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abstract results in functional analysis, and then demonstrate their power and relevance by solving 
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spaces), and some useful operators (such as differential operators, integral operators, 

contractions, completely continuous operators, etc.).  Specifically, we will use the Banach Fixed 

Point Theory to prove the Existence and Uniqueness of the solutions to an Initial Value Problem  

for a system of n-first order differential equations.  Then we will use the Leray-Schauder Fixed 

Point Theory to prove the existence of solutions for a nonlinear Sturm-Liouville Boundary Value 

Problem.  Finally, we will demonstrate how the maximum-area problem can be proved handedly 

by the Calculus of Variation approach, a subset of Functional Analysis. 
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1. INTRODUCTION

Concepts and methods of functional analysis were developed from the old-

est parts of mathematical analysis (advanced calculus): in the calculus of variation,

in the theory of differential equations, and in the theory of integral equations. The

essence of functional analysis is the extension of the concepts and methods of ele-

mentary analysis to more general (abstract) settings, which are applicable to many

problems with different backgrounds. Therefore, functional analysis provides some

powerful abstract frameworks and theory that can be used, when the terms are in-

terpreted properly, to solve various applied problems in a variety of disciplines effi-

ciently.

Functional analysis is a branch of mathematical analysis that studies vector

spaces with a limit structure (such as a norm or inner product), functions/operators

defined on these spaces, and operator equations which include as special cases dif-

ferential equations and integral equations. Therefore, proofs of the existence of so-

lutions of an initial value problem of a differential equation, and that of an integral

equation, can be carried out by a functional analysis approach with a properly cho-

sen space and a properly defined operator.

In this thesis, we will focus on some basic concepts and abstract results in

functional analysis, and then demonstrate their power and relevance by solving

some applied problems under the framework. We will give the definitions of various

spaces, such as metric spaces, vector spaces, normed spaces, inner product spaces,

Banach spaces, and Hilbert spaces. Examples are provided to illustrate these spaces

and their respective properties. Some useful operators are given, such as differential

operators, integral operators, contractions, completely continuous operators, which

provide the needed background for later applications of the abstract theories.

Sufficient background information is supplied for the various import spaces
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that rise in different applications. The spaces include C[a, b], Cn[a, b], lp, Rn. In par-

ticular, their completeness as metric spaces is proved, respectively.

Specifically, we will use the Banach Fixed Point Theory[1] to prove the Ex-

istence and Uniqueness of the solutions to an Initial Value Problem[2] for a system

of n-first order differential equations under the assumption that the functions in-

volved in the system are all continuously differentiable. Then we will use the Leray-

Schauder Fixed Point Theory[3], which is an extension of the Brouwer’s Fixed Point

Theory[4], to prove the existence of solutions for a nonlinear Sturm-Liouville Bound-

ary Value Problem[2] when the function sitting on the right-side of the equation

contains the unknown function as a variable. Finally, we will demonstrate how the

maximum-area problem can be proved handedly by the Calculus of Variation[5] ap-

proach, a subset of Functional Analysis.
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2. SPACES

2.1 Metric Space

DEFINITION 2.1: A metric space is a pair (X, d), where X is a set and d is a

metric on X(or distance function on X), that is, a function defined on X × X such

that for or x, y, z ∈ X, we have [1]:

(M1) d is real-valued, finite and nonnegative.

(M2) d(x, y) = 0 if and only if x = y.

(M3) d(x, y) = d(y, x) (Symmetry).

(M4) d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality).

EXAMPLE 2.2: Sequence space lp

Let p ≥ 1 be a fixed real number. The element in the lp is a sequence x =

(x1, x2, ...) of real numbers such that |x1|p + |x2|p + ... converges; thus

∞∑
j=1

|xj|p <∞.

The metric is defined by

d(x, y) = (
∞∑
j=1

|xj − yj|p)
1
p .

Proof. Clearly, (M1) to (M3) are satisfied. In order to prove (M4), we need to drive

4 steps [1]:

(a) Prove ab ≤ ap

p
+ bq

q
where p and q are conjugate exponents, that is 1

p
+ 1

q
=

1.

From 1
p

+ 1
q

= 1 we have

pq = p+ q, (p− 1)(q − 1) = 1,
1

p− 1
= q − 1

3



So

u = tp−1 ⇐⇒ t = uq−1

The value of ab equal the area of a region that is bounded above by u=b, below

by t-axis, and on the left by u-axis, on the right by t=a. The value of
∫ a
0
tp−1dt

equal the area of a region that is enclosed by u = tp−1, t-axis and t=a. The value of∫ b
0
uq−1du equal the area of a region that is enclosed by u-axis, u=b and t = uq−1,

which is same as u = tp−1. See the graph below:

0 a
0

b

u=t
p−1

0 a
0

b

u=t
p−1

Figure 1: Inequality (2.1)

So we can see that

ab ≤
∫ a

0

tp−1dt+

∫ b

0

uq−1du =
ap

p
+
bq

q
. (2.1)

(b) Use (2.1) to prove the Holder inequality [1]

∞∑
j=1

|xjyj| ≤ (
∞∑
k=1

|xk|p)
1
p (
∞∑
m=1

|ym|p)
1
p

Choose x = (x1, x2, ...), y = (y1, y2, ...) ∈ lp, such that

∑
|xk|p = 1,

∑
|yk|q = 1.

4



let a = |xk| and b = |yk| then from 1© we have

|xkyk| ≤
|xk|p

p
+
|yk|q

q
=

1

p
+

1

q
= 1. (2.2)

Take any x′ = (x′1, x
′
2, ...), y

′ = (y′1, y
′
2, ...) ∈ lp,if we let

xk =
x′k

(
∑
|x′k|p)1/p

, yk =
y′k

(
∑
|y′k|q)1/q

then ∑
|xk|p = 1,

∑
|yk|q = 1.

Apply (2.2), then

∑
|xkyk| =

∑
| x′k
(
∑
|x′k|p)1/p

y′k
(
∑
|y′k|q)1/q

| =
∑
|xkyk|

(
∑
|x′k|p)1/p(

∑
|y′k|q)1/q

≤ 1

Thus, ∑
|xkyk| ≤ (

∑
|x′k|p)1/p(

∑
|y′k|q)1/q

(c) Use Holder inequality to prove Minkowski inequality [1]

(
∞∑
j=1

|xj + yj|p)1/p ≤ (
∞∑
k=1

|xk|p)
1
p + (

∞∑
m=1

|ym|q)
1
q

Let zk = xk + yk, then

|zk|p = |zk||zk|p−1 = |xk + yk||zk|p−1 ≤ |xk||zk|p−1 + |yk||zk|p−1

Apply the Holder inequality on|xk||zk|p−1 and |yk||zk|p−1

|xk||zk|p−1 ≤ (
∞∑
k=1

|xk|p)
1
p (
∞∑
k=1

|zk|(p−1)q)
1
q = (

∞∑
k=1

|xk|p)
1
p (
∞∑
k=1

|zk|q)
1
q

5



Similarly,

|yk||zk|p−1 ≤ (
∞∑
k=1

|yk|p)
1
p (
∞∑
m=1

|zk|q)
1
q

Add these two inequality together, then we can obtain the Minkowski inequality.

|zk|p ≤ |xk||zk|p−1 + |yk||zk|p−1

≤ (
∞∑
k=1

|xk|p)
1
p (
∞∑
k=1

|zk|q)
1
q + (

∞∑
k=1

|yk|p)
1
p (
∞∑
k=1

|zk|q)
1
q

= [(
∞∑
k=1

|xk|p)
1
p + (

∞∑
k=1

|yk|p)
1
p ](

∞∑
k=1

|zk|q)
1
q

So,

(
∞∑
k=1

|zk|p)
1
p = (

∞∑
k=1

|zk|p)1−
1
q ≤ (

∞∑
k=1

|xk|p)
1
p + (

∞∑
k=1

|yk|p)
1
p

(
∞∑
j=1

|xj + yj|p)1/p ≤ (
∞∑
k=1

|xk|p)
1
p + (

∞∑
m=1

|ym|p)
1
p

(d) Use Minkowski inequality to prove

d(x, y) ≤ d(x, z) + d(z, y).

d(x, y) = (
∑
|xk − yk|p)1/p = (

∑
|xk − zk + zk − yk|p)1/p

≤ [(
∑
|xk − zk|+

∑
|zk − yk|)p]1/p

≤ (
∑
|xk − zk|p)

1
p + (

∑
|yk − zk|p)

1
p = d(x, z) + d(z, y).

