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ABSTRACT

In recent times, a major share of human communication takes place online. The main reason be-
ing the ease of communication on social networking sites (SNSs). Due to the variety and large
number of users, SNSs have drawn the attention of the computer science (CS) community, par-
ticularly the affective computing (also known as emotional AI), information retrieval, natural lan-
guage processing, and data mining groups. Researchers are trying to make computers understand
the nuances of human communication including sentiment and sarcasm. Emotion or sentiment
detection requires more insights about the communication than it does for factual information
retrieval. Sarcasm detection is particularly more difficult than categorizing sentiment. Because,
in sarcasm, the intended meaning of the expression by the user is opposite to the literal mean-
ing. Because of its complex nature, it is often difficult even for human to detect sarcasm without
proper context. However, people on social media succeed in detecting sarcasm despite interacting
with strangers across the world. That motivates us to investigate the human process of detecting
sarcasm on social media where abundant context information is often unavailable and the group
of users communicating with each other are rarely well-acquainted. We have conducted a qualita-
tive study to examine the patterns of users conveying sarcasm on social media. Whereas most sar-
casm detection systems deal in word-by-word basis to accomplish their goal, we focused on the
holistic sentiment conveyed by the post. We argue that utilization of word-level information will
limit the systems performance to the domain of the dataset used to train the system and might not
perform well for non-English language. As an endeavor to make our system less dependent on
text data, we proposed a multimodal approach for sarcasm detection. We showed the applicability
of images and reaction emoticons as other sources of hints about the sentiment of the post. Our
research showed the superior results from a multimodal approach when compared to a unimodal
approach. Multimodal sarcasm detection systems, as the one presented in this research, with the
inclusion of more modes or sources of data might lead to a better sarcasm detection model.

KEYWORDS: social media, qualitative study, image, text, multimodality, sarcasm detection,
attention model
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1 INTRODUCTION

Social networking sites (SNSs) have large numbers of users all over the world. Some plat-

forms have a specific genre, that means, users discuss and interact with regard to some particular

topics, whereas there are some platforms that are more generalized in users’ interests. Over the

years, social media platforms have strived to incorporate new features as their user-bases grew.

Thus, social media’s text-based interaction became more multimodal with the inclusion of im-

ages, videos, etc. As the number of users on these platforms grew, the interaction became more

versatile due to different cultural backgrounds of the people. While at the beginning of SNSs,

most users were relatively young, nowadays people of different generations are joining these

platforms. This diverse nature of user interaction data on social media platforms attracted Big

Data researchers to retrieve information, recognize interaction pattern, and analyze sentiments

on these platforms. While sentiment analysis as a field of computer science is fairly developed,

in most cases, sentiment analysis is treated as a binary classification problem. Obviously, hu-

man sentiment is so complex that it can be helpful to treat in more than just positive and negative

categories. Recently, researchers are working on dividing positive sentiments in more fine cat-

egories like happiness, surprise, etc. as well as negative sentiments in more fine categories like

sadness and anger. Sarcasm as a form of sentiment on the other hand has gained a lot less atten-

tion. Existing literature admits that sarcasm detection is more complex than fine-tuning emotion

identification. The need for context information makes it more difficult to detect. Thus, failing

to identify sarcasm as a part of user interaction on social media can mislead users about other

users’ thoughts and may initiate misunderstanding and “internet debate.” We propose that multi-

modality can be a source of context information while communicating with diverse people. We

also show how a system can be developed to automatically detect sarcasm on social media and

propose some design recommendations.

Existing literature in computer science for sarcasm detection can be attributed mostly as
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text mining. They are often based on existing literature in linguistics or real-life views of the re-

searchers of sarcasm usage. Linguistics shed light on sarcasm from three points of view. Firstly,

sarcasm can be divided into two emotions as a sentiment analysis problem – surface emotion and

intended emotion. Here, surface emotion means the sentiment conveyed by the literal meaning of

what the person says. And intended emotion means what the person tried to imply and expected

the audience to infer. Some studies suggest that in sarcasm, the surface emotion of statement will

be positive whereas the intended emotion will be negative. However, some studies argue with

such a generalization. They advocate that while conveying sarcasm, the surface emotion and the

intended emotion of the statement will be opposite and this argument is congruent to views of

the first group of researchers. Secondly, sarcasm, as a part of communication violates the princi-

ples of Grice’s maxims of cooperative dialogue, namely (1) the maxim of quantity, (2) the maxim

of quality, (3) the maxim of relation, and (4) the maxim of manner. While the maxim of quality

requires one to be truthful in a dialogue by not giving any misinformation, sarcasm is attributed

as a misstatement about the emotion. Again, the maxim of manner mandates that one needs to

be concise, orderly, and clear in what one says, sarcasm by its nature creates ambiguity about it.

Thirdly, linguists suggest that sarcasm is often accompanied by some cues in popular patterns.

For example, they suggest the variation in speech rate and amplitude, non-verbal cues like air

quotes are strong indicators of sarcasm. Computer science researchers first recognized sarcasm

detection as a research problem in 2006. Tepperman et. al. [4] utilized the third point from lin-

guistics stated above in their study to detect sarcasm. They utilized the phrase “yeah right” as a

notation for sarcasm. Many later studies utilized these views from linguistics to infer context,

identifying patterns like capitalized texts, quotation marks, etc., detecting opposite sentiments in

different parts of larger statements, and so on as different approaches to detect sarcasm. However,

these linguistic studies emphasize in-person communication and thus, neither focus on users’

interaction on SNSs nor are limited by the nature of interaction on those platforms. As a result,

computer scientists mostly exploit the verbal aspects of sarcasm expressed with text, and have

2



not been utilizing the non-verbal aspects or cues of sarcasm. We argue that mutlimodal data can

provide important information in this regard.

First of all, we want to bridge the gap of research in linguistics and computer science

for in-person communication and communication over social media platforms, respectively. For

that we conducted a qualitative study with participants from one English speaking and one non-

English language speaking group. We asked the users when and how they conveyed sarcasm on

social media. This helped us understand how they express the verbal and non-verbal cues of sar-

casm (e.g., air quotes, variation of speech rate, etc.) within the limitations imposed by the plat-

form’s main mode of communication (e.g. text, emoticons, etc.). Our qualitative study suggests

the pattern of cues of sarcasm on social media. Some of the themes raised by our participants

were plausible with the patterns used by the previous literature (e.g. capitalization, quotation,

etc.). However, some other new themes emerged from our observation. These themes empha-

sized the importance of multimodality in sarcasm detection. We propose that visual cues and

visual contents of the images can contain important indications of an image being sarcastic. In

some cases, visual cues in an image are enough for an individual to know if the post is sarcastic,

for instance, in cases of memes. Again, opposing sentiments conveyed by the visual contents of

the images and the text captions of the posts might be a form of multimodal sarcastic post. That

means, different sentiments in different modes might indicate sarcasm. Besides investigating the

format or structure of sarcastic posts on SNSs, we studied the bidirectional dynamics of how sar-

casm impacts the popularity of a post in general and how peer sentiment influences users’ sar-

casm usage patterns. This later investigation allowed us to suggest design implications as part of

this research.

For conducting the qualitative study, we interviewed interested participants. We analyzed

the interview data with grounded theory approach. After finding the themes, we approached de-

velopment of a sarcasm detection system from the point of machine learning model. Therefore,

we needed dataset for training the models. We found there was a scarcity of labeled datasets for

sarcasm detection. Since sarcasm is a highly subjective concept and only the person making the
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statement is certain of whether the post is sarcastic or not, we collected self-annotated posts for

our dataset. Posts were labeled as sarcastic by the person who posted that content. We collected

data from popular social media platforms – Facebook, Twitter, and Flickr. We also utilized some

existing datasets [5]. Aside from dataset collection, we also developed the systems model archi-

tectures and trained those with the collected dataset. We also evaluated the performance of trans-

fer learning for many existing popular neural network architecture. We presented how the perfor-

mance of the system improves with the inclusion of multimodality into the system.

Our system shows the superiority of a multimodal approach to a unimodal approach with

text data only. Our system is not limited to any particular phrase (e.g. “yeah right”) or language

specific formatting (e.g. capitalization of words in English) as the system depends not only on

text data, but relies on the holistic structure of the social media post. We analyze the relation of

sarcasm use with the users’ experience on these platforms to suggest future designs. The remain-

der of this thesis is organized as follows: chapter 2 discusses the related works in the existing

literature; chapter 3 gives brief general overviews of the concepts or the building blocks of the

system; chapter 4 focuses on the conducted qualitative study and analyzes the data for discover-

ing the themes; the later three chapters discuss how gradual inclusion of modalities impact the

system behavior – chapter 5 and chapter 6 discuss only text and only image based approaches for

sarcasm detection, respectively, and chapter 7 highlights how multimodal approach to sarcasm

detection with text, images, and reaction emoticons improve the system accuracy; the next chap-

ter evaluates the qualitative findings and the machine learning model together for shading light

on designs of SNSs, discusses possible threats to the validity of this study, and the future research

directions. Finally, we draw the concluding remarks.
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2 LITERATURE REVIEW

Existing literature in the field of sarcasm detection comes from several disciplines, in-

cluding linguistics, psychology, social science, and more recently, computer science. Though,

they differ in their goals. For example, studies from psychology and social sciences focus on the

“why” and “when” questions–they ask when and why do people use sarcasm, researchers from

linguistics and computer science disciplines focus predominantly on the “how” question. Specif-

ically they investigate how do people convey sarcasm and how can it be recognized. Although

researchers from computer science and linguistics align on their question, they differ in their ob-

jective. Whereas linguists do not typically concern themselves with automatically detecting sar-

casm, computer science researchers focus on developing algorithms for detecting sarcasm as well

besides understanding the computational model or nature of sarcasm. In this chapter, we will dis-

cuss studies from several disciplines, however, we will focus on the works that tried to address

the questions like: “How do people convey sarcasm?” and “How to detect sarcasm?”

2.1 Sarcasm Constructs

Most works that study the constructs of sarcasm are from linguistics, psychology, and

cognitive science. Gibbs et al. [6] conducted experiments with 256 undergraduate students, where

they showed how non-literal interpretations of sarcastic statements are processed by humans be-

fore the literal meaning. They said that when a sarcastic statement is made in an in-person con-

versation, and the audience have access to non-verbal cues besides the verbal statements, the au-

dience translate the statements into the corresponding intended meaning, i.e., non-literal meaning

before translating the statements into their surface/literal meaning. They also discussed how sar-

casm impacts how long the participants of a conversation remember a particular statement. They

highlight the ease of processing and memory for sarcastic utterances. In a collection of several

empirical and theoretical works, Gibbs et al. [7] discuss the theory of irony, especially compre-

hension of sarcasm in verbal form, social contexts, and functions of irony.
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Sarcasm detection as a field of computer science can be placed under the field of senti-

ment analysis, which first drew the attention of computer science researchers in 2006. Tepperman

et al. [4] developed the first work in computer science that recognized the problem of sarcasm

detection from the perspective of computer science. They experimented with sarcasm recogni-

tion using cues like contextual (e.g., acknowledgement, agreement/disagreement), prosodic, and

spectral features (e.g. pitch, energy, duration of each word). Given the limited capability of nat-

ural language processing at that time, they proposed a very naı̈ve approach of detecting sarcasm

from text data. They emphasized on the nature of sarcasm of being associated with several com-

monly used phrases. In their work, they only searched for the phrase “yeah right” as an indicator

of sarcasm.

