differentially based on whether the intruder salamander was in 

a territory marked by a same-sex or different-sex residents. Overall, the territorial behavior of 

both male and female intruders was moderated by the presence of a predator, but the effect 

differed based on the sex of both the intruder and the resident salamander. The results of these 

two experiments suggest that P. angusticlavius salamanders adjust their territorial behavioral in 

the presence of predation risk based on the source of the information (unimodal vs multimodal 

cues) and the sex of nearby individuals (potential mates or competitors). 

 

KEYWORDS:  multimodal cue, unimodal cue, predation, territorial, Ozark zigzag salamander, 

Plethodon angusticlavius 
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INTRODUCTION 

 

Because time and energy is limited, investment in one activity usually comes at a cost to 

others.  For example, time spent in territorial defense leaves less time for activities such as 

antipredator vigilance (Jakobsson et al. 1995; Jones & Paszkowski 1997).  In addition to 

increased predation risk due to lower vigilance, territorial advertisement signals (markings and 

aggressive displays) can be detected by predators via “eavesdropping”, which also increases the 

risk of predation (Jakobsson et al. 1995; Gwynne & O’Neill 1980).  Natural selection should 

favor individuals that assess the level of predation risk and vary their antipredator levels 

accordingly, devoting more time to territorial defense when predation risk is low and more time 

to antipredator defense when predation risk is high.  Such “threat-sensitive” trade-offs (sensu 

Helfman 1989) have been observed for a variety of species including dugongs, Dugong dugon 

(Wirsing et al. 2007), black-tailed deer, Odocoilus hemionus sitkensis (Chamaille-Jammes et al. 

2014), guanacos, Lama guanicoe (Marino & Baldi 2008), wall lizards, Podarcis muralis (Amo et 

al. 2004), slimy sculpins, Cottus cognatus (Chivers et al. 2001), and larval newts, Notophthalmus 

viridescens (Mathis & Vincent 2000).   

Many animals are adept at detecting predators via chemical cues, which are effective in 

low visibility habitat, when predators are cryptic, and persist over time allowing for earlier 

detection than visual cues (Mathis et al. 2003).  Chemical cues do not, however, give specific 

predator behavior and location information.  Visual cues are not accessible when visibility is 

low, but when accessible they give accurate behavior and location of the predator.   

Most studies have focused on antipredator/territorial defense trade-offs by quantifying 

behavior in the presence vs. absence of predatory cues, such as cichlid blockheads, Steatocranus 
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casuarius, altering territorial behavior in the presence versus the absence of a predator (LaManna 

& Eason 2007).  However, threat-sensitive responses can be more nuanced.  For example, 

Helfman (1989) reported that territorial damselfish, Stegastes planif, varied their responses to 

predator models based on the size and position of the model predator.  For some response 

variables, responses were step-wise with respect to risk levels, and, in others, there appeared to 

be threshold or all-or-nothing responses.   

Assessment of predation risk can be more accurate when prey use multiple sources of 

information, such as visual plus chemical “multimodal” cues (Ward & Mehner 2010).  

Multimodal cues can generally be characterized as either redundant, with all cues providing 

similar information, or nonredundant, with different sensory modalities accessing different 

information (Partan & Marler 2005).  Redundant cues can increase the probability of predator 

detection by insuring that information can still be available even if one source becomes limited, 

such as guppies, Poecilia reticulata, relying on visual cues only when chemical cues were 

unavailable or ambiguous (Brown & Magnavacca 2003).  Nonredundant cues can allow the 

receiver to better tailor their responses based on the additional information, such as anole lizards, 

Anolis sagrei, that modulate their responses to visual cues from avian predators when auditory 

cues are also available (Elmasri et al. 2012).   

Costs and benefits of predation/aggression trade-offs may not be the same for all prey 

individuals.  For example, subordinate, but not dominant, great tits, Parus major, reduced 

aggressive behavior under risk of predation (Lange & Leimar 2001), apparently because 

subordinates have less to gain by being aggressive under risky conditions.  Similarly, territory 

intruders, but not residents, of Ozark zigzag salamanders, Plethodon angusticlavius, responded 

significantly to predator exposure immediately prior to territorial contests (Parsons 2010).  
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During reproductive seasons, sex can also influence responses to predators, with males 

sometimes taking greater risks than females (e.g., Cooper & Wilson 2007).  Sex can also 

influence antipredator/aggression trade-offs if individuals behave differently in the presence of a 

potential mate than when potential mates are absent (e.g., audience effects in alarm calling: 

Evans & Marler 1992).   

This study examines trade-offs between antipredator behavior and territorial behavior in 

the Ozark zigzag salamander, P. angusticlavius.  These lungless salamanders are completely 

terrestrial, occupying the leaf litter and underground burrows on forest floors in the Ozark 

Plateau region of the central United States (Conant & Collins 1998).  Territorial Plethodon 

forage in the leaf litter during wet periods, but retreat to moisture refuges under rocks and logs 

when it becomes hot and dry (e.g. Jaeger 1971); suitable retreats are defended by territorial 

residents (Jaeger & Forester 1993).  Both males and females of Ozark zigzag salamanders 

exhibit territorial defense, (Mathis et al. 2000) and advertise territorial ownership with 

pheromonal markers deposited on the substrate, or on fecal pellets (Mathis 2000).  These 

pheromonal markers can provide salamanders with a host of information including sex and size 

(Mathis 1990), parasite load (Maksimowich & Mathis 2001; Dalton & Mathis 2014), 

diet/territory quality (Walls et al. 1989) and whether tail autotomy has occurred (Wise et al. 

2004).  These conditions can influence the outcome of territorial disputes in Plethodontid 

salamanders (Maksimowich & Mathis 2001; Mathis & Britzke 1999; Mathis 1990).  Chemical 

cues are assessed via vomerolfaction during nose-tapping behaviors where the nasolabial cirri 

come into contact with the substrate and transport the chemicals through grooves to the 

salamander’s vomeronasal organ (Jaeger 1984).  Once salamanders have established their 

territories, defense is via visual displays and bites (Jaeger & Forester 1993).  Common 
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antipredator responses of Plethodon and other terrestrial salamanders include avoidance of the 

marked area (Cupp 1994), reduced foraging (Watson et al. 2004), escape (Mathis & Lancaster 

1998), and freezing (Crane et al. 2012).  Intruders, but not residents, typically reduce territorial 

behaviors in the presence of predatory stimuli (Watson 2001; Parsons 2010).   

