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ABSTRACT 

An important problem in data science and statistical learning is to predict an outcome based on 
data collected on several predictor variables. This is generally known as a regression problem. In 
the field of big data studies, the regression model often depends on a large number of predictor 
variables. The data scientist is often dealing with the difficult task of determining the most 
appropriate set of predictor variables to be employed in the regression model. In this thesis we 
adopt a technique that constraints the coefficient estimates which in effect shrinks the coefficient 
estimates towards zero. Ridge regression and lasso are two well-known methods for shrinking 
the coefficients towards zero. These two methods are investigated in this thesis. Ridge regression 
and lasso techniques are compared by analyzing a real data set for a regression model with a 
large collection of predictor variables.  
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INTRODUCTION 

 

The linear regression model consists of a response variable which depends on several 

predictors or explanatory variables. Linear regression models are widely used today in business 

administration, economics, engineering, and the social, health, and biological sciences. 

Successful applications of these models require a sound understanding of both the underlying 

theory and the practical problems that are encountered in using the models in real-life situations. 

Many methods can be applied to linear regression such as least square approach, maximum 

likelihood function and bayesian approach. We will use ridge regression and lasso techniques to 

analyze a data set for a regression model with a large collection of predictor variables. 

Beyond this introduction to analyzing a data using ridge regression and lasso techniques, 

the layout of this expository work is as follows: 

In Chapter 2, we will discuss some methods such as best subset selection, stepwise 

selection and ridge regression. We are always concerned about choosing the optimal model. We 

will discuss some techniques such as cross-validated prediction error, Bayesian Information 

Criterion (BIC), Mallow’s 𝐶𝑃, Akaike Information Criterion (AIC), or adjusted 𝑅2 to select the 

best model. 

In Chapter 3, we will discuss about the lasso estimator, variable selection property of 

lasso, orthonormal design case, standard errors, prediction errors and lasso parameter, and 

Bayesian interpretation for ridge regression and the lasso. 

In Chapter 4, we will compare ridge regression and lasso techniques to analyze a data set 

for a regression model with a large collection of predictor variables. 
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RIDGE REGRESSION 

 

2.1 Introduction                                                                                                                                    

Regression is a statistical procedure that attempts to determine the strength of the relationship 

between one response variable and a series of other variables known as independent or explanatory 

variables. Linear regression models are widely used in diverse fields. Many methods can be 

employed to obtain a linear regression model. These methods include least square approach, 

maximum likelihood estimation and Bayesian approach. All these methods estimates the 

parameters in linear regression model so that we can apply these estimates for getting predictions 

of outcomes. Generally, we use least squares method for determining the set of coefficients which 

minimizes the residual sum of squares. Model selection is an important part of any statistical 

analysis with a wide range of applications where the number of variables is much larger than the 

sample size. When the number of predictors is more than the sample size, we use alternative fitting 

procedures which can yield better prediction accuracy and model interpretability. If the 

relationship between the response and predictors is linear then the least squares estimates will have 

low bias. If the number of observations is much larger than number of variables then the least 

squares estimates will perform on test observations and it will have low variance. If it is not much 

larger than number of predictors then it will have lot of variability. Otherwise, if number of 

predictors is much larger than number of observations then it will have variance infinite. So we 

cannot use least squares estimate. However, we can reduce the variance by shrinking the estimated 

coefficients. Therefore, we can predict the response for observations with significant 

improvements in the accuracy. Moreover, if we set these estimated coefficients to zero then we 

can acquire a model that is more easily interpreted (see James et al., 2013). 
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2.2 Model selection methods 

2.2.1 Discrete process. In discrete process, variables are either retained or dropped from the 

model. Methods such as best subset selection and stepwise selection fall under the category of 

discrete process. We discuss these methods one by one briefly. 

a) Best Subset Selection: Generally, it fits 2𝑝 possible models involving p predictors. We 

select the best subset which has the smallest Residual Sum of Squares (RSS) or largest 

value of 2R where 2R  is the coefficient of determination. Our objective is to select a model 

that has a low test error. Therefore, we use Cross-validated prediction error, Bayesian 

Information Criterion (BIC), Mallow’s 𝐶𝑝, Akaike Information Criterion (AIC), or 

adjusted 𝑅2 to select the best subset. If the values of p is large then this method becomes 

computationally infeasible (see James et al., 2013). 

b) Stepwise Selection: We know that best subset selection approach suffers from statistical 

problems when p is large. We use two approaches- forward stepwise selection and 

backward stepwise selection that are best alternatives to best subset selection. The forward 

stepwise selection starts with a null model containing zero predictors. It then adds 

predictors one at a time until a model with the smallest RSS or largest 𝑅2 value is obtained. 

On the other hand, the backward stepwise selection starts with a full model containing all 

p predictors. It then removes the predictor which is less useful one at a time. This process 

goes on until we get the best model having smallest RSS or largest value of 𝑅2. We can 

use these approaches when the value of p is large. Moreover, both these approaches are 

computationally efficient (see James et al., 2013). 

  However, we are always concerned about choosing the optimal model. As discussed above, 

we select a model which has the smallest RSS or highest value of R2. We wish to have a model 
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that has a low test error. There are many techniques such as Cross-validated prediction error, 

Bayesian Information Criterion (BIC), Mallow’s 𝐶𝑃 , Akaike Information Criterion (AIC), or 

adjusted 𝑅2 to estimate the test error. We discuss these techniques one by one.  

i) Cross-validated error: This approach takes fewer assumptions into account and provides a 

direct estimate of the test error. We can use this approach in model selection tasks where 

it is hard to determine the number of predictors or to estimate the error variance 2  . Cross-

validation is a very general approach that can be administered to any statistical learning 

method in order to identify the method which has the lowest test error. It has low bias and 

is computationally cheap (see James et al., 2013). 