EXAMPLE 2.3: C[a, b] space.

C[a, b] is the set of all real-valued continuous functions defined in the inter-

6



val [a, b]. C[a,b] is a metric space if we define the metric by

d(x, y) = max
t∈J
|x(t)− y(t)|,

J = [a, b].

Proof.

d(x, y) = max
t∈J
|x(t)− y(t)| = max

t∈J
|x(t)− z(t) + z(t)− y(t)|

≤ max
t∈J

(|x(t)− z(t)|+ |y(t)− z(t)|)

≤ max
t∈J
|x(t)− z(t)|+ max

t∈J
|z(t)− y(t)|

= d(x, z) + d(y, z)

2.2 Normed Linear Space

DEFINITION 2.4: Linear space [1]:

A linear space (or vector space) is a nonempty set X with two operations

’+’, ’ · ’, called addition and scalar multiplication. Suppose x,y,z ∈ X, α, β are real

numbers, then the following 8 properties holds:

x+ y = y + x

x+ (y + z) = (x+ y) + z

x+ 0 = x

x+ (−x) = 0

α(βx) = (αβ)x

1 ∗ x = x

α(x+ y) = αx+ αy

(α + β)x = αx+ βx

7



DEFINITION 2.5: Normed space :

A normed space X is a linear space with a norm defined on it. Here a norm

on a vector space X is a real-valued function on X whose value at an x ∈ X is de-

noted by ‖x‖ and which has the properties [1]:

(N1) ‖x‖ ≥ 0

(N2) ‖x‖ = 0 ⇐⇒ x = 0

(N3) ‖αx‖ = |α|‖x‖

(N4) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

here x and y are arbitrary vectors on X and α is any scalar.

EXAMPLE 2.6: Space C[a, b].

Suppose x(t)∈ C[a, b]. Define the norm on C[a, b] by

‖x(t)‖ = max
t∈J
|x(t)|,

where J = [a, b].

Proof. We can define a metric on C[a,b] by

d(x, y) = max
t∈J
|x(t)− y(t)|.

From (M4), we have for any x(t), y(t) and z(t) in C[a, b].

d(x, y) = max
t∈J
|x(t)− y(t)| ≤ max

t∈J
|x(t)− z(t)|+ max

t∈J
|z(t)− y(t)| = d(x, z) + d(y, z).

8



Let w(t)=-y(t), and z(t)=0, then

‖x+ y‖ = max
t∈J
|x(t) + y(t)|

≤ max
t∈J
|x(t)|+ max

t∈J
| − y(t)|

= max
t∈J
|x(t)|+ max

t∈J
|y(t)|

= ‖x‖+ ‖y‖

So C[a, b] is a normed space.

2.3 Inner Product Space

DEFINITION 2.7: A complex vector space H is called an inner product space if

to each ordered pair of vectors x and y in H is associated a complex number (x, y),

called the inner product of x and y , such that the following rules holds [1]:

(I1) (y, x) = (x, y). The bar denotes complex conjugate.

(I2) (x+ y, z) = (x, z) + (y, z).

(I3) (αx, y) = α(x, y), α is a complex number.

(I4) (x, x) ≥ 0

(I5) (x, x) = 0 only if x = 0.

PROPOSITION 2.8: Suppose x, y ∈ X, X is an inner product space with the

inner product defined by

(x, x) = ‖x‖2,

then

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Namely, d(x, y) = ‖x− y‖ satisfies the triangle inequality [6].

9



Proof. If (x, x) = 0,

‖x+ y‖ = ‖y‖.

Suppose (x, x) 6= 0, consider ‖ax+ y‖, a is a complex number ā is its conjugate.

0 ≤ ‖ax+ y‖2 = (ax+ y, ax+ y) = |a|2(x, x) + a(x, y) + ā(y, x) + (y, y).

Let a = − (y,x)
(x,x)

, then the right side of above equation becomes [6]

| − (y, x)

(x, x)
|2(x, x)− (y, x)

(x, x)
(x, y)− (x, y)

(x, x)
(y, x) + (y, y)

=
|(x, y)|2

‖x‖4
‖x‖2 − 2

|(x, y)|2

‖x‖2
+ ‖y‖2 = −|(x, y)|2

‖x‖2
+ ‖y‖2

Since − |(x,y)|
2

‖x‖2 + ‖y‖2 ≥ 0,

|(x, y)|2 ≤ ‖x‖2‖y‖2

Taking square root,

|(x, y)| ≤ ‖x‖‖y‖

So,

‖x+ y‖2 = (x, x) + (x, y) + (y, x) + (y, y) ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

‖x+ y‖ ≤ ‖x‖+ ‖y‖

EXAMPLE 2.9: Euclidean space Rn.

Rn is the set of all ordered n-tuples of real numbers, written

x = (x1, ..., xn), y = (y1, ..., yn)

10



etc.

Define the inner product by

(x, y) = x1y1 + ...+ xnyn.

Since xi and yi are all real numbers, (I1) holds. (I2) to (I5) can be proved by sim-

ple calculation.

So Rn is an inner product space.

Define a norm on Rn by

‖x− y‖ = (x− y, x− y)
1
2 ,

then (N1) to (N4) can be shown by (I1) to (I5).

So Rn is a normed space.

Define a metric on Rn by

d(x, y) = ‖x− y‖ = (x− y, x− y)
1
2 .

By property, substitute x by x− z, and y by z − y,

‖x− z + z − y‖ ≤ ‖x− z‖+ ‖z − y‖.

This proves

d(x, y) ≤ d(x, z) + d(y, z).

so Rn is a metric space, with d(x, y) = ‖x− y‖.

2.4 Completeness

DEFINITION 2.10: Complete metric space.

11



A sequence (xn) in a metric space X = (X, d) is said to be Cauchy if for

every ε > 0 there is an N = N(ε) such that

d(xm, xn) < ε

for every m,n > N.

The space X is said to be complete if every Cauchy sequence in X converges

(that is, has a limit which is an element of X).

EXAMPLE 2.11: Completeness of R.

Proof. Suppose (xk) is a Cauchy sequence, xk ∈ R, then for any ε > 0, there exists

N > 0 such that for any m,n > N , we have |xn − xm| < ε.

By triangle inequality,

|xn| − |xm| ≤ |xn − xm| < ε.

So |xn| < |xm| + ε for all n,m > N . Let M = max{x1, x2, ..., xN , |xm| + ε},

then for all n ∈ N, we have|xn| ≤M , so {xn} is bounded.

Suppose {xn} is increasing, since {xn} is bounded above, it has a least upper

bound, say b (b∈ R). By the definition of least upper bound, we have for any ε >

0, there exists xp ∈ {xn}, such that

b− ε < xp < b < b+ ε.