I examined the influence of predation risk on territorial behavior of male and female 

Ozark zigzag salamanders in two experiments.  The first experiment examined whether 

salamander sex and the presence of unimodal (chemical only, tactile only) versus multimodal 

cues (chemical and tactile combined) influenced agonistic and chemosensory behavior of 

intruders.  The second experiment tested whether male and female intruders responded 

differently to cues from same- and opposite-sex residents in the presence and absence of 

chemical (unimodal) predatory stimuli.  These results should shed light on potential costs and 

benefits of territoriality for male and female salamanders. 
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METHODS 

 

Collection and Maintenance 

This study was approved by the Institutional Animal Care and Use Committee under 

protocol number 17-012.  Salamanders and ring-necked snakes (predators; Diadophis punctatus) 

were caught in the spring and fall of 2015-2016 at Bull Shoals Field Station, Taney Co., MO, 

USA.  Salamanders were housed in petri dishes (14.6 × 2 cm) with moistened filter paper in a 

temperature-controlled environmental chamber at 15 ± 2 °C with a 12L:12D photoperiod.  Filter 

paper was changed weekly, and salamanders were fed five flightless Drosophila hydei fruit flies 

twice weekly.  Salamanders were sexed via candling (Gillette & Peterson 2001) and snout-vent 

lengths (SVL) were measured.  Only salamanders with an SVL of at least 32 mm (likely adults, 

Wilkinson et al. 1993) were used in trials.  Ring-necked snakes (n = 8, 20-30 cm total length) 

were housed in 3-L glass aquaria with paper towel substrates, water dishes, and PVC hides at 

room temperature (20-25 °C) with a 12L:12D photoperiod.  Paper towels were misted daily with 

dechlorinated tap water to maintain moisture and changed weekly.  

 

Experiment 1: Response of Territorial Intruders to Unimodal vs Multimodal Predatory 

Cues  

Salamanders (n = 62; captured in September and November of 2015) were assigned to 

same-sex pairs with a maximum SVL difference of 3 mm to limit body-size differences, which 

can influence aggressive behavior (Mathis & Britzke 1999).  In each pair, salamanders were 

randomly assigned to be either a resident or an intruder and retained the same residency status 
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throughout the experiment.  Residents and intruders were maintained separately until the start of 

the behavioral trial. 

The experiment followed a repeated-measures design, with each intruder exposed to a 

water blank (control) and each of three predator treatments in a randomized order immediately 

prior to each contest: chemical snake cue (unimodal-chemical), physical stimulated attack 

(unimodal-tactile), and a combination of the chemical cue and physical attack (multimodal-

chemical + tactile).  Resident salamanders received no treatment, and never encountered the 

same intruder salamander more than once to avoid possible influences of familiarity (dear enemy 

effects) on aggressive behavior (Jaeger 1981).   

The snake chemical cue was collected after the snakes had been fasted for 4 d, at which 

point they were moved into individual 400-mL glass beakers.  After 48 h, the snake was removed 

and the beaker was rinsed with 100 mL of dechlorinated tap water, which was then divided into 

5-mL aliquots and frozen at -16 ± 2°C.  The water blank was collected in the same way with no 

snake in the beaker.  The resident salamander was moved into the testing arena (24 × 24 × 2cm) 

5 d prior to testing to establish residency by depositing chemical territorial markers (Nunes & 

Jaeger 1989).  To ensure that there were no chemical cues from prey in the testing arena, both 

resident and intruder salamanders were fed 10 fruit flies in their home dishes one day before 

being moved into the trial chambers and were not fed again until testing was complete.  

Intruders were exposed to a threat treatment immediately before the start of aggressive 

trials.  The intruder was placed under an opaque dish (8.5 × 1 cm) in a new petri dish for 3 min 

before exposure to the randomly-assigned treatment.  For the chemical cue treatments, 5 mL of 

chemical stimulus (blank or snake) was applied evenly to the filter paper.  After 3 min, the 

opaque dish was removed and the salamander was exposed to the chemical stimulus for 5 min.  
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 For the physical attack treatment, the cover dish was removed and the salamander was 

grasped immediately anterior to the pelvic girdle with forceps for the entire 5 min to mimic the 

attack of D. punctatus (Mathis & Lancaster 1998).  For the combined chemical and physical 

treatment, the chemical and physical stimuli were applied as above, but the salamander’s 

nasolabial cirri made contact with the substrate containing the chemical cue at least three times 

during the 5-min exposure period.  While the intruder was being exposed to the stimuli, the 

resident was placed under an opaque dish on one side in the testing arena; because the resident 

did not experience any of the stress treatments, we categorize it as unstressed.  

After stimulus exposure, the intruder was rinsed to remove any snake and/or alarm 

(Watson et al. 2004) secretions, and placed under an opaque dish on the other side of the testing 

chamber from the resident for 5 min of acclimation.  To aid in the identification of the intruder 

and resident salamander, each was marked with a different colored dot of florescent powder on 

the top of the head.  After acclimation, the opaque dishes were removed, and the intruder’s 

behaviors were recorded for 15 min.  At the end of the trial, all salamanders were rinsed and 

returned to their home dishes and resumed their normal feeding schedules. 

The following agonistic and chemosensory behaviors were recorded based on those 

defined by Jaeger in 1984.  (1) Bites, an overt aggressive act in which the salamander makes 

contact with another and grasps it with its mouth.  (2) Agonistic displays (duration): All trunk 

raised (ATR), an agonistic display where the salamander’s trunk is lifted off of the substrate; 

FLAT, a submissive display where the salamander’s entire ventral surface is in contact with the 

substrate; EDGE, a presumed escape or exploratory behavior in which the salamander is in 

contact with the wall of the testing arena with at least one foot and the tip of the snout.              

(3) Passive agonistic behaviors (frequency): Look toward (LT), the salamander moves its head so 
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that the line of sight is directed toward the other; Look away (LA), either salamander moves its 

head so that the line of sight established in LT above is broken; Move toward (MT), the 

salamander approaches the other in a direction that will eventually result in contact; Move away 

(MA), the salamander moves to actively increase the distance between it and another.               

(4) Chemosensory behaviors (frequency): Nose taps (NT), a chemosensory behavior where the 

salamander presses its nasolabial cirri to the substrate; Nose-tap fecal pellet (NTP), a 

chemosensory behavior where the salamander presses its nasolabial cirri to a fecal pellet  

Because the data were not normally distributed, all data were align-rank transformed 

using the procedure in ARTool (Higgins & Tantoush 1994).  Transformed data were then 

analyzed using the General Linear Models function in Minitab16.  Factors included in the model 

were ID, sex, treatment, order, and all possible interactions of sex, order, and treatment. 

 

Experiment 2: Does Predation Risk Moderate the Territorial Behavior by Same-Sex and 

Opposite-Sex Intruders? 

In this experiment, the focal intruder salamander was tested on arena substrates that had 

been marked by a resident, but the resident was not physically present.  Salamanders (n = 59; 

collected in November 2016) were assigned to pairs of intruder (focal) and resident (cue donor).  

Pairs of salamanders were within 3 mm SVL.   