Cross- validated method mainly addresses two issues- k- fold cross validation and Leave-

one-out cross validation (LOOCV). In k-fold cross validation, we split the data into K-equally 

sized folds. The first fold is treated as a validation set, and the method is fit on the remaining 

k-1 folds. We then compute the mean squared error, 1MSE , on the observations in the validation 

set. We repeat this procedure k times and each time, a different group of observations is treated 

as a validation set. This process provides us k estimates of the test error, 1,...., .kMSE MSE  This 

k-fold cross validation is computed by averaging these values, 

                                             ( )
1

1 k

k i
i

CV MSE
k 

   

  The common value of k we choose is 5 or 10 for performing k-fold cross-validation. 

 On the other hand, the LOOCV divides the n data points into two subsets. We consider the 

first observation (𝑥1, 𝑦1) as validation set and the remaining (n-1) as training set. The first 

training set consists of all observations but not (𝑥1, 𝑦1) and second one contains all but not 

(𝑥2, 𝑦2) and so on. Every time we leave out one observation from the data set.  The first training 
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set does not use (𝑥1, 𝑦1) in the fitting process. By this fitting process we predict 1y  by 1ŷ . Then 

2
1 1 1ˆ( )MSE y y   provides an approximately unbiased estimate for the test error and in second 

one, we compute 2
2 2 2ˆ( )MSE y y  . Repeating this approach n times produces n squared 

errors, 1,...., .nMSE MSE  The LOOCV estimate for the test MSE is the average of these n test 

error estimates: 

                                                      ( )
1

1 n

n i
i

CV MSE
n 

    

Moreover, LOOCV may pose computational problems when the value of n is too large. 

However, we can perform calculations easily with fast computers. We can observe that 

LOOCV is a special case of k- fold cross validation when k is equal to n. So we can use this 

method directly to estimate the test error and it helps us to better assess a model on its predictive 

performance (see James et al., 2013). 

ii) Akaike Information Criterion (AIC): When we include additional variables in a model, 

it penalizes those variables which leads to increased error. Using this technique, we can 

fit a large class of models by maximum likelihood estimation procedure. It is given by  

                                               2
2

1 ˆ( 2 )
ˆ

AIC RSS p
n




   

where RSS is the residual sum of squares on a training set of data, p is the number of                

predictors and 2̂   is an estimate of the variance associated with each response in the linear 

model. Then we choose a model that has the lowest AIC. 

i) Bayesian Information Criterion (BIC): This technique is derived from a Bayesian point 

of view. BIC applies strong penalty on models with many variables. It also uses 

maximum likelihood estimation to fit the model. It is determined by the relation 
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                                               21 ˆ( log( ) )BIC RSS n p
n

   

      where RSS is the residual sum of squares on a training set of data, p is the number of 

      predictors and 2̂   is an estimate of the variance associated with each response in the 

      linear model. Then we select a model that has the lowest BIC. 

ii) Adjusted 𝑅2: The coefficient of determination is a statistical measure of how well the 

real data points are approximated by the regression predictions. The value of 𝑅2 lies 

between 0 and 1. If the value of 𝑅2 is 0 then it shows that there is no linear association 

between response and predictor variable. If the value of  𝑅2 closer to 1 then it indicates 

that all the observations fall on the fitted regression line. The model would be best when 

the value of 𝑅2 is higher. For a least squares model with p variables, the adjusted 𝑅2 

statistic is calculated as 

                             Adjusted 2 / ( 1)1
/ ( 1)

RSS n pR
TSS n

 
 


    

where RSS is the residual sum of squares on a training set of data, TSS is the total sum 

of squares, p is number of predictors, and n is the number of observations.  

Using this technique, we choose a model by maximizing 𝑅2 or equivalently, selecting 

a model by minimizing 
1

RSS
n d 

. The higher value of adjusted 𝑅2, the better the model 

is ( see James et al., 2013). 

iii) Mallows 𝐶𝑃 : It uses ordinary least squares to assess the fit of a regression model that 

has been estimated. It is applied in the context of model selection, where a number of 

predictor variables are available for predicting some outcome. Our goal is to find the 

best model involving a subset of these predictors. It is given by 
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                                                  21 ˆ( 2 )PC RSS p
n

    

     where RSS is the residual sum of squares on a training set of data, p is the number of 

     predictors and 2̂   is an estimate of the variance associated with each response in the 

     linear model. We choose a model that has lowest 𝐶𝑃 (see Mallows, C.L., 1973, 

                 Steven, G, 1996). 

To summarize, we can say that all these techniques have the same objective that is finding 

a model that predicts well. 

2.2.2 Continuous process. In continuous process, we can fit a model by including all the 

predictors but constrains or shrinks the estimated coefficients towards zero. Using this technique, 

we can remarkably reduce the variance. In continuous process, Ridge regression and Least 

Absolute Shrinkage and Selection Operator (LASSO) are the two main methods for shrinking the 

regression coefficients towards zero. We discuss these methods one by one. 

a) Ridge regression: The ridge regression coefficients estimates ˆ R  are the values that 

minimize 

                  
2

2 2
0

1 1 1 1

p p pn

i j ij j j
i j j j

y x RSS     
   

 
     

 
                        (1) 

where 0  is a tuning parameter, to be determined separately. Ridge regressions seeks 

coefficient estimates that fit the data well, by making the RSS small. However, the second 

term, 2
jj

   , called a shrinkage penalty, is small when 1,... p   are close to zero, and 

it has the effect of shrinking the estimates of j  towards zero. When 0,   the penalty 

term has no effect, and ridge regression will produce the least squares estimates. However, 

as ,   the impact of the shrinkage penalty grows, and the ridge regression coefficient 
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estimates will approach zero. It is a technique that analyzes multiple regression data that 

suffer from multi-collinearity. Least squares estimates are unbiased and variances are large 

when this type of situation arises. It then reduces the standard errors by adding a degree of 

bias to the regression estimates (see James et al., 2013). 