Also, xn is increasing, so for any n > p

b− ε < xp < xn < b < b+ ε

12



or

|xn − b| < ε

By the definition of limit,

lim
n→∞

xn = b.

Similarly, if {xn} is decreasing, we can prove that {xn} is convergent to its greatest

lower bound.

If {xn} is not monotone, then we have two cases. Let [−M,M ] = J0.

Case 1:

There are only finitely many points of {xn} in the interval J0. It means that

there exists a constant c, such that

xnk = c

for some subsequence of {xn}. It is clear that

xnk → c as nk →∞.

Case 2:

There are infinitely many points of {xn} in the interval J0. Then we can

choose a monotone subsequence of {xn} by the following steps:

Define a0 = inf
xn∈J0

xn and b0 = sup
xn∈J0

xn. Divide the interval J0 into 2 equal

intervals : J1 and J ′1, then one of there 2 interval must have infinitely many points

of {xn}, suppose it is J1. Then define

a1 = inf
xn∈J1

xn, b1 = sup
xn∈J1

xn.

13



Repeat this process for infinitely many times, then we get two sequence:

an = inf
xn∈Jn

xn, bn = sup
xn∈Jn

xn.

Clearly, an is increasing, and bn is decreasing. From the proof above, both an and

bn converge. It is clear that at least one of the two sequence contains infinite num-

ber of distinct numbers, say an. Then there exists a subsequence ank which is strictly

increasing. Suppose

ank −→ a∗

as k −→∞.

Then

an −→ a∗

and

xn −→ a∗

as n −→∞.

EXAMPLE 2.12: Completeness of Rn .

Proof. Suppose x = (x1, ..., xn) and y = (y1, ...yn) ∈ Rn and Rn

d(x, y) = (
n∑
j=1

(xj − yj)2)1/2.

Consider a Cauchy sequence (xm) = (xm1 , x
m
2 , ..., x

m
n ), xm ∈ Rn. Since xm is

Cauchy, for any ε > 0, there exists N > 0, such that if m,n > N , then

d(xn, xm) = (
n∑
j=1

(xmj − xnj )2)1/2 < ε.

14



Squaring,
n∑
j=1

(xmj − xnj )2 < ε2.

So for any fixed j (j=1,...n), if m,n > N , then

|xmj − xnj | < ε.

Thus, {xm}∞m=1 is Cauchy for each 1 ≤ j ≤ n. From Example 2.11, R is complete,

so there exists xj ∈ R such that

xmj → xj, as m→∞ (j is fixed).

Define x = (x1, x2, ..., xn), then x ∈ Rn and for any ε > 0 and fixed j

(j=1,2,...n), there exists Nj such that if m > Nj, then

|xmj − xj| <
ε√
n
.

Choose N = max{N1, N2, ...Nn}, then when m > N we have

|xmj − xj|2 <
ε2

n

n∑
j=1

(xmj − xj)2 < ε2

d(xm, x) = [
n∑
j=1

(xmj − xj)2)]1/2 < ε

So,

xm → x as m→∞.

Rn is complete.

EXAMPLE 2.13: Completeness of C[a, b].

15



Proof. Let (xm) be a Cauchy sequence in C[a,b], then for any ε > 0, there exists N ,

such that if m,n > N , then

d(xm, xn) = max
t∈J
|xm(t)− xn(t)| < ε.

Hence,

|xm(t)− xn(t)| ≤ max
t∈J
|xm(t)− xn(t)| < ε

and {xn(t)} is a Cauchy sequence of numbers for each t ∈ [a, b].

Thus,

lim
n→∞

xn(t) = x(t) (2.3)

for some number x(t), for each t ∈ [a, b].

In (2.1), take limit. As n −→∞, we obtain

|xn(t)− x(t)| < ε,

for any t, for any n ≥ N .

Since xN is continuous, for any ε > 0, for any t0 ∈ [a, b], there exists δ, such

that if t ∈ [a, b] with |t0 − t| < δ,

|xN(t0)− xN(t)| < ε

3
.

By (2.1), we have

|x(t)− xn(t)| < ε

3
for ∀t and n ≥ N.

Thus if |t− t0| < δ we have

|x(t0)− x(t)| = |x(t0)− xN(t0) + xN(t0)− xN(t) + xN(t)− x(t)|

16



≤ |x(t0)− xN(t0)|+ |xN(t0)− xN(t)|+ |xN(t)− x(t)| < ε

3
+
ε

3
+
ε

3
= ε.

Therefore, x(t) is continuous and

lim
n→∞

xn = x in C[a, b].

So C[a, b] is complete.

DEFINITION 2.14: Banach spaces.

A Banach spaces is a complete normed space.

EXAMPLE 2.15: Rn

Proof. Rn is complete by Example 2.12, and is a normed space by Example 2.9. So

Rn is a Banach space.

EXAMPLE 2.16: C[a, b]

Proof. C[a, b] is complete by Example 2.13, and it is a normed space by Example

2.6.

So C[a,b] is a Banach space.

DEFINITION 2.17: Hilbert Spaces.

A Hilbert space is a complete inner product space.

EXAMPLE 2.18: Rn

Proof. By Example 2.9, Rn is a inner product space. By Example 2.12, Rn is com-

plete.

So Rn is a Hilbert space.
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3. OPERATORS

DEFINITION 3.1: Suppose X, and Y are two metric spaces or vector spaces, the

mapping from X to Y is called an operator.

3.1 Contraction

DEFINITION 3.2: Let X = (X, d) be a metric space. A mapping T: X → X is

called a contraction on X if there is a positive real number α < 1 such that for all

x, y ∈ X

d(Tx, Ty) ≤ αd(x, y).

EXAMPLE 3.3: If f : [a, b] → R is differentiable and |f ′(x)| ≤ α < 1 for any

x ∈ [a, b], then f is a contraction.

Proof. By Mean Value Theroy, there exists a point c ∈ [a, b], such that for any

a, b ∈ [a, b]

f(a)− f(b)

a− b
= f ′(c).

Since |f ′(x)| ≤ α < 1,

|f(a)− f(b)| = |a− b||f ′(c)| ≤ α|a− b|,

where 0 < α < 1.

EXAMPLE 3.4: Let X = {x ∈ R|x ≥ 1}, and let the mapping T from X to X be

defined by Tx = x
2

+ x−1. Show that T is a contraction.

Proof. Suppose x, y ≥ 1, x, y ∈ R. Define d(x, y) = |x− y|.

d(Tx, Ty) = |Tx− Ty| = |x− y
2
− x− y

xy
| = |x− y||1

2
− 1

xy
| = d(x, y)|1

2
− 1

xy
|.

18



Since x, y ≥ 1 so xy ≥ 1, 0 < 1
xy
≤ 1, |1

2
− 1

xy
| ≤ 1

2
, d(Tx, Ty) ≤ 1

2
d(x, y).

Let 1
2
≤ α ≤ 1 then

d(Tx, Ty) ≤ 1

2
d(x, y) ≤ αd(x, y)

3.2 Continuous Operator

DEFINITION 3.5: Let X = (X, d1) and Y = (Y, d2) be two metric spaces. A

mapping T: X → Y is called continuous at x0, if for any ε > 0, there exists δ, such

that if d1(x0, x) < δ, then d2(T (x0), T (x)) < ε.

In particular, a contraction operator is continuous.

LEMMA 3.6: If f is a continuous function on a compact set, then f is uniformly

continuous.

EXAMPLE 3.7: Suppose f : X −→ R is a continuous function where

X = {(x1, x2) : a ≤ x1 ≤ b, c ≤ x2 ≤ d}.