Sex treatments were (Intruder-Resident): Male-male, male-female, female-female, and 

female-male.  Each salamander was randomly assigned as a cue donor or focal salamander.  This 

experiment followed a repeated measures design; each salamander was randomly assigned to be 

either a focal salamander or a cue donor, and retained the same status throughout the experiment, 

and no focal salamander was exposed to the same cue donor more than once.  
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Each focal salamander was exposed to each of the following chemical-cue treatments in a 

randomly selected order: conspecific cue only, snake cue only, or a 50:50 combination of snake 

and conspecific cue.  Snake cue was collected in the same manner as the previous experiment for 

5 adult D. punctatus (26-30 cm total length) caught in September 2017.  Salamander cue was 

collected by moving the cue donor (resident) to a clean petri dish (14.6 × 2 cm) with moistened 

filter paper for 5 d to ensure deposition of chemical markers (Mathis et al. 2000).  Both cue 

donors and focal salamanders were fed five fruit flies the morning of trial to control for hunger.  

Before each trial, the cue donor was removed from its home dish and 5 mL of dechlorinated 

water was swirled over the filter paper for 30 s.  The salamander-cue solution was pipetted into a 

vial which was kept at room temperature (20-25 °C) until testing.  Immediately before testing, 4 

ml of cue was evenly poured on a clean paper towel in the testing arena (24 × 24 × 2cm).  The 

focal salamander was then moved from its home dish to the center of the testing arena and placed 

under an opaque dish (8.5 × 1 cm) for 5 min to acclimate.  After 5 min, the cover dish was 

removed and the following behaviors were recorded for 15 min: ATR, FLAT, EDGE, and Nose 

taps (defined above).  After trials were concluded, all salamanders were returned to their home 

dishes. 

Because the data were not normally distributed, all data were align-rank transformed 

using the procedure in ARTool (Higgins & Tantoush 1994).  Transformed data were then 

analyzed with the General Linear Models procedure in Minitab16.  The data were divided into 

two groups for statistical analyses: salamanders exposed to same-sex conspecific cue (male-male 

and female-female), and those that were exposed to opposite-sex conspecific cue (male-female 

and female-male).  Factors included in the model were ID, sex, treatment, order, and all possible 

interactions of sex, order, and treatment. 
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RESULTS 

 

Response of Territorial Intruders to Unimodal vs Multimodal Predatory Cues  

Testing order had a main effect only on the number of nose taps (F3,65 = 4.42,  

p < 0.01), with both sexes decreasing their number of nose taps as the trials progressed.  Females 

tended to be more affected by order than males (Sex*order interactions:  

p’s = 0.04-0.06), with data for the first trial being somewhat greater in magnitude than in the 

subsequent trials.  There were no other significant interactions between order and treatment  

(p’s = 0.18-0.92). Data for order effects and ID effects are presented in Appendix A. 

Time spent in the aggressive ATR posture was lower in all three predator treatments in 

comparison to the blank control for both males and females (F3,65 = 5.52, p < 0.01, Figure 1).  

ATR was not significantly influenced by sex (F1,65 = 0.83, p = 0.37) or by a sex*treatment 

interaction (F3,65 = 1.86, p = 0.14).  

For the submissive FLAT posture, there was a significant interaction between sex and 

treatment (F3,65 = 3.26, p = 0.02, Figure 2).  Females spent more time in FLAT for all three 

predator treatments compared to the blank control, whereas males spent more time in FLAT for 

only the combined physical and chemical predator treatment.  No factors had a significant effect 

on time spent in FLAT (sex: F1,65 = 0.99, p = 0.32; treatment: F3,65 = 2.21, p = 0.10) independent 

of the interaction effect. 

For EDGE behavior, the treatment*sex interaction was also significant (F3,65 = 2.75,  

p = 0.05, Figure 3).  Females spent similar amounts of time in EDGE for all treatments, whereas 

males decreased time in EDGE for the combined predator treatment compared to the other 
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treatments.  No other factors had a significant effect on time in EDGE (sex: F1,65 = 0.01, p = 

0.93; treatment: F3,65 = 0.19, p = 0.90) independent of the interaction effect.  

Nose taps were lower in the unimodal-tactile and multimodal treatments in comparison to 

the water blank and the unimodal-chemical treatments for both males and females (F3,65 = 4.46,  

p < 0.01, Figure 4).  No other factors had a significant effect on the number of nose taps (sex: 

F1,65 = 1.07, p = 0.31; sex*treatment interaction: F3,65 = 0.55, p = 0.65).  

Biting (n = 3), NTP (n = 10), and NTI (n = 8) behaviors were too infrequent for statistical 

testing and are thus excluded from the results. 

 

 

Effect of Predation Risk on Territorial Behavior by Same-Sex and Opposite-Sex Intruders 

Order effects were present in some responses for both opposite-sex pairs, and same-sex 

pairs, and the same trend was present as in the previous experiment (data for the first trial 

generally differed from the succeeding trials).  There were also significant effects of individual 

(ID), indicating that some individuals consistently showed higher levels of a given behavior than 

others.  Data for order effects and ID effects are presented in Appendix B.  The behavior of one 

male was substantially different from the other males (e.g., about 300 more seconds in ATR than 

the next highest male); the data for this male was removed from the analyses.   

For ATR, different patterns of responses to predation risk were present for intruders in 

the presence of pheromones from same-sex vs. opposite-sex residents.  In the opposite-sex trials 

(Figure 5), time spent in ATR by intruders was not significantly affected by treatment, with both 

males and females showing a trend of lower levels of ATR in the predator-only treatment than 

when opposite-sex pheromones were present (F2,40 = 2.30, p = 0.11).  Males tended to show more 

ATR than females, but this difference was not significant (F1,40 = 3.09, p = 0.09).  The 
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sex*treatment interaction was not significant (F2,40 = 0.36, p = 0.70).  For salamanders in the 

same-sex trials, time spent in ATR was significantly affected by the sex*treatment interaction 

(F2,42 = 5.58, p < 0.01).  Females spent more time in ATR when exposed to the same-sex 

conspecific cue in any combination, than the predator cue alone (Figure 6).  Males, in contrast, 

spent more time in ATR when exposed to the same-sex conspecific cue with no predator, and the 

predator alone, in comparison to the combined treatment (Figure 6).  No other factors had a 

significant effect on time spent in ATR for salamanders in same-sex pairs (sex: F1,42 = 3.75,  

p = 0.07; treatment: F2,42 = 1.26, p = 0.30). 

For FLAT, patterns of responses to predation risk also differed according to whether 

intruders were exposed to pheromones from same-sex vs. opposite-sex residents.  In the 

opposite-sex trials (Figure 7), time in FLAT was significantly affected by the sex*treatment 

interaction (F2,42 = 3.20, p = 0.05), with males showing low levels of FLAT in all treatments, and 

females showing increased levels of FLAT in the predator treatments.  The main effect of 

Treatment was also significant (F2,42 = 11.33, p < 0.01), with this difference driven by the very 

high levels of flat in the predator treatments by females.  Although females tended to show 

higher levels of FLAT overall, the main effect of sex was not significant (F1,42 = 2.57, p = 0.121). 