Several studies have invested effort to define what it means to be “sarcasm”. Gonzalez-

Ibanez et al. [8] identified the opposite nature of literal and intended meaning of micro-blog posts

as sarcasm. According to them, sarcasm is different from positive or negative statements made

on social media. It conveys negative sentiment while the literal meaning (also termed as surface

sentiment) of the statement is positive and likewise, conveys positive intended sentiment with

apparently negative surface meaning. That means, the study by [8] argues that sarcasm has one

intended and one surface sentiment that have opposite polarity, i.e., positive surface meaning with

negative intended meaning, and vice-versa. For example, in a statement like: “Thank you for ru-

ining my day.”, the phrase “thank you” is used with criticizing intention (i.e., negative intended

meaning), whereas the phrase itself literally expresses gratitude (i.e., positive surface meaning).

However, several other studies do not agree with them in this regard. Filatove et al. [9] argue that

sarcasm always has positive literal meaning with a negative intended meaning. They also present

observations of sarcasm having clear victims in micro-blogging platforms including social me-

dia, blogging sites, etc. They discussed sarcasm and irony replaceably in their work. Kreuz et

al. [10] from a linguistic perspective agree with the argument of Filatova et al. [9] on sarcasm

having always positive literal meaning with negative intended meaning and clear victim deeming

the opposite very unlikely.
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Clift et al. [11] explained sarcasm as a phenomenon of divergence between the spoken

words and their intended meaning with the Traditional Oppositional Model (TOM). However,

this model was criticized for ignoring the requirement of these two aspects of meaning happen-

ing at the same time. Sperber et al. [12] suggested that audience just process the intended mean-

ing of sarcasm in a model named “Echoic/Interpretation Model”. Later building on this model,

the “Echoic Reminder Model” was proposed and reemphasized by Kreuz et al. [10] and Colston

et al. [13] discussed the role of generally expected situation or social norms. Instead Kumon-

Nakamura et al. [14] suggested sarcasm is achieved by mentioning part of expected situation that

has occured while some other part was violated. Later Colston et al. [15] in their book, discussed

how verbal sarcasm can be viewed as violation of expectation, and the pragmatically insincere or

contrary relationship between literal and intended meaning of statements. This is echoed in the

studies by [8–10] where we can see sarcasm as violations of Grice’s maxims [16] as suggested by

studies like [17–19].

Bamman et al. [20] gave importance to context information for the task of sarcasm de-

tection. They tried to capture extra-linguistic information from the context of an utterance of sar-

casm on Twitter. According to them, inclusion of properties of author, audience, and the immedi-

ate communicative environment can contribute to the sarcasm detection task. Their argument also

situates itself in a line with linguistic study by Utsumi et al. [21] who discuss the comprehension

of verbal irony for in-person conversational settings. The role of context can also be explained

with the expectation of certain social norms as in [10, 13, 15], and thus reestablishes the incident

of violating Grice’s maxims [16] as we discussed in the previous chapter.

2.2 Sarcasm Dataset Collection

As we all understand, and as the existing literature suggest, context is important for de-

tecting sarcasm [20], [22]. Because without proper context, a single sarcastic post can be treated

as a non-sarcastic post and vice-versa. However, it is difficult to understand the context of a so-
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cial media content, specially for the ones that come from unknown users on SNS that is common

scenario for public posts.

2.2.1 Independently Annotated Datasets. For many data based analysis, having a

large collection of annotated data is very helpful. There are different approaches of aggregating

such datasets. Whereas for some cases, annotation of data is readily available, for some other

tasks, researchers have to annotate the data themselves. The later case is usually adopted when

the labels of data is more subjective in nature. It is a very common practice in text mining and

computational linguistics community. Because of having greater control over the annotation and

data, researchers can use their best judgments. In order to reduce bias, sometimes the annotations

are done also by independent annotators other than the researchers. Since sarcasm data is quite

subjective in nature, i.e., it is highly dependent on human perception whether a particular state-

ment or post is sarcastic or not, several works in sarcasm detection prepared the datasets with

independent annotations.

Swanson et al. [23] utilized crowdsourcing for the task of labeling a sarcasm detection

dataset. They reported high reliability among the labels from untrained annotators on Mechanical

Turk using common statistical popularity measurements, like Kappa, EM, majority class, etc.

Golbeck et al. [5] in one of their recent works, collected data from different websites that

they classified as either satire or fake news. They collected at most five posts from one website

to reduce bias to the way of writing on a particular website or any set of particular topics. They

handpicked the data and labeled them manually trough discussion among the authors. Being the

first dataset of this kind, this work had a small dataset size, providing with baseline measures for

future research works.

2.2.2 User Annotated Datasets. The intention of considering context of the post leads

us to wonder who has the access to the full context of any particular post. To address this con-

cern, we argue that the user who posts a content on social media has full access to the context

information about that particular post. That means, he/she who posts a certain content on so-

cial media is likely to be the original creator of that, have full understanding of the context of
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the content, and thus, knows the intent of the caption and the hashtags used in the contents well.

To denote a post as sarcastic, there are common trends on different social media platforms, e.g.

hashtags like #sarcasm on twitter, ending statements with “/s” on reddit, and so on. These decla-

rations of a particular tweet or post to be sarcastic assigned by the user himself/herself are called

self-annotations.

According to Gonzalez-Ibanez et al. [8], sarcasm is a positive/negative utterance that

transforms the polarity to the opposite of apparent sentiment. They created a large corpus with

messages that the message writer himself/herself identified as sarcastic. They compared the sar-

casm uttering tweets with those that convey positive or negative without sarcasm. They also re-

ported the impact of lexical and pragmatic factors on machine learning effectiveness for identify-

ing sarcasm in tweets. They also conducted a post-experiment user study that perhaps unsurpris-

ingly, showed none of the machine learning models or human participants perform very well for

detecting sarcasm.

Riloff et al. [24] termed the contrasting positive and negative sentiments as parts of same

statement as sarcasm. They collected twitter data with #sarcasm hashtags assigned by the users

for positive instances of data, and a collection of random data with a hope that most of the later

data will not be sarcastic.

Reyes et al. [25] views the increasing use of irony or sarcasm plausible with the process

of the online platforms being more social. They exploited ironic tweets from two perspectives:

representativeness and relevance. They used user-generated hashtags (e.g. #irony) as labels in

their dataset. They constructed a model of irony detection. Assessment of their initial results

were largely positive.

The largest collection of a sarcasm dataset was done by Khodak et al. [26]. They col-

lected 1.3 million sarcastic statements from Reddit that were self-annotated – annotated by the

author of the statement himself/herself rather than being annotated by an independent annotator.

Besides preparing the dataset, they evaluated the corpus for accuracy using three metrics of in-

terest: (1) size, (2) the proportion of sarcastic to non-sarcastic comments, and (3) the rate of false
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positives and false negatives. Their work also provided the field with benchmarks for sarcasm de-

tection, and evaluations of baseline methods. Unlike the other dataset collection studies [8], [25],

no model learning approach followed their data collection process, rather they highlighted the

collection and evaluation of a large dataset as their main contribution.

2.3 Current Sarcasm Detection Methods

2.3.1 Unimodal Approaches. As Filatova et al. [9] and Riloff et al. [24] suggested,

sarcasm as the presence of contrasting sentiments – positive and negative in different parts of a

single tweet as an indicator of sarcasm. They showed that identifying contrasting contexts using

the phrases learned through their proposed bootstrapping algorithm obtained high recall to detect

sarcasm, i.e., they could identify most of the positive instances of sarcasm in the dataset.

Many studies later utilized this idea of contrasting sentiments indicating sarcasm. One of

the first work that utilized this aforementioned idea was done by Cliche et al. [27]. Following the

work done by [9, 24], this work also resorts to the definition of “sarcasm” by Merriam-Webster

Dictionary [28] like some other works in this area [29]. This work utilizes data collected from

twitter to extract features like n-grams (precisely uni-grams, and bi-grams), sentiment polarities,

and topics. They propose a logistic regression and a support vector machine (SVM) based super-

vised classification algorithm to detect sarcasm. SVM performed better in their experiment. Peng

et al. [30] builds upon this work and analyzed the strengths and weaknesses of that considering

Cliche et al. [27] as a baseline model.

Drawing light on context information, Bamman et al. [20] attempted to model context

information computationally. They proposed using four kinds of features: Tweet features, Author

features, Audience features, and Response features. They used binary logistic regression with L2

regularization using ten-fold cross-validation for the sarcasm detection task.

Ghosh et al. [31] proposed another machine learning based approach with manually ex-

tracted features. They used a sample of data from the dataset collected by Khodak et al. [26].

However, for the highly skewed nature of the portion of data that they used, they proposed an
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SVM based classifier. They used the binary representation for a certain word from the dictionary

in a sarcastic statement.

Ghosh et al. [32] also focused on the semantic representation. However, unlike Ghosh et

al. [31] that used representation at word level, Ghosh et al. [32] used it at sentence level to get

access to more context knowledge. Instead of manual approach of assigning the representations,

they used a neural network for this task. Their proposed architecture consisted of a convolutional

neural network (CNN), followed by a long short term memory (LSTM), and finally a deep neural

network (DNN). Whereas the prior works depended on a predefined set of indicative hashtags,

they extended this list of hashtags by using a Latent Semantic Analysis (LSA) based approach.

2.3.2 Multimodal Approaches. Multimodality in sarcasm detection research is com-

paratively a new idea. Until recently, all the works in this area used only textual features of a

content on social media. The idea behind adopting multimodality is that as users of social media

platforms have been going beyond text-only to multimodalities (e.g., text, image, audio, video,

etc.), when we are considering only text data from the plethora of multimodal data available on

SNS, we are throwing out useful information that could help get crucial context information.

Hence, some recent works emphasize the idea of utilizing multimodality in this area.

Schifanella et al. [33] is the first work to advocate for multimodality in sarcasm detection

studies. The investigated the relationship between textual and visual aspects in multimodal posts.

They ran a crowdsourcing task in which they asked users of the website CrowdFlower.com to

quantify the extent to which images are perceived as necessary by human annotators. The users

of this platform showed positive results for combining modalities to detect sarcasm across vari-

ous platforms and methods and evaluated the impact of visuals as a source of context very highly.

A survey paper by Razali et al. [29] re-emphasized the importance of such multimodal approach.

2.4 Identified Research Gap

Works from times before the rise of social media, most of the qualitative studies on the

construct of sarcasm focused on verbal form of it [10–13]. However, little is known how the ways
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of expressing sarcasm get changed for limited yet versatile ways of expressing oneself on so-

cial media. For example, the non-verbal cues as described in [34] are difficult to express on so-

cial media. Existing literature lacks insights about the ways how these non-verbal cues get trans-

formed according to the expressive capability of the SNS platforms.

Again, we feel that the use of topics in text data as in [5, 9, 24] might limit the applica-

tion of those approaches to a particular domain of text data generated over a certain period of

time. Therefore, it is more important to know the “ways” in which sarcasm gets expressed in text

data, i.e., how sentiment in overall fluctuates in a sarcastic piece of text data. Thus, knowing the

general nature of variation of sentiments in text will be more applicable to text data from more

diverse domain, time periods, or languages.

On top of that, the need for multimodality in sarcasm detection being raised during recent

times [29, 33], we want to investigate this approach in more details. We think collection of multi-

modal datasets (i.e. datasets that will have more than text based data), studying role of modes of

multimodal data individually, and the gradual performance change of sarcasm detection process

with inclusion of more modes can be gaps in this regard.

Thus, in the following chapters, we presented a qualitative study focused on users’ sar-

casm expression ways on social media platforms, sentiment/emotion based analysis of textual

sarcasm data, multimodal approach of sarcasm detection process, and evaluate the process and its

performance.
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3 HOW HUMANS DETECT SARCASM

The basic idea behind machine learning based systems, or artificial intelligence in gen-

eral, is mimicking how humans operate. This is particularly evident for our problem, sarcasm

detection on social networking sites (SNSs). Therefore, before proceeding to build a system that

can detect sarcasm on SNSs, we attempt to understand how humans do the same. Many studies

propose systems based on personal experience and word-level definition of “sarcasm” [29, 33].