Since X is a compact set, and f is continuous, hence f is uniformly continuous.

EXAMPLE 3.8: Prove that Green’s function is continuous.

G(x, s) =


−y1(s)y2(x)/p(x)W (y1, y2)(x), 0 ≤ s ≤ x,

−y1(x)y2(s)/p(x)W (y1, y2)(x), x ≤ s ≤ 1.

The function y1 and y2 are continuous on the interval [a, b] and p(x)W (y1, y2)(x)

is a constant, so G : [a, b] × [a, b] → R is continuous. Since [a, b] × [a, b] is compact,

so G is uniformly continuous.
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3.3 Completely Continuous Operator

DEFINITION 3.9: Let X,Y be two metric spaces. The operator T is called com-

pletely continuous if it is continuous and T maps any bounded subset of X into a

relatively compact subset of Y.

DEFINITION 3.10: A relatively compact subset B of Y is a subset whose closure

is compact, namely, any sequence in B has a convergent subsequence in Y.

3.4 Ascoli’s Theorem [1]

THEOREM 3.11: A bounded equicontinuous sequence (xn) in C[a, b] has a subse-

quence which converges.

REMARK 3.12: (a) Bounded: there is some L > 0, such that |xn(t)| ≤ L for all

t∈ [a, b], all n.

(b) Equicontinuous: for every ε > 0, there is a δ > 0 such that

|xn(t)− xn(u)| < ε,

for all n ≥ 1 whenever |t− u| < δ and t, u ∈ [a, b].

3.5 Lipschitz Condition

DEFINITION 3.13: If f(t, y) is a continuous function defined on the rectangle

D = {(t, y) : a ≤ t ≤ b, c ≤ y ≤ d}, and ∂f
∂y

is continuous, then there exists K > 0

such that

|f(t, y1)− f(t, y2)| ≤ K|y1 − y2|

for any (t, y1) and (t, y2) in D.

EXAMPLE 3.14: Suppose that the function f(t, x1, x2, ...xn) is continuous and ∂f
∂xi
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is continuous for each i = 1, 2, ..., n. Show that there exists a K > 0 such that

|f(t, x1, x2, ...xn)− f(t, y1, y2, ...yn)| ≤ K(|x1 − y1|+ |x2 − y2|+ ...+ |xn − yn|)

Proof. Consider

|f(t, y1, y2, ..., yi−1, xi, xi+1, ..., xn)− f(t, y1, y2, ..., yi−1, yi, xi+1, ...xn)|

All the variables are same but the ith variable. So by mean value theorem, we have

some Ki > 0 such that

|f(t, y1, y2, ..., yi−1, xi, xi+1, ..., xn)− f(t, y1, y2, ..., yi−1, yi, xi+1, ...xn)| ≤ Ki|xi − yi|

for each i = 1, 2, ..., n. Consider

n∑
i=1

[f(t, y1, y2, ..., yi−1, xi, xi+1, ..., xn)− f(t, y1, y2, ..., yi−1, yi, xi+1, ...xn)]

= f(t, x1, x2, ..., xn)− f(t, y1, x2, ..., xn) + f(t, y1, x2, ..., xn)− f(t, y1, y2, x3, ..., xn)

+f(t, y1, y2, x3, ..., xn)−f(t, y1, y2, y3, x4, ..., xn)+...+f(t, y1, ..., yn−1, xn)−f(t, y1, ..., yn)

= f(t, x1, ..., xn)− f(t, y1, ..., yn)

Choose K = max{K1, K2, ..., Kn}, then

|f(t, x1, x2, ...xn)− f(t, y1, y2, ...yn)|

= |
∑n

i=1 f(t, y1, y2, ..., yi−1, xi, xi+1, ..., xn)− f(t, y1, y2, ..., yi−1, yi, xi+1, ...xn)|

≤
∑n

i=1 |f(t, y1, y2, ..., yi−1, xi, xi+1, ..., xn)− f(t, y1, y2, ..., yi−1, yi, xi+1, ...xn)|

≤ K1|x1 − y1|+K2|x2 − y2|+ ...+Kn|xn − yn|

≤ K(|x1 − y1|+ |x2 − y2|+ ...+ |xn − yn|)

= K
∑n

i=1 |xi − yi|
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4. FUNCTIONAL

DEFINITION 4.1: Let X be a vector space. A mapping from X to the real line R

is called a functional.

DEFINITION 4.2: We say that the functional J [y] has a weak extremum for

y = ȳ ∈ X if there there exists ε > 0 such that J [y] − J [ȳ] has the same sign

for all y in the domain of definition of the functional which satisfies the condition

‖y − ȳ‖ < ε1, where ‖ ‖1 denotes the norm in the space C1(a, b) (C1(a, b) con-

sists of all functions defined on (a,b) which are continuous and have continuous first

derivative) [5].

THEOREM 4.3: A necessary condition for the differential functional J [y] to have

an extremum [5] for y = ŷ is that its variation vanish for y = ŷ, i.e. that

δJ [y] = 0

for y = ŷ and all admissible h [5].

Proof. Suppose J [y] has a minimum for y = ŷ. By the definition of variation,

∆J [h] = δJ [h] + ε‖h‖ ε‖h‖ → 0 as ‖h‖ → 0

where δJ [h] is a linear functional which differs from ∆J [h] by an infinitesimal of

order higher than 1 relative to ‖h‖, denoted by ε‖h‖. Thus, for sufficiently small

‖h‖, ∆J [h]and δJ [h] have same sign. Suppose δJ [h0] 6= 0 for some h0, then for any

α > 0, we have

∆J [−αh] = −δJ [αh].
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But since J [y] has a minimum for y = ŷ,

∆J [h] = J [ŷ + h]− J [ŷ] ≥ 0

a contradiction.

4.1 Euler’s Equation

THEOREM 4.4: Let F (x, y, z) be a function with continuous first and second

derivatives with respect to all its arguments. Suppose y satisfies the boundary con-

ditions

y(a) = A, y(b) = B

find the function y for which the functional

J [y] =

∫ b

a

F (x, y, y′)dx

has a weak extremum. Give y an increment h(x), then:

h(a) = h(b) = 0.

Since y + h should satisfy the boundary conditions

y(a) + h(a) = A, y(b) + h(b) = B.
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The corresponding increment of the functional is:

∆J = J [y + h]− J [y]

=

∫ b

a

F (x, y + h, y′ + h′)dx−
∫ b

a

F (x, y, y′)dx

=

∫ b

a

[F (x, y + h, y′ + h′)− F (x, y, y′)]dx

The Taylor series of F (x, y + h, y′ + h′) expanded about (x0, y0, y
′
0) is:

F (x0, y0, y
′
0) + [(y − y0)Fy(x0, y0, y′0) + (y′ − y′0)Fy′(x0, y0, y′0)] + ◦(h, h′)

= F (x0, y0, y
′
0) + [hFy(x0, y0, y

′
0) + h′Fy′(x0, y0, y

′
0)] + ◦(h, h′)

◦(h, h′) is a function of order higher than 1 relative to h and h′.

So the increment of J at (x0, y0, y
′
0) is

∆J |(x0,y0,y′0) =

∫ b

a

[F (x0, y0, y
′
0) + hFy(x0, y0, y

′
0) + h′Fy′(x0, y0, y

′
0) + ◦(h, h′)

− F (x0, y0, y
′
0)]dx

=

∫ b

a

[hFy(x0, y0, y
′
0) + h′Fy′(x0, y0, y

′
0) + ◦(h, h′)]dx

=

∫ b

a

[hFy(x0, y0, y
′
0) + h′Fy′(x0, y0, y

′
0)]dx+

∫ b

a

◦(h, h′)dx

h is the only variable.