In the same-sex trials (Figure 8), neither interaction effect (F2,42 = 2.38, p = 0.10) nor the effect 

of sex (F1,42 = 0.07, p = 0.79) were significant, but both males and females spent more time in 

FLAT in the presence of the predator cues (F2,42 = 5.37, p = 0.01).   

EDGE was a frequent behavior and not strongly effected by treatment or sex for both 

opposite-sex and same-sex trials.  In opposite-sex trials (Figure 9), time spent in EDGE behavior 

was not significantly affected by sex (F1,42 = 0.00, p = 0.999), the sex*treatment interaction  

(F2,42 = 1.32, p = 0.28), or treatment (F2,42 = 1.86, p = 0.17); a trend was present showing less 
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EDGE behavior in the presence of predator cues.  For salamanders in same-sex pairs (Figure 10), 

there were no significant effects of sex (F1,42 = 0.15, p = 0.70), treatment (F2,42 = 1.04, p = 0.36), 

or the sex*treatment interaction (F2,42 = 0.25, p = 0.78) on EDGE behavior.  

For NT (chemosensory behavior), the only significant effect was Treatment for both 

opposite-sex and same-sex trials, but the nature of the effect was somewhat different in the two 

trials.  For opposite-sex trials (Figure 11), number of NT was reduced in the predator only 

treatments for males, and greatly reduced for both treatments involving a predator for females 

(F2,42 = 4.55, p = 0.02), with no main effect of sex (F1,42 = 0.34, p = 0.56) and no sex*treatment 

interaction (F2,42 = 1.77, p = 0.18).  For same-sex trials, both males and females only reduced 

NTs in the predator-only treatment (F2,42 = 5.77, p < 0.01, Figure 12), and there was no 

significant effect of sex (F1,42 = 1.93, p = 0.18) or the sex*treatment interaction (F2,42 = 0.76,  

p = 0.47).
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Figure 1. Mean (±SE) time spent in All Trunk Raised (ATR) aggressive posture after immediate 

prior exposure to a blank control or one of three predator treatments. White bars are males (n=8) 

and gray bars are females (n=21). All statistics were calculated with data transformed using the 

aligned rank transformation. 
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Figure 2. Mean (±SE) time spent in Flat (FLAT) submissive posture after immediate prior 

exposure to a blank control or one of three predator treatments. White bars are males (n=8) and 

gray bars are females (n=21). All statistics were calculated with data transformed using the 

aligned rank transformation.  



16 

 
 

Figure 3. Mean (±SE) time spent around the edge of the arena (EDGE) after immediate prior 

exposure to a blank control or one of three predator treatments. White bars are males (n=8) and 

gray bars are females (n=21). All statistics were calculated with data transformed using the 

aligned rank transformation. 
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Figure 4. Mean (±SE) number of chemosensory nose taps (NT) after immediate prior 

exposure to a blank control or one of three predator treatments. White bars are males (n=8) and 

gray bars are females (n=21). All statistics were calculated with data transformed using the 

aligned rank transformation. 
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Figure 5. Mean (±SE) time spent in All Trunk Raised (ATR) aggressive posture after immediate 

prior exposure to pheromones from an opposite-sex intruder (Opposite), opposite-sex intruder 

pheromones combined with a predator cue (Opp + Pred), or predator cue alone (Predator). White 

bars are males (n=11) and gray bars are females (n=17). All statistics were with data transformed 

using the aligned rank transformation. 
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Figure 6. Mean (±SE) time spent in All Trunk Raised (ATR) aggressive posture after immediate 

prior exposure to pheromones from a same-sex intruder (Same), same-sex intruder pheromones 

combined with a predator cue (Same + Pred), or predator cue alone (Predator). White bars are 

males (n=11) and gray bars are females (n=17). All statistics were with data transformed using 

the aligned rank transformation. 
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Figure 7. Mean (±SE) time spent in the Flat (FLAT) submissive posture after immediate prior 

exposure to pheromones from an opposite-sex intruder (Opposite), opposite-sex intruder 

pheromones combined with a predator cue (Opp + Pred), or predator cue alone (Predator). White 

bars are males (n=11) and gray bars are females (n=17). All statistics were with data transformed 

using the aligned rank transformation. 
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Figure 8. Mean (±SE) time spent in the Flat (FLAT) submissive posture after immediate prior 

exposure to pheromones from a same-sex intruder (Same), same-sex intruder pheromones 

combined with a predator cue (Same + Pred), or predator cue alone (Predator). White bars are 

males (n=11) and gray bars are females (n=17). All statistics were with data transformed using 

the aligned rank transformation. 
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Figure 9. Mean (±SE) time spent around the edge of the arena (EDGE) after immediate prior 

exposure to pheromones from an opposite-sex intruder (Opposite), opposite-sex intruder 

pheromones combined with a predator cue (Opp + Pred), or predator cue alone (Predator). White 

bars are males (n=11) and gray bars are females (n=17). All statistics were with data transformed 

using the aligned rank transformation. 
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Figure 10. Mean (±SE) time spent around the edge of the arena (EDGE) after immediate prior 

exposure to pheromones from a same-sex intruder (Same), same-sex intruder pheromones 

combined with a predator cue (Same + Pred), or predator cue alone (Predator). White bars are 

males (n=11) and gray bars are females (n=17). All statistics were with data transformed using 

the aligned rank transformation. 
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Figure 11. Mean (±SE) number of chemosensory nose taps (NT) after immediate prior exposure 

to pheromones from an opposite-sex intruder (Opposite), opposite-sex intruder pheromones 

combined with a predator cue (Opp + Pred), or predator cue alone (Predator). White bars are 

males (n=11) and gray bars are females (n=17). All statistics were with data transformed using 

the aligned rank transformation. 
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Figure 12. Mean (±SE) number of chemosensory nose taps (NT) after immediate prior exposure 

to pheromones from a same-sex intruder (Same), same-sex intruder pheromones combined with 

a predator cue (Same + Pred), or predator cue alone (Predator). White bars are males (n=11) and 

gray bars are females (n=17). All statistics were with data transformed using the aligned rank 

transformation. 
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DISCUSSION 

 

Unimodal versus Multimodal Predator Cues  

Overall, for territory intruders, exposure to predation risk led to changes in territorial 

behavior for both unimodal and multimodal cue types in comparison to the control.  Predation 

risk affected agonistic posturing (ATR and FLAT), Edge behavior, and chemosensory sampling 

(Nose Taps).  However, the patterns of responses were often different for males and females.   