However, we feel the need of a qualitative study to find out more general themes that are usual

with users to detect and express sarcasm on SNSs to build a more effective sarcasm detection

model.

3.1 Background

3.1.1 Convenience Sampling. Convenience sampling is a non-probabilistic sampling

that aims to contact subjects that are close at hand. The two criteria applicable to this sampling

technique are: subjects being easily available and willing to participate. This sampling does not

guarantee that a random sample is generated. This approach is often avoided due to its proneness

to sampling error. For example, this sampling might recruit only people who share the same be-

liefs and values as the researcher. This might lead to confirmation bias. However, it is still widely

used because it makes data collection easier and more cost effective.

3.1.2 Purposive Sampling. Purposive sampling is another non-probabilistic sampling.

It is also known as selective, subjective, or judgemental sampling. As the names suggest, this

sampling recruits subjects based on the objective of the study and the population of interest. This

sampling gives the opportunity to generalize the study results with respect to the shared charac-

teristics of a target population. If bias is carefully avoided, purposive sampling can help recruit

representative subjects. However, it is not practically possible to avoid the bias completely.

3.1.3 Snowball Sampling. Snowball sampling is a widely used non-probabilistic sam-

pling technique in statistics and sociology research [35]. It is well known for increasing the num-
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ber of samples, especially when they are hard to find. In fact, it obtained its name from the fact

that it helps the sample population grow like a rolling snowball.

Snowball sampling starts with recruiting a small sample of subjects who have the char-

acteristics of the experiment’s interest. Then, the recruited subjects help the researchers identify

other potential subjects who are generally hidden and hard to locate. For example, if we want

to conduct a research on people who started to write code from middle school, the participants

might be difficult to find since such people are not very often seen. However, a person who did

this targeted behavior in middle school might know some other people who did the same – either

with him/her as a group or individually. Recruiting such an acquaintance might help to recruit

more people. In this way, the number of participants increase like a rolling snowball.

Recent literature shows the applicability of snowball sampling for virtual social networks [36].

Whereas traditional snowball sampling is prone to bias towards social networks of the early par-

ticipants, snowball sampling on virtual networks reduce such bias due to social networks’ inher-

ent geographic prevalence around the world. It is also more effective with respect to increasing

number of subjects. However, it can have a bias towards the majority of age, gender, and taste

categories of online users on the focused social network itself.

3.1.4 Grounded Theory. Grounded theory is a popular approach in qualitative data

analysis, and it is often used for research when there is no existing theory related to the research

questions. It builds theory iteratively from data. Interview questions address the followings:

• Core phenomenon: What is the process?

• Casual conditions: What influenced the process to occur?

• Strategies: What actions were taken in response to the process?

• Consequences: What were the outcomes of the strategies?

Initially, it identifies descriptive open codes. These are abstract representations of events,

objects, interaction, incidents that were seen repeatedly in the data. Then these open codes are
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grouped into related sets. These more organized collections of codes are called axial codes. In

this phase, patterns of the events, objects, and etc. in open codes emerge. Subsequent combina-

tions of axial codes are more thematic that are called selective codes. Instead of patterns in earlier

stage, relationships among the phenomena is used to build the theory/model.

3.2 Methodology

Our qualitative study started with the goals to (1) understand how users recognize sarcas-

tic contents on social media, with or without context, (2) study what factors impact the ways of

how they express sarcasm, and (3) study how users on social media in general response to sar-

casm. To achieve these goals, we conducted an interview based qualitative study with social me-

dia users situated in Missouri, United States and Dhaka, Bangladesh. Our data collection con-

sisted of semi-structured interviews with 20 participants from these two countries. We received

Institutional Review Board (IRB) approval for all study procedures prior to beginning the study

(See in Appendix A).

3.2.1 Semi-Structured Interviews. We conducted semi-structured interviews with par-

ticipants between November and December 2018. The interviews targeted understanding partic-

ipants’ social media using practices and their ways of recognizing as well as conveying sarcasm.

The student researcher (23 years old, Male) in this work was born and brought up in Bangladesh,

and has been living in United States for more than one year. He speaks both local languages,

Bengali and English. Since use of sarcasm is very common on social media, we began by recruit-

ing participants who were active on social media. We adopted a blend of convenience sampling,

purposive sampling, and snowball sampling. First, two participants were recruited from the so-

cial network of the student researcher by convenience sampling. Second, since the focus area of

this research is the social media platform, the student researcher posted the recruitment flyer of

this research on social media (See Appendix B). In the flyer, we described the inclusion crite-

ria for our study and gave a high level overview of the objective of the study. We distributed the

flyer through departmental email. Second, we used social media itself as a channel for recruiting
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participants since most of the users on this platform will inherently satisfy one of the inclusion

criteria. We shared the recruitment flyer on the social media. As a result, the subjects of interests

in this research could be easily reached through purposive sampling. Third, as previous literature

suggest, by keeping the comment section public for tagging improves the response rate [37], we

welcomed tagging other potential participants. Again, our participants recruited through conve-

nience sampling in the first phase helped us recruit additional participants. Thus, snowball sam-

pling in both online and in-person social network helped us to recruit potential subjects. We also

utilized in-person communication and also recruited participants through word-of-mouth. In to-

tal, we recruited 20 participants speaking two different languages from two different countries.

Participation in the study was voluntary. The average completion time of the interviews

was around 25 minutes. The interviews were conducted one-on-one. We gave the participants a

high level overview of the study objective at the beginning of the interview. We encouraged them

to ask any question they might have, and we obtained written consents from participants before

the interviews with the informed consent form, as in Appendix C. The consent form was devised

keeping it at a high school standard reading level. However, we also summarized the consent

form in their native language, Bengali in case of Non-English speakers. We collected the signed

consent form and later sent them a copy. Interviews were conducted at a place preferred by each

participant, or over Skype and in his/her native language. The interviews were audio-recorded

with permission from the participants.

Interviews were semi-structured and guided by a list of topics. The set of questions is in-

cluded in Appendix D. We collected the participants’ demographic information like their age,

gender, most recent occupation, highest attended educational level, etc. We asked about their ex-

perience about using social media, e.g., with whom they mostly interact with, what kind of con-

tents they usually see in their newsfeed. We then asked questions that sought an understanding

of how they recognize and express sarcasm, including their views about overall user response to

sarcastic contents on social media.

Participants’ responses were recorded anonymously. Each participant’s interview record-
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ing was saved on a password protected storage with code identifications assigned to them by the

interviewer.

3.2.2 Participants Characteristics. Our 20 participants came from two different lan-

guage speaking communities originated from two different countries and ranged in age from 19

to 34 years. With respect to their social media usage, all of our participants satisfy these follow-

ing criteria:

• Must have an account with at least one SNS for more than a year.

• Must be an active user on SNS with spending 5-7 hours per week.

Participants possessed a range of socio-economic backgrounds. Five of them are under-

graduate students, six are graduate students, six are employed having undergraduate or graduate

degrees, and three are currently unemployed. More detailed information about our recruited par-

ticipants are shown in Table 3.1.

The participants we studied represent two different sets of social media users. The partic-

ipants recruited from the United States were mostly users of both Twitter and on Facebook. On

the other hand, participants collected from Bangladesh were mostly active on Facebook, some of

them having accounts on Twitters that they do not use often. Participants from the United States

use English in all their social media activities whereas participants from Bangladesh varied in

their language use on social media. They used both Bengali and English on social media, as well

as a version of Bengali called “Banglish”, Bengali words using English alphabet.

3.2.3 Data Collection and Analysis. The data we collected resulted in a total of 283

minutes (4 hours 43 minutes) of audio-recorded interview data and a collection of field notes.

The student researcher working in this research transcribed the interviews and translated them to

English. These qualitative data were analyzed using an inductive approach. We utilized grounded

theory [38] as the inductive method on the interview scripts. Since to the best of our knowledge,

there has been no research on theory about users’ sarcasm behavior on online platforms, we in

the early phase of our study, aimed to have insights/theories about users’ sarcasm behavior on
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Table 3.1: Demographics of participants (N=20) in the interview on sarcasm use on SNS

ID Gender Age Language
P1 Male 33 English
P2 Male 29 Bengali
P3 Male 21 English
P4 Male 28 English
P5 Female 22 English
P6 Male 22 English
P7 Female 29 English
P8 Male 20 Bengali
P9 Male 31 Bengali
P10 Male 34 Bengali
P11 Male 30 English
P12 Female 22 Bengali
P13 Male 20 English
P14 Male 25 Bengali
P15 Female 24 Bengali
P16 Male 25 Bengali
P17 Male 21 Bengali
P18 Male 25 Bengali
P19 Male 19 English
P20 Male 22 English

social media. Therefore, grounded theory data analysis meets our need. As core phenomenon,

we are interested to study how users detect sarcastic remarks on social media. We studied what

factors initiate the circumstances of a sarcastic conversation to occur or a sarcastic remark to ap-

pear as a part of a conversation as the causal condition. This leads to our studies of strategies,

i.e., how users express sarcasm on social media. Then we study what consequences or impacts

sarcasm has on users’ interaction on social media.

After we conducted the interviews, we prepared the transcriptions of the interview ses-

sions. Then we read through the transcriptions several times. We identified parts of the partici-

pants’ quotes where they discussed their ways of express sarcasm. The example below shows a

participant’s use of interjections inappropriately to convey sarcasm. We open-coded this response

descriptively as “wrong use of interjection”. Repeated patterns in users’ interaction give rise to

axial codes. For example, “opposing sentiments as parts of a single sentence” is a major clue for

human users to detect sarcastic contents. For example, “wrong use of interjection” and “associa-
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tion of wrong adjectives” are two open codes categorized under “opposing sentiments as parts of

a single sentence”. The final codes were agreed upon when themes came to a saturation. In selec-

tive coding phase, we integrated the emerged axial codes into theoretical models. Our qualitative

study resulted in two separate models – (1) sarcasm detection and expression model for SNSs and

(2) sarcasm use and non-use model for SNSs.

3.3 Sarcasm Detection and Expression Practices

Before discussing how sarcasm shapes users’ responses to a content on social media, it

is important to understand how our participants recognize and express sarcasm on social media.

Broadly, the subjects whom we interviewed recognized sarcasm in two ways: (1) unusual emo-

tion/sentiment expression style and (2) usual patterns of sarcastic posts.

3.3.1 Unusual Style of Sentiment Expression. The topics that are usually discussed

on social media are often subjective human interaction. That means, users discuss their views,

give opinions, and express their feelings about a matter. As discussed earlier, a substantial amount

of research has been done to analyze the sentiment and emotion of these user generated contents

on social media. Usually, a particular content/post generated by a user contains his/her views, and

thus the sentiment towards the corresponding topic. However, in case of sarcasm, our participants

report that this sentiment in a particular post might seem unusual.

3.3.1.1 Exaggeration of Sentiments. Many of our participants agree that exaggeration

of sentiments in text is a sign of a post of being sarcastic. They think in a well-constructed sar-

casm, there are two objectives – to point out a flaw of a targeted person (this was previously iden-

tified by previous works), and to entertain others if an audience is available which is common in

usual social media settings. According to participant P8,

“It does not matter what emotion you are showing, exaggeration of it will automatically

make your targeted person confused whether it is sarcasm or not, since it is so common. Your

audience will often find it funny, so you get some people on your side at least, even if the person

who was your target does not get the sarcasm.”
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While discussing this context further, an interesting reasoning was posed by our partic-

ipants. According to them, when one tries to make a general post, the objective is usually to in-

form, to share opinion that will eventually lead the audience to some direction. However, in posts

with sarcasm, the composer has no such motivation rather the sole goal here is to make people

laugh that can be done by making the post subjective, as much as possible. We found this reason-

ing plausible during our quantitative analysis that we will discuss in a later chapter.