Set 4J [h] = 4J |x0,y0,y′0 , φ[h] =
∫ b
a
[hFy(x0, y0, y

′
0) + h′Fy′(x0, y0, y

′
0)]dx,

ε[h] =
∫ b
a
◦(h, h′)dx, then

4J [h] = φ[h] + ε[h]

where φ[h] is a linear functional of h, and ε[h]→ 0 as h→ 0 .

By the definition of the differential of a functional, φ[h] is the differential of

J [y] at point(x0, y0, y
′
0).
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If J [y] have an extremum at (x0, y0, y
′
0), then

φ[h] =

∫ b

a

[hFy(x0, y0, y
′
0) + h′Fy′(x0, y0, y

′
0)]dx = 0.

Assume φ[h] = 0

Set A =
∫ x
a
Fy(s)ds, then A′ = Fy(x).

Integrate by parts

∫ b

a

Fyhdx =

∫ b

a

A′hdx = Ah|bx=a −
∫ b

a

Ah′dx

= A[h(b)− h(a)]−
∫ b

a

Ah′dx = −
∫ b

a

Ah′dx

φ[h] =

∫ b

a

[−Ah′ + Fy′h
′]dx =

∫ b

a

[−A+ Fy′ ]h
′dx = 0 (4.4)

Set α = −A+ Fy′ , then there is a constant c such that α = c.

Proof. Let c defined by
∫ b
a
(α − c)dx = 0. Since h is arbitrary, choose h =

∫ x
a

(α −

c)ds, then h(a) = h(b) = 0

∫ b

a

[α− c]h′ =
∫ b

a

(αh′ − ch′)dx =

∫ b

a

αh′dx− c
∫ b

a

h′dx

=

∫ b

a

αh′dx− c[h(a)− h(b)] =

∫ b

a

αh′dx.

Since α = −A+ Fy′ , and (4.4)

∫ b

a

[α− c]h′ = 0.

Since h =
∫ x
a

(α− c)ds, h′ = α− c,

∫ b

a

(α− c)h′dx =

∫ b

a

(α− c)2dx = 0. (4.5)
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By (4.5) and (α− c)2 ≥ 0, α = c

So α′ = 0.

α′ = (−A+ Fy′)
′ = −A′ + d

dx
Fy′ = −Fy +

d

dx
Fy′ = 0

Euler’s Equation:

Fy −
d

dx
Fy′ = 0

4.2 The Isoperimetric Problem

J [y] =

∫ b

a

F (s, y, y′)dx y(a) = A y(b) = B

K[y] =

∫ b

a

G(x, y, y′)dx = l

if y(x) is an extremal of J[y], but not an extremal of K[y], then

Fy −
d

dx
Fy′ + λ(Gy −

d

dx
Gy′) = 0.

Proof. Give y(x) an increment

δ1y(x) + δ2y(x)

δ1y(x) is nonzero only in a neighborhood of x1.

δ2y(x) is nonzero only in a neighborhood of x2.

Using variational derivative, we can write:

∆J = {δF
δy
|x=x1 + ε1}∆σ1 + {δF

δy
|x=x2 + ε2}∆σ2 (4.6)
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where ∆σ1 =
∫ b
a
δ1y(x)dx and ∆σ2 =

∫ b
a
δ2y(x)dx,

ε1, ε2 −→ 0, as ∆σ1, ∆σ2 −→ 0.

Lety∗ = y + δ1y(x) + δ2y(x), since K[y] = l, ∆k = K[y∗]−K[y] = 0

0 = {δG
δy
|x=x1 + ε′1}∆σ1 + {δG

δy
|x=x2 + ε′2}∆σ2 (4.7)

Suppose { δG
δy
|x=x2 + ε′2} 6= 0, since y is not an extremal of K, x2 exists.

From (4.7), we can get

∆σ2 = −
{ δG
δy
|x=x1 + ε′1}

{ δG
δy
|x=x2 + ε′2}

∆σ1 = −(

δG
δy
|x=x1

δG
δy
|x=x2

+ ε′)∆σ1 (4.8)

where ε′ −→ 0, as ∆σ1 −→ 0.

Plug (4.8) into (4.6)

∆J = {δF
δy
|x=x1 + ε1}∆σ1 − (

δG
δy
|x=x1

δG
δy
|x=x2

+ ε′){δF
δy
|x=x2 + ε2}∆σ1.

Let λ = −
δF
δy
|x=x2

δG
δy
|x=x2

, then

∆J = {δF
δy
|x=x1 + ε1}∆σ1 + λ{δG

δy
|x=x1 + ε′}∆σ1

= {δF
δy
|x=x1 + λ(

δG

δy
|x=x1)}∆σ1 + ε4 σ1
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5. APPLICATIONS

5.1 Initial Value Problem

DEFINITION 5.1: Fixed point.

A fixed point of a mapping T : X → X is an x ∈ X such that

Tx = x.

EXAMPLE 5.2: The mapping x 7−→ x2 has two fixed points 0 and 1.

A rotation of the plane has only one fixed point, the center of rotation.

THEOREM 5.3: Banach Fixed Point Theorem (Contraction Theorem).

Given an non-empty complete metric space X=(X,d), then any contraction

T : X → X, has exact one fixed point.

Proof. Existence:

Choose any x0 ∈ X,and define a sequence xn by

x0, x1 = T (x0), x2 = T (x1), ..., xn = T (xn−1), ...

For any m ∈ N , by the definition of contraction we have

d(xm+1, xm) = d(Txm+1, Txm) ≤ αd(xm, xm−1)

where α < 1.

Similarly,

d(xm, xm−1) = d(Txm, Txm−1) ≤ αd(xm−1, xm−2)
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Repeat this process m times, then we get

d(xm+1, xm) ≤ αmd(x1, x0)

By the triangle inequality, and the above inequality, we have for n > m,

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2)...+ d(xn−1, xn)

≤ (αm + αm+1 + α−1)d(x0, x1)

= αm
1− αn−m

1− α
d(x0, x1)

Since 0 < α < 1, 0 < 1− αn−m < 1, so

d(xm, xn) ≤ αm

1− α
d(x0, x1) (5.9)

On the right side of (5.9), d(x0, x1) is fixed and 0 < 1 − α < 1, so let m

sufficiently large, for any ε > 0, we can make (5.9) less than ε. This proves {xn} is

Cauchy.

Since X is complete, {xn} has a limit in X, say xn → x, as n → ∞ and

x ∈ X.

Consider d(x, x)

d(x, Tx) ≤ d(x, xm) + d(xm, Tx) ≤ d(x, xm) + αd(xm−1, x),

by the definition of contraction and xm = T (xm−1).

Since xm → x as m → ∞, for any ε > 0, there exists N ∈ Z, such that if

m− 1 > N , then d(x, xm) < ε
2

and d(xm−11, x) < ε
2α

. This implies that

d(x, Tx) ≤ ε

2
+ α

ε

2α
= ε.
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So we conclude that d(x, Tx) ≤ 0.

But d(x, Tx) ≥ 0, so d(x, Tx) = 0, which implies x = Tx.

Uniqueness:

Suppose there are 2 fixed points of T :

Tx = x, Tx′ = x′

then

d(x, x′) = d(Tx, Tx′) ≤ αd(x, x′)

where α < 1.

Thus, (1− α)d(x, x′) ≤ 0. Hence, d(x, x′) = 0, x = x′.

THEOREM 5.4: Picard’s Existence and Uniqueness Theorem.