For female intruders, exposure to all types of predatory stimuli resulted in similar 

changes in frequencies of agonistic visual displays.  Response to the predatory stimuli—a 

decrease in high-visibility ATR and an increase in low-visibility FLAT—is consistent with a 

function to reduce conspicuousness to potential predators.  Similarly, male guppies, Poecilia 

reticulata, also reduced the frequency of high-visibility displays when predation risk was high 

(Endler 1987), and brown anole lizards, Anolis sagrei, shifted from high- to low-visibility head 

bob displays in the presence of predators.  The lack of a difference between unimodal and 

multimodal cues suggests that the information concerning the level of threat indicated by 

chemical and tactile cues was redundant (Partan & Marler 2005), even though the information 

content differs.  Chemical cues left by a predator can provide a range of information about the 

predator, including size (Mirza & Chivers 2002) and diet (Mathis & Smith 1993), whereas tactile 

cues from an unsuccessful physical attack provides information on the recent location, feeding 

motivation (i.e., actively foraging) and, possibly, identity, of the predator.  In either case, it 

would not be known whether the predator has remained in the immediate area.  Both modalities 

may present a similarly high level of risk for the salamander.  Because all of the females we 

tested were gravid, they may have suffered physical constraints that may not be present in other 
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times of the year.  A gravid female may not be able to flee as quickly or fit into a crevice or 

burrow that is small enough to shelter them from a predator such as small snakes.  Gravid 

females sometimes respond differently to elevated predation risk than nongravid females or 

males, including decreased flight behavior and increased freezing (e.g., lizards: Bauwens & 

Thoen 1981; snakes: Gregory & Gregory 2006).   

In contrast, time spent in EDGE behavior by female intruders was not influenced by 

predator treatment.  EDGE is typically interpreted as a salamander seeking either to escape or to 

locate crevices for hiding (= escape in Horne 1988), so the lack of increased EDGE behavior in 

response to higher predation risk was somewhat surprising.  At least in part, we attribute the lack 

of a treatment effect, even in comparison to the blank control condition, to the relatively high 

levels of EDGE behavior (about two-thirds of each trial) that was seen, which left little 

opportunity for increases in this behavior when predation risk was heightened.  Similarly, high 

levels of EDGE behavior during territorial competition in the absence of high predation risk have 

been reported for intruders (but not for residents) in this species (Dalton & Mathis 2014).   

Like females, male intruders showed an equivalent decrease in time spent in ATR in 

response both to unimodal and multimodal predator-related cues in comparison to the control.  

However, males responded differently from females with respect to EDGE and FLAT behavior, 

with the multimodal cue eliciting an apparently additive response compared to either of the 

unimodal cues.  This additive response suggests that the high level of information content 

provided by multimodal cues is required to initiate antipredator behavior by males.  Similar 

additive responses have been observed in other prey species, including hermit crabs Pagurus 

bernhardus (Dalesman & Inchley 2008), mosquitofish Gambusia infinis (Ward & Mehner 2010), 

Atlantic salmon Salmo salar (Blanchet et al. 2007) and wall lizards Podarcis muralis (Amo et al. 



28 

2004).  For male salamanders, the costs of missed mating or territorial opportunities (e.g., Foam 

et al. 2005; Ferrari et al. 2008) appears to result in a higher threshold for triggering antipredator 

behavior than for females.   

Chemosensory behavior was similarly affected by treatment (main effect) for both sexes, 

with the multimodal cue appearing to be nonredundant for both sexes.  The chemical cue from 

the predator alone was insufficient to elicit changes in nose-tapping for both males and females.  

However, both the physical cue alone and the multimodal (chemical + physical) cue elicited 

similar decreases in nose-tapping behavior.  The observed decreases in chemosensory behavior 

suggest that further chemosensory sampling following a physical attack would not provide 

information that would enhance antipredator behavior or that additional information would not 

change the response.  Decreased activity is a common antipredator behavior in amphibians with 

visually-oriented predators and may offer the best chance of escaping detection immediately 

after a perceived predator attack (Brodie et al. 1974; Brodie 1977; Hayes 1989).  Chemosensory 

nose-tapping also requires the snout to be briefly in contact with the substrate, which may 

interfere with effectiveness of vigilance behavior.   

 

 

Effect of Predation Risk on Territorial Behavior by Same-Sex and Opposite-Sex Intruders 

For both aggressive (ATR) and submissive (FLAT) displays, the response of intruders to 

same- and opposite-sex residents was moderated by the presence of predator cues (i.e., an 

interaction between resident-sex and predation treatments).  The nature of the effect was 

different depending on whether the resident was of the same or opposite sex.  However, overall, 
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the behavior of females generally was moderated more strongly by the presence of a predator 

than males. 

For Plethodon salamanders, territories appear to be multifunctional, including both 

defense of food resources and also serving as areas where pairs can mate either in zones of 

overlap (Mathis 1990) or in areas that are co-defended by socially-monogamous pairs (Gillette et 

al. 2000; Lang & Jaeger 2000).  Differential effects of predation risk based on the sex of the 

nearby individuals may lead to tolerance to neighbors that present a reproductive opportunity 

either at that time or in the future (Mathis 1990).  

For ATR, the interaction between resident sex and predation risk occurred only when the 

resident was of the same sex.  For females, the pattern was decreased ATR only in the predator-

only treatment.  Although levels of ATR were relatively low, female intruders were willing to 

engage in low-levels of contest escalation with other females, but not males, even in the presence 

of predators.  Similarly, female residents of P. cinereus were more aggressive toward females 

than toward male intruders, with the authors attributing this difference to males being potential 

mating partners (Lang & Jaeger 2000).  In contrast, for males the lowest levels of ATR were in 

the same-sex resident + predator treatment, suggesting an additive effect of these two factors.  

When only one threat (same-sex competitor, predator) was present, males showed relatively high 

average levels of ATR (approximately 30-60% higher than for females), suggesting that male 

intruders are highly motivated to secure a territory.  Lang and Jaeger (2000) also reported higher 

levels of aggression by male residents to male intruders in comparison to female intruders.   

For FLAT, the interaction between resident sex and predation risk was only present in 

opposite-sex treatments.  In this case the pattern was the same for both males and females, with 

higher levels of FLAT with any stimulus that included predator kairomones (predator only, and 
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opposite-sex resident + plus predator).  However, the effect of predation risk was more extreme 

for females than for males.  Females showed very high levels of FLAT when predation risk was 

high, whereas males showed only slight increases in FLAT behavior.  

This apparent sex difference in predator-moderated behavior may be due to the 

reproductive status of the females during the experiment.  All females tested were gravid (eggs 

visible through the body wall) throughout the entire testing period.  Two hypotheses involving 

female survival while carrying eggs or embryos have been proposed: the Physical Burden 

hypothesis (Shine 1988), and the Physiological Cost hypothesis (Brodie 1989).  The Physical 

Burden hypothesis predicts negative correlations among relative clutch mass, locomotion, and 

survival during pregnancy (Shine 1988).  The Physiological Cost hypothesis predicts that the 

broad physiological changes that occur during pregnancy should negatively affect locomotion 

regardless of the level of investment (Brodie 1989).  Regardless of the cause, reduced locomotive 

ability for gravid females has been reported for many species, including fish (Plaut 2002), lizards 

(Miles et. al. 2000), and birds (Veasey et. al. 2001).  A female laden with eggs not only faces the 

physical constraints of a heavy burden, but also faces an increased risk of starvation after laying 

her eggs due to energetic costs (Madsen & Shine 1993).  Low levels of aggression and high 

levels of FLAT decrease visibility in the face of predatory threat and are relatively low-cost in 

terms of energetics in contrast to flight.  In addition, in comparison to males, females may not 

able to sprint to cover as effectively.  A similar response was recorded in gravid female collared 

lizards, Crotaphytus collaris, that compensated for their reduced sprint speed by remaining 

closer to refugia and waiting longer before attempting to seek cover (Husak 2006). 

