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ABSTRACT 

The doping concentration (Mn concentration) dependent magnetic properties of NiO@NixMn1-

xO novel inverted core-shell magnetic nanoparticles are of great interest of this present research. 

Primarily, we investigated the oxidation state of Ni from size-dependent four NiO NPs samples, 

and then studied the variation in the magnetic properties of Mn concentration-dependent 

NiO@NixMn1-xO CNPs. The NiO nanoparticles were synthesized using a thermal 

decomposition method. The XRD data indicates that the crystal structure (rock salt) remains 

fixed in all NiO samples and XPS data shows the oxidation state of size-dependent NiO 

nanoparticles is 2+. The hydrothermal epitaxy method was used to incorporate Mn in NiO 

crystal. The resultant product is comprised of antiferromagnetic core (NiO) and 

ferro/ferrimagnetic shell (NixMn1-xO). The XRD data showed that the crystal structure is 

identical in both NiO NPs and NiO@NixMn1-xO CNPs and the varying concentrations of Mn 

have not altered the crystal structure. The XPS analysis indicates the oxidation state of both Mn 

and Ni is 2+ and the survey scan shows the presence of all constituent elements. The SQUID 

magnetometer measurements provide us both the ZFC and FC hysteresis loop and indicate the 

horizontal shift of the FC hysteresis loop in the negative axis of the applied magnetic field which 

is called exchange bias. The magnetic data shows both the coercivity and the exchange bias of 

concentration-dependent NiO@NixMn1-xO CNPs are maximum for 0.08 M manganese. The 

lower resolution TEM image shows most of the CNPs are faceted and some of them are 

pseudospherical. The HRTEM image gave a clear visualization of the core, shell, and interface 

region.     
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CHAPTER 1: INTRODUCTION 

 

Due to the strong potential applications, nanomaterials having a size scale less than 100 

nm are widely studied in numerous fields; including physics, materials science, chemistry, 

polymer science, biology, mechanical engineering, pharmaceutical drug manufacture, optical 

components, cosmetics, and toxicology[1].  Nickel oxide nanoparticles are currently being used 

in wide-ranging device application, including  solid oxide fuel cells, lithium ion microbatteries, 

electrochromic coatings, catalyst, aerospace, optical filters, automotive rearview mirrors [1]. 

Some intrinsic properties of NiO, antiferromagnetic nature and high Néel temperature (523 K), 

make it suitable for room temperature applications, particularly when combined with ferro- or 

ferrimagnetic phases. One area where NiO nanoparticles have seen considerable application 

recently is in bimagnetic core-shell nanoparticles (CSNs) [2]–[4]. Bimagnetic CSNs have 

considerable promise for applications in magnetic devices [4], such as magnetic spin valves, 

spintronics, and magnetic random-access memory (RAM), as well as for medical applications, 

including the treatment of hyperthermia, for MRI imaging, and for drug delivery [2], [3]. 

Small sized nanoparticles are different than the bulk materials due to their novel physical 

and chemical properties [5]. The surface properties and oxidation state of nanoparticles are 

controlled by the synthesis environment and the synthesis method. Because nanoscale nickel 

oxide nanoparticles have diverse and promising applications in various research fields, a number 

of research groups have been using different techniques in order to alter their surface properties. 

Although it is not trivial to obtain specifically targeted size and shape (i.e., morphological 

features) of nanoparticles, this can be accomplished by applying various synthesis techniques 

such as sol-gel, surfactant-mediated synthesis, thermal decomposition, polymer matrix assisted 
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synthesis, evaporation, electrodeposition,  and spray-pyrolysis [5], [6]. Due to certain 

advantages, such as low cost, simplicity, high probability of getting pure products, the thermal 

decomposition method is a widely used method at the industrial level [6].  In our group, we have 

been successfully using this powerful synthesis technique to grow NiO nanoparticles for couple 

of years. The most significant parameters of a thermal decomposition system are the 

decomposition time and temperature to influence the size of nanoparticles. The shape of the 

nanoscale size particles relies on the pH level of the solution because protonation and 

deprotonation process effect the surface of the NPs. 

Peck et al. [7] reported  that the crystalline shape and size strongly influences the physical 

and chemical properties of nanoscale  materials. The number of the surface atoms in proportion 

to the volume is larger on a nanoparticle (NP) surface in comparison with that of bulk materials. 

Because of the nature of the electronic structure of nanomaterials, they exhibit very unique 

chemical and physical properties [8]. Therefore, it can be said that the electronic behavior varies 

if the size of the particles is modified from less than 10 nm, to comparatively bigger 

nanoparticles nearing 100 nm. As the size is increased, the surface area of a single NP also gets 

bigger. Therefore, the probability of having oxidation and hydroxylation on the surface also 

increases and the different types of defects, such as point defects and oxygen vacancies increases 

with the NPs size. 

As the first chapter of this thesis is mostly related to the X-ray photoelectron spectroscopy 

(XPS) data analysis, it is necessary to discuss the basic principles of this technique. X-ray 

photoelectric spectroscopy (XPS) is an exceptionally good surface sensitive quantitative 

spectroscopic technique to measure elemental composition, chemical state and electronic state of 

the materials. Figure 1.1 is the schematic diagram of X-ray photoelectron spectroscopy (XPS). In 
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XPS, a suitable X-ray (e.g., Al Kα) source irradiates the material at very low vacuum pressure 

(P~10^-8 millibar). The detector simultaneously measures the kinetic energy and the number of 

electrons coming from the sample material. Since the energy of the source, such as Al Kα,  is 

known and the kinetic energy of each electron is measured by the detector, the binding energy of 

each of the electron can be calculated by using the equation:Ebinding= Ephoton –(Ekinetic + Ҩ) 

Figure 1.1:  Rough schematic of XPS basic principal[9] 

   

Here Ebinding is the binding energy of each of the electron, Ephoton is the energy of the 

source, Ekinetic is the kinetic energy of each of the emitted electron and Ҩ is the work function of 

the material, which is an intrinsic property of its surface.  Since the sampling depth of XPS is 

about 10 nm, this system can successfully be used to analyze the surface quality of differently 

sized nanomaterials ranging from few nanometers to bulk materials. The characteristics spectra 

are reflective of the different elements contained within each sample where each of the XPS 

peaks, such as the Ni 2p,  O 1s, etc. contain the quantitative and surface chemical information 
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pertinent to the sample. It has to be kept in mind that not all of the emitted electrons can reach to 

the detector because of inelastic collisions, recombination, excitation of the sample, trapping or 

recapture by the other energy states of the sample[9]. Nevertheless, this can be calibrated for by 

proper standardization techniques.  

The XPS process is as follows. The emitted photoelectron from the electronic core level 

creates an excited ion with excess energy which is relaxed by an outer level electron. The 

relaxation of the excited ion either produces an X-ray or another electron, called the auger 

electron, is ejected from the valance band and reaches the detector (Figure 1.2). The auger 

electron contributes to create features in the spectra called auger peaks. The transition metals can 

generate shake-up peaks at higher binding energy than the main peak, because of reduced energy 

of the photoelectron by the interaction with the relaxing electron. 

Figure 1.2: Photoelectron and auger emission process[10]. 
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In some cases, the excited ion becomes relaxed by losing an electron from the lower 

energy state: this electron will be presented in the survey spectra as a shake-off peak[11], [12]. 

Generally, the XPS technique can provide spectra for all the elements except those having an 

atomic number (Z) less than three. Each element within the sample produces individual XPS 

characteristic peaks at specific binding energies [9]. Apart from the primary photoemission peaks 

for each element, an XPS survey spectrum shows the corresponding auger peak and high 

resolution spectra often show additional peaks, including satellite peaks, shoulder peaks, shake-

up peaks. In this present manuscript, shoulder peak and main peak broadening and position of 

satellite peak play a significant role in distinguishing feature of different sized nanoparticles.  

 Previous investigations reported that the nano-size of particles impacts the near-surface 

electronic structure, while others disagreed with this conclusion. In the study of bulk vs 

nanosized NiO particles, Bijou and Kadar[8] concluded that the Ni 2p and the satellite peak are 

directly reflective of Ni 3d-O 2p hybridization, surface defects, and local and non-local 

screening. On the other hand Peck et.al.[7]argued that the mainline shape and satellite structure 

can be varied because of the size of NiO nanoparticles, their surface to volume ratio, and Ni2+ 

ion vacancies on the surface of the NPs[8]. These researchers have shown that the peak position 

does not change with the size of the NPs [7] and is simply due to the persistent Ni2+ oxidation 

state. Because of the local and non-local screening, a shoulder peak might appear on the high 

energy side of the Ni2p3/2  and Ni2p1/2 main peak [7], [8]. The surface properties of 

nanoparticles play a key role in determining the characteristics (elemental composition, oxidation 

state) of NPs and increasing their size may increase the number of NiO6 clusters on the surface. 