3.3.1.2 Opposing Sentiments. In a subjective writing, a person shares his/her positive or

negative sentiment. As previous studies have suggested, a sarcastic remark often has a negative

intended meaning. Our participants share the same view as the study by Cliche et al. [27]. They

say that in a sarcastic post we can expect to observe opposing sentiments as part of the text. This

might be evident by their sentence construct: “Wow! This is ugly” (example given by P6); here,

the sentiment in the first sentence is positive whereas it is negative for the second sentence. As P7

gave us an example, “Terribly terrific”, such phenomena can be observed at word level as well.

3.3.1.3 Wrong Use of Punctuation. All of our participants agree that wrong use of

punctuation is a usual clue for identifying a sarcastic post. They say that this clue often occurs

in sarcastic remarks as a part of a conversation. Our participant P19 gives his opinion with an ex-

ample.

“Suppose, you are surprised and want to say “wow”, what mark will you use? You will

use exclamation mark with that. But “wow” with a period after that just says that you are not

much impressed, rather you might be annoyed and are trying to show your annoyance or callous-

ness with a cold wow.”

However, they also agree that though it is a usual clue, it is not very reliable clue. They

think users generally want to use social media with minimum effort. If they mistakenly use wrong

punctuation with a sentence, they often do not care too much to edit the post to correct a single

punctuation mark. They might rather explain that it was a mistake and correct later only if some-

one else pointed out at that wrong punctuation.
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3.3.2 Usual Structures/Patterns of Sarcastic Posts. Participants said that they look

for clues in different parts of a post. They agree with the prior views. Some participants reported

that the users who have been on social media for a certain amount of time (1) exaggeration of

usually necessary emotions in writing, (2) popularly used patterns of sarcastic posts that users

learn with time, and (3) opposing emotions/sentiments in different parts of a single post.

3.3.2.1 Reference to Recent Objects. Our participants agree on a very interesting as-

pect of sarcastic contents on social media. They think there is a temporal factor to the pattern of

sarcastic posts on SNSs. As our participant P1 said,

“You know when Star Wars is a very popular movie. But when a new Star Wars movie

comes you can expect to see a lot of sarcastic comments referencing to famous quotes from the

movie. Like, people might try to use “May the force be with you.”

We were curious to know whether it is the repetition of what we explored as “reference to

iconic object” earlier. Therefore, we asked the participants about this. However, they think these

two are related but different factors. P1 clears up this in this way:

“... No, you see, there are obviously some fans who can tell you the movie’s name and

what happened in a particular scene when they hear a quote. But most people are not like that.

They watch, enjoyed, and may re-watch before a new movie in that franchise comes. That’s when

the craze is revived, and it will make sense to use these reference only at that time. But sure, if I

am talking with my friends who, I know, lives in Star Wars like me, hahaha! Then sure! I can use

those reference anytime.”

P17 shares a different perspective about the temporal factor of sarcastic posts’ pattern. He

thinks recent events that get popularity online may impact what users refer to for being sarcastic.

He thinks the frequency of these references are maximum a little after when the original event got

popularity. With time, users are posed more new events that might be referenced for sarcasm, and

the earlier ones are not used as many times as when they were first seen; however, regular users

might recognize and use those at times. When we asked for example, P17 said,

“Few years ago, there was a live telecast of an interview with general people in Rajshahi

21



or Rangpur, I don’t remember exactly, somewhere in northern Bengal during winter. The reporter

asked how the people felt about the winter. So, one of them told that he did not like it and could

not work for winter in local dialect, and a particular word in that dialect means something bad in

proper Bengali. People in Central Bangladesh made fun about that part of the interview a lot. It

became a popular sarcastic clue at that time. Every year when winter comes, you will see some

people to refer to that; not as popular as before, but still it’s used.”

This shows a periodical pattern in temporal factor of sarcastic posts’ structure. Several

other later participants agreed with him. For example, P18 said it is usual to use some particular

reference periodically “every four years during the world cup”.

3.3.2.2 Association of Popular Memes/Meme-like Contents. A major clue that our par-

ticipants reported is association of “meme-like” contents with the posts. Meme is usually an im-

age or short video (sometimes GIF) that is taken directly or with slight variation from some pop-

ular media (e.g., TV series, movies, etc.), and spread rapidly among the internet users. For exam-

ple, as many of our participants mentioned about the presence of photos of Matthew Perry (who

played the character of Chandler Bing in popular TV series “Friends”) in some special postures

(as shown in Figure 3.1(a)) in inset of images help them to identify the sarcastic intention of the

post. Discussion with our participants also gave us an idea about other widely used images that

are perceived as clues of sarcasm in form of images. Use of hand-drawn meme-faces as shown

in Figure 3.1(b), came as another example of such categories of visual cues. Thus, while quite

different from each other with respect to the visual representation, all of them depict the same

sentiment of “sarcasm” in them.

3.3.2.3 Capitalization. All of our participants agree that capitalization of words in an

SNS post denotes emphasized effort from the composer for expressing his/her emotion. As we

have discussed earlier, participants agree that extra effort for exaggerating sentiment might be a

clue to sarcastic post. Participants also agree that capitalization might also be used to reverse the

meaning or sentiment in a sentence. Our participant P13 gave us an example of what he thinks is

a popular form of sarcasm of this pattern:
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(a) Matthew Perry in his popular posture that
work as indication of sarcasm for many partici-
pants. Thanks to Participant P14 for providing us
with the sample.

(b) Samples of hand-drawn meme faces, collected
from: http://tinyurl.com/yyjw36bp

Figure 3.1: Qualitative study participants contributed/suggested samples of images with sarcastic
visual cues.

“If I say, the book is SOOOOO good that if you close it once you wouldn’t want to open

it again. It obviously has opposing sentiments in a single sentence, but when I am using this type

of sentence in a conversation, I don’t want others to miss that I made a sarcastic remark. So, it

makes sense to emphasize to catch their eyes.”

In this step, we know how “unusual style of sentiment expression” in a sarcastic post is

achieved through a usual pattern of posts.

3.3.2.4 Use of Arcane Style of Writing. We observed an interesting way of convey-

ing sarcasm among our participants from Bangladesh. There are two forms of Bengali written

language – Sadhu (more formal, used to be in practice till twentieth century), and Cholito (less

formal, currently is in practice). Both of them use the same fonts, however, vary in their preferred

use of words. Most of our participants from Bangladesh agreed that Bengali sarcastic posts on

social media are often written in the arcane form. As one of our participants, P12 said,

“You know, no one in general, nowadays write in Sadhu form. So, when you see a piece of

text on Facebook that is in Sadhu language, if it is not from some old books or something, you in-
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stantly know there is something the person is trying to do. I often find that posts written in Sadhu,

are actually sarcastic. At least the person is trying to say something funny, if it’s not exactly sar-

casm.”

In this context, participants P14, P15 presented a related insight. P14 opines that writing

in this arcane form is not easy for all as it has not been in practice for a long time. Therefore, it is

not often seen in quick sarcasm that comes as reply in a conversation. Rather, it is seen in well-

written satire posts that took considerable effort from the writer of that post. Though P15 agrees

with P14 about the fact that this clue is not usually seen in sarcastic comment in middle of a con-

versation, P15 has a different reasoning about this. P15 thinks the reason it is not seen in “quick

sarcasm” is less for the extra effort needed, rather more for the fact that most people will not un-

derstand the less-used words of this form of writing. According to P15,

“Who do use Facebook nowadays? Mostly young generation. I have seen even school go-

ing children to use Facebook. They do not know this writing. Even many people of our age do not

know it very well. So, if you write that in middle of conversation, they will either miss the sarcasm

or ask for explanation. It will very lame if I have to explain myself after making a sarcasm.”

As we can see, though our Bengali speaking participants agree that posts written in arcane

form of Bengali writing might be clue for the post to be sarcastic, it is often applicable only for

long and satirical posts for very concentrated audience.

3.3.2.5 Wrong Spelling. This pattern of sarcastic posts was very common among our

participants from Bangladesh. They said that it is a strong clue of Bengali sarcastic posts that

they see on social media. In Bengali, there are some pairs of letters with very close sounds. We

showed some examples in Figure 3.2. In these pairs, the former is comparatively soft than the

latter one for very similar sound. According to our participants, using the hard sound in place of

the soft one, and vice-versa are clues of a piece of text to be sarcastic. However, they agree that

users do not do the same with text written in English.

In his context, most of our participants agree that this pattern of sarcastic posts emerged

comparatively recently. Though first Bengali keyboard was published in 1988, it was fairly com-
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plicated for general users to learn. This limited the use of Bengali language on digital media. In

2014, a phonetic Bengali keyboard named Avro was released. This made it easier for users to

write Bengali on computers, and eventually, helped increase the presence of Bengali online. Af-

ter that, it was possible to distinguish 50 letters of Bengali alphabet easily that could not be done

with 26 letters of English alphabet. For example, each Bengali letters pair in Figure 3.2 have only

one corresponding letter in English. Since before 2014, most of the Bengali users wrote Bengali

using English fonts online, it was not possible to use this hint for conveying sarcasm.

Figure 3.2: Examples of pair of soft and hard Bengali sounds for corresponding single English
sound. The list is not exhaustive.

Participants P15, P16 raised another concern about this clue to sarcasm. They said, as less

educated people are not often aware about the distinction about those sounds, they spell words

wrong unknowingly. Therefore, wrong spelling in Bengali text can be thought as a clue to sar-

casm only if the post was composed by a person with schooling proper enough to learn spellings

of usually used words.

3.3.2.6 Use of Similar Sounding Words. Participants agree that use of similar sounding

words having different meanings is a major clue for sarcastic posts on SNSs. They also think that

meshup of two words is also often deemed as sarcastic among their audience. The reason they

think it as a better clue for sarcasm on social media is that on SNS, posts are written and audience

have more time to put attention to details to understand the hint themselves, unlike for in-person

communication, it is difficult to put such subtle hint on the go.
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3.3.2.7 Reactions and Emojis. Our participants have pointed it out that reaction buttons

and emojis often reverse the meaning of a post. They described this dynamics in a bidirectional

manner. First, the post composer himself/herself can associate the post with emojis that are often

used to joke on the internet. This might change the tone of the post, in other words, make the post

sarcastic by creating a difference between surface sentiment and intended sentiment of the post.

This aligns with the theme of opposing sentiment that we discussed earlier. As participant P2

said,

“If I see a friend to write something very serious, and put a wink emoji at the end, I’ll

know this person is being sarcastic about his comment.”

Second, all participants agree, in a sarcastic post, the received reactions from the audi-

ence is always very mixed. While some of the audience react to the intended meaning after un-

derstanding the sarcasm, some might want to play along with the sarcasm. Our participant P2

said,

“Suppose, you posted a sarcastic post about something that annoys you, but you said you

loved it or you used a “love” emoji with that. Many of your peers will show annoyance as their

reaction if they understand the sarcasm. But many, specially my friends do it, might want to keep

the flow going by being positive about it in their reactions and comments. Some might be just

totally lost.”

Thus, a sarcastic post receives a mix of emojis and reactions both from the composer and

the audience that our participants think as a usual pattern of sarcastic posts.

3.4 Sarcasm Use and Non-use on Social Media

We identified four kinds of SNS users with respect to their use of sarcasm. This use com-

prises two functionalities – detecting sarcasm and expressing sarcasm. The dynamics of sarcasm

detection and expression among users is shown in Figure 3.3 with binary levels of abilities and

practices. Non-users of sarcasm means the users who cannot detect and use sarcasm on social

media. In sub-figure (first from left in 3.3), we see both detection and expression capabilities at
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“no” level. Mostly new SNS users fall into this category. Detectors are users who gain the ex-

perience needed to detect sarcasm on SNS, but are not experienced enough to compose sarcastic

posts on their own, i.e., their sarcastic posts are often misinterpreted by the audience. The upward

trend followed by the attainment of “yes” level in the detection ability in the corresponding sub-

figure (second from left in 3.3) shows users gaining the ability to detect sarcasm. The expression

capability is still in “no” level in this sub-figure. Consistent users are who can detect sarcastic

posts, and express sarcasm in their posts without much misinterpretation in most of the cases.