As a main effect, the presence of predator cues significantly increased both the amount of 

time spent in the FLAT display and the frequency of nose-tapping.  These effects were 
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significant for both same-sex and opposite-sex pairings, indicating a robust effect of predator 

cues.  In addition to being a submissive posture in aggressive contests (Jaeger 1984), increasing 

time in FLAT behavior is consistent with decreasing visibility in the context of predation risk 

and has been reported in another study of antipredator behavior for this species (Crane et al. 

2012).  Reductions in nose-tapping are likely a consequence of overall reductions in activity, 

which is a common response to predation risk (Brodie et al. 1974; Brodie 1977; Hayes 1989).  

Parsons (2010) also reported that intruders decreased the number of nose-taps in the presence of 

cues from snake predators.   

Independent of predation risk, there tended to be lower levels of aggressive displays 

(ATR) by intruders when the resident was male, but this difference was relatively weak and not 

statistically significant (0.05 > P < 0.10).  The weakness of this effect may be due in part to the 

generally low levels of ATR by salamanders in this study, which has been shown for intruders in 

territorial contests in this (e.g. Mathis et al. 2000) and other (e.g. Cutts et al. 1999; Sacchi et al. 

2009; Fuxjager et al. 2010) species.   Dalton and Mathis (2014) also reported differential 

responses by intruders when the resident was male, although in that experiment the effect was 

manifested as increased EDGE behavior in the presence of chemical cues from male residents in 

comparison to females.  Taken together, these studies (Dalton & Mathis 2014; current study) 

provide some evidence to support the hypothesis that males are considered to be more of a threat 

than females.   
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Overview 

In both experiments, predation risk generally affected territorial behavior by decreasing 

levels of aggressive behavior and increased submissive behaviors of intruders.  However, sex of 

the intruder influenced the responses to predation risk in both experiments and sex of the resident 

influenced the response of intruders in the second experiment. These differences support the 

hypothesis that salamanders can assess local factors and adjust their territorial behavior 

according to perceived costs and benefits.  Females, which were all gravid in this study, 

generally were more strongly affected by predation risk, while males were more likely to engage 

in riskier behavior overall and particularly in the presence of pheromones from an opposite-sex 

salamander.   

 

 

  



33 

LITERATURE CITED 

 

Amo, L., López, P. & Martı́n, J. 2004. Wall lizards combine chemical and visual cues of ambush 

snake predators to avoid overestimating risk inside refuges. Animal Behaviour, 67, 647-

653. 

 

Bauwens, D. & Thoen, C. 1981. Escape tactics and vulnerability to predation associated with 

reproduction in the lizard Lacerta vivipara. The Journal of Animal Ecology, 50, 733-743. 

 

Blanchet, S., Bernatchez, L., & Dodson, J.J. 2007. Behavioural and growth responses of a 

territorial fish (Atlantic salmon, Salmo salar, L.) to multiple predatory cues. Ethology 

113, 1061-1072. 

 

Brodie III, E.D. 1989. Behavioral modification as a means of reducing the cost of 

reproduction. The American Naturalist, 134, 225-238. 

 

Brodie Jr, E.D., Johnson, J.A. & Dodd Jr, C.K. 1974. Immobility as a defensive behavior in 

salamanders. Herpetologica, 30, 79-85. 

 

Brodie Jr, E.D. 1977. Salamander antipredator postures. Copeia, 1977, 523-535. 

 

Brown, G.E. & Magnavacca, G. 2003. Predator inspection behaviour in characin fish: an 

interaction between chemical and visual information? Ethology, 109, 739-750. 

 

Chamaillé-Jammes, S., Malcuit, H., Le Saout, S. & Martin, J.L. 2014. Innate threat-sensitive 

foraging: black-tailed deer remain more fearful of wolf than of the less dangerous black 

bear even after 100 years of wolf absence. Oecologia, 174, 1151-1158. 

 

Chivers, D.P., Mirza, R.S., Bryer, P.J., & Keisecker, J.M. 2001.Threat-sensitive predator 

avoidance by slimy sculpins: understanding the importance of visual versus chemical 

information. Canadian Journal of Zoology, 79, 867-873. 

 

Conant, R. & Collins, J.T. 1998. A field guide to reptiles and amphibians of eastern and central 

North America. 3rd ed. Houghton Mifflin Co., Boston, Massachusetts. 

 

Cooper Jr, W. & Wilson, D. 2007. Sex and social costs of escaping in the striped plateau lizard 

Sceloporus virgatus. Behavioral Ecology, 18, 764-768. 

 

Crane, A.L., McGrane, C.E. & Mathis, A. 2012. Behavioral and physiological responses of 

Ozark zigzag salamanders to stimuli from an invasive predator: the 

armadillo. International Journal of Ecology, 2012. 

 

Cupp Jr, P.V. 1994. Salamanders avoid chemical cues from predators. Animal Behaviour, 48, 

232-235. 



34 

 

Cutts, C.J., Metcalfe, N.B. & Taylor, A.C. 1999. Competitive asymmetries in territorial juvenile 

Atlantic salmon, Salmo salar. Oikos, 86, 479-486. 

 

Dalesman, S. & Inchley, C.J. 2008. Interaction between olfactory and visual cues affects flight 

initiation and distance by the hermit crab, Pagurus bernhardus. Behaviour, 145, 1479-

1492. 

 

Dalton, B. & Mathis, A. 2014. Identification of sex and parasitism via pheromones by the Ozark 

zigzag salamander. Chemoecology, 24, 189-199. 

 

Elmasri, O.L., Moreno, M.S., Neumann, C.A. & Daniel T. 2012. Response of brown anoles 

Anolis sagrei to multimodal signals from a native and novel predator. Current Zoology, 

58, 791–796. 

 

Endler, J.A. 1987. Predation, light intensity and courtship behaviour in Poecilia reticulata 

(Pisces: Poeciliidae). Animal Behaviour, 35, 1376-1385. 

 

Evans, C.S. & Marler, P. 1992. Female appearance as a factor in the responsiveness of male 

chickens during anti-predator behaviour and courtship. Animal Behaviour, 43, 137-143. 