The possible local and non-local screening might be more pronounced in larger particles and 

lower in smaller particles as the number of NiO6 units is reduced with size of the NPs. The above 
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discussion illustrates how the nanoscale size impacts the near-surface electronic structure as 

exhibited in XPS spectra. 

Furthermore, it has been verified that hydroxylation of the surface of NiO nanoparticles 

also depends on the size of the nanomaterials. The thermal decomposing synthesis technique is a 

direct chemical process using water as a solvent. In addition, it has also been shown that water 

molecule can be present on the surface of nanomaterials [8]. Recently, in our group a series of 

NiO nanoparticles have been synthesized, ranging in size from 8.3 nm to 47.6 nm. The 

characterization of these nanoparticles has been made using X-ray diffraction (XRD) and X-ray 

photoelectron spectroscopy (XPS). The raw data from XRD is analyzed using TOPAS software 

and the XPS data is fitted using CasaXPS software.    

 The third chapter of this thesis mostly will provide an introduction to inverted magnetic 

core shell nanoparticles (CSNs).  In nanotechnology, hydrothermal synthesis is playing a 

significant role in the preparation of nanomaterials for the advancement of the nanodevice 

fabrication. The hydrothermal process involves a heterogeneous reaction, in which the aqueous 

solution is kept under high pressure and temperature [3], [13], [14]. The very third chapter of this 

dissertation will discuss magnetic properties, namely the hysteresis and exchange bias properties 

of the magnetic core-shell nanoparticles (CSNs). Our research group actively has been using the 

hydrothermal process for the preparation of inverted magnetic core-shell nanoparticles. Research 

involving nanomaterials is very important because of the considerable potential for providing 

solutions to outstanding issues in various fields, such as electronics, energy conversion, medical 

technology, biomedical engineering, space technology, information and communication 

technology, and computation. The modified dimensions of the nanomaterials can provide 

distinctive properties, including optical, magnetic, mechanic, thermal, and electric properties. For 
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magnetic applications, these properties can be applicable to magnetic random excess memory, 

spintronics device, quantum computing, hyperthermia, MRI imaging, drug delivery, spin valves, 

and other areas [3], [15]–[17]. The combination of ferromagnetic/ferrimagnetic (FM/FiM) and 

antiferromagnetic (AFM) property in NPs make these potentially favorable for applications due 

to the interaction between the FM/FiM and AFM component through the exchange bias effect.  

Core-shell nanoparticles (CSNs) are an excellent example of multicomponent NPs with 

core, shell and the coupling interface region being relevant to their performance. Figure 1.3 is the 

diagram of the conventional core-shell nanoparticles. Bimagnetic core-shell nanoparticles are 

typically synthesized by incorporating 3d transition metals (e.g., Ni, Co, Fe, etc.) using various 

synthesis techniques. The magnetic properties of such CSNs are found to depend on the nature 

and quantity of 3d metal(s) and typically involve formation of a metal oxide component. Hu 

found that Co-doped NPs exhibit an increase in hysteresis loop area and coercivity, whereas Ni-

doped nanoparticles showed a reduction in these magnetic characteristics [18].  

Normal magnetic core shell nanoparticles are made of an FM/FiM core and an AFM thin 

shell, marked with an interface between them. Ones having an AFM core and FM/FiM shell are 

called inverted core-shell nanoparticles. In this thesis, I discuss my study of inverted CSNs 

having an AFM NiO core and an FM/FiM MnxNi1-xO shell. The interface is critical for providing 

the mechanism of interaction between core and shell in bimagnetic CSNs. The interaction 

between the AFM core and FM/FiM shell is termed the exchange bias effect (EB). The exchange 

bias phenomenon has been studied intensively over the past forty years or so. The initial 

development of the EB effect was made by  Meiklejohn and Bean  in 1956 [19] and then Jacobs 

and Bean in 1966 [19]. The EB effect is typically manifested by a shift of the field cooled (FC) 

hysteresis loop along the horizontal (field) axis with respect to the zero field cooled (ZFC) 
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hysteresis loop [20], [21]. In addition, a vertical shift of the FC vs ZFC hysteresis loop has been 

attributed to the EB effect [21]. The EB effect is actuated by the interaction of the magnetic spins 

at the AFM/FM or AFM/FiM interface. 

Figure 1.3: Schematic of core shell nanoparticle [22]. 

 

  The exchange bias in thin films has significant potential for and ongoing application in 

device fabrication because of the relative ease of control of the EB effect. Nevertheless, the basic 

principles of the exchange bias spin-spin coupling is still not entirely understood [23].  

Researchers have developed a variety of synthesis methods and lithographic techniques to 

fabricate well-controlled nanoscale materials, in order to shed more light on the EB effect at the 

nano-level. As stated above, the FM-AFM interface may produce an exchange bias effect that is 

manifested in many ways, such as in a horizontal shift, vertical shift, an enlargement or distortion 

of the FC hysteresis loop with respect to the ZFC hysteresis loop.  
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Figure 1.4 shows the schematic diagram of the exchange bias mechanism. It is evident 

from the diagram that FC hysteresis loop shift happens in five distinctive steps. Above the Neel 

temperature (TN), antiferromagnetic spins are randomly oriented because the antiferromagnetic 

materials manifest weak magnetism. On the other hand, ferromagnetic spins are parallel with one 

another below Curie temperature (Tc).   As Tc is greater that TN, as the temperature is cooled 

below TN the AFM spins align in a parallel arrangement with the FM spins.  The second step of 

Figure 1.4 shows that FM spins are firmly coupled with AFM spins at the interface. This 

coupling interaction provides an additional force to the FM spins. For that reason, an external 

magnetic force is needed to break down the coupling AFM-FM spin coupling: A large magnetic 

anisotropy of AFM spins requires a large external magnetic force and shifts the hysteresis loop 

along the horizontal axis whereas a weak AFM anisotropy enhances the coercivity of the system 

[24]. Depending on the synthesis process, doping concentration, morphology, and other factors, 

the CSNs may have point defects, line defects, ion or oxygen vacancy in the core-shell interface, 

which in turn affect their EB and other magnetic properties. This anisotropy of AFM spins is 

similar for nanoparticles and thin films. Steps 2 and 3 of Figure 1.4 show the coupling of AFM 

spins with the FM spins for an FC hysteresis loop measurement. The external magnetic field 

applied in the reverse direction tries to switch the spin orientation of FM region whereas the 

AFM spins are much more resistant to change their orientation. As the applied reverse magnetic 

field grows, the magnetic torque applied to the FM spins becomes sufficiently large so as to 

reverse their orientation to the point where the magnetization goes to zero and the hysteresis 

curve intersects the field or horizontal axis. This intersection point defines the negative 

coercivity of the FC hysteresis of the material.  In step 4, the applied magnetic field is 
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sufficiently large in the negative direction so as to completely reverse all of the FM spins relative 

to the starting orientation in step 2. 

The pinned AFM spins perform a central role, via the interaction with the uncompensated 

FM spins at the interface, in causing the negative shift of the FC vs ZFC hysteresis loop along 

the field axis. As illustrated in step 5 in Figure 1.4, the AFM spins exert an additional torque on 

the FM spins when the applied magnetic field is applied in the positive direction. 

Figure 1.4: The FC hysteresis loop showing the EB effect in a bimagnetic system: The various 

steps are described in the text [25].  

 

 Therefore, less force is needed to flip the FM spins along the positive field axis and the 

FC hysteresis loop is once again shifted in the negative field axis direction relative to the ZFC 

loop. The thickness of FM and AFM layers and interface roughness generally control EB of the 
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thin film, but exchange coupling of NPs depends on doping concentration, size of a particle, the 

thickness of the shell, the roughness (at the crystalline level) of the interface, and shape of the 

particles. 