We briefly discuss the term of Multi-collinearity, its effects, sources and modifications. 

Multicollinearity is the existence of near-linear relationships among the response variables. It 

means some of the variables are linear combinations of the others. It can create faulty estimates of 

the regression coefficients and degrade the predictability of the model by inflating the standard 

errors of the regression coefficients as well as by deflating the partial t-tests for the regression 

coefficients. 

We need to identify the sources of multicollienarity. The analysis, the corrections, and the 

interpretation of the model are impacted by the source of multicollinearity. Some of the sources 

are the following: 

a) It leads to problem of multicollinearity when we gather data from narrow subspace of the 

response variables.  

b) It creates multicollinearity when manufacturing or service processes have constraints on 

response variables, either physically, politically, or legally. 

c) When there are more variables than observations, it leads to over-defined model and thus 

multicollinearity occurs. 

d) It increases the problem of multicollinearity when we use response variables that are 

powers or interactions of an original set of variables (see Montgomery, D.C., 1982). 

The modifications to be done depend on the source of collinearity. If it is due to data collection 

then we should gather the data over a wider subspace of the explanatory variables. We could 
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simplify the model by using variable selection techniques if the choice of the linear model when 

multicollinearity is present. If an observation or two induced the multicollinearity, then remove 

those observations. Also, we need to be careful while selecting the variables (see Montgomery, 

D.C., 1982). 

In the following chapter, we discuss Least Absolute Shrinkage and Selection Operator (Lasso) 

which falls under continuous process. We will see the models generated by Lasso are generally 

much easier to interpret than those by ridge regression.   
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LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR 

 

3.1 Introduction 

We have seen in the previous   that methods in discrete processes either include or 

exclude variables. When the goal is to select a subset of variables that best represent the model, 

then this technique of including or excluding variables may be beneficial. On the other hand, the 

methods such as ridge regression under continuous process deals with tuning parameter that 

shrinks the estimated coefficients towards zero. Although it gives better accuracy in predicting 

the model but it creates challenge in interpreting the model when the number of variables is quite 

large. We use Lasso to overcome this drawback of ridge regression. We discuss this method in 

detail. 

The term ‘LASSO’ stands for Least Absolute Shrinkage and Selection Operator. The main 

function of this method is to shrink some coefficients and set others to zero. Lasso uses a penalty 

named 1l  which makes some of the estimated coefficients exactly equal to zero. It minimizes the 

residual sum of squares subject to the sum of the absolute value of the coefficients being less than 

a constant. This method enjoys some of the good features of both subset selection and ridge 

regression. We can easily interpret the models generated by Lasso than those produced by subset 

selection and ridge regression.  

The motivation for the lasso came from an interesting proposal of Breiman (1993). 

Breiman’s non-negative garotte minimizes  

                                     
2

0

1

ˆ
N

i j j ij
i j

y c x 


 
  

 
   subject to 0,j jc c t   . 
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The garotte starts with the Ordinary Least Squares (OLS) estimates and shrinks them by non-

negative factors whose sum is constrained. Breiman showed that the garotte has consistently lower 

prediction error than subset selection and is competitive with ridge regression except when the true 

model has many small non-zero coefficients. The garotte has a drawback that its solution depends 

on both the sign and the magnitude of the OLS estimates. Lasso evades the explicit use of the OLS 

estimates. Lasso is even better than OLS. Lasso also deals with overfitting by deriving a biased 

estimator but with possibly lower variance than the variance of OLS parameter. Moreover, models 

created by Lasso are sparse models meaning that they involve only a subset of the variables. The 

idea behind Lasso is quite general and we can apply Lasso method to a variety of statistical models 

ranging from extensions to generalized regression models (see Breiman, 1993). 

Assume that we have data ( , ), 1,2,...i
ix y i N  where 1 2( , ,..., )i T

i i ipx x x x  are the predictor 

variables and iy  are the responses. We assume either that the observations are independent or that 

'iy s  are conditionally independent given the 'ijx s  . Let us suppose that the ijx  are standardized 

so that 

                                              / 0ij
i

x N   ,  2 / 1ij
I

x N  .  

Assuming 1
ˆ ˆ ˆ( ,...., )T

p   , the lasso estimate ˆˆ( , )   is defined by 

  ˆˆ( , )  =  arg min 
2

1

N

i j ij
i j

y x 


   
   

  

   subject to | |j
j

t        

where 0t   is a tuning parameter. The solution for   is ˆ y   for all t (see Tibshirani, 1996). 

Without loss of generality, we can assume that 0y   and hence omit  . The solution of equation 

(1) is a quadratic programming problem with linear inequality constraints. Here 0t   is a tuning 

parameter which controls the amount of shrinkage is applied to the estimates.  
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We assume that 0
j  be the full least squares estimates and let 0

0 | |jt  . Some coefficients 

may be exactly equal to zero and the solution approaches towards zero when the values of t  is less 

than 0t . The main objective of the Lasso is to minimize the quantity 

                            
2

0
1 1 1 1

| | | |
p p pn

i j ij j j
i j j j

y x RSS     
   

 
     

 
          (2) 

where 0   is a tuning parameter. The penalty 1l  norm is used by Lasso in statistics. The 1l norm 

of a coefficient vector   is given by 1|| || | |j  . When the tuning parameter  is large, the 

penalty 1l  has the effect of forcing some of the coefficients estimates to be exactly equal to zero. 