 

Ferrari, M.C., Messier, F. & Chivers, D.P. 2008. Larval amphibians learn to match antipredator 

response intensity to temporal patterns of risk. Behavioral Ecology, 19, 980-983. 

 

Foam, P.E., Mirza, R.S., Chivers, D.P. & Brown, G.E. 2005. Juvenile convict cichlids 

(Archocentrus nigrofasciatus) allocate foraging and antipredator behaviour in response to 

temporal variation in predation risk. Behaviour, 142, 129-144. 

 

Fuxjager, M.J., Montogomery, J.L., Becker, E.A. & Marler, C.A. 2010. Deciding to win: 

interactive effects of residency, resources, and ‘boldness’ on contest outcome in white-

footed mice.  Animal Behaviour, 80, 921-927. 

   

Gillette, J.R. & Peterson, M.G. 2001. The benefits of transparency: candling as a simple method 

for determining sex in red-backed salamanders (Plethodon cinereus). Herpetological 

Review, 32, 233. 

 

Gillette, J.R., Jaeger, R.G. & Peterson, M.G. 2000. Social monogamy in a territorial 

salamander. Animal Behaviour, 59, 1241-1250. 

 

Gregory, P.T. & Gregory, L.A. 2006. Immobility and supination in garter snakes (Thamnophis 

elegans) following handling by human predators. Journal of Comparative 

Psychology, 120, 262. 

 

Gwynne, D.T. & O'Neill, K.M. 1980. Territoriality in digger wasps results in sex biased 

predation on males (Hymenoptera: Sphecidae, Philanthus). Journal of the Kansas 

Entomological Society, 53, 220-224. 



35 

 

Hayes, F.E. 1989. Antipredator behavior of recently metamorphosed toads (Bufo a. americanus) 

during encounters with garter snakes (Thamnophis s. sirtalis). Copeia, 1011-1015. 

 

Helfman, G.S. 1989. Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. 

Behavioral Ecology and Sociobiology, 24, 47-58. 

 

Higgins, J.J. & Tantoush, S. 1994. An aligned rank transform test for interaction. Nonlinear 

World, 1, 201–211. 

 

Horne, E.A. 1988. Aggressive behavior of female red-backed salamanders. Herpetologica, 203-

209. 

 

Husak, J.F. 2006. Do female collared lizards change field use of maximal sprint speed capacity 

when gravid? Oecologia, 150, 339-343. 

 

Jaeger, R.G. 1971. Moisture as a factor influencing the distributions of two species of terrestrial 

salamanders. Oecologia, 6, 191-207. 

 

Jaeger, R.G. 1981, Dear enemy recognition and the costs of aggression between salamanders. 

The American Naturalist, 117, 962-974. 

 

Jaeger, R.G. 1984. Agonistic behavior of the red-backed salamander. Copeia, 309-314. 

 

Jaeger, R.G. & Forester, D.C. 1993. Social behavior of plethodontid 

salamanders. Herpetologica, 49, 163-175. 

 

Jakobsson, S., Brick, O. & Kullberg, C. 1995. Escalated fighting behaviour incurs increased 

predation risk. Animal Behaviour, 49, 235-239. 

 

Jones, H.M. & Paszkowski, C.A. 1997. Effects of exposure to predatory cues on territorial 

behaviour of male fathead minnows. Environmental Biology of Fishes, 49, 97-109. 

 

LaManna, J.R. & Eason, P.K 2007. Effects of predator presence on territorial 

establishment. Behaviour, 144, 985-1001. 

 

Lang, C. & Jaeger, R.G. 2000. Defense of territories by male-female pairs in the red-backed 

salamander (Plethodon cinereus). Copeia, 2000, 169-177. 

 

Lange, H. & Leimar, O. 2001. The influence of predation risk on threat display in great 

tits. Behavioral Ecology, 12, 375-380. 

 

Madsen, T. & Shine, R. 1993. Costs of reproduction in a population of European 

adders. Oecologia, 94, 488-495. 

 



36 

Maksimowich, D.S. & Mathis, A. 2001. Pheromonal markers as indicators of parasite load: 

parasite-mediated behavior in salamanders (Plethodon angusticlavius). Acta 

Ethologica, 3, 83-87. 

 

Marino, A. & Baldi, R. 2008. Vigilance patterns of territorial guanacos (Lama guanicoe): the 

role of reproductive interests and predation risk. Ethology, 114, 413-423. 

 

Mathis, A. & Vincent, F. 2000. Differential use of visual and chemical cues in predator 

recognition and threat-sensitive predator-avoidance responses by larval newts 

(Notophthalmus viridescens). Canadian Journal of Zoology, 78, 1646-1652. 

 

Mathis, A., Murray, K.L. & Hickman, C.R. 2003. Do experience and body size play a role in 

responses of larval ringed salamanders, Ambystoma annulatum, to predator kairomones? 

Laboratory and field assays. Ethology, 109, 159-170. 

 

Mathis, A. 1990. Territoriality in a terrestrial salamander: the influence of resource quality and 

body size. Behaviour, 112, 162-175. 

 

Mathis, A. & Lancaster, D. 1998. Response of terrestrial salamanders to chemical stimuli from 

distressed conspecifics. Amphibia-Reptilia, 19, 330-335. 

 

Mathis, A. & Britzke, E. 1999. The roles of body size and experience in agonistic displays of the 

Ozark zigzag salamander, Plethodon angusticlavius. Herpetologica, 55, 344-352. 

 

Mathis, A., Schmidt, D.W. & Medley, K.A. 2000. The influence of residency status on agonistic 

behavior of male and female Ozark zigzag salamanders Plethodon angusticlavius.  

American Midland Naturalist, 143, 245-249. 

 

Mathis, A. & Smith, R. 1993. Chemical labeling of northern pike (Esox lucius) by the alarm 

pheromone of fathead minnows (Pimephales promelas). Journal of Chemical Ecology, 

19, 1967-1979. 

 

Miles, D.B., Sinervo, B. & Frankino, W.A. 2000. Reproductive burden, locomotor performance, 

and the cost of reproduction in free ranging lizards. Evolution, 54, 1386-1395. 

 

Mirza, R.S. & Chivers, D.P. 2002. Brook char (Salvelinus fontinalis) can differentiate chemical 

alarm cues produced by different age/size classes of conspecifics. Journal of Chemical 

Ecology, 28, 555-564. 

 

Parsons, J.K. 2010.  Effects of prior exposure to predatory chemical cues on territorial and 

foraging behaviors of the Ozark zigzag salamander, Plethodon angusticlavius.  MS 

Thesis, Missouri State University, Springfield, MO.   

 

Partan S. & Marler, P. 2005. Issues in the classification of multimodal communication 

signals. The American Naturalist, 166, 231-245. 

 



37 

Plaut, I. 2002. Does pregnancy affect swimming performance of female Mosquitofish, Gambusia 

affinis? Functional Ecology, 16, 290-295. 