In core shell nanoparticles (CSNs), core size and shell thickness have a significant impact 

on the coercivity and the exchange coupling of the CSNs. Salazar-Alvarez showed that the core 

size along with the ratio of core diameter to shell thickness have a direct bearing on the  

exchange coupling and coercivity [26]. Hosain et al. have recently demonstrated that 

NiO@MxNi1-xO (M: Mn, Co) inverted core shell nanoparticles can provide substantial coercivity 

(Hc) values and while also providing an exchange bias field (Heb) [3]. The objective is to find a 

way to fabricate such CSNs which will have applications at room temperature. The 

NiO@MnxNi1-xO CSNs offer considerable promise for such applications.  Another important 

consideration in magnetic nanostructured materials is the existence of either single or multiple 

magnetic domains, which is a key variable to determine the so-called superparamagnetic 

behavior of NPs. As Figure 1.5 shows, for sufficiently small sized NPs, the NP size coincides 

with the single magnetic domain size and the system is said to be superparamagnetic at 

sufficiently low temperatures. As the NP size increases, the domain size increases along with it 

until the size becomes large enough for the formation of multiple domains. Each of the domains 

has a net magnetic moment derived from the collection of all spins (for ideal FM or FiM 

configurations) called the magnetic dipole moment. Figure 1.5 shows how the magnetic domain 

size of the nanoparticles affects the coercivity: the optimum domain size providing the largest 

coercivity of the nanoparticles occurs just at the point of splitting from single to multiple 

domains. This occurs because of the overall cancellation of the magnetic dipole moments due to 

each of the domains becoming more progressive with increasing NP size. Additionally, the outer 
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layer of NPs may play a role in the magnetization due to uncompensated spins depending upon 

the so-called surface magnetic anisotropy. Obviously, as the temperature is increased beyond 

either the Tc or TN limit, the magnetization of the NPs is diminished due to thermal disorder of 

the spins. 

Figure 1.5:  The size dependent quantitative behavior of magnetic nanoparticles [27]. 

 

The nanoparticle size, or more specifically the core size, may have an effect on the 

exchange bias of CSNs due to its direct impact on the surface to volume ratio at the location of 

the core-shell interface. This has been verified  in the case of Co (Co@CoO?) and Fe 
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(Fe@Fe2O3?) passivated oxide CSNs [24], [28], [29] with particles size ranging from 6 - 10 nm. 

The shell region should have a minimum thickness and the anisotropy energy in the AFM region 

must be greater than the interfacial energy to observe Heb. The doping concentration can also 

have a significant impact on the Heb and Hc values of CSNs, particularly in how it affects the 

properties of either the core or the shell wherein the doping occurs. For my work, the 

introduction of the 3d transition metal dopant in the shell of CSNs is of interest as this has the 

potential to change the magnetism from an AFM to FM or FiM type within the compound metal 

oxide phase. It has been shown that the magnetic behavior of MxNi1-xO is M concentration 

dependent. However, excessive incorporation of transitional metal into metal oxide may break 

down original crystal structure thus adversely affecting the magnetic properties of the material. 

In previous studies, researchers concentrated on synthesis of core-shell structured 

nanoparticles using partial oxidation of metal (i.e., Co, Fe, Ni, etc.) nanoparticles. Some very 

well-known examples of such CSNs include Ni@NiO, Co@CoN, Fe@Fe2O3, CrO2@Cr2O3, and 

Fe3O4@FeO  [24]. These types of CSNs are typically synthesized using a chemical assists or a 

co-precipitation method and have a single metal element and have an FM or FiM core with an 

AFM shell. The chemical assists process is well suited for incorporation of more than one 

transitional metal in the same core-shell (CS) structure. There is very high probability of 

producing formation of two different phases and for creation of a highly disorder interface, 

which is an important issue for providing substantial EB in CSNs. On the other hand excessive 

oxidation may affect the integrity of the core, which may form paramagnetic materials. 

In our lab, CSNs FM/FiM shell and AFM core have been grown using the hydrothermal 

epitaxy method. It is now a widely preferable technique because of its flexibility in getting 

different morphology, very smooth and well-ordered interface and it does not have any limitation 
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in metal substitution of different elements within the starting structure of the core. The strength 

of exchange coupling between core and shell is determined by the crystalline nature of the 

interface. This method gives us an opportunity to get bimagnetic novel inverted core shell CSNs 

in replacing conventional CSNs. In my project, I worked on inverted magnetic NiO@NixMn1-xO 

CSNs and studied the oxidation state of NiO nanoparticles. The crystal structure was measured 

using X-ray diffraction (XRD) method and the XRD data were analyzed using the TOPAS 

software. The atomic concentration and oxidation state of different elements have been 

calculated using X-ray photoelectron spectroscopy (XPS) and the raw data have been fitted using 

CasaXPS software. The transmission electronic microscopy (TEM) was used to provide imagery 

of cross sections of single nanoparticles, particle size distributions and corollary structural data. 

SQUID magnetometry was used to characterize the magnetic behavior of bimagnetic inverted 

NiO@NixMn1-xO CSNs. 
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CHAPTER 2: SIZE-DEPENDENT ELECTRONIC PROPERTIES OF NIO 

NANOPARTICLES AS DEDUCED FROM XPS RESULTS 

 

Abstract 

NiO is antiferromagnetic with a high Néel temperature (523 K) making it highly suited 

for magnetic and spintronic applications. Nickel oxide nanoparticles (NPs) were synthesized 

using the thermal decomposition method. The size of the NiO NPs was controlled by varying the 

decomposition time and temperature. The characterization was made using X-ray diffraction 

(XRD) and X-ray photoelectron spectroscopy (XPS) whereas the data were fitted using TOPAS 

and CasaXPS software, respectively. The XRD analysis showed that all the NiO samples have 

similar rock salt crystal structure and that the calculated NP size, as calculated using the Scherrer 

equation, is in the range from 8.3 nm to 47.3 nm. The X-Ray Photoemission Spectroscopy (XPS) 

measurements made on the NPs showed that the peak position in the Ni 2p region and O 1s 

region remained fixed for all the four samples. The position of the Ni 2p1/2, Ni 2p3/2, and their 

corresponding satellite peaks are always approximately the same for all the size- dependent NiO 

NPs.  A satellite peak occurring at ~1.8 eV on the higher energy side of the Ni 2p3/2 and the O 

1s peaks was found to vary intensity with nanoparticle size. The larger particles have a broader 

satellite peak than the smaller NPs, which is attributed to the variation in surface area. The 

satellite peak is due to the local and nonlocal screening on the surface of the NiO nanoparticles. 

Similar broadening of the O 1s peak is attributed to the more prominent impurity peaks, 

including the hydroxide and H2O peaks, on the larger NPs.  
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Introduction 

The unique properties of nanoparticles (NPs) separate them from their counterpart bulk 

materials. Presently, researchers from all over the world are investigating the chemical and 

physical properties of NPs that are owed to their nanoscale size that bridges the domain between 

that of atoms and micron sized materials. A number of prominent properties (e.g., catalytic, 

optoelectronic, etc.) can be attributed to defects on the surface (such as line or point defects, 

vacancies, etc.), and morphology (i.e., shape and form) of NPs. The surface to volume ratio is 

another very important parameter in controlling the properties of NPs. Different synthesis 

techniques, such as sol-gel, surfactant-mediated synthesis, thermal decomposition, poly matrix 

assisted synthesis, and spray pyrolysis, have allowed scientists to vary the properties of NPs [1]. 

Transition metal oxide NPs have been gaining attention in a number of fields such as physics, 

materials science, chemistry, polymer science, biology, mechanical engineering, pharmaceutical 

drug manufacture, optical components, cosmetics, and toxicology [2]. 

Nanomaterials with size in the range of a few nanometers to 100 nm are being used as 

solid oxide fuel cells, lithium ion micro batteries, electrochromic coatings, catalysts, aerospace 

materials, optical filters, automotive rearview mirrors, battery cathodes, and gas sensors [2], [3]. 

NiO nanomaterials have recieved attention because of their antiferromagnetic nature and high 

Néel temperature (523 K). These properties make them suitable for room temperature 

applications, particularly when combined with ferro- or ferrimagnetic phases. Bi-magnetic core-

shell nanoparticles (CSNs) are considered as a high potential research area for antiferromagnetic 

NiO nanoparticle. Bi-magnetic CSNs have very promising applications in magnetic devices, 

such as magnetic spin valves, spintronics, and magnetic random-access memory (RAM), as well 
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as for medical applications, including the treatment of hyperthermia, for MRI imaging, and for 

drug delivery [2], [4]–[6]. 