Lasso gives the least squares fit when the value of 0  . Lasso can generate a model involving 

any number of variables depending on the value of   (see James et al., 2013). 

Using another formulation for Ridge regression and the Lasso, we can prove that the Lasso and 

Ridge regression coefficient estimates solve the problems 

           
2

0
1 1

min
pn

i j ij
i j

imize y x


 
 

   
   

   
   subject to 

1
| |

p

j
j

s


            (3) 

and 

            
2

0
1 1

min
pn

i j ij
i j

imize y x


 
 

   
   

   
   subject to 2

1

p

j
j

s


             (4) 

respectively. For some value of s, the equations (2) and (3) will give the same lasso coefficient 

estimates for every value of  . Similarly, for every value of  , there is a corresponding s such 

that equations (1) and (4) will give the same ridge regression coefficient estimates (see James et 

al., 2013).  
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In particular, when p=2, the equation (3) indicates that the lasso coefficient estimates have the 

smallest RSS out of all points that lie within the diamond defined by 1 2| | | | s   . Similarly, the 

ridge regression estimates have the smallest RSS out of all points that lie within the circle defined 

by 2 2
1 2 s   .  

We can think of lasso as follows. Our objective is to find the set of estimates of coefficients 

such that the RSS is as small as possible, subject to the constraint that there is a budget s for how 

large 
1
| |

p

j
j




  can be. The equation (2) will yield the least squares solution when s is large enough 

that the least squares falls within the budget. If s is small, then 
1
| |

p

j
j




  must be small in order to 

avoid the budget. Similarly, we try to find the set of coefficient estimates that lead to the smallest 

RSS, subject to the condition that 2

1

p

j
j




  is less than the budget s (see James et al., 2013). 

The equations (3) and (4) reveal a close relationship between the lasso, ridge regression, and best 

subset selection. Consider the problem  

    
2

0
1 1

min
pn

i j ij
i j

imize y x


 
 

   
   

   
   subject to 

1
( 0)

p

J
j

I s


             (5) 

 where 
1, 0

( 0)
0,

j
J

if
I

otherwise



 

   
 

 is an indicator variable.  

Given the requirement that no more than s coefficients can be nonzero, we try to find the 

set of coefficient estimates such that RSS is as small as possible. The above equation is equivalent 

to best subset selection. When p is large, then solving (5) is computationally infeasible because it 

requires all 
p
s

 
 
 

 models containing s predictors. Therefore, we can observe that ridge regression 
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and the lasso are best alternatives to best subset selection as far as computation is concerned. 

Moreover, when s is sufficiently small, the lasso performs feature selection (see James et al., 2013). 

 

3.2 Variable selection property of lasso 

We know that lasso produces coefficient estimates that are exactly equal to zero. Moreover, 

it does not occur with ridge regression, which has the requirement 2
j s   rather than 

| |j s  . Figure 1 represents estimation picture for lasso and ridge regression. 

 

 

a)                                                        b) 

 Figure 1. Estimation picture for (a) the lasso and (b) ridge regression.  

 

It shows that contours of the error and constraint functions for the lasso and ridge regression. The 

solid blue areas are the constraint regions, |1 2|| | | | s    and 2 2
1 2 s    , while the red ellipses 

are the contours of the RSS (see James et al., 2013). 
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The formulations (3) and (4) can be used to shed light on the issue. Here we consider only 

two parameters 1  and 2  . The estimates by the lasso and ridge regression are illuminated in 

above Figure 1. The least squares solution is marked as ̂  , while the blue diamond and circle 

represent the lasso and ridge regression constraints in (3) and (4), respectively. The ridge 

regression and lasso estimates will be the same as the least squares estimates when the constraint 

regions will constrain ̂  for large value of s. However, in above figure, the least squares estimates 

are not the same as the lasso and ridge regression estimates because least squares estimates lie 

outside of the diamond and the circle (see James et al., 2013). 

The ellipses that are centered around ̂  represent regions of constant RSS. It means that 

all the points on a given ellipse share a common value of the RSS. The RSS increases when the 

ellipses expand away from the least squares coefficient estimates. Equations (3) and (4) indicate 

that the lasso and ridge regression coefficient estimates are given by the first point at which an 

ellipse contacts the constraint region. Since ridge regression has a circular constraint with no sharp 

points, this intersection will not generally occur on an axis, and so the ridge regression coefficient 

estimates will be exclusively non-zero. On the other hand, the lasso constraint has corners at each 

of the axes, and so the ellipse will often intersect the constraint region at an axis. When this 

situation occurs, then one of the coefficients will be equal to zero. In higher dimensions, many of 

the coefficient estimates may be equal to zero simultaneously. In figure 1, when the contours touch 

the vertex then 1 0  , and so 2  is chosen as the only relevant parameter in the model (as can be 

seen from James et al., 2013). 

Here, we considered the simple case of 2p  . When 3p  , then the constraint region for 

the ridge regression becomes a sphere, and the constraint region for the lasso becomes a 
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polyhedron. When 3p  , the constraint for ridge regression becomes a hypersphere, and the 

constraint for the lasso becomes a polytope. However, the key ideas represented in figure 1 still 

hold. In particular, the lasso leads to feature selection when 2p   due to the sharp corners of the 

polyhedron or polytope (more details can be found in James et al., 2013). 