 

Sacchi, R., Pupin, F., Gentilli, A., Rubolini, D., Scali, S., Fasola, M. & Galeotti, P. 2009. Male–

male combats in a polymorphic lizard: residency and size, but not color, affect fighting 

rules and contest outcome.  Aggressive Behavior, 35, 274-283.   

 

Shine, R. 1988. Constraints on reproductive investment: a comparison between aquatic and 

terrestrial snakes. Evolution, 42, 17-27. 

 

Veasey, J.S., Houston, D.C. & Metcalfe, N.B. 2001. A hidden cost of reproduction: the trade‐off 

between clutch size and escape take‐off speed in female zebra finches. Journal of Animal 

Ecology, 70, 20-24. 

 

Walls, S.C., Mathis, A., Jaeger, R.G. & Gergits, W.F. 1989. Male salamanders with high-quality 

diets have faeces attractive to females. Animal Behaviour, 38, 546–548. 

 

Ward, A.J. & Mehner, T. 2010. Multimodal mixed messages: the use of multiple cues allows 

greater accuracy in social recognition and predator detection decisions in the 

mosquitofish, Gambusia holbrooki. Behavioral Ecology, 21, 1315-1320. 

 

Watson, R.T. 2001. The influence of predation risk on the foraging and territorial behavior of the 

Ozark zigzag salamander (Plethodon Angusticalvius). MS Thesis, Missouri State 

University, Springfield, MO. 

 

Watson, R.T., Mathis, A. & Thompson, R. 2004. Influence of physical stress, distress cues, and 

predator kairomones on the foraging behavior of Ozark zigzag salamanders, Plethodon 

angusticlavius. Behavioural Processes, 65, 201-209. 

 

Wilkinson, R.F., Peterson, C.L., Moll D. & Holder T. 1993. Reproductive biology of Plethodon 

dorsalis in northwestern Arkansas. Journal of Herpetology, 27, 85-87. 

 

Wirsing, A.J., Heithaus, M.R. & Dill, L.M. 2007. Living on the edge: dugongs prefer to forage in 

microhabitats that allow escape from rather than avoidance of predators. Animal 

Behaviour, 74, 93-101. 

 

Wise, S.E., Verret, F.D. & Jaeger, R.G. 2004. Tail autotomy in territorial salamanders influences 

scent marking by residents and behavioral responses of intruders to resident chemical 

cues. Copeia, 2004(1), 165-172. 

  



38 

APPENDICES 

 

Appendix A. Unimodal vs Multimodal Data 

 

Behavior Factor(s) df F p 

ATR ID 29 1.35 0.157 

 Sex 1 0.83 0.367 

 Treatment 3 5.52 0.002 

 Order 3 0.14 0.936 

 Sex*Treatment 3 1.86 0.144 

 Sex*Order 3 2.67 0.055 

 Treatment*Order 9 0.70 0.703 

     

FLAT ID 29 1.41 0.129 

 Sex 1 0.99 0.325 

 Treatment 3 2.21 0.095 

 Order 3 1.60 0.199 

 Sex*Treatment 3 3.62 0.018 

 Sex*Order 3 2.58 0.061 

 Treatment*Order 9 1.46 0.181 

     

EDGE ID 29 1.49 0.092 

 Sex 1 0.01 0.929 

 Treatment 3 0.19 0.902 

 Order 3 1.86 0.146 

 Sex*Treatment 3 2.72 0.051 

 Sex*Order 3 2.87 0.043 

 Treatment*Order 9 1.20 0.310 

     

NT ID 29 2.63 0.001 

 Sex 1 1.07 0.309 

 Treatment 3 4.46 0.007 

 Order 3 4.42 0.007 

 Sex*Treatment 3 0.55 0.650 

 Sex*Order 3 0.33 0.806 

 Treatment*Order 9 0.41 0.925 
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Appendix B. Predation Risk on Territorial Behavior Data 

Behavior Paired w/ Factor(s) df F p 

ATR Same ID 27 2.96 0.001 

  Sex 1 3.57 0.071 

  Treatment 2 1.26 0.295 

  Order 2 1.41 0.256 

  Sex*Treatment 2 5.58 0.007 

  Sex*Order 2 8.40 0.001 

  Treatment*Order 4 3.04 0.028 

  Sex*Treatment*Order 4 3.61 0.013 

 Opposite ID 26 1.62 0.083 

  Sex 1 3.09 0.092 

  Treatment 2 2.30 0.113 

  Order 2 2.32 0.111 

  Sex*Treatment 2 0.36 0.697 

  Sex*Order 2 0.37 0.690 

  Treatment*Order 4 2.04 0.107 

  Sex*Treatment*Order 4 1.37 0.261 

      

FLAT Same ID 27 2.66 0.002 

  Sex 1 0.07 0.795 

  Treatment 2 5.37 0.008 

  Order 2 4.27 0.021 

  Sex*Treatment 2 2.38 0.104 

  Sex*Order 2 1.80 0.177 

  Treatment*Order 4 0.56 0.693 

  Sex*Treatment*Order 4 0.85 0.504 

 Opposite ID 26 7.13 <0.001 

  Sex 1 2.57 0.121 

  Treatment 2 11.33 <0.001 

  Order 2 5.74 0.006 

  Sex*Treatment 2 3.20 0.052 

  Sex*Order 2 1.57 0.220 

  Treatment*Order 4 0.47 0.758 

  Sex*Treatment*Order 4 0.79 0.536 

      

EDGE Same ID 27 2.73 0.002 

      

  Sex 1 0.15 0.703 

  Treatment 2 1.04 0.363 

  Order 2 0.23 0.798 

  Sex*Treatment 2 0.25 0.779 
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  Sex*Order 2 0.66 0.524 

  Treatment*Order 4 0.96 0.437 

  Sex*Treatment*Order 4 2.24 0.081 

 Opposite ID 26 1.75 0.055 

  Sex 1 0.00 0.999 

  Treatment 2 1.86 0.168 

  Order 2 0.23 0.799 

  Sex*Treatment 2 1.32 0.279 

  Sex*Order 2 2.76 0.075 

  Treatment*Order 4 0.32 0.864 

  Sex*Treatment*Order 4 1.38 0.257 

      

NT Same ID 27 4.08 <0.001 

  Sex 1 1.93 0.177 

  Treatment 2 5.77 0.006 

  Order 2 3.60 0.036 

  Sex*Treatment 2 0.76 0.473 

  Sex*Order 2 4.95 0.012 

  Treatment*Order 4 2.26 0.079 

  Sex*Treatment*Order 4 0.75 0.562 

 Opposite ID 26 2.61 0.003 

  Sex 1 0.34 0.564 

  Treatment 2 4.55 0.017 

  Order 2 1.85 0.170 

  Sex*Treatment 2 1.77 0.184 

  Sex*Order 2 1.38 0.264 

  Treatment*Order 4 0.85 0.501 

  Sex*Treatment*Order 4 0.75 0.561 
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