Previous investigations of how the nanoscale size impacts the near-surface electronic 

structure of NiO NPs as exhibited in XPS spectra show contradictory results. Biju and Khadar 

[7] concluded that the considerably larger surface-to-volume ratio controls the broadening of the 

Ni 2p3/2 peak and its corresponding satellite peak. They reported that the satellite peak position, 

occurring at ~1.5eV higher binding energy side of the 2p 3/2 main line peak, remains almost 

constant for both bulk and nanoparticles. However, these authors only made XPS measurements 

of NiO NPs of one size only. Prior research has purported that local screening effects, arising 

from the Ni 3d-O 2p hybridization at NiO6 units, and non-local screening effects,  occurring due 

between different NiO6 units within larger NiO clusters, are responsible for the XPS satellite 

features [7], [8]. Biju and Khadar [7] speculated that the larger surface area (in relation to the 

volume) of NiO NPs should have a considerably greater number of terminal NiO6 units than 

bulk NiO. Therefore, the non-local screening should be more enhanced in smaller NPs (due to 

the larger surface-to-volume ratio) and less enhanced in larger NiO nanoparticles. My study 

involves a systematic examination of the XPS spectra measured from an array of NiO NPs with 

size ranging from 8.3 to 47 nm, in order to test the hypothesis put forward by Biju and Khadar 

[7] concerning the broadening of the Ni 2p3/2 peak and associated features. The characterization 

of the NiO nanoparticles was made using XRD and XPS techniques. X-ray diffraction was used 

to measure the crystal structure and nanoparticle size and X-ray photoelectron spectroscopy 

(XPS) analysis was used to determine the oxidation state of Ni and its bonding environment in 

the NiO NPs.  
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Experimental Methods 

The NiO nanoparticles (NPs) were grown using the thermal decomposition method which 

is an effective technique to tune various sized and shaped NPs. In the past, people have used this 

synthesis process to produce NiO nanoparticles. The following flow chart (figure 2.1) of thermal 

decomposition gives a very clear idea of the steps and process. It is evident from the flow chart 

that the synthesis process takes several steps to grow NiO nanoparticles. The thermal 

decomposition synthesis method was directly followed from the description given by El-Kemary 

et. al [3]. Our lab has been following this technique for producing nickel oxide nanoparticles for 

a number of years. According to El-Kemary et. al [3], the necessary chemicals are nickel 

chloride hexahydride (NiCl2.6H2O), hydrazine monohydrate solution, and NaOH or KOH.  The 

description of the thermal decomposition method can be followed from the flow chart in Figure 

2.1. At the very first step of synthesis, nickel chloride hexahydrate (0.11) was added to alcohol to 

make a solution. Thereafter, the solution had been sonicated and then hydrazine monohydrate 

was added to the solution according to the chemical reaction equation. The pH level of the 

solution was adjusted to 8 by adding NaOH to the solution. Although, Hasan et. al.[5] and 

Kemary et.al. described that the solution needed to be stirred for 2 hours at room temperature, 

less than two hours stirring can produce a pure precursor. After that step, the solution was kept 

for 2 hours or more to get the precipitate the sample and then the sample was washed by using 

DI water and centrifuged 4-5 times to remove all impurities. The resultant product, Ni(OH)2 

.0.5H2O, was then kept inside a box at 50˚C to dry it. 
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Figure 2.1: Flow chart of thermal decomposition process. 

 

The different steps of the flowchart are executed by the following chemical reactions: 

NiCl2.6H2O + 6C2H5OH = [ Ni(C2H5OH)6Cl2 

[Ni(C2H5OH)6Cl2 + mN2H4 = 6C2H5OH + [Ni(N2H4)m]Cl2 

[Ni(N2H4)m]Cl2 + NaOH = mN2H4 + Ni(OH)2 

Ni(OH)2 = NiO + H2O (600oC) 
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Some research groups, however, reported that the chemical reactions produced Ni(OH) as 

the resultant product [3], [5], but my XRD measurements, made at this step of the synthesis 

process, verified that the final outcome was metal Ni nanoparticles. Nickel nanoparticles were then 

heated inside a furnace in an oxygen environment for thermal decomposition. The maximum 

decomposition temperature was 600˚C but the decomposition time was varied from 1 hours to 2 

hours. I have grown different-sized NiO nanoparticles ranging from 8.3 nm to 47.3 nm in diameter. 

Some parameters of synthesis control the size and morphology of NiO NPs. The thermal 

decomposition time and temperature may alter the size of NiO nanoparticles. 

    The TEM imaging was made using the Cryo-Transmission Electron Microscope 

facility at the University of Arkansas. The crystal structure of the NiO nanomaterials, measured 

by X-ray photoelectron diffraction, was made using Brucker D8 Discover at Missouri State 

University. The operating voltage and current were 40kv and 40 amp respectively and CuKα 

source produced X-ray with  λ=1.54184 Ȧ wavelength . TOPAS software had been used to 

calculate the diameter of NiO using Scherrer equation. The XPS data were measured using the 

PHI Versaprobe XPS scanning X-ray monochromator facility from the University of Arkansas. 

CasaXPS software was used to process and fit the raw XPS data.   

 

 Results and Discussion 

Figure 2.2 shows the powder X-ray diffraction pattern of four different NiO nanoparticles 

with various particle size. The measurement were made at room temperature for all of the NiO 

NP samples. The figure indicates that the XRD data, which are indicative of the rock-salt 

structure, are consistent for all of the NiO NP samples. The XRD data are devoid of impurity 

peaks indicating the purity of the NiO NPs. 
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Figure 2.2:  X-ray diffraction patterns for the different sized NiO nanoparticle samples: top left: 

B14; 8.3 nm, top right: B5; 15.67 nm, bottom left B3; 27.6 nm, bottom right: B7; 47.3 nm.  

 

 

TOPAS software was used to analyze the XRD data, from which it was confirmed that 

the NiO NP samples have the rock-salt crystal structure with space group Fm-3m. The crystalline 

size of the  NiO nanoparticles was determined using the Scherer formula. It is found that the size 

of B14, B5, B3 and, B7 samples is 8.3 nm, 15.6nm, 27.6 nm, and 47.3nm, respectively. Figure 

2.2 shows a greater peak broadening with decreasing size of the NP samples. As Table 2.1 

shows, the FWHM of the NiO (200) peak is strongly affected by the size of the NiO NPs. 
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Table 2.1:  Peak position and FWHM of the NiO (200) peak for the NiO NP samples. 

 

Batch Size of the NiO 

NPs(nm) 

Peak position(2θ) FWHM 

B7 47.60 43.00 1.45 

B3 27.60 43.18 2.46 

B5 15.67 43.08 3.97 

B14 8.27 43.06 8.34 

 

Table 2.1 shows that the (200) peak position remains consistent for the NiO NP samples, 

which is an indication that the oxidation of the Ni2+ ion is fixed. In addition, the FWHM data in 

the above table manifests peak broadening for lower sized nanoparticles.  Figure 2.3 shows a 

typical XPS survey spectrum measured from the nickel oxide nanoparticles. The survey 

spectrum shows the Ni2p, Ni3s, Ni3p,O1s and the Ni auger peak features.  The intensity of the 

Ni 3s and Ni 3p peaks is considerably lower in comparison with that of the Ni 2p peak. The 

elemental composition in a compound is measured by analyses of the highly intense mainline 

peaks. In the case of NiO nanoparticles, the Ni 2p and O 1s are the higher intensity mainline 

peaks for Ni and O, respectively. In this research project, XPS analyses were made of the high-

resolution Ni 2p and O 1s spectra for all of the NiO NP samples. Figure 2.4 shows the high-

resolution Ni 2p specta for the four different samples.  All the four figures show that the peaks 

position for all the Ni 2p 3/2, Ni 2p 1/2, and satellite peaks, have fixed positions from sample to 

sample. For instance, Ni 2p3/2, Ni2p3/2 sat (main satellite peak), Ni 2p1/2, Ni 2p1/2 sat, and the 

secondary satellite peak always are at 853.8 eV, 860.6 eV, 872 eV, and 879.2 eV respectively 
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[8]. Since the binding energy of the mainline peaks has not changed, which is an indication of 

the oxidation state of the nickel ion, N2+, for all the samples. . The spin-orbit coupling splits the 

2p orbital into two different subshells, namely the 2p3/2 and 2p1/2.  The separation binding 

energy between two of them in invariably persistent irrespective of the size of the particles 

  Figure 2.3: XPS survey spectrum of Nickel Oxide nanoparticles. 

 

The separation binding energy between two of them in invariably persistent irrespective 

of the size of the particles. 
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Figure 2.4: High resolution spectra of Ni 2p of different sized NiO NPs: B14: 8.27 nm, B5: 15.67 

nm, B3: 27.6 nm and B7: 47.6 nm. 

 

Table 2.2 shows the binding energy difference between Ni 2p3/2 and Ni 2p1/2 is ~18 eV 

which is persistent, while the particles’ size had been changed from ~8 nm to ~47 nm. 

Theoretically, the separation binding energy between these two subshells is ~17 eV, which is 

almost similar to the measures value, like ~18 eV. Due to the spin-orbit multiple splitting is 

consistent while the particles’ size changes.  Therefore, it is reasonable to say that the oxidation 

state of Ni ion is 2+ consistent for all samples. 