                                                   

3.3 Orthonormal Design Case 

Now we discuss the nature of the shrinkage which can be gathered from the orthonormal 

design case. Suppose that X be the n p  design matrix with ijx as the ( , )thi j  entry, and letting 

TX X I , the identity matrix. 

The solutions to equation (2) are easily shown to be 

                                                   0 0ˆ ˆ ˆ( )(| | )j j jsign                                (6) 

where   is determined by the condition ˆ| |j s   (see Tibshirani, 1996). 

In the orthonormal design case, best subset selection of size k reduces to choosing the k 

largest coefficients in absolute value and setting the rest of the coefficients equal to zero (more 

details can be found in James et al., 2013). For some choice of  , this is equivalent to the following 

setting 

                                             
0 0ˆ ˆ, | |ˆ

0,
j j

j
if

otherwise
  


  

  
  

. 

Ridge regression minimizes 

                                              
2

2

1

N

i j ij j
i j j

y x  


 
  

 
   . 
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Or, equivalently, minimizes 

                                      
2

1

N

i j ij
i j

y x


 
 

 
   subject to 2

j s  .              (7) 

The ridge solutions are 01 ˆ
1 j


 where   depends on   or s. The garotte estimates are

2
ˆ1 ˆ j

j








 
 
 
 

. Figure 2 shows the coefficient shrinkage in orthonormal design case. 

 

Figure 2. (a) Subset regression (b) Ridge regression (c) Lasso (d) the Garotte 

 

It shows the form of these functions. In the figure, the solid line forms of coefficient shrinkage in 

the orthonormal design case and dotted line form 45 - line for reference. Ridge regression scales 

the coefficients by a constant factor. On the other hand, lasso translates by a constant factor, 

truncating at 0. The garotte function is very similar to the lasso, with less shrinkage for larger 

coefficients (see Tibshirani, 1996). 
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3.4 More on two-predictor case 

Without loss of generality, we assume that the least squares estimates 0ˆ
j  are both positive 

for p=2. Then we can prove that the lasso estimates are  0ˆ ˆ
j  



   where   is chosen so that 

1 2
ˆ ˆ s   . This formula holds for 0 0

1 2
ˆ ˆs     and is valid even if the predictors are correlated. 

Solving for   yields 

                                    
0 0 0 0
1 2 1 2

1 2

ˆ ˆ ˆ ˆˆ ˆ,
2 2 2 2
s s   

 

 

    
         
   

.               

On the other hand, the form of ridge regression shrinkage depends on the correlation of the 

predictors (see Tibshirani, 1996). 

 

3.5 Special case for Ridge regression and the Lasso 

In order to get a better intuition about the behavior of ridge regression and the lasso, we 

consider a special case with n p , and X a diagonal matrix with 1’s on the diagonal and 0’s in 

all off-diagonal elements. We assume that we are performing regression without an intercept in 

order to simplify the problem further. With these assumptions, the usual least squares problem 

simplifies to finding 1 2, ,..., p    that minimize 2

1
( )

p

j j
j

y 


 (more details can be found in James 

et al., 2013). 

In this case, the least squares solution is given by ˆ
j jy   and in this setting, ridge 

regression amounts to finding 1,...., p   such that 

                                                   
2 2

1 1

p p

j j j
j j

y   
 

     
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is minimized, and the lasso amounts to finding the coefficients such that 

                                                   
2

1 1
| |

p p

j j j
j j

y   
 

      

is minimized. One can prove that in this setting, the ridge regression estimates take the form 

                                                 ˆ
1

jR
j

y






  

and the lasso estimates take the form 

                                                 

/ 2, / 2;
ˆ / 2, / 2;

0, | | / 2.

j j
L

j j j

j

y y
y y

if y

 

  



  


   




                   (8) 

More details can be found from James et al, 2013. 

 

3.6 Standard Errors 

It is difficult to obtain an accurate estimate of its standard error because lasso estimate is a 

non-linear and non-differentiable function of the response values even for a fixed value of s. By 

using the approach of bootstrap, we can fix s or may optimize over s for each bootstrap sample. 

By fixing s is analogous to selecting a best subset, and then using the least squares standard error 

for that subset (see Tibshirani, 1996). 

We may derive an approximate closed form estimate by writing the penalty | |j  as 

2 / | |j j  . Hence, at the lasso estimate  , we may approximate the solution by a ridge 

regression of the form  
1T TX X W X y 


    where W is a diagonal matrix with diagonal 

elements | |j  , W   denotes the generalized inverse of W and   is chosen so that | |j t

 . 

The covariance matrix of the estimates may then be approximated by 
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                                  1 2ˆ( )T T TX X W X X X X X  


      

where  2̂  is an estimate of the error variance. One difficulty lies with above formula is that it 

gives an estimated variance of zero for predictors with ˆ 0j   (more details about the derivation 

can be found in Tibshirani, 1996). 

 

3.7 Prediction error and Estimation of lasso parameter t 

Here we provide estimate of the lasso parameter t  using three methods: cross-validation, 

generalized cross-validation and an analytical unbiased estimate of risk. The first two methods are 

applicable in the ‘X-random’ case, where it is assumed that the observations  ,X Y  are drawn 

from some unknown distribution, and the third method applies to the X-fixed case. We might 

simply choose the most convenient method because in real problems there is often no clear 

distinction between the two scenarios (see Tibshirani, 1996). 

Suppose that  

                                                            ( )Y X     

where ( ) 0   and 2( )Var   . The mean-squared error (MSE) of an estimate ˆ( )X  is defined 

by 

                                                   2ˆ{ ( ) ( )}SE X X    .  