Let f be continuous on a rectangle

R = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b}

and thus bounded on R, say

|f(t, x)| ≤ c for all (t, x) ∈ R

c is a real number. Suppose that f satisfies a Lipschitz condition on R with respect

to its second argument, that is, there is aa constant k such that for (t,x),(t,v) ∈ R

|f(t, x)− f(t, v)| ≤ k|x− v|.

Then the initial value problem :

x′ = f(t, x)
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x(t0) = x0

has a unique solution. This solution exists on an interval [t0 − β, t0 + β],

where

β < min{a, b
c
,

1

k
}.

Proof. Let C(J) consists of all real-valued continuous functions on the closed inter-

val J = [t0 − β, t0 + β]. Define the metric by

d(x, y) = max
t∈J
|x(t)− y(t)|.

Then (C(J), d) is a complete metric space.

Let C0(J) be the subspace of C(J), and C0(J) satisfies

|x(t)− x0| ≤ cβ

where x(t) ∈ C(J).

We can see that for any x(t) ∈ C0(J), the domain and range of the function

x(t) are closed, so C0(J) is closed in C(J). Since C(J) is complete, C0(J) is com-

plete.

Integrate both side of x′(t) = f(t, x) from t0 to t, then

x(t)− x(t0) =

∫ t

t0

f(s, x(s))ds

Applying initial condition x(t0) = x0, we see that the initial value problem can be

written as

x = x0 +

∫ t

t0

f(s, x(s))ds.
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Define a mapping T from C0(J) to C(J):

Tx(t) = x0 +

∫ t

t0

f(s, x(s))ds, x(t) ∈ C0(J).

If x(t) ∈ C0(J), then s ∈ J , and |x(s)− x0| ≤ cβ < b, so (s, x(s)) ∈ R.

To see Tx(t) ∈ C0(J), we need |Tx(t) + x0| ≤ cβ. In fact,

|Tx(t) + x0| = |
∫ t

t0

f(s, x(s))| ≤ |t− t0|c

because |f(t, x(t))| ≤ c.

Now show T is a contraction.

For any x(t), v(t) ∈ C0(J), we have

|Tx(t)− Tv(t)| = |
∫ t

t0

[f(s, x(s))− f(s, v(s))]ds

≤
∫ t

t0

|f(s, x(s))− f(s, v(s))|ds

≤
∫ t

t0

k|x(s)− v(s)|ds

≤ |t− t0|kmax
s∈J
|x(s)− v(s)|

≤ βkd(x, v)

Since βkd(x, v) dose not depend on t, we can take the maximum on |Tx(t)−

Tv(t)|,

d(Tx, Tv) ≤ αd(x, v)

where α = βk < 1. Thus T is a contraction.

By Banach Fixed Point Theorem, there exists a unique x(t) ∈ C0(J) such

that

x(t) = Tx(t) = x0 +

∫ t

t0

f(s, x(s))ds.
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Differentiate both side, then

x′(t) = f(t, x(t)).

And the initial condition is also satisfied because

x(t0) = x0 +

∫ t0

t0

f(s, x(s))ds = x(t0) + 0 = x(t0).

System of Linear Equations.

Consider the system of n first order differential equations:



x′1 = f1(t, x1, x2, ..., xn)

x′2 = f2(t, x1, x2, ..., xn)

...

x′n−1 = fn−1(t, x1, x2, ..., xn)

x′n = fn(t, x1, x2, ..., xn)

Suppose the initial condition is:

x1(t0) = a1, x2(t0) = a2, ..., xn(t0) = an

then from the previous proof, we know that for any fixed k (k=1,2,...n), the

equation

x′k = fk(t, x1, ..., xn)

is equivalent to

xk = ak +

∫ t

t0

fk(s, x1(s), ..., xn(s))ds
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so we can rewrite the system as



x1 = a1 +
∫ t
t0
f1(s, x1(s), ..., xn(s))ds

x2 = a2 +
∫ t
t0
f2(s, x1(s), ..., xn(s))ds

...

xn = an +
∫ t
t0
fn(s, x1(s), ..., xn(s))ds

subject to the initial condition.

Or x = F (x), where

x =



x1

x2
...

xn


and

F (x) =



a1 +
∫ t
t0
f1(s, x1(s), ..., xn(s))ds

a2 +
∫ t
t0
f2(s, x1(s), ..., xn(s))ds

...

an +
∫ t
t0
fn(s, x1(s), ..., xn(s))ds


.

Prove the Existence and Uniqueness Theorem for the system by applying

Banach Fixed Point Theorem to show that F(x) has a fixed point.

Let Ω = {x = (x1, ..., xn)|xk ∈ C[a, b], k = 1, 2, ..., n} and for x = (xi),

y = (yi) ∈ Ω , define

d(x, y) = [
n∑
i=1

(max
a≤t≤b

|xi(t)− yi(t)|)2]
1
2 .

Claim that (Ω, d) is a complete metric space.

Proof. (M1) to (M3) is obvious, we now prove (M4).
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By triangle inequality, if we fix i (i=1,2,...,n), then for any t ∈ [a.b], we have

|xi(t)− yi(t)| = |xi(t)− zi(t) + zi(t)− yi(t)| ≤ |xi(t)− zi(t)|+ |zi(t)− yi(t)|

so

max
a≤t≤b

|xi(t)− yi(t)| ≤ max
a≤t≤b

(|xi(t)− zi(t)|+ |zi(t)− yi(t)|)

≤ max
a≤t≤b

|xi(t)− zi(t)|+ max
a≤t≤b

|zi(t)− yi(t)|

[
n∑
i=1

(max
a≤t≤b

|xi(t)− yi(t)|)2]
1
2 ≤ [

n∑
i=1

(max
a≤t≤b

|xi(t)− zi(t)|+ max
a≤t≤b

|zi(t)− yi(t)|)2]
1
2

Applying Minkowski inequality on the right side of above inequality for ele-

ments in Rn,

[
n∑
i=1

(max
a≤t≤b

|xi(t)− zi(t)|+ max
a≤t≤b

|zi(t)− yi(t)|)2]
1
2

≤ [
n∑
i=1

(max
a≤t≤b

|xi(t)− zi(t)|)2]
1
2 + [

n∑
i=1

(max
a≤t≤b

|zi(t)− yi(t)|)2]
1
2

So

d(x, y) = [
n∑
i=1

(max
a≤t≤b

|xi(t)− yi(t)|)2]
1
2

≤ [
n∑
i=1

(max
a≤t≤b

|xi(t)− zi(t)|)2]
1
2 + [

n∑
i=1

(max
a≤t≤b

|zi(t)− yi(t)|)2]
1
2

= d(x, z) + d(y, z).

Thus, (Ω, d) is a metric space.

To prove completeness of (Ω, d), choose any Cauchy sequence {xm} in Ω.

Since {xm}, is Cauchy, for any ε > 0, there exists N ∈ N, such that if
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m, k ≥ N , then

d(xm, xk) = [
n∑
i=1

(max
a≤t≤b

|xmi (t)− xki (t)|)2]
1
2 < ε

so
n∑
i=1

(max
a≤t≤b

|xmi (t)− xki (t)|)2 < ε2

max
a≤t≤b

|xmi (t)− xki (t)| < ε

|xmi (t)− xki (t)| < ε

So if i is fixed, then xmi (t) is a Cauchy sequence of continuous functions.

From example 2.13, we know that C[a,b] is complete. So there exists xi(t) ∈ C[a, b]

such that

max
a≤t≤b

{|xmi (t)− xi(t)|} as m→∞

for any i=1,2,...,n.