 

 

 



   

25 

Table2.2: XPS binding energy of Ni 2p regions, including 2p3/2, 2p1/2 and satellite peaks 

 

 

Previous work has reported on the presence of secondary satellite peak (*) in the higher 

energy side for NiO nanoparticles [8],[7]. The secondary satellite peak is attributed 

predominantly to non-local screening at the surface of the nanoparticles. In the arrangement of 

the NiO atoms, one nickel atom is surrounded by six oxygen atoms. Since a NiO6 unit usually is 

created in the structure of the NiO atomic ordering, local and non-local screening occurs at the 

surface of the nanoparticles. The creation of a hole by XPS in the Ni 2p level strongly interacts 

with the hole at the Ni 3d levels. This Coulomb repulsion force is minimized by an incoming 

electron from the 3d levels, which are hybridized with the O 2p levels from the neighboring O in 

the NiO6 unit. This leads to local screening effects. If the hole-to-hole interaction occurs 

between the Ni and near-neighbor O’s in larger clusters, then it is referred to as non-local 

screening, As the oxidation state of nickel ion and chemical environment of NiO remains similar 

with the changing particles’ size, the satellite peak appears at a fixed higher binding energy side 

of Ni 2p3/2. Biju and Khadar [7] reported that the satellite peak was at 1.5 eV higher binding 

energy side of Ni 2p3/2. For my samples, the XPS high-resolution spectra show that the satellite 

peak consistently occurs at ~1.88 eV higher binding energy in relation to the Ni 2p3/2 peak.  A 

Samples Particles 

Size(nm) 

2p3/2 2p3/2 

sat 

2p1/2 2p1/2 sat Shoulder 

Peak (*) 

∆=(2p1/2-

2p3/2) 

B14 8.27 853.8 860.6 871.9 879.2 855.7 18.1 

B5 15.67 853.8 860.6 872 879.3 855.6 18.2 

B3 27.60 853.7 860.5 871.9 879.3 855.7 18.2 

B7 47.60 853.9 860.7 872.0 879.1 855.7 18.1 
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variation in the intensity of the satellite peak with NP size is found to occur for my samples. Due 

to the surface to volume ratio, a greater amount of local and non-local screening is expected to 

occur on the surface of the smaller particles and vice versa. Figure 2.5 and fitting analyses show 

that the intensity of satellite peak increases with the increase of the size of the nanoparticles. 

However, this is in contrast to the hypothesis put forward by Biju and Khadar [7]. 

 Figure 2.5: Ni2p XPS fitted data of different sized nanoparticles. The size of particles at sample 

B14, B5, B3, and B7 is 8.27 nm, 15.67 nm, 27.6 nm, and 47.6 nm respectively. 

 

Therefore, there must be a separate, or alternate, mechanism responsible for the satellite 

peak broadening than the one put forward by these authors. It may be possible that the upper 

(near the top of the valence band) energy band characteristics associated with the shake-up 

process responsible for the satellite peak vary with NP size, for the size range of my study, so as 
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to affect the broadening of the peak. Ab initio calculations may be able to resolve whether this is 

the case.  

Depending on the synthesis process and environment, the surface and the morphology 

can vary for each batch of NPs. The reported NiO nanoparticles in this manuscript were 

produced using a thermal decomposition method and two parameters were varied: temperature 

and decomposition time.  In the thermal decomposition method, water was used and the samples 

were exposed to the ambient environment upon synthesis. Therefore, hydroxylation is a very 

ubiquitous phenomenon on the surface of NiO nanoparticles. Figure 2.6 shows that all four 

samples have two impurity peaks (Ni-OH and H2O) in the O 1s region. Previous studies have  

Figure 2.6:  The high-resolution O 1s region of B14 (8.27 nm), B5 (15.67 nm), B3 (27.6  

nm), and B7 (47.6 nm). 
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shown that the Ni-OH peak appears at 531.6eV and Ni-H2O peak at 533.4 eV [8,9] . Our high-

resolution O 1s spectra do not show any consistent trend: The spectra for the largest sized NiO 

NPs, sample B7, are found to have the greatest amount of OH and H2O species adsorbed on the 

surface of these particles. Figure 2.7 shows the O 1s peaks for all of the NiO NP samples. The 

binding energies for Ni bonded O 1s, OH bonded Ni, and water molecule peaks occur at ~ 529.2 

eV, ~530.9 eV, and ~ 532 eV respectively, and are consistent for the different sized NPs. 

However, the peak broadening was found to vary among the different NP samples. 

Figure 2.7: XPS data of O 1s region for B14 (8.27 nm), B5 (15.67 nm), B3 (27.6 nm), and B7 

(47.6 nm).  

 

As was noted above, the synthesis process and the exposure to the ambient environment 

can both affect the surface contamination of nanoparticles. For the various samples studied here, 
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it is clear that the surface OH and H2O content for NP samples B3, B5 and B14 is relatively 

consistent. However, the surface OH and H2O content for B7 NiO NP sample is clearly much 

larger than that of any other batch of NPs of this study.  

 

Conclusions 

NiO nanoparticles of various sizes were successfully synthesized using the thermal 

decomposition method. The different sized NiO nanoparticles, varying in size from 8.3 to 47.6 

nm, were synthesize by modifying the decomposition time and temperature. XRD analysis was 

used to interrogate the structural properties of the NiO NPs. The values for the size of the NPs 

were determined using the Scherrer formula and the XRD patterns. X-ray photoelectron 

spectroscopy (XPS) was used to investigate the oxidation state of constituent elements and the 

chemical environment of the NiO nanomaterials. The XPS analyses verified that the binding 

energy of each peak at Ni 2p region remains constant for all NiO NPs, which is consistent with 

the +2 oxidation state of Ni. An extra satellite peak occurs on the higher energy side of Ni 2p3/2 

peak in the XPS spectra for all of the NiO NP samples. Most importantly, I found that the 

hypothesis of Biju and Khadar [7], which claims that the intensity of the secondary satellite peak 

occurring just on the higher energy side of the Ni 2p3/2 peak, is directly affected by the surface-

to-volume ratio of NiO NPs and should therefore increase as the NP size decreases, is false. My 

study shows that just the opposite is true. This will have to be studied further, perhaps using ab 

initio computational methods, in order to determine the nature of the mechanism responsible for 

the effect. The O 1s peak is found to have two additional contributions from the contamination of 

the surface of the NiO NPs by hydroxylation and water molecule adsorption. 
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CHAPTER 3: CONCENTRATION-DEPENDENT MAGNETIC PROPERTIES OF 

NIO@MNXNI1-XO INVERTED CORE-SHELL NANOPARTICLES 

 

 

Abstract 

Magnetic core shell nanoparticles (CSNs) are promising because of the potential 

applications in memory, spintronics device, quantum computing, MRI imaging, spin valve, 

hyperthermia, and other important areas. The magnetic CSNs have two different regions, such as 

an antiferromagnetic (AFM) component whereas the other component is ferro/ferrimagnetic 

(FM/FiM). Here, inverted magnetic core shell NPs, NiO (AFM) core and NixMn1-xO shell (FiM) 

are discussed. The CSNs were synthesized using a two-step process. Firstly, NiO NP’s were 

grown using the thermal decomposition method and secondly Mn was incorporated by way of 

the hydrothermal epitaxy process in the CSN formation. The magnetic properties of 

NiO@NixMn1-xO CSNs are directly dependent on the Mn doping concentration. SQUID 

magnetometry measurements show that higher coercivity (4733 Oe) and exchange bias (1730) 

were found at a Mn concentration in NiO@NixMn1-xO CSNs attained with a starting MnCl2 

aqueous solution having 0.08 M Mn.  X-ray diffraction analysis confirms that all of the 

NiO@NixMn1-xO CSN samples have the rock salt crystal structure. The XPS measurements 

verify that the oxidation state of Ni (2+) and Mn (2+) are independent of doping concentration of 

Mn in the CSNs. The size distribution of the particles was calculated from the low resolution 

TEM image and the HRTEM images confirm the epitaxial growth both of the shell in relation to 

the core of the NiO@MnxNi1-xO CSNs. 
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Introduction 

Magnetic nanoparticles have potential applications in random excess memory, spintronics 

device, quantum computing, MRI imaging, spin valve, hyperthermia, and other crucial areas [1]–

[3]. Magnetic core-shell nanoparticles (CSNs) are very promising multifunctional nanoparticles 

which have very surprising properties at the interface of two different magnetic phases. The 

magnetic core shell nanoparticles provide the flexibility to switch core and shell phases and, 

thereby, to create novel inverted magnetic core shell nanoparticles, in which the core is the 

antiferromagnetic (AFM) and the shell is the ferro/ferrimagnetic (FM/FiM). The interaction 

between the core and shell in inverted CSNs exhibits very important magnetic properties that has 

attracted considerable interest. Among the most notable is the exchange coupling interaction, 

which may ultimately make these CSNs ideal for nanodevice fabrication.  