Here, the expected value taken over the joint distribution of X and Y, with ˆ( )X  fixed. A similar 

measure is the prediction error (PE) of ˆ( )X given by 

                                                  2 2ˆ{ ( )}E Y X MSE     . 

We estimate the prediction error for the lasso procedure by five fold cross-validation as described 

in Chapter 17 of Efron and Tibshirani (1993). The lasso is indexed in terms of the normalized  
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parameter 0ˆ/ js t   , and the prediction error is estimated over a grid of values of s from 0 to 1 

inclusive. The value ŝ  yielding the lowest estimated PE is selected. Simulation results are reported 

in terms of MSE rather than PE. In this paper, we consider the linear models ˆ( )X X  , the 

mean-squared error has the simple form 

                                                  ˆ ˆ( ) ( )TMSE V        

where V is the population covariance matrix of X ( see Tibshirani, 1996). 

We may derive a second method to estimate t from a linear approximation to the lasso 

estimate. The method is adopted from Tibshirani (1996). We write the constraint | |j t   as 

2 / | |j j t   . This constraint is equivalent to adding a Lagrangian penalty 2 / | |j j   to the 

residual sum of squares, with   depending on t. Thus we may write the constrained solution   

as the ridge regression estimator 

                                                1( )T TX X W X y       

where W= (| |)jdiag   and W   denotes a generalized inverse. Therefore the number of effective 

parameters in the constrained fit   may be approximated by  

                                             1( ) { ( ) }T Tp t tr X X X W X      

(more details can be found in Tibshirani, 1996). 

We assume that RSS(t) is the residual sum of squares for the constrained fit with constraint t, we 

construct the generalized cross-validation style statistic 

                                            2

1 ( )( )
{1 ( ) / }

RSS tGCV t
N p t N




.  

Now, we describe a third method based on Stein’s unbiased estimate of risk. Suppose that 

z is a multivariate normal random vector with mean vector   and variance the identity matrix. Let 
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̂  be an estimator of  , and write ˆ ( )z g z    where g is an almost differential function from 

pR  to .pR Then, Stein (1981) proved that 

                                   2 2

1

ˆ|| || || ( ) || 2 /
p

i iE p E g z dg dz  
 

    
 

   

We may apply the above result to the lasso estimator (6). Denote the estimated standard error of 

0ˆ
j  by ˆ ˆ / N   , where 2 2ˆ ˆ( ) / ( ).i iy y N p     Then, as in Tibshirani (1996), the 0ˆ ˆ/j   

are approximately independent standard normal variates, and from the above equation, we may 

derive the formula 

                      2 0 0 2

1

ˆ ˆ ˆˆ ˆ ˆ{ ( )} 2#( ;| / | ) max( | / |, )
p

j j
j

R p j        


 
    

 
    

as an approximately unbiased estimate of the risk or mean-square error 2ˆ{ ( ) } ,E     where 

0 0ˆ ˆ ˆ ˆ( ) ( )(| / | )j j jsign        . Donoho and Johnstone (1994) gave a similar formula in the 

function estimation setting. Hence an estimate of   can be obtained as the minimizer of  

                                           0
ˆ ˆ{ ( )}: arg min [ { ( )}].R R                  

We can obtain an estimate of the lasso parameter t from the above equation and it is given by  

                                               0ˆˆ ˆ(| | ) .jt             

We may use the above derivation in non-orthogonal setting, although the derivation of t̂  assumes 

an orthogonal design.  

 

3.8 Bayesian Interpretation for ridge regression and the lasso 

One can view ridge regression and the lasso through Bayesian point of view. A Bayesian 

viewpoint for regression assumes that the coefficient vector   has some prior distribution, say 
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 p  , where 0 1( , ,... ) .T
p     The likelihood of the data can be written as  | , ,f Y X   where 

 1,... .pX X X  Multiplying the prior distribution by the likelihood gives us the posterior 

distribution, which takes the form 

                                 | , ( | , ) ( | ) ( | , ) ( )p X Y f Y X p X f Y X p      , 

where the proportionality above follows from Bayes’ theorem, and the equality above follows from 

the assumption that X is fixed ( see James et al., 2013). We assume that usual linear model, 

                                            0 1 1 ... ,p pY X X         

and suppose that the errors are independent and drawn from a normal distribution. Furthermore, 

assume that 
1

( ) ( ),
p

j
j

p g 


  for some density function g. It turns out that ridge regression and 

the lasso follow naturally from two special cases of g. 

If g is a Gaussian distribution with mean zero and standard deviation a function of  , then 

it follows that the posterior mode for   is the ridge regression solution. In fact, the ridge regression 

solution is also the posterior mean. 

If g is a double-exponential distribution with mean zero and scale parameter a function of 

 , then it follows that the posterior mode for   is the lasso solution. However, the lasso solution 

is not the posterior mean, and in fact, the posterior mean does not yield a sparse coefficient vector. 

The Gaussian and double-exponential priors are displayed in the figure below reproduced from 

James et al (2013). The left diagram displays ridge regression as the posterior mode for   under 

a Gaussian prior. The right one diagram displays lasso as the posterior mode for   under a double-

exponential prior. Therefore, from a Bayesian point of view, ridge regression and the lasso follow 

directly from assuming the usual linear model with normal errors, together with a simple prior 
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distribution for   (see James et al., 2013). Figure 3 shows that lasso uses double-exponential prior 

and ridge regression uses Gaussian prior. 

 

 

Figure 3. Left : Ridge regression is the posterior mode   under a Gaussian prior. Right: The lasso 
is the posterior mode   under a double-exponential prior. 
 