Set x = {x1(t), x2(t), ..., xn(t)}, t ∈ [a, b], then x ∈ Ω since xi(t) ∈ C[a, b]. Fix

i, i = 1, 2, ..., n, and for any ε > 0, there exists Ni such that if m > Ni, then

|xmi (t)− xi(t)| <
ε√
n
.

Choose N = max{N1, N2, ..., Nn}, if m > N then

max
a≤t≤b

|xmi (t)− xi(t)| <
ε√
n

(max
a≤t≤b

|xmi (t)− xi(t)|)2 <
ε2

n

n∑
i=1

(max
a≤t≤b

|xmi (t)− xi(t)|)2 < ε2
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d(xm, x) = [
n∑
i=1

(max
a≤t≤b

|xmi (t)− xi(t)|)2]
1
2 < ε

This shows that xm → x, as m→∞.

So (Ω, d) is complete.

Now we need to set up a contraction mapping F : Ω → Ω is, namely there

exists 0 < α < 1 such that for all x = (xi), y = (yi) ∈ Ω

d(Fx, Fy) ≤ αd(x, y)

The metric between Fx and Fy is:

d(Fx, Fy) = [
n∑
i=1

(max
a≤t≤b

|
∫ t

t0

[fi(s, x(s))− fi(s, y(s))]ds|)2]
1
2 .

Consider

|
∫ t

t0

[fi(s, x(s))− fi(s, y(s))]ds|.

It is easy to see

|
∫ t

t0

[fi(s, x(s))− fi(s, y(s))]ds| ≤ |t− t0| max
a≤s≤b

|fi(s, x(s))− fi(s, y(s))|,

so

max
a≤s≤b

|
∫ t

t0

[fi(s, x(s))− fi(s, y(s))]ds| ≤ |t− t0| max
a≤s≤b

|fi(s, x(s))− fi(s, y(s))|.

Then squaring both side, take the sum from i=1 to n, and take the square

root we can get

d(Fx, Fy) ≤ |t− t0|d(fi(s, x), fi(s, y)).
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Since fi is continuous and ∂f
∂xi

is continuous for each i = 1, 2, ..., n, by Exam-

ple 3.14 fi satisfies Lipschitz condition: there exists K > 0 such that

d(fi(s, x(s)), fi(s, y(s))) ≤ K
n∑
i=1

|xi − yi| ≤ Kd(x, y)

for all x = (xi) and y = (yi) in Ω.

So

d(Fx, Fy) ≤ |t− t0|d(fi(s, x), fi(s, y)) ≤ K|t− t0|d(x, y)

If we let t ∈ (t0 − 1
K
, t0 + 1

K
), then |t− t0| < 1

K
, and K|t− t0| < 1.

Let α = K|t− t0|, then

d(Fx, Fy) ≤ αd(x, y)

and 0 < α < 1.

Thus, F is a contract mapping.

By Banach Fixed Point Theorem, F(x) has a unique fixed point.

5.2 Some Classical Fixed Point Theorems

THEOREM 5.5: Brouwer Fixed Point Theorem.

Any continuous map f of a closed ball Bn ⊆ Rn to itself has a fixed point.

THEOREM 5.6: Leray-Schauder Fixed Point Theorem.

If D is a non-empty,convex , bounded and closed subset of Banach space B

and T : D → D a compact and continuous map, then T has a fixed point in D.

DEFINITION 5.7: Convex:
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A subspace A of a vector space X is convex if

λx+ (1− λ)y ∈ A,

for all x, y ∈ A, and all λ ∈ [0, 1].

EXAMPLE 5.8: Consider the Banach space C[a, b], with a norm defined by

‖y(x)‖ = max
x∈[a,b]

|y(x)|.

Suppose Bη is the ball of C[a, b] defined by

Bη = {y(x) ∈ C[a, b] : ‖y‖ ≤ η}.

Then Bη is convex.

Proof. For any y, z ∈ Bη, and all λ ∈ [0, 1], λz + (1− λ)y is continuous and

‖λz + (1− λ)y‖ ≤ ‖λz‖+ ‖(1− λ)y‖

= |λ|‖z‖+ |1− λ|‖y‖

= λ‖z‖+ (1− λ)‖y‖

≤ λη + (1− λ)η = η

THEOREM 5.9: Boundary Value Problem.

Assume that f : [a, b]×R→ R is continuous and satisfies

|f(x, y)| ≤ u+ v|y|r,
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where u, v, r are real numbers and 0 < r < 1. Then the Sturm-Liouville problem

L[y] = −[p(x)y′]′ + q(x)y = f(x, y(x))

with the boundary condition

α1y(a) + α2y
′(a) = 0, β1y(b) + β2y

′(b) = 0

where |α1| + |α2| 6= 0, and |β1| + |β2| 6= 0, has a solution expressed via Green’s

function

y =

∫ b

a

G(x, s)f(s, y(s))ds

where

G(x, s) =


−y1(s)y2(x)/p(x)W (y1, y2)(x), a ≤ s ≤ x,

−y1(x)y2(s)/p(x)W (y1, y2)(x), x ≤ s ≤ b.

y1 and y2 are two independent solutions of L[y] = 0, and y1, y2 satisfying the

first and the second boundary condition respectively.

Proof. First, consider the Green’s function. There are two properties of the Green’s

function: p(x)W (y1, y2)(x) is a constant and G(x, s) is uniformly continuous. Prove

as below.

(pW )′ = p′(y1y
′
2 − y1y′2) + p(y′1y

′
2 + y1y

′′
2 − y′1y′2 − y1y′′2)

= y1[py
′
2]
′ − y2[py′1]′

= y1qy2 − y2qy1 = 0.

So p(x)W (y1, y2)(x) is a constant. Suppose p(x)W (y1, y2)(x) = c.

We already proved that Green’s function is continuous and uniformly contin-

uous in example 3.8.
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Consider the Banach space C[a, b], with a norm defined by

‖y(x)‖ = max
x∈[a,b]

|y(x)|.

Suppose Bη is the ball of C[a, b] defined by

Bη = {y(x) ∈ C[a, b] : ‖y‖ ≤ η}.

It is clear that Bη is non-empty, bounded, closed and convex.

Define a mapping from Bη to C[a, b]:

y −→ Ty =

∫ b

a

G(x, s)f(s, y(s))ds.

Since y1,y2 is bounded on [a, b], G(x, s) is bounded on [a, b], and there is a real

number M , such that

|G(x, s)| ≤M.

Since |f(x, y)| ≤ u+ v|y|r,

‖Ty‖ = max
x∈[a,b]

|
∫ b

a

G(x, s)f(s, y(s))ds| ≤M ∗ max
x∈[a,b]

∫ b

a

|f(s, y(s))ds|

≤M ∗
∫ b

a

|u+ v|y(s)|r|ds ≤M ∗ [u(b− a) + v‖y‖r(b− a)].

So,

‖Ty‖
‖y‖

≤ M ∗ [u(b− a) + v‖y‖r(b− a)]

‖y‖
=
Mu(b− a)

‖y‖
+ v(b− a)‖y‖r−1.

Since 0 < r < 1,

‖Ty‖
‖y‖

−→ 0 as ‖y‖ −→ ∞.
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So,

‖Ty‖ < ‖y‖,

there exists some large η > 0, such that

‖Ty‖ < η for all y ∈ Bη.

Namely, T : Bη → Bη.

Then, we prove T is continuous.

Define a metric on C[a, b] by

d(y, z) = max
x∈[a,b]

|y(x)− z(x)|

Consider f : [a, b]× [−η, η]→ R, since f is continuous and [a, b]× [−η, η] is a

compact set, f is uniformly continuous on [a, b]× [−η, η].