The properties of magnetic core-shell nanoparticles can be modified to tailor them for 

specific applications. This can be accomplished by using different synthesis processes, varying  

synthesis parameters, such as pH, temperature, time duration, etc., and by changing the amount 

or type of dopant in either the core or shell. The synthesis processes have a direct impact on the 

characteristics of CSNs because these can control the surface, interface, and morphology of the 

nanoparticles. The hydrothermal method has been used in our laboratory to grow faced and 

pseudospherical CSNs which in some cases have been found to exhibit substantial exchange bias 

and coercivity .Other synthesis processes that are frequently used in for preparation of magnetic 

CSNs are sol-gel, homogenous precipitation, co-precipitation, sono-chemical, micro-emulsion, 

and impregnation [1], [4], [5].  The doping/substitutional element can also play a key role in 

dictating the characteristics of the bi-magnetic CSNs. Substitution of 3d transition ions (M), such 
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as Ni2+, Co2+, Fe2+, Mn2+ and Fe3+, in Cr2O3 and NiO shell phases has shown to produce wide 

variability in the strength and nature of the magnetic properties of bi-magnetic Cr2O3@MxCr2-

xO3 and NiO@MxNi1-xO CSNs [5]. These studies suggested that aside from directly impacting 

the magnetic spin-spin interaction, the substitutional M element concentration may also affect 

the properties of the interface and potentially the surface regions. However, this has been not 

completely resolved. 

The interface of bi-magnetic CSNs has a significant role in developing the interaction 

between core and shell by way of the so called exchange bias coupling of CSNs.  Meiklejohn and 

Bean first studied the exchange bias effect in 1956, followed by Jacobs in 1966 [6], [7]. They 

observed the field cooled (FC) hysteresis loop shifted along the horizontal (applied field) axis 

with respect to zero field cooled (ZFC) hysteresis loop; in some case, a vertical shift of the FC vs 

ZFC hysteresis curve along the vertical (magnetization) axis is observed. The exchange bias field 

is established at the interface of either thin films or core vs shell of CSNs from the interaction 

between the neighboring magnetic spins in the respective FM/FiM and AFM phases joined at the 

interface. For the sake of discussion, I will consider only the AFM-FM case. In case of inverted 

magnetic CSNs, the AFM core spins couple with and cause pinning of the FM spins in the shell 

directly at the interface and impose a torque on the FM spins in the shell which has to be 

overcome by the applied magnetic field upon field orientation reversal (i.e., during the hysteresis 

loop measurement). Provided that the AFM anisotropy is strong enough, the FC vs ZFC 

hysteresis data will exhibit a significant shift along the field axis, i.e., a significant exchange bias 

[7]. Aside from the physical manifestations of the bi-magnetic CSNs (e.g., types of phases, 

degree of crystallinity, morphology, nature of core-shell interface, etc.), the exchange bias and 

coercivity also depend upon temperature, specifically whether the measurements are made below 



   

34 

or above the Neel temperature, TN, for the AFM phase, and the Curie temperature (Tc) that 

dictates order vs disorder for the FM or FiM phase. Zeng et. al. reported that the magnetization, 

coercivity and exchange bias are controlled by geometrical parameters and the chemical 

composition of the CSNs [8]. It can be assumed that the interface, core-shell ratio, and surface to 

volume ratio change with the doping concentration. As a result, the total magnetization, 

coercivity, and exchange bias depend on the doping concentration. 

In their initial development of NiO@MxMn1-xO CSNs, Hassan et al. [1] discovered that  

NiO@MnxNi1-xO CSNs exhibit substantial coercivity (Hc) and exchange bias field (Heb) effects. 

However, this work was made on NiO@MnxNi1-xO CSNs having only one Mn concentration 

value. In my research, I have synthesized and characterized a series of NiO@MnxNi1-xO CSNs 

having variable Mn concentrations, in order to study the effect of Mn substitution on their 

magnetic and structural properties. For this, I adopted the same synthesis process that was fist 

initiated by Hassan et.al [1]. The structural properties were studied using X-ray diffraction 

(XRD), whereas TOPAS software was used for the Rietveld refinement and size determination 

of the nanoparticles was determined using the Scherrer equation. Additional structural results 

were obtained using high-resolution transmission electron microscopy (TEM). The oxidation 

state for Ni and Mn, along with the chemical environment characteristics, were determined using 

X-ray photoelectron spectroscopy. The magnetic hysteresis loop and temperature-dependent 

magnetization data were measured from the CSNs using SQUID magnetometry.  

 

Experimental Methods 

Nickel oxide nanoparticles were synthesize using thermal decomposition as reported by 

El-Kemary et. al. [9]. The materials used for this synthesis process include nickel chloride 
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hexahydrate (0.111 M), sodium hydroxide, hydrazine monohydrate, and ethanol. The thermal 

decomposition process was made using the following steps: Nickel chloride hexahydrate 

(NiCl2.6H2O) was added to ethanol to make a solution and then mN2H4 was poured into solution 

to initiate the initial chemical reaction. NaOH was used to adjust the pH of the solution. 

Thereafter, a magnetic stirrer was used to stir the solution at room temperature and kept for 

sufficient time to obtain the participated precursor. The solution was then centrifuged 4-5 times 

to separate the impurity elements from the precursor. The final product that was obtained is 

Ni(OH)2.0.5H2O, which was kept inside an enclosed box at 50oC for drying. El-Kemary et. al. 

reported that the final product after drying should be Ni(OH)2. However, XRD measurements of 

my final product upon drying confirmed that it was Ni (metallic) nanoparticles. The Ni 

nanoparticles were heated at _50oC in a box furnace in an oxygen atmosphere for thermal 

decomposition, thus producing NiO nanoparticles. 

A quantity of 0.33g of NiO NPs were added to measured quantities of MnCl2 to produce 

NiO@NixMn1-xO CSNs using the hydrothermal technique at 200o C for 19 hours. The 

hydrothermal epitaxy method is a very straightforward synthesis process. HPHCL water was first 

measured out in a beaker and purged for O2 using N2 gas at 50o C. Subsequently, MnCl2 was 

added to the purged water and sonicated to dissolve the MnCl2 into the water, whereupon the pH 

was adjusted with HCl. After that, NiO nanoparticles were added to the MnCl2 solution and 

sonicated for a longer time to dis-agglomerate the NPs in the solution. The solution was next 

inserted into an autoclave and sealed very tightly and then put inside a furnace at 200o C for 19 

hours. After this, the solution was washed to remove impurities by centrifuging, and then dried at 

room temperature. 
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The characterization of the NiO@NixMn1-xO CSNs was made using XRD, XPS, TEM, 

and SQUID magnetometry. A Bruker D8 Discover instrument (source Cu Kα λ= 1.54184 Ȧ) was 

used at 40 kV and 40 mA to determine the crystal structure of the NPs before and after doping, 

and the size of the CSNs was measured using Scherrer equation with the TOPAS software. X-ray 

photoelectron spectroscopic analysis was made by Versaprobe XPS facility at University of 

Arkansas which has a monochromated Al Kα beam source and Ar and C-60 cluster ion guns. 

The chemical shift and oxidation state of the constituent elements were determined by XPS 

measurement and the raw data was fitted using CasaXPS software. The single particle 

visualization was performed using cryo-transmission electron microscope (TEM). The TEM 

sample was prepared by mixing NPs in hexane. Firstly, NPs were added to hexane and then 

sonicated using probe sonicator. The copper grid was used to prepare the CSN sample. A 

Quantum Design MPMS/XL SQUID magnetometer was used to measure the magnetic properties 

of CSNs. The samples were loaded inside a soft gel capsule and thereafter the loaded capsule 

was placed inside chamber of SQUID magnetometer. The FC and ZFC hysteresis loops were 

measured in the range of 15000Oe to – 15000Oe at 5K temperature. The magnetization (M) vs 

temperature (T) was performed at 100 Oe from 5K to 300K.   

 

Results and discussion   

 The shell and core region of the CSNs have similar crystalline structure. Figure 3.1 

shows XRD data of concentration-dependent NiO@NixMn1-xO CSNs at room temperature. I will 

use the Mn_no. of M_NiO abbreviation, where no. of M stands for the number of moles of 

MnCl2 used in the preparation of the CSNs, for the concentration-dependent NiO@NixMn1-xO 

CSNs designations.   
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All four samples exhibit very similar XRD patterns. Irrespective of the Mn concentration, 

as controlled using the initial concentration of the MnCl2 solution used for the shell formation 

procedure in the range from 0.065 M to 0.1M, has not changed the position (in two-theta) of the 

individual peaks indicative of the rock-salt structure. Furthermore, I do not observe any  

additional impurity peaks in the XRD data. The tuning of manganese to NiO nanoparticles in  

Figure 3.1: X-ray diffraction data of (a) Mn_0.065 M_NiO (b) Mn_0.08 M_NiO (c) Mn_0.009 

M NiO (d) Mn_0.1 M NiO. 