It shows that ridge regression and the lasso follow directly from assuming the usual linear model 

with normal errors, together with a simple prior distribution. Lasso prior is steeply peaked at zero, 

while the Gaussian is flatter and flatter at zero. Therefore, the lasso expects a priori that many of 

the coefficients are exactly zero, while ridge assumes the coefficients are randomly distributed 

about zero (the figure is taken from James et al., 2013). 
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DATA ANALYSIS 

 

In this chapter, we apply ridge regression and lasso procedures to analyze a data set, and 

compare the results. We will perform calculations using R software for statistical computing. The 

data set is known as Ischemic Heart Disease data which can found as APPENCO9 in the data set 

of Kutner, Nachtsheim and Neter (2004). In Table 1, the data is collected by a health insurance 

company on 788 of its subscribers who made claims resulting from ischemic heart disease. Data 

were obtained on total costs of services provided for these 788 subscribers and the nature of the 

various services for the period of January,1998 through December,1999.  

 

Table 1. Ischemic heart disease data for the period of January,1998 through December,1999. 

(Partial) 

   y                                                                                                      𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 

179.1                                                                                            63 2 1 4 0 3                 300 

319.0 59 2 0 6 0 0 120 

9310.7 62 17 0 2 0 5 353 

280.9 60 9 0 7 0 2 332 

18727.1 55 5 2 7 0 0 18 

453.4 66 1 0 3 0 4 296 

323.1 64 2 0 3 0 1 247 

.. .. .. .. .. .. .. .. 

586.0 56 4 4 6 0 3 336 
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In Table 1, y represents the total cost ( in dollars) of claims by subscriber, 1x  represents 

age (in years) of subscriber, 2x is the total number of interventions or procedures carried out, 3x  is 

the number of tracked drugs prescribed, 4x  is the number of emergency room visits, 5x  is the 

number of other complications arose during heart disease treatment, 6x  is the number of other 

diseases that the subscriber had during period, 7x  is the number of days of duration of treatment 

condition. 

 In the regression model we introduce two way interactions, three way interactions and one 

four way interactions. The model consists of the variables 1x , 2x , 3x , 4x , 5x , 6x , 7x  and the 

interaction variables are 10x , 11x ,.., 34x . 

 We will perform ridge regression and lasso in order to predict the total cost of claims by 

subscriber on the Ischemic heart disease data. To perform ridge regression and the lasso, we will 

use glmnet package. This package has a function named glmnet ( ), which can be used to fit ridge 

regression models and lasso models. This function has an alpha argument that determines what 

type of model is fit. If alpha = 0, then a ridge regression model is fit, and if alpha = 1, then a lasso 

model is fit. We first fit a ridge regression model.  

The glmnet ( ) function performs ridge regression over a range of   values and we chose 

alpha = 0. However, we chose    ranging from 1010  to 210  to implement this function. There is 

a vector ridge regression coefficients associated to each value of  . In this case, it is a 33 100  

matrix containing 33 rows and 100 columns. For a large value of  , we expect small values of 

coefficient estimates or a small value of  , we expect largest values of coefficients estimates. In 

Table 2, estimated coefficients are evaluated using 11498  and in Table 3, we calculated 

coefficient estimates using 705  . 
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Table 2. Coefficient estimates are calculated when 11498  . 

Coefficient Estimates Value 

1x                                                                                                                    -2.311515e+01          

2x  1.633078e+02 

3x  3.714766e+01 

4x  1.136144e+02 

5x  1.623361e+02 

6x  -4.848064e+00 

7x                                                                                                          -2.727258e-01             

10x  9.173380e+00 

11x  1.840240e+01 

12x  5.915916e+01   

13x  8.472665e+00 

14x  5.257641e-01   

15x                                                                                                             9.104796e-01                   

16x  2.187727e-02 

17x  2.640743e-01 

18x  9.794958e+00 

19x  3.764478e+00 

20x  3.263379e-01 

21x                                                                                                             2.154675e+01                     

22x  9.925574e-01 

23x  2.171972e+01 

24x  9.963126e-01 

25x  1.799363e-01 

26x  -5.279760e-02 

27x                                                                                                              -9.481987e-01              

28x  -2.198440e+01 

29x  -2.206871e+00 

30x  3.102326e-02 

31x  -5.110960e+00    

32x  5.539768e-02 

33x                         -3.464758e-02     

34x  9.621908e-03 
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Table 3. Coefficient estimates are calculated when  = 705. 

Coefficient Estimates Value 

1x                            -3.972794e+01    

2x  2.822483e+02 

3x  1.293302e+02 

4x  5.516112e+02 

5x  1.900810e+02 

6x  2.242231e+01 

7x  -2.394098e+00 

10x    -2.910851e+01 

11x                                                               5.025507e+01          

12x  1.57787e+01    

13x  1.338450e+01 

14x  7.254279e-01   

15x                                                                                                        -1.414356e+00                 

16x  4.66191e-03 

17x  3.802481e-01 

18x  5.020874e+01 

19x  3.551409e+00 

20x  -1.222256e-01 

21x                                                                                                      -9.795041e+01                

22x  1.050626e+00 

23x  -9.190754e+01 

24x  1.234670e+00 

25x  5.551288e-01     

26x  -1.677179e-01 

27x                                                                                                                 -4.592036e+01              

28x  -7.480861e+01   

29x  -9.072001e+00 

30x  4.719415e-01 

31x  -4.187675e+00   

32x  -6.748773e-02 

33x                          -3.464758e-02     

34x  9.621908e-03 
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In order to estimate the test error of ridge regression and the lasso, we split the samples 

into a training set and a test set. Then we fit a ridge regression on the training set, and using  = 

4, we get the value of test MSE = 34987825.  

If we simply predict a model with just an intercept and predict each test observation using 

the mean of the training observations, then we get the test MSE = 42082752. 