In sub-figure (third from left in 3.3), we see both detection and expression capabilities reaching

“yes” level. Discontinued users are experienced SNS users who can detect sarcasm in most of

the cases, and capable of composing such posts, however, chose not to do so for some reasons.

Though the detection capability is still in “yes” level in the corresponding sub-figure (first from

right in 3.3), the downward slope following the initial “yes” value of expression line denotes the

users’ choice of not using sarcasm.

Figure 3.3: Sarcasm users and non-users engagement dynamics

3.4.1 Use of Sarcasm on Social Media. Some of our participants displayed enthusi-

asm for sarcasm on social media. They think that people on social media in general, should take

social media lightly where they can make small jokes about the happenings of their daily lives.
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They believe sarcasm is a way to do that. Thus, sarcasm may work as a driving force for making

a content popular on SNSs. According to our participant P10, this force works behind popular-

ity beyond online platforms as well. He describes SNS as the place for him to get popularity, and

sarcasm as the driving force behind it. As he says,

“I am one of the very first people in Bangladesh who were regularly active on Facebook.

There were some groups at that time where I mostly wrote. I think my main strength is that I write

about things like politics, or day-to-day life using humor or sarcasm. People like that. That actu-

ally made me popular.”

Besides, several others of our participants agree that with sarcastic contents that refers to

a recent event or that can be understood with little or no context get a lot popularity.

3.4.2 Non-use of Sarcasm on Social Media. Unlike what we discussed earlier, some

participants also reported their reasons of non-use of sarcasm on social media. Our participants

present mainly two factors in this respect. First, inexperience of using social media might present

the users a challenge while understating and conveying sarcasm on social media. Our participants

think older people are a large part of this group. Our participant P1 says,

“It often happens that I am being ridiculous with my friends on a sarcastic post, and my

aunt comments in a serious tone. Then, I have to explain that we are joking.”

Second, previous bad experience of using sarcasm might demotivate a user from using

sarcasm on social media. Most of the examples that our participants discussed had a common

pattern. They used a sarcastic remark, that was criticized earlier. Or the flow might be opposite –

where they were being serious about something, and their audience did not take it in the intended

way staying under the hood of sarcasm. Either way, it belittled the intention of the post, and that

experience demotivates the use of sarcasm. Our participants P13, P16 show a lot disgust about

this. P16 says:

“There are some people who just take everything lightly. If I write about something, and

someone gives a “haha” on that it upsets me a lot. I don’t know why even Facebook gave this
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emoji. ... I often write with my post, I will block whoever gives a “haha” without understanding

the post.”

3.5 Discussion

Our qualitative study ended in thematic analysis of users’ sarcasm behavior on social net-

works. Our data analysis resulted in two models. First, the sarcasm expression model discusses

how users detect and express sarcasm on social media. Second, the sarcasm use-non-use model

discusses why users choose to use or not to use sarcasm on social media platforms. While the

first model provides valuable insights for building sarcasm detection model/system, the second

model might be useful to identify design implications for SNS platforms with respect to users’

sarcastic contents sharing.
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4 TEXT-BASED APPROACHES TO SARCASM DETECTION

Satire and fake news are both based on misinformation. The difference between them is

their motivation. As we have seen during our qualitative study, some of our participants men-

tioned incidents when they confused satire to be news, particularly fake news. Though existing

literature thoroughly investigates how to detect misinformation in digital contents, there has not

been much research to identify the motivation behind the origination or propagation of “a partic-

ular content”. we argue that the way misinformation is conveyed, i.e. the style of storytelling is a

good indicator of the motivation and effort of the person(s) behind that misinformation. Our ar-

gument is based on the findings from our qualitative study that sarcastic contents on social web

has a pattern in their writing – they exaggerate the feelings in the text higher than the usual. we

also show how this concept can be used to design a supervised learning model for distinguishing

between satire and fake news.

Though fake news detection is a Ill studied field of computer science, to the best of our

knowledge, Golbeck et. al. [5] is the only work in existing literature to address the problem of

classifying satire and fake news. In their work, they presented a dataset for fake news and satire.

They showed applicability of naı̈ve Bayes algorithm to classify satire and fake news from the

corresponding texts. However, we found that their approach is highly biased to the buzzwords of

the period when the articles of the dataset Ire collected. For example, we found that the dataset

contains terms like Obama, Trump, etc. and the naı̈ve Bayes model by [5] uses these terms to

distinguish between satire and fake news. However, these terms are very specific to American

politics during time around the election of 2016. Thus, this approach looses universality with

respect to time.

We argue that since the motivation and the targeted audience of satire and fake news are

different, there will be difference in the storytelling approach while propagating these different

types of articles. Fake news are shared with a view to deceiving people. This objective of decep-
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tion often becomes successful when there is no reliable medium of verifying information and the

targeted audience also do not have sufficient data and context information. On the other hand,

the motivation behind satire is to criticize someone. The objective of satire is fulfilled when its

targeted audience have access to enough context information to understand the basis, i.e. event

behind it.

We used the dataset presented by Golbeck et al. [5]. First, we show how preprocessing

the data can improve performance of their proposed model. Next, we identify the most influential

factors behind their model and evaluate their correlation with the time period of the data collec-

tion and found high biasness. we studied how storytelling approach varies with the categories of

articles – satire and fake news. Then, we used the variation of tones used in articles to differen-

tiate satire and fake news. Since, storytelling approach is largely independent of any particular

time, we argue that our proposed approach is more widely applicable than the approach by Gol-

beck et al. [5].

The discussion in this section is divided into two parts. First, we identify flaws of the ex-

isting approach and showed how performance of the existing model can be improved by using the

text data from the articles. Second, we discuss how the approach of conveying message differs

from satire to fake news, and propose a supervised learning approach to classify satire and fake

news. The rest of this section is organized as follows: the next section discusses related works;

then we discussed how the model proposed by [5] can be improved and how this approach might

be very specific with respect to the time of publication of the articles; in the later section we stud-

ied the difference of approaches of conveying messages according to the motivation that leads

misinformation to satire or fake news, and proposed a supervised learning based approach to clas-

sify satire and fake news.

4.1 Background

4.1.1 Definitions. We deem it important to first define the terms: fake news and satire.

Some prior studies [39, 40] discuss the definition of the terms fake news. According to them,
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news satire, news parody, manipulation, fabrication, large scale hoaxes are different kinds of fake

news. However, the problem with such definition is that this cannot take the motivation behind

the origination/propagation of a content. In our work, we followed the definition by Golbeck et

al. [5]. According to them, fake news is misinformation that is presented with the motivation to

deceive the consumers. They excluded satire from the definition of fake news because of the dif-

ferent motivations. Golbeck et al. [5] did not provide a definition for satire, so, we followed the

definition by Merriam-Webster Dictionary [41] that says satire is “a literary work holding up hu-

man vices and follies to ridicule or scorn; or trenchant wit, irony, or sarcasm used to expose and

discredit vice or folly.”

4.1.2 IBM Tone Analyzer. IBM Watson Tone Analyzer draws from the works of re-

searchers from psychology theories and linguistic behavior. The correlation between linguistic

features of written text and emotional language tones is analyzed to develop each tone dimension.

Psycho-linguists opine that our language expresses more than what we just want to say.

Language can provide clues to an individual’s personality, thought process, social connections,

and emotional states [42, 43]. Moreover, studies show how a user’s emotions are perceived by

others, and collectively shape that user’s online identity [44, 45].

The IBM Tone Analyzer is based on a general-purpose model that is applicable for a large

range of users. It uses stacked generalization based ensemble framework – a high level model to

combine lower level models to achieve higher predictive accuracy. Features like n-grams (e.g.,

unigram, bigram, etc.), punctuation, emoticons, greetings (e.g., hi, hello, etc.), gratitude or curse

words, sentiment polarities, and etc. are fed into to categorize emotion in language. More de-

tails about the approach behind the IBM Tone Analyzer can be found in their official documenta-

tion [46].

Analyzing the characteristics of written text, IBM Tone Analyzer can provide us with

three types of scores as follows:

1. Language Scores: IBM tone analyzer takes three aspects of language of an article as fol-

lows: Analytical (the amount of technical substance and reasoning); Confidence (the de-
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gree of expression of certainty); and Tentative (the amount of words expressing uncer-

tainty).

2. Emotion Scores: IBM tone analyzer calculates the probability of a sentence to express each

of the following emotions: angry, joy, fear, disgust, and sadness.

3. Social Scores: IBM tone analyzer calculates the likelihood of a sentence to express five

personality characteristics as follows: agreeableness, conscientiousness, emotion, extra-

version, and openness.

4.1.3 Storytelling. The activity of sharing stories is termed as storytelling. This ties

with the social and cultural context of nation, and often serves as a way of preserving and passing

on values, entertainment, and information. In recent years, communicating by storytelling is con-

sidered to be a more compelling and effective way for managing conflicts, interpreting informa-

tion or processes, marketing, and so on. Natural language processing research has also focused

on analyzing how storytelling approach differs with the context.

4.1.4 Commons Machine Learning Algorithms. In this subsection, we will discuss

some common machine learning algorithms that we used in this chapter.

4.1.4.1 SMOTE. SMOTE stands for synthetic minority oversampling technique [47].

In supervised classification problem, the percentage of number of instances in the training set

plays an important role in the training of the model. Hence, balanced datasets are always pre-

ferred. However, there might be cases when we need to deal with imbalanced datasets. In such

cases, model training may overfit with respect to the majority class and give a biased prediction.

To remedy such situation, random under-sampling can be an approach that discards samples ran-

domly, and thus may discard some valuable patterns. Another remedy could be random oversam-

pling that might make the model to overfit due to exact replication of data. SMOTE appears to be

a useful technique by creating new synthetic observations.

First, SMOTE plots all the minority class observations. Then it calculates the feature vec-

tors of those. Then it takes one observation and its nearest neighbor to calculate their difference.
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Then the difference is multiplied by a random number between 0.0 and 1.0. Then, we need to

find a synthetic data point on the line segment by adding a random number to the feature vector.

This process is repeated until the necessary number of synthetic instances have been generated to

make the dataset balanced.

4.1.4.2 Naı̈ve Bayes. Bayesian classifiers are a probabilistic framework for solving

classification problems. Bayesian theorem is rooted at conditional probability. Assume, we have

n attributes: (A1, A2, ..., An). Given the values of these attributes, the goal of Bayesian classifi-

cation is to predict the class C. For that, Bayesian classifiers compute the posterior probability

P (C|A1, A2, ..., An) for all classes C using the Bayesian theorem:

P (Cj|A1, A2, ..., An) =
P (A1, A2, ..., An|Cj)P (Cj)

P (A1, A2, ..., An)

Then, Bayesian classifier gives the Cj as class that maximizes the posterior value, i.e.

chooses the Cj that maximizes P (A1, A2, ..., An|Cj)P (Cj).

When we assume independence among the attributes, the variation of Bayesian classifier

is called Naı̈ve Bayes classifier. Thus,

P (A1, A2, ..., An|Cj) = P (A1|Cj)P (A2|Cj)...P (An|Cj)

P (Ai|Cj) is easier to calculate. And thus, class of the data instance can be easily assigned

to Cj if P (Cj)
n∏

i=1

P (Ai|Cj) is maximum.

4.1.4.3 Random Forest. A decision tree (DT) is a tree-like model that comes to a deci-

sion by testing on a certain attribute of an object. Decision tree with only one level of attribute

checking is called Decision stump. This is considered to be a very weak classifier as it decides

the class of an object based on only one attribute, thus it can output with slightly better accuracy

than random guessing.