 

different concentration did not change the crystal structure of the samples. NiO nanoparticles and 

NiO@NixMn1-xO CSNs have same rock salt crystal structures with Fm3m symmetry. The raw 

XRD data was analyzed with help of very powerful TOPAS software. 
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The Scherrer equation has been used to calculate the size of the nanoparticles. Table 3.1 

shows the results from the fitting of the XRD data and use of the Scherrer equation to determine 

the size of the NiO NPs and the NiO@NixMn1-xO CSNs. The comparison between NiO NPs size 

and corresponding NiO@NixMn1-xO size provides a very clear visualization of the shell 

formation surrounding the NiO core. High-resolution TEM analysis can be utilized to augment 

the size determination of the core vs the shell in CSNs.  

 

Table 3.1: Comparison the size of NiO NPs and Mn doped NiO CSNs. 

 

 

In our research, we aimed to compare the magnetic properties of four different CSNs 

samples. The samples were differentiated by the amount of Mn incorporation in the shell of the 

CSNs. Figure 3.2 shows the ZFC and FC hysteresis loops for each of the Mn incorporated CSN 

samples. It is evident from the figure that Mn-NiO CSNs shows substantial coercivity in the 

hysteresis loop curves and an exchange bias shift, depending upon the Mn concentration. The 

coercivity varies from ~659 Oe to ~ 4587.5 Oe depending on the amount of Mn incorporation. It 

should be noted that the NiO core size is essentially the same for all the samples but the Mn 

concentration is different for each of the samples. The highest coercivity, 4587.5 Oe, was found  

Sample Level CNP 

(NiO@NixMn1-

xO) Particle 

Diameter (nm) 

NiO NP size 

(nm) 

Moles of Mn in Aq. Solution 

NiO@NixMn1-xO_1 32.22 30.6 0.065 

NiO@NixMn1-xO_2 29.70 27.5 0.080 

NiO@NixMn1-xO_3 27.85 27.5 0.090 

NiO@NixMn1-xO_4 30.80 30.6 0.100 
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Figure 3.2: Zero field cooled (ZFC) and field cooled (FC) hysteresis loop measurement data for 

the NiO@NixMn1-xO CSNs samples: (a) Mn_0.065M_NiO (b) Mn_0.08M_NiO (c)  

Mn_0.09M_NiO and (d)  Mn_0.1M_NiO.  

 

for 0.08 M CSN sample and the lowest coercivity, 659 Oe, occurs for the 0.1 M CSN sample 

Figure 3.2 shows a shift of FC hysteresis loop in the negative H axis and a vertical shift along the 

M axis. The maximum exchange bias field of 1730 Oe is found for the 0.08 M CSN sample and 

the minimum exchange bias field of 201 Oe was found for the 0.09 M CSN sample. The 

calculation of exchange bias was made using Heb= ((HZFC+ -HFC+) + (HFC- - HZFC-))/2 formula 

[1], [10]. The results for the coercivity and the exchange bias field values are summarized for all 

of the samples in Table 3.2. 
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Table 3.2: Coercivity (Hc) and exchange bias field (Heb) of the Mn concentration dependent 

NiO@NixMn1-xO magnetic CSNs. 

 

Doping concentration of 

Mn(M) 

Coercivity (Oe) Exchange Bias 

(Oe)  

0.05 450 159 

0.065 4587.4 271 

0.08 4733 1730 

0.09 4067.7 201 

0.10 659 203 

 

Figure 3.3 shows that the coercivity vs Mn concentration (as reported using the 

concentration of the starting MnCl2 solution) in my CSN samples: Here I use a spline connection 

between points purely for visualization purposes.The maximum in the coercivity is between 0.65 

and 0.08 M Mn and most likely closer to  

Figure 3.3: The coercivity (Hc) (left) and the exchange bias field (Heb) (right) vs Mn 

concentration for the samples of the study and from the Hossain et al. (2) study for the 0.8 M Mn 

sample 
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the latter value; both below and above this concentration range, the coercivity decreases 

substantially with Mn content. There may be two mechanisms that contribute to this effect: 1) a 

percolation spin-occupation effect, and, 2) a Mn-concentration domain size dependent effect.  

The percolation spin-occupation effect arises from the substitution of Mn spins on the Ni spin 

lattice. 

Hossain et al. [2] showed from initial DFT based calculations that the lowest energy state 

is one for which the Mn spin maintains the same orientation as the surrounding Ni spins in the 

spin-ordered (111) planes in the rock-salt NixMn1-xO structure. This gives rise to FiM ordering. 

As more and more Mn substitute for Ni spins, a critical percolation point is reached for the net 

FiM moment beyond which an excess of Mn spins are incorporated effectively countering one 

another, thus reducing the overall magnetic moment. Additionally, excessive incorporation of 

Mn spins may induce a reduction in the size of the magnetic domains in the shell region. Each of 

the domains has an overall magnetic dipole moment and the tendency the minimization of energy 

is in the reduction (i.e. misalignment) the total magnetic moment of each CSN. 

Similarly, the exchange bias field (1730 Oe) is also the highest for the 0.08 M Mn 

concentration CSN sample, showing that the effects for the coercivity and the exchange bias may 

be linked. In this case, the exchange bias magnetic property arises from the interaction between 

AFM Ni spins in the core and FiM Ni and Mn spins in the (NixMn1-xO) shell. The percolation 

effect is expected to play a major role in dictating the strength of Heb, just as in the case of the 

magnetic coercivity.  
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 Figure 3.4 shows the FC and ZFC magnetization curves measured at 5K from the 

NiO@NixMn1-xO CSNs samples. Each of the samples show individual blocking and Neel 

temperatures, as shown from the magnetization vs temperature data. Li et al showed that  

Figure 3.4: Magnetization (M) versus temperature (T) curve measured in the FC and ZFC 

conditions for NiO@NixMn1-xO CSNs: (a) 0.065 M manganese (b) 0.08 M manganese (c) 0.09 

M manganese (d) 0.1 Manganese.  

 

negative magnetization in the ZFC curves can be induced from the competition among the 

different interactions and tuned with the transition metal content in doped compounds [11]. The 
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values for the Neel and blocking temperatures are tabulated in Table 3.3 for the samples of study. 

Both the blocking and Neel temperatures are directly dependent upon Mn content in the CSNs. 

The blocking and Neel temperature values are the highest for the 0.08 M Mn 

concentration CSNs, which is consistent with the other magnetic properties measured from the 

samples. 

Table 3.3: Blocking and Neel temperature of Mn concentration dependent samples. 

Mn Concentration 

(M) 

Neel Temperature (TN) Blocking Temperature 

(TB) 

0.065 125 70 

0.08 166 140 

0.09 132 71 

0.1 80 55 

 

Transmission electron microscopy (TEM) provides a clear visualization of the particle’s 

morphology whereas high resolution TEM images provide the opportunity to study the core, 

shell, and their interface region. Figure 3.5 (a) shows that most of the particles, as is true in the 

case of all of the CSN samples, are faceted and some of the particles are pseudo spherical. The 

size of the CSN particles varies from sample to sample, perhaps due to the difference in Mn 

doping concentration. 
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Table 3.4 shows the size of the CSNs and the shell thickness, which were calculated from 

TEM images using imageJ software. The particle size calculated from TEM image is quite a bit 

different from XRD measured particles size. The discrepancy could be due to an insufficient 

number of un-agglomerated nanoparticles in the TEM sample for proper statistical analysis. The 

HRTEM image shown in Figure 3.5 (c) shows the three distinct regions of an individual CSNs 

including core, shell, and the interface region between them. The HRTEM provides evidence of 

defects, such as vacancies and misfit dislocations, in the interface and on the surface of a CSN. 

The thickness of the shell region can be measured directly from the HRTEM images of the 

CSNs. . Figure 3.5 (d) and (e) show the direction of plane both in core and shell, and FFT also 

have generated the planes orientation in both two regions (0.065M). The indication of continuity 

of crystal planes both at core and shell is visible from the FFT image. The interruption of the 

plane can only be seen at the interface region. Our investigation verified that with the increase in 

Mn content, both the coercivity and exchange bias decrease. The HRTEM images for the 0.1 M 

Mn doped  CSNs show  that these have rougher and thicker interface regions between the core  

Table 3.4: Size of the four different NiO@NixMn1-xO CSNs and shell thickness as determined 

from the TEM image and Scherrer equation.  