We generalize the value of tuning parameter  , instead of choosing  = 4, using the 

method of cross-validation. This can be done using the built-in cross validation function, cv.glmnet 

( ) of R. This function generally performs ten-fold cross-validation. The cross-validation result can 

be visualized with plot command. Figure 4 gives the cross-validation result for ridge regression. 

 

 

Figure 4. Cross-validated estimate of the mean squared prediction error for ridge regression. 

 

It shows that cross-validated estimate of the mean squared prediction error for ridge 

regression is a function of log . The upper part of the plot shows that the number of non-zero 

coefficients in the regression model for a given value of  . The dashed line shows the location 
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of the function minimum and the ‘one-standard-error’ location. The first vertical dashed line 

shows the location of the minimum of MSE and other one shows the point selected by the ‘one-

standard-error’ rule. We see that coefficients estimates get more shrunk towards zero. In this 

case, we get the smallest value of  = 3491.48 and MSE = 29847591. This value of MSE is 

smaller than that test MSE which we got using Now we fit our ridge regression model on the full 

data, using the value of  chosen by cross-validation, and we examine the coefficient estimates.  

In Table 4, we observe that none of the coefficients estimates are zero. There are some 

coefficients close to zero because ridge regression does not perform variable selection.  

 Now we apply lasso to yield a more accurate and interpretable model than the ridge regression. 

We use the same function glmnet ( ) to fit a lasso model, and alpha parameter in this case       

 takes the value of 1. Figure 5 depicts the plot of lasso model. 

 

 

Figure 5. Coefficients estimates for lasso. 
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Table 4. Coefficient estimates are calculated using the value of  = 3491.48. 

Coefficient Estimates Value 

1x                            -3.601058e+01    

2x  2.379662e+02 

3x  2.001988e+01 

4x  1.181190e+02 

5x  194451e+02 

6x  -7.384343e+00 

7x  -1.524470e+00 

10x    -1.851799e+00 

11x                                                               2.928069e+01          

12x  5.759298e+01    

13x  1.108550e+01 

14x  7.002426e-01 

15x                                                                                                        1.954041e-01                 

16x  2.143584e-02 

17x  3.084597e-01 

18x  4.999844e-01 

19x  2.550092e+00 

20x  2.534284e-01 

21x                                                                                                      -1.411609e+01                

22x  8.229143e-01 

23x  -1.374466e+01 

24x  8.415797e-01 

25x  1.884453e-01 

26x  -1.151413e-01 

27x                                                                                                                 -1.0875e+01              

28x  -3.975029e+01 

29x  -5.851659e+00 

30x  1.111922e-01 

31x  -3.841174e+00     

32x  -6.520050e-02 

33x                          -1.795449e-02     

34x  1.105041e-04 
 



32 
 

It shows coefficients estimates for lasso for the data plotted versus log . The upper part of the 

plot shows the number of non-zero coefficients  in the regression model for a given log . We see 

that the lasso regression tends to shrink the regression coefficients to zero as   increases. When 

log 5   there are 12 non-zero coefficients and when log 10   we get the model where all the 

coefficients are zero. That is, the lasso performs variable selection when   is large enough. We 

now perform cross-validation to select the   parameter. The cross-validation result can be 

visualized with plot command, and is given below. Figure 6 provides cross-validation result for 

lasso model. 

 

 

Figure 6. Cross-validated estimate of the mean squared prediction error for lasso. 
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It shows that cross-validated estimate of the mean squared prediction error for lasso as a function 

of log . The upper part of the plot shows that the number of non-zero coefficients in the 

regression model for a given value of log . The dashed line shows the location of the function 

minimum and the ‘one-standard-error’ location. The first vertical dashed line shows the location 

of the minimum of MSE and other one shows the point selected by the ‘one-standard-error’ rule.  

In this case, we get the smallest value of  is 483.5302 and MSE = 28169646. This value MSE is 

similar to the test MSE of ridge regression with  chosen by cross-validation.  

In Table 5, we observe that 25 of the 32 coefficients estimates are exactly zero by the lasso 

method because it also performs variable selection. 

We have seen that the lasso has a major advantage over the ridge regression, in that it 

produces simpler and more interpretable models that involve only a subset of the predictors. As 

noted in James et al (2013), ridge regression performs better when the response is a function of 

many predictors, all with coefficients of roughly the same size. On the other hand, lasso performs 

better in a setting where a relatively small number of predictors have substantial coefficients, and 

the remaining predictors have coefficients that are very small or that equal to zero. In the case of 

ridge regression, we see that none of the coefficients are zero because it does not perform variable 

selection. On the other hand, as in James et al (2013), the lasso performs variable selection, and 

hence results in models that are easier to interpret. Lasso solution can yield a reduction in variance 

at the expense of a small increase in bias, and hence can generate more accurate predictions. 
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Table 5. Coefficient estimates are calculated using the value of  = 483.5302. 

Coefficient Estimates Value 

1x                                                                                                                    -3.26486                                     

2x  347.03378 

3x  0 

4x  0 

5x  0 

6x  0 

7x                                                                                                               0                                                                                            

10x  -12.94 

11x  46.4037 

12x  0 

13x  9.5689105 

14x  0 

15x  0.4030609 

16x                                                                                       -12.94                                                                   

17x  46.4037 

18x  0 

19x  9.5689105 

20x  0 

21x                                                                                                               0 

22x  0 

23x  0 

24x  0 

25x  0 

26x  0 

27x                                                                                                             0 

28x  0 

29x  0 

30x  0 

31x  0 

32x  0 

33x                         0 

34x  0 
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