The basic idea behind ensemble algorithms is that the knowledge of crowd is better than

the knowledge of a single classifier as long as the members of the crowd are slightly better than
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random choices. Random forest is an ensemble algorithm of DT classifiers. Each member DT

uses a random set/bag of features. Usually, given total D features, each DT uses
√
D features

randomly. Random choices make the DTs uncorrelated. All DTs usually have same depth. Each

DT splits the training data at leaves differently. Prediction for an instance is decided by votes

from all DTs.

4.1.4.4 Confusion Matrix. In case of a binary classification, confusion matrix is a table

with two rows and two columns, as shown in Table 4.1. In its four cells, it stores the values of

true positives, true negatives, false positives, and false negatives. This table is also known as error

matrix. It is usually used for supervised learning. In case of unsupervised learning, it is called

matching matrix. This table allows more metrics calculation along with accuracy.

Table 4.1: The structure of a confusion matrix for binary classification

Actual class
Positive Negative

Predicted class

Positive True positive
(TP)

False positive
(FP)

Negative False negative
(FN)

True Negative
(TN)

accuracy =
TP + TN

TP + TN + FP + FN

recall =
TP

TP + FN

precision =
TP

TP + FP

F1− score = 2TP

2TP + FP + FN

4.2 Investigating a Current System

Here, we use the dataset prepared by Golbeck et. al. [5]. They collected and annotated

203 satirical stories and 283 fake news stories. Their dataset contains collected articles related to
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American politics after January 2016. They justified this decision to ensure minimal topic varia-

tion in the dataset. They also performed an empirical analysis on the themes of the articles in the

dataset and found seven different categories: (1) hyperbolic position against a person or a group,

(2) hyperbolic position in favor of a person or a group, (3) discredit a normally credible source,

(4) sensationalist crime and violence, (5) racist messaging, (6) paranormal theories, and (7) con-

spiracy theories. They showed the applicability of multinomial naı̈ve Bayes classifier in the clas-

sification context of satire and fake news. Their classifier achieved 79.1% accuracy with ROC

area1 of 0.88. They concluded that this shows a high difference between the type of language in

satire and fake news in their dataset.

At first, we used multinomial naı̈ve Bayes classifier proposed by Golbeck et. al. [5] with

some changes. Instead of using the text directly, we stemmed (reduced words to their root/base

forms; e.g.: working→ work) the words using Lovins Stemmer algorithm [49]. This reduced the

probability of considering the same word differently due to different structures of the sentences.

We discarded the stopwords (the words that do not have much significance in word based queries,

e.g.: articles) defined by [50]. Including these steps improved the accuracy of the performance to

an accuracy of 80.3% with a ROC area of 0.87.

In our study, we investigated how the model makes decision or distinguishes satire from

fake news. We find out which words the classifier was using to differentiate between satire and

fake news. We used Shannon information gain [51] based attributes evaluation on the word vec-

tors of the article corpus for this purpose. The top 15 words contributing most to classification of

satire and fake news are: Obama, report, Donald, good, people, Clinton, Trumps, years, Barack,

jobs, States, dress, United, Hillary, and government. Words with the most information gains are

shown as wordcloud in Figure 4.1.

Here, we can see that the words that contribute most while using naı̈ve Bayes classifier

are mostly proper nouns or part of proper nouns (e.g. United, States) related to recent Ameri-

can politics. The other high information gain yielding words are also closely related to American

1ROC area: a representation and interpretation of the area under a receiver operating characteristic (ROC) curve
obtained by predictions by the model [48]
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Figure 4.1: Wordcloud of the words with high information gain.

politics. Since, the dataset was curated within the specific domain of American politics, it is ex-

pected to have many words regarding this as distinguishing terms. However, high information

gain of the proper nouns show that the model is highly specific to the terms used in a specific pe-

riod of time. This can be viewed as a drawback of both the existing naı̈ve Bayes classifier [5] and

our improved version.

4.3 Tone as a Way to Differentiate between Satire and Fake News

We hypothesize that the person or group of person who create fake news and satire use

different approaches in their content creation or writing. Thus, the tone conveyed in a satire will

be different from the tone conveyed in a fake news. Also, it is likely that the trajectory of this
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level of sentiments/tones will have different trajectories according to different categories of arti-

cles – satire and fake news.

We used the IBM Tone Analyzer to calculate different aspects of each article. It outputs

scores (in a scale from 0.0 to 1.0) representing the tone conveyed by corresponding sentence.

IBM Tone Analyzer calculates 13 kinds of tone that belong to three different classes, as discussed

in 4.1.2.

For constructing narrative trajectories, we followed the algorithm presented by [52]. We

calculated these scores for each article in both categories. Then, we used the scores of each sen-

tence in an article to construct the narrative trajectory of that particular article. We considered the

scores for a specific tone in an article as a signal Sraw. Next, we used a Hanning smoothing win-

dow with size = 3, to construct a smooth signal Ssmooth. Then, we cropped the signal to remove

the boundary effects introduced by filtering. Finally, the smoothed and cropped signal Scrop is

interpolated to have a canonical length of 50 samples. We refer this final signal as the narrative

trajectory.

We argue that a satire article would differ from a fake news article in the way of describ-

ing an event. For example, since the motivation behind creating a fake news is to make people

believe something, the content creator needs to make it look like a real news, hence, be more an-

alytic while writing. Likewise, if a fake news tries to disseminate a conspiracy theory, it will try

to convey fear. Whereas a satire needs to be funny to the readers, a fake news obviously will not

have such tone in it. We constructed narrative trajectories for all articles in both categories. Then,

to verify the applicability of our argument, we calculated the resultant signal of summation of all

the signals from the articles in each category.

As we can see, satire articles in the dataset often had different narrative trajectories with

slightly different amplitudes than the fake news articles in the dataset. For example, analytical

scores for satire articles were not as high as the ones for fake news (Figure 4.2(a)); satire articles’

angry tone level was often higher than that of fake news (Figure 4.2(d)) which might indicate the

exaggeration of emotion in satire posts and attempt of the fake news to look unbiased like a real
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news. Social tone scores had almost no trajectory in their narrative approach, and thus there was

not much difference in the signals generated for satire and fake news categories. We also did not

observe much difference from the graphs for disgust emotion tone score trajectory and confidence

language score trajectory.

(a) Analytical (b) Confident (c) Tentative (d) Anger

(e) Disgust (f) Fear (g) Joy (h) Sadness

Figure 4.2: Comparison between narrative trajectories of satire (green solid line) and fake news
(red dashed line) for different tones.

We used data processing steps like stopwords elimination and stemming that improved

the performance of the system by a small margin. Whereas naı̈ve Bayes text classifier is limited

by the used terms in the articles in the dataset and thus the trained model is likely to be confined

to be useful for only specific domain and time period, our proposed approach using tone data ex-

tracted from the text is less dependent on exact words of articles and thus is less likely to be con-

fined to any specific domain or time period.
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4.4 Classification Based on Tone

Since satire and fake news only differ in motivation, we have to first consider how human

users actually recognize satire from fake news. Without access to information about the source

of the article (e.g. website that publishes the article might be known for sharing satire), an impor-

tant clue about the nature of the article can be the storytelling approach of the article. Narrative

trajectory based on sentiment is an important indicator of the storytelling patterns of text arti-

cles [53–56]. The main idea behind this is that though sentence-wise sentiment scores of an arti-

cle corresponds to individual reader experience, if we filter/smooth the sentence wise scores for

a large amount of text, the variation can indicate narrative style/pattern of the articles of specific

category [54]. Existing literature uses several different sentiment analysis approaches, including:

Wordnet [56, 57], PCA [55, 58], and the IBM Tone Analyzer [46, 52, 59]. In our work, we used

IBM Tone Analyzer because of its wide spectrum of considered sentiments.

We use tone information to classify satire and fake news articles. If we use the tone scores

to train the models instead of the text directly, it will make the models less dependent on the exact

text data, and thus, less confined to any specific domain or time period.

We argue that the headlines of satire and fake news articles might have relevant sentiment

information about the article. Therefore, we calculated the subjectivity and polarity of sentiment

conveyed by the headline using TextBlob [60]. We extracted the tone data using IBM Tone An-

alyzer. We recorded the overall tone data conveyed by the article as document tone data. Then,

we calculated sentence-wise tone data using IBM Tone Analyzer. Thus, we obtained features as

following: (1) two features from headline: subjectivity and polarity; (2) thirteen tone data (three

language tone, five emotion tone, five social tone) for each document; and (3) thirteen summa-

tion of tone data for all sentences in the document. We also added the number of sentences in the

article as a feature to train our model. In total, it gives 29 features for learning our model.

Another issue with the dataset provided by Golbeck et. al. [5] is that it has 203 satire arti-

cles (41.7%) and 283 fake news articles (58.3%). Hence, the dataset is slightly biased. Therefore,

we decided to apply SMOTE (Synthetic Minority Over-sampling Technique) [47] on the minority
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class satire with 40% oversampling ratio. We used Random Forest classifier for this classification

task between satire and fake news. We achieved 75.8% accuracy with ROC area 0.83. Detailed

performance results are shown in Table 4.2.

Table 4.2: Performance of classification task with tone data extracted from articles (article text
independent approach)

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area
Satire 0.729 0.212 0.775 0.729 0.751 0.518 0.827
Fake 0.788 0.271 0.743 0.788 0.765 0.518 0.827
Weighted Avg. 0.758 0.242 0.759 0.758 0.758 0.518 0.827

We achieved comparable performance without using text data unlike the existing work [5].

We argue that if we use tone data along with text data, it will show increased performance in clas-

sifying satire and fake news. Like the existing work [5], we also added the theme information

with these features. With all these features combined, we achieved 82.5% accuracy with ROC

area 0.91. We show the detailed performance results using Random Forest classifier [61] for this

classification in Table 4.3. We used Scikit-learn [62] for training the model.

Table 4.3: Performance of classifier model with text, tone, and theme data combined

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area
Fake 0.905 0.254 0.782 0.905 0.839 0.660 0.911
Satire 0.746 0.095 0.887 0.746 0.811 0.660 0.911
Weighted Avg. 0.826 0.174 0.834 0.826 0.825 0.660 0.911

We achieved comparable performance using tone-based approach and we showed that

combining tone information with text and theme data of the articles can improve the performance

of the model by a considerable margin. However, we further investigated the contribution of

the features of our model to classify satire and fake news articles using Shannon information

gain [51]. Table 4.4 shows top five features in our model with highest information gain. We can

see that though feature vectors generated from model are associated with text of articles, tone and
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theme based features have highest information gain, and thus can be good features for classifying

satire and fake news.

Table 4.4: Five features with topmost information gain values (type of the feature is inside paren-
theses)

Feature Information Gain
Conspiracy (theme) 0.1035
Document Joy (tone) 0.0668
Document Analytical (tone) 0.0402
Sentences Analytical (tone) 0.0395
Sensationalist Crime/Violence (theme) 0.0390

4.5 Experiment with non-English Dataset

Sarcasm detection being a comparatively new field in machine learning research, a lot

of varieties in datasets are not available yet. For example, to the best of our knowledge, there is

no publicly available satire-fake news dataset containing data in non-English language. In our

experiment, our next step was to test the performances of the improved existing system and the

tone based approach on non-English data. We chose Bengali language for collecting non-English

data.

4.5.1 Dataset Collection. We collected 30 satire posts and 30 fake news posts. We col-

lected the satire posts from popular Bengali satire sites like Motikontho2, Earki3. These sites vary

in their period of popularity – while the first one was popular formerly and usually writes satires

on political events, the second one is a popular satire site as off 2019 and writes satires on differ-

ent events – both political and non-political. Our collected data reflects this diverse nature with

slightly more political posts than the non-political ones. Our collected satire posts vary in the

dates of those being posted since as early as 2013 till as recent as 2019. Since we also did not

find any fake news dataset in Bengali, we collected those data by ourselves. To be certain about

2https://motikontho.wordpress.com/
3https://www.earki.com/
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whether a post is a fake news we relied on the most popular Bengali fact-checking site Jaachai4.