Since f(x, y) is uniformly continuous on a closed rectangle, for any ε > 0

there exists a δ, such that for any fixed z ∈ Bη, if d(y, z) < ε, then

d(f(x, y), f(x, z)) <
ε

M |b− a|
.

And

d(Ty, Tz) = max
x∈[a,b]

|
∫ b

a

G(x, s)[f(s, y)− f(s, z)]ds| ≤

|b− a| max
x∈[a,b]

|G(x, s)| ∗ max
x∈[a,b]

|[f(x, y)− f(x, z)]|

≤ |b− a|M ∗ ε

M |b− a|
= ε

So T is continuous on [a, b]× [−η, η].

If T is completely continuous, then T has a fixed point on[a, b] by Leray-
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Schauder Fixed Point Theorem.

We need to show that the mapping T maps any bounded subset of C[a, b],

suppose is Bη, into a relatively compact subset of C[a, b].

In order to prove this, consider Ascoli’s Theorem. If we can prove that the

sequence {Tn} is uniformly bounded and equicontinuous, then by Ascoli’s Theorem,

there exists a subsequence {Tnk} that converge uniformly.

We have already proved that Ty is bounded in a closed ball Bη, so the first

condition was satisfied.

Since f(x, y) is bounded on a closed rectangle [a, b] × [−η, η], there exists a

P , such that for all (x, y) ∈ [a, b]× [−η, η],

|f(x, y)| ≤ P.

Since G(x, s) is uniformly continuous, for any ε > 0, there exists δ such that

if |x1 − x2| < δ, then

|G(x1, s)−G(x2, s)| ≤
ε

P |b− a|
.

Then

|Tn(x1)− Tn(x2)| = |
∫ b

a

[G(x1, s)−G(x2, s)]f(s, y(s))ds|

≤ |b− a| max
x∈[a,b]

|[G(x1, s)−G(x2, s)]||f(s, y)|

≤ |b− a| ε

P |b− a|
∗ P = ε.

Since n is arbitrary,

|Tn(x1)− Tn(x1)| < ε

whenever |x1 − x2| < δ for all n.

Therefore, T is equicontinuous.
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By Ascoli’s Theorem, there exists a subsequence {Tnk} that converge uni-

formly. It means that T maps Bη, into a relatively compact set Bη. So T is com-

pletely continuous.

By Leray-Schauder Fixed Point Theorem, T has a fixed point, suppose is y:

y = Ty =

∫ b

a

G(x, s)f(s, y(s))ds

Show that y is a solution of the Sturm-Liouville problem by showing that y satisfy-

ing

L[y] = −[p(x)y′]′ + q(x)y = f(x, y(x))

and the boundary condition

α1y(0) + α2y
′(0) = 0, β1y(1) + β2y

′(1) = 0.

Since

y(x) =

∫ b

a

G(x, s)f(s, y(s))ds

= −
∫ x

a

y1(s)y2(x)f(s, y(s))

p(x)W (y1, y2)(x)
ds−

∫ b

x

y1(x)y2(s)f(s, ys)

p(x)W (y1, y2)(x)
ds

p(x)W (y1, y2)(x) = c, is a constant.

Substituted p(x)W (y1, y2)(x) by c, and multiply both side by c, then

cy(x) = −
∫ x

a

y1(s)y2(x)f(s, y(s))ds−
∫ b

x

y1(x)y2(s)f(s, y(s))ds

Taking derivative with respect to x,
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cy′(x) = −
∫ x

a

y1(s)y
′
2(x)f(s, y(s))ds−

∫ b

x

y′1(x)y2(s)f(s, y(s))ds

by Leibniz’s rule.

Multiplying −p(x), and then take the derivative again,

−c[p(x)y′(x)]′ = (py′2)
′
∫ x

a

y1(s)f(s, y(s))ds+ py′2y1f + (py′1)
′
∫ b

x

y2(s)f(s, y(s))ds− py′1y2f

= (py′2)
′
∫ x

a

y1(s)f(s, y(s))ds+ (py′1)
′
∫ b

x

y2(s)f(s, y(s))ds+ py′2y1f − py′1y2f

Since

py′2y1f − py′1y2f = p(x)W (y1, y2)(x)f = cf

−[p(x)y′(x)]′ + q(x)y(x) =
1

c
(py′2)

′
∫ x

a

y1(s)f(s, y(s))ds− 1

c
qy2

∫ x

a

y1(s)f(s, y(s)ds)

+
1

c
(py′1)

′
∫ b

x

y2(s)f(s, y(s))ds

− 1

c
qy1

∫ b

x

y2(s)f(s, y(s))ds+ f(x, y(x))

=
1

c
[(py′2)

′ − qy2]
∫ x

a

y1(s)f(s, y(s))ds

+
1

c
[(py′1)

′ − qy1]
∫ b

x

y2(s)f(s, y(s))ds+ f(x, y(x))

Since y1, y2 are the solution of L[y] = 0, the above equation equal f(x, y(x)).

y(x) =
1

c
[−

∫ x

a

y1(s)y2(x)f(s, y(s))ds−
∫ b

x

y1(x)y2(s)f(s, y(s))ds]

y(0) =
1

c
[0−

∫ b

a

y1(0)y2(s)f(s, y(s))ds] = −1

c

∫ b

a

y1(0)y2(s)f(s, y(s))ds

y′(x) =
1

c
[−

∫ x

a

y1(s)y
′
2(x)f(s, y(s))ds−

∫ b

x

y′1(x)y2(s)f(s, y(s))ds]
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y′(0) =
1

c
[0−

∫ b

a

y′1(0)y2(s)f(s, y(s))ds] = −1

c

∫ b

a

y′1(0)y2(s)f(s, y(s))ds

Since y1 satisfying the first boundary condition,

α1y(a) + α2y
′(a) = −1

c

∫ b

a

[α1y1(a)− α2y
′
1(a)]y2(s)f(s, y(s))ds = 0

Similarly, y(x) satisfying the second boundary condition by

β1y2(b) + β2y
′
2(b) = 0.

5.3 Maximum-Area Problem

Among all curves of length l in the xy-plane, find the one which encloses the

largest area. Suppose the center of the curve is (0,0), and the x-intercept is (-a,0),

(a,0). Then the question is: Find the maximum of the functional J [y] =
∫ a
−a ydx,

with conditions y(−a) = y(a) = 0, and K[y] =
∫ a
−a

√
1 + y′2dx = l.

Using Lagrange multiplier, form the functional

J [y] + λK[y] =

∫ a

−a
(y + λ

√
1 + y′2)dx

the corresponding Euler’s Equation is

1 + λ
d

dx

y′√
1 + y′2

= 0

Integrate both sides,

x+ λ
y′√

1 + y′2
= C1

46



or

(C1 − x)2 = λ2
y′2

1 + y′2

λ2

(C1 − x)2
=

1 + y′2

y′2
=

1

y′2
+ 1

λ2 − (C1 − x)2

(C1 − x)2
=

1

y′2

y′2 =
(C1 − x)2

λ2 − (C1 − x)2

y′ =
dy

dx
=

(C1 − x)√
λ2 − (C1 − x)2

dy =
(C1 − x)√

λ2 − (C1 − x)2
dx

Integrete both sides

y − C2 =

∫
(C1 − x)√

λ2 − (C1 − x)2
dx

Let u = λ2 − (C1 − x)2, du = 2(C1 − x)dx

2(y − C2) =

∫
u−

1
2du = 2u

1
2 = 2

√
λ2 − (C1 − x)2

(y − C2)
2 = λ2 − (C1 − x)2

(y − C2)
2 + (x− C1)

2 = λ2

So the curve is a circle.
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