 

Concentration of Mn 

In NiO (M) 

Size of CNPs 

from TEM image 

(nm) 

Size of CNPs using 

Scherer equation (nm) 

Thickness of shell 

from TEM image (nm) 

0.065 26.10 32.20 2.7 

0.08 20.78 29.70 2.4 

0.09 37.50 27.85 3.4 

0.10 33.80 30.80 3.7 
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and shell. This, in addition to the effect described above, could affect (reduce) the magnetic 

properties of these particular core shell nanoparticles.   

 

Figure 3.5: (a) Low resolution TEM image of NiO@NixMn1-xO to estimate size distribution 

and morphology (b) Histogram and normal curve fit of the size distribution of CSNs (c) HRTEM 

image of core shell region with noticeable interface region (d) Plane orientation and FFT of core 

(e) Plane direction and FFT of the shell region.   

 

X-ray photoelectron spectroscopy analysis provides the information regarding elemental 

composition, oxidation state, and chemical shift of the constituent elements. The XPS survey 

scan of the NiO@NixMn1-xO shows O 1s, Ni2p, Mn2p, C1s peaks, and their corresponding 

satellite and auger peaks. 
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The atomic weight percent of Mn is challenging to determine from the high resolution 

XPS Mn 2p spectra as outlined below . Because the energy positions of the Mn 2p and the Ni 

auger superimpose, and the Ni auger peak is dominant, it is very difficult to de-convolute one 

from the other. This problem was resolved by taking the of area of Ni auger peak region from 

survey scan of NiO. The crystal structure of NiO and MnxNi1-xO is similar, as consequence the 

positions of Ni2p 3/2 and Ni 2p1/2 have the same binding energy for both. The secondary 

satellite peak at ~1.8 eV higher binding energy side of the Ni2p 3/2 appears to be slightly 

different before and after substitution of manganese. 

Figure 3.6 shows that the Ni 2p3/2 region of the NiO NPs has a very prominent and 

distinct shoulder (i.e., satellite) peak (*). Conversely, the Ni2p 3/2 region of NiO@NixMn1-xO 

(0.08 M) CSN peak has a less distinct shoulder peak. The intensity of shoulder peak at Ni2p3/2 

region is found to be reduced with at higher Mn concentration in NiO@NixMn1-xO CSNs. The  

Figure 3.6: High resolution spectra of Ni 2p of NiO and NiO@NixMn1-xO (0.08M Mn). 
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highest Mn doped (0.1M) CSNs shows no satellite peak at all in the high-resolution Ni 2p 

spectra.  This suggests that substitution of Mn has a direct effect on the intensity of the Ni 2p3/2 

XPS peak.     

The Ni LVV auger peak appears in the high-resolution XPS, Mn 2p3/2 and Mn 2p1/2 

peaks, at ~645 eV, measured from the NiO@NixMn1-xO CSNs. Fitting of the overall Mn 2p 

(2p3/2 and 2p1/2) XPS peaks was attempted based on known peak separation, peak area ratio, 

peak widths constraints and known binding energy position of the Ni LVV auger peak. Figure 

3.7 shows the overall Mn 2p (2p3/2 and 2p1/2) high resolution peak for four different CSN 

samples. The Mn 2p3/2 peak clearly shows evidence of multiplet splitting effects, as is common  

Figure 3.7: The high-resolution XPS Mn 2p peaks of (a) Mn_0.065 M (b) Mn_0.08 M (c) 

Mn_0.09 M (d) Mn_0.1 M CSN samples.  
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for a number of compounds containing 3d transition metals. For that reason 3 – 4 peaks are used 

to fit the overall Mn 2p3/2 features, whereas a peak at ~645 eV is included to account for the Ni 

LVV auger line. An additional peak, most likely a satellite feature, is included at ~648 eV in the 

fitting. The predominant higher binding energy Mn 2p3/2 peak is marked in Figure 3.7. The 

figure clearly shows that the Mn 2p3/2 peak becomes more dominant with increasing Mn 

concentration.  However, quantitative elemental analysis is not possible until the constraints on 

the area of the Ni LVV auger peak are known. 

 

Conclusions 

 NiO@NixMn1-xO CSNs were synthesized by following a two-step synthesis procedure. 

The NiO core was produced using the thermal decomposition method and the NixMn1-xO shell of 

the CSNs was synthesized using a hydrothermal method. The crystal structure and the size 

distribution of both the NiO NPs, prior to shell growth, and the CSNs were determined using 

XRD methods, for which the XRD data were fitted using TOPAS software. The structural 

analysis verified the samerock-salt crystal structure of the NiO NPs and NiO@NixMn1-xO CSNs, 

for all Mn concentrations. XPS measurements indicate the oxidation state of Ni and Mn is +2 

and that the Mn concentration does not affect the positions of Ni 2p , Mn 2p and O1s peaks. 

However, a secondary satellite peak occurring just above, in binding energy, the Ni 2p3/2 peak is 

found to undergo reduction in intensity with increasing Mn concentration in the NiO@NixMn1-

xO CSNs. The SQUID magnetometry measurement show that both the coercivity and exchange 

bias field show non-monotonic maximal behavior as a function of Mn concentration, with the 

maximum coercivity and exchange bias occurring for 0.08 M Mn content. The size distribution 



   

49 

of  the NiO@NixMn1-xO CSNs were calculated from low resolution TEM images and generally 

agree with the XRD results. The HRTEM images of the CSNs show epitaxial growth of the shell 

over the core. TheHRTEM images also show defect structure in the interface regions of the 

CSNs. 
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CHAPTER 4: SUMMARY 

 

I have synthesized NiO NPs using the thermal decomposition method, where I varied the 

decomposition time and temperature to modify the size of the NPs. The purpose of this work was 

to determine from XPS spectroscopy whether the well-known secondary satellite peak occurring 

as a shoulder feature of the Ni 2p3/2 feature is directly dependent on the size of NiO NPs. The 

high-resolution spectra of the Ni 2p region, consisting of the Ni 2p3/2, Ni 2p1/2 and their 

corresponding satellite peaks, were measured from NiO NPs ranging in size from 8.3 to 47.3 nm. 

The binding energy positions of the Ni 2p3/2, Ni 2p1/2, and satellite peaks were found to be the 

same for all NP samples., A distinct secondary satellite  peak, occurring at ~1.8 eV higher in 

binding energy than the main Ni 2p3/2 peak, was observed for all NiO NP samples. The 

secondary satellite was found to increase in intensity with the increase in size of the NiO NPs. 

This directly contradicts the conjecture offered by Biju and Khadar [8], suggesting that the 

intensity of the secondary satellite peak should increase as the NP size decreases due to the 

increase in the surface-to-volume ratio, and thereby surface defects, with reduced NP size. This 

suggests that a separate mechanism, other than non-local screening due to defect structure, may 

be responsible for the secondary satellite peak. In similar fashion, the O 1s peak also showed 

some variations depending on particular NP sample. The variations in the O 1s peak are 

attributed to the presence of H2O and NiOH on the surface of the NPs, the former due to 

adsorption in air and the latter occurring during the synthesis process.. In my second study, I 

analyzed predominantly the structural and magnetic properties of NiO@NixMn1-xO CSNs having 

varying Mn concentrations. The Mn concentration was varied using MnCl2 aqueous solutions  
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ranging from 0.065 M to 0.1 M during the second step of the CSN synthesis process involving 

hydrothermal epitaxial growth technique to fabricate the NixMn1-xO shell over the core of the 

CSNs. X-ray diffraction data showed that the rock-salt structure was preserved after 

hydrothermal synthesis and CSN formation, for all samples. Furthermore, the fitting of the XRD 

data and using the Scherrer equation showed the CSNs are in general slightly larger than the NiO 

NPs, indicating shell formation. High-resultion XPS measurements of the Ni 2p and Mn 2p 

features show that both Ni and Mn  have the +2 oxidation state in the CSNs, irrespective of Mn 

concentration. SQUID magnetometer measurements of the NiO@NixMn1-xO CSNs show that Hc 

and Heb exhibit peaked functional behavior with Mn concentration. The maxima for both Hc 

(4733 Oe) and Heb (1730 Oe) occur for 0.08 M Mn content.  HRTEM images and fast Fourier 

transforms analysis of the images show epitaxial growthof the shell region of NiO@NixMn1-xO 

CSNs. Furthermore, the HRTEM images show that the CSNs exhibit defects within the core-

shell interface, particularly vacancies and misfit dislocations. 
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