This fact-checking site follows a common structure of their posts. They include an example of

a widely popular version of the false news before it discusses the true news. An example can be

referred to by this link5. We collected those examples of fake news in different posts to serve as

samples of fake news in our dataset.

4.5.2 Experiment and Results. Since we have a small non-English dataset, we used

the entire dataset for testing purpose. First, we trained two models using the dataset by Golbeck

et al. [5] – the first one with the naı̈ve Bayes approach used by [5] after adopting the proposed

improvements in an earlier section of this chapter, the second one with the tone dependent classi-

fication approach described in the previous section. Then, we used the non-English dataset as test

data to these models. That means, none of these models has not seen non-English data before.

The accuracies of the models on non-English dataset are shown in Table 4.5.

Table 4.5: Performances of the Naı̈ve Bayes and the tone based approaches on non-English
(Bengali) dataset.

Model Accuracy
Improved Naı̈ve Bayes Approach 93.33%
Tone Based Approach 61.29%

4.6 Statistical Checking of the Tone Based Approach

As we can see, tone based approach performed much worse than the Naı̈ve Bayes ap-

proach on non-English dataset, though the tone based approach was better than later one on En-

glish dataset by Golbeck et al. [5]. This directs the next step of our experiment – to check whether

the differences between the tone values of satire and fake news are significant enough or it was

observed simply due to the particular sampling of the dataset by [5]. To check this, we used t-test

on the tone values of about 6% (15 samples from each category) data of the dataset by Golbeck et

al. [5].
4https://www.jaachai.com/
5https://en.jaachai.com/posts/post-1872
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Table 4.6 shows the results of t-test for different language and emotion tone values. In t-

test, t-values can indicate the effect size. The higher the effect size is, the difference is less likely

to be random. This can be shown more easily with p-values. A p-value less than a certain value,

e.g. 0.05, means that there is strong evidence that the difference between two samples are strong,

and the probability of this difference being out of randomness is less than 0.05.

Table 4.6: t-test result on different language and emotion tone values

Language/Emotion Category t-value p-value
Analytical 0.7816 0.44
Confident 0.2387 0.81
Tentative 0.9603 0.34
Anger 0.8443 0.4
Disgust 0.0 INF
Fear 0.3214 0.75
Joy 0.3044 0.76
Sadness 0.4674 0.64

However, in our case, we can see the p-values are so high that these do not provide strong

evidences about the differences not being out of randomness. Though these high p-values are

insignificant with respect to satire and fake news categories, close look at those values can be

helpful. The values help us understand deeper studies of which language or emotion aspects can

be beneficial, in other words, which language or emotion aspects have potentials to be used to

differentiate satire and fake news. As we can see, Tentative, Anger, Analytical – these emotion

and language classes have smaller p-values than the others. On the other hand, infinite p-value for

Disgust emotion class indicates its inability to differentiate satire and fake news.

4.7 Discussion

Our analysis of text data to differentiate satire and fake news has several steps. First, we

investigated an existing approach. By adopting some standard natural language preprocessing, we

improved the performance of the existing system by some small margin. Then, we used one of

our qualitative study’s findings. As the study indicated, the storytelling approach or the changes
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in tones in sarcasm is different from that in other types of descriptive text data on social network-

ing sites. Narrative trajectories of different language and emotional tones for satires and fake

news data from [5] also supported this finding. With this tone-based approach, we achieved com-

parable performance to the existing approach on the dataset collected by [5].

Since our tone based approach does not use the exact words in the text data samples, we

hypothesized that our approach will have better performance on non-English data compared to

the existing naı̈ve Bayes-based approach by Golbeck et al. [5]. To test our hypothesis, we col-

lected a small dataset containing 30 data instances of satire and fake news. However, trained

both our model and the existing approach model [5] on English dataset, our model could not

perform as good as the existing model on non-English dataset. To investigate the reason of our

model performing well for English dataset but not so for non-English dataset, we statistically

checked whether the difference of tone values in English dataset observed was random or signifi-

cant enough. Our t-test suggested differences of most of the tone values were due to randomness,

and thus might not be very useful.
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5 USING VISUAL CUES FROM IMAGES TO DETECT SARCASM

As we discovered in our qualitative study, memes, a special and popular type of images

on SNSs, often contain visual cues that indicate whether or not a post is sarcastic. Thus, identi-

fying memes (as in Figure 3.1 can be a step towards detecting sarcasm in image based posts on

SNSs.

As a step towards detecting sarcasm using multimedia information, we focus on the visual

style of images to express sarcasm. We hypothesize, images that are capable of presenting sar-

castic cues have different visual style than the ones that do not. Prior works show that neural net-

works can be expressed as a powerful non-linear classifier that can map any set of inputs to any

sets of desired outputs. We argue that a convolutional neural network architecture-based model

can be designed that can categorize images depending on the “sarcastic” and “non-sarcastic” vi-

sual cues.

In this chapter, at first, we will give an overview of some background concepts that are

necessary to understand the experiment methodologies. Since we are focusing on image data in

this chapter, data collection section of this chapter will concern itself with how we collected data

from Flickr, an image-based social networking site. Then we discuss our experiment and results.

5.1 Background

We used images from a popular social networking platform for sharing photos called

Flickr. Specifically, we trained a convolutional neural network (CNN) to detect sarcasm from

visual cues. For data collection, we used the snowball sampling technique.

5.1.1 Image Representation: RGB Color Space. Image representation is basically

how pixels are represented on the monitor or screen of a computing device. We can think of pix-

els as the building blocks of images. In the representation of any digital image, pixels have a nu-

meric representation that indicates its color.

Now, the question is how the numeric representation of these pixels are assigned? There
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have been mainly two approaches to assigning these representations. They are additive colors

and subtractive colors. In our discussion, we will focus on additive colors. Whereas subtractive

approach creates colors by absorption/subtraction from white color, additive approach creates

colors by mixing lights/illumination.

Depending on how pixels are using lights, there are many variations of additive color

models. However, before proceeding any further, we want to note that none of these color models

are perfect and each has its own merits. We will focus on RGB color model in our discussion. It

is a tri-stimulus color space using three primary colors: red, green, and blue.

To create colors in RGB model, any combinations of red, green, and blue are superim-

posed. Adding any two of these colors produces secondary colors: cyan (green + blue), magenta

(red + blue), and yellow (red + green). In a version of RGB model, there is an additional compo-

nent called alpha. However, we will not discuss about that extension.

The RGB color model uses a 24-bit color that is divided into three 8-bit components of

red, green, and blue. That means in RGB color model, we can have 28 = 256 distinct values (0 to

255) of each of the component colors. The values of the components indicates the intensities of

the corresponding components, i.e., a value of 0 indicates absence of a color component, whereas

a value of 255 means the full intensity of that color component. In total, RGB model offers (28)3

variations of colors. For example, R = 255, G = 255, B = 0 creates the color Yellow. Similarly,

values of all R, G, B components being 0 means absence of all color components or no light, cre-

ating the darkest color, Black. Likewise, all three R, G, B components having the highest value

255 creates the color White.

The RGB model can not only represent color images but also grayscale images. If all

three components of a pixel, or of all pixels in an image are equal, that is basically a grayscale

image.

5.1.2 Artificial Neural Networks. Before we learn about artifical neural networks

(ANN), we need to know about perceptron. Perceptron is a linear classifier. It may not be opti-

mal for many real-life problems but it is very simple to use. In multidimensional space, linearly
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separable classes can be identified by a perceptron by a hyperplane. For two-dimensional space,

hyperplane reduces to a line.

A perceptron finds the linear classifier by minimizing a defined cost function. To find the

minimum cost, gradient descent is adopted. The perceptron algorithm converges in a finite num-

ber of iteration steps to a solution if patterns are linearly separable.

But what happens if the classes are not linearly separable? For example, let us consider

the XOR separability for two binary variables. As shown in Figure 5.1, AND, OR classifiers for

two binary variables x1 and x2 can be drawn with a single line. However, XOR function output

cannot be identified with a single line that is shown with the shaded area in the Figure 5.1.

Figure 5.1: XOR function classification with multiple perceptron.

Each of AND and OR can be realized with a perceptron. They perform a mapping ac-

cording to their corresponding functions as the first phase. The final output mapping for XOR

function is done on the transformed value in the first phase. This can be performed via a second

line that is realized by another perceptron. Computations of the first phase perform a mapping

that transforms the non-linearly separable problem to a linearly separable one. Thus, multi-layer

perceptron (MLP) or ANN can transform more complex non-linear problems into linearly classi-

fiable one.
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5.1.3 Convolutional Neural Networks. Convolutional neural networks (CNNs) can

process large images or video sequences. For that, it automatically generalizes for spatial transla-

tions of inputs. It is applicable for any input that can be laid onto a grid.

Convolutional neural network replaces matrix multiplication with convolution keeping

everything else same in artificial neural network. These convolutions, specifically the filters in

them, can detect patterns, i.e., edges, corners, geometric shapes, etc. When adding a convolu-

tion layer to a CNN, we have to specify how many filters it should have. A filter is a small ma-

trix for which we decide the numbers of rows and columns. The values in the cells are assigned

randomly. When the layer receives an input matrix, the filter will slide gradually until it has tra-

versed every r ∗ c blocks in the input. This process is known as convolution. By training we ac-

tually learn the values we should have in the cells of the filters. Learned values of filters help us

detect patterns. As the network goes deeper the pattern recognition capability of it becomes more

sophisticated and it can detect objects.

5.1.4 Several Backbone Neural Networks. We used four backbone networks in our

experiment. Those are: VGG16, ResNet50, InceptionV3, and Mobilenet. We discuss those briefly

in this subsection.

5.1.4.1 VGG16. The visual Geometry Group at the University of Oxford proposed a

convolutional neural network in their paper [63]. It can find a wide range of objects in a given

image. It accepts RGB images of 224x224 pixels. It was the first runner of ILSVRC (ImageNet

Large Scale Visual Recognition Competition) 2014 in the classification task. It uses 16 layers in

total comprising of convolution layers (3x3), max-pooling layer(2x2), and fully connected layers.

A popular variant of VGG-16 is VGG-19 with 19 layers.

5.1.4.2 ResNet50. Resnet is a short form of Residual Network [64] (schematic shown

in Figure 5.2). As the name suggests, this network uses residual learning. When very deep con-

volutional networks are used, network accuracy gets saturated and degrades. No matter what hap-

pens, a deep network should be at least as good as a shallow network. That means we do not rule
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out the necessity of deep networks for some problem cases, however, we want the deep network

to adjust itself to be a shallow network if the problem demands.

Figure 5.2: Schematic of Resnet having different numbers of layers

He et al. [64] proposes we can use a deep network and train all early weights of the net-

work to be zero. Instead of learning a direct mapping between x −→ y like y = H(x), we

define a residual function F (x) = H(x) − x i.e., H(x) = F (x) + x, where F(x) is the output

of stacked non-linear layers and x is identity function. If we want to make the network shallow,

making F (x) = 0, helps us skip a certain layer. Figure 5.3 shows how a residual block is used

with weight layers.

Figure 5.3: Residual block with weight layers and skip connection.
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5.1.4.3 Inception V3. The premise of Inception networks is that salient parts of the im-

ages can have large variation in size and location. Thus, choosing the right size of kernel can be

difficult – larger kernel for globally distributed objects and smaller kernel for locally distributed

ones. Therefore, the idea here is that we use multiple sizes of kernels in a single layer making the

network go wider. A naı̈ve implementation of inception block looks like as in Figure 5.4.

Figure 5.4: A naı̈ve implementation of inception block from Szegedy et al. [1]

Inception V2 and Inception V3 were presented in the same paper [65]. In V2, the repre-

sentational bottleneck was removed and 5x5 convolution was factorized using two 3x3 convo-

lutions to make it computationally faster. Inception V3, along with the changes in V2, incorpo-

rated RMSprop optimizer, factorized 7x7 convolutions, and used batch normalization for auxil-

iary classifiers.

5.1.4.4 Mobilenet. Mobilenet is an architecture proposed for mobile and embedded

based computer vision applications to function with limited computing power. The normal con-

volution is replaced with depthwise convolution in this architecture. This significantly reduces

the number of parameters than the network with normal convolution and same depth. Reducing

the number of floating point matrix multiplication, it sacrifies a small amount of accuracy with a

network of low complexity.
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5.1.5 Transfer Learning. Training a CNN from scratch, it has to learn to identify basic

shapes from the very beginning. Therefore, usually networks are seldom trained from scratch.

Specially, if the task at hand relates to a previously known task, there is a high probability that

both networks–the one for a new task, and the one already trained for a related task, might have

to learn to identify similar shapes/patterns. Again, if the size of the dataset is not large enough,

the training of the network from scratch might take forever or might overfit the dataset.

For example, if the task at hand is to identify whether an image is sarcastic or not, the net-

work for that might need to learn certain patterns. Though object detection is not directly the task

at hand here, the learning for an object detection network might come handy. Thus, our training

might take less time to achieve a certain performance if we start with a pretrained model for an-

other task, hoping that it will transfer its learning to this new task. This is transfer learning.

For transfer learning, we start with an architecture and its pre-trained weights. We modify

the last layers according to the demand of our problem. Finally, we train the entire network on

our dataset.

5.2 Dataset Collection

While collecting datasets for sarcasm detection, the first challenge is finding sarcastic

posts online and differentiating them from non-sarcastic posts. As we discussed in section 2.2,

there are two approaches to collecting sarcasm datasets – independent annotation, and self-annotation.

To recognize the importance of context information for identifying sarcasm data as pointed out

and emphasized by [20, 26], we used the latter approach as done by Khodak et al. [26] and Reyes

et al. [25]. In this phase, we focused on utilizing image based data for sarcasm detection instead

of utilizing only text-based data. Whereas Schifanella et al. [33] and Razali et al. [29] discussed

that multimodality from text and image based posts can help complement context information for

each other, in this phase, we are arguing that images alone can also contain important visual cues

that can indicate sarcasm in a post. Therefore, we collected images that were labeled by users

who posted those online with hashtags that denote sarcasm.
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5.2.1 Deciding on Search Words. As pointed out by Wallace et al. [22], sarcasm is not

often used during normal conversation. Therefore, though the amount of posts available on social

networking sites is abundant, it is hard to find posts that were intended to be sarcastic. Our initial

sets of hashtags for both classes had one word in each. The sarcasm class consisted of only one

word – “sarcasm”, and for non-sarcasm class consisted of the word – “non-sarcastic”. Obviously,

these sets of words are too small to consider for large amount of data collection. Therefore, we

borrowed from the idea of snowball sampling [35, 36] as described in section 5.1.

Images with sarcastic intent are hard to find. Likewise the hashtags used to indicate sar-

castic images are difficult to locate. Therefore, we used this non-probabilistic sampling technique

to increase the number of words in the sets of hashtags to consider. For increasing the number of

words in the sarcasm class, we consider the other synonyms of the only existing word in this set

for now (i.e., “sarcasm”) as potential samples of hashtags that might be used with a sarcastic im-

age because those words will have same meaning as the existing word – “sarcasm” and the users

can use any of those words at their discretion. We chose the following words: “sarcasm”, “sarcas-

tic”, “irony”, “satire”, and “wit” as potential hashtags for images of the sarcasm class.

Filatova et al. [9] pointed out while sarcasm has opposite literal and intended meaning,

the literal meaning is often positive, and the intended one is negative with a clear victim. Thus,

sarcastic utterances can easily be confused to be positive statements that are made about a per-

son or a group of persons. Positive statements used to admire a person or group of persons can

be termed as praise. Thus, images using words like “praise” or its synonyms (e.g. applause) as

hashtags can be confused with sarcasm that in reality are not sarcastic. Now, we focus on the fact

that sarcasm has opposite literal and intended meaning. This scenario is not desired or seen while

conveying information. Thus, we consider the words like “information” and “fact” as member of

set of hashtags used with non-sarcastic posts. We also considered different variations of the word:

“non-sarcastic”, e.g., “nonsarcastic”, “not-sarcasm”, “notsarcasm”. Therefore, the words we con-

sider as hashtags for the non-sarcasm class are: “non-sarcastic”, “praise”, “applause”, “fact”, “in-
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formation”. We assume that none of these words are used sarcastically. If an image has hashtags

from both sarcasm and non-sarcasm classes, we discard that image during data collection.

5.2.2 Yahoo Flickr Sarcasm (YFS) Dataset. We collected images from the popu-

lar social photo sharing service, Flickr. Previous works in image based emotion classification

and social media research have widely used the publicly available image data from this plat-

form [66, 67]. We used the Flickr API service to collect the image data. At first, we collected the

image metadata using the words discussed in previous subsection as keywords or search query

parameters in both “sarcasm” and “non-sarcasm” classes. As parts of metadata, we collected im-

age IDs and image urls. Then we retrieved the images by their urls returned by the queries and

saved them under the keywords that were used for queries. Table 5.1 shows the number of images

that we found for each keyword. Images often contained more than one word from the same cat-

egory as hashtag keywords. We considered such images only once in the table. That means, we

saved an image only once in our dataset when the image had more than one word from the same

class as keywords. We ensured this by comparing images by their ID in metadata that is unique

for any post on Flickr. To respect the privacy of user generated content on social media, we only

collected the images and their metadata that are available under creative commons license. Fol-

lowing the study by Gajarla et al. [66], we also sorted our result set by “interestingness” [68]. We

queried with the hashtags. We collected images’ metadata at first and then we collected images

later. This helped us collect data without exhausting the daily query limit of the API. In this way,

the metadata information can be utilized directly without further queries for collecting data in a

short amount of time.

We collected 1846 images in total. Among these images, 443 images were collected us-

ing keywords from the “sarcasm” class as query terms and 1403 images were collected using

keywords from the “non-sarcasm” class. We split our data in each class into 90% training data

and 10% validation data. This resulted in a training set having 1603 images, among that 399 im-

ages belonged to the “sarcasm” class and 1263 images belonged to the “non-sarcasm” class. The

validation set consisted of 184 images of that 44 images were from the “sarcasm” class and 140
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Table 5.1: Number of images for each keyword individually.

Class Keywords Number of Images

Sarcasm

sarcasm 13
sarcastic 22
irony 179
satire 88
wit 141

Total: 443

Non-sarcasm

non-sarcastic 2
praise 437
applause 253
fact 35
information 676

Total: 1403

images were from the “non-sarcasm” class. We saved all the images in the jpeg format. Our col-

lected images varied in sizes and shapes. The smallest image in our dataset is 8.0 KB and the

largest image is 20.0 MB. The varying resolution of the images was ranged from 180x135 to

6600x4514. We refer to our dataset as the Yahoo Flickr Sarcasm (YFS) dataset.

5.2.3 Comparison against Benchmarks. Wallace et al. [22] pointed out that sarcasm

occurs very infrequently, and that was also reflected in our data collection. The largest sarcasm

dataset so far was done by Khodak et al. [26]. They prepared a text data based sarcasm dataset

using posts from subreddit “politics” on Reddit. In their dataset, they reported 23.2% instances

in the “sarcasm” category with the rest 76.8% samples in the “non-sarcasm” category. They pre-

sented this as a benchmark for sarcasm collection dataset. Work by Walker et al. [69] collected

data from the Internet Argument Corpus that had only 12% of data that belong to the “sarcasm”

class that does not meet the benchmark set by Khodak et al. [26].

The only existing image-based sarcasm dataset was prepared by Schifanella et al. [33].

It was a balanced dataset having 50% instances in each category. They reported that 91.16% of

their data had images in it. Therefore, we can calculate 45.58% posts of their dataset were sam-

ples of image based “sarcasm” posts that also satisfies the benchmark by Khodak et al. [26].

However, they did not include any information about availability of their prepared dataset. Our

YFS dataset has the following distribution: 24% images belonging to the “sarcasm” class and
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76% images in the “non-sarcasm” class. While satisfying the benchmark for sarcasm dataset col-

lection by [26], we also made our dataset publicly available.

5.3 Methodology

5.3.1 Study Design. We collected image data from Flickr and divided that into two cat-

egories: “sarcasm” and “non-sarcasm”. Thus, we can model our task of sarcasm detection as a

binary classification problem. Usually image-based classification problems are tackled in two

ways. Many prior works attempted utilizing hand-crafted features in this respect. In image-based

emotion detection research, Siersdorfer et al. [67] also took the same approach of proposing fea-

tures that were manually calculated and extracted. However, being unable to choose good, hand-

crafted features poses the risk of building a poor classifier. At the same time, calculating these

features manually has large overhead. With the recent popularity of neural networks and their su-

periority in identifying and extracting hard-to-detect features from images, many recent image

based classification works take this approach. In image based sentiment analysis research, Ga-

jarla et al. [66] suggested this approach.

Scifanella et al. [33] advocated for multimodality in sarcasm detection for the first time.

They attempted to understand the semantics in the images. They compared that with textual de-

scription of the images. They reported an improved performance in sarcasm detection with the

inclusion of semantics of the images. We agree with their concept of utilizing images as a source

of information for sarcasm detection. However, instead of semantic representation of images, we

focus on the visual cues of the images. We argue that sarcastic images posted on social media

have different visual cues or representation than the ones that do not have such sarcastic intent.

Thus, whereas Schifanella et al. [33] focused on semantics of the images, we are focusing on vi-

sual cues or representation ways for detecting sarcastic images. Though visual cues have been

used for emotion detection in images by Gajarla et al. [66] and Siersdorfer et al. [67], none of

them considered sarcasm as a mode of emotion or sentiment. We propose that visual cues in an

image as input to a CNN can detect sarcasm with high accuracy.
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At this phase, our methodology has two approaches. First, we trained a CNN to identify

sarcastic cues in image. Second, we performed transfer learning from several popular object de-

tection neural network models to see how fine-tuned content identifier networks perform for the

task of sarcasm detection.

5.3.2 System Design.

5.3.2.1 Preprocessing. Since the size of our dataset is not large, we performed image

augmentation process on our dataset. We passed the images through a shearing factor of 0.2 and a

zooming transformation factor of 0.2. The values of these hyperparameters were chosen from our

previous experience of working with small datasets. We also performed horizontal flips of the im-

ages to increase the number of training samples. As we discussed earlier, images are represented

in RGB color space with integer color values of red, green, and blue ranging from 0 to 255. How-

ever, this [0, 255] range is too large for our CNN model. Therefore, we down-scaled the color

values to [0, 1]. Using image augmentation techniques, we prepared a dataset having 2000 im-

ages containing all original images along with some synthetically generated image samples. For

preparing a validation dataset of 800 images, we applied the same augmentation methods on the

held out validation images.

5.3.2.2 Architecture. A convolutional neural network (CNN) consists of several con-

volution layers, a sub-sampling step, and then one or more fully connected layers. We used a

sequential neural network architecture. At this point, we will define a layer group. Let’s call a

group of layers consisting of a 2D convolution layer, an activation layer with “relu” function,

and a max pooling layer with pool size = (2, 2); and name it “Layer Group A”. We repeated this

Layer Group A three times consecutively, that was followed by a flatten layer, and two dense lay-

ers with “relu” and “sigmoid” activation functions respectively. Figure 5.5 shows the architecture

of the sequential CNN architecture used in our experiment.

5.3.2.3 Learning. We followed a mini-batch weight updating scheme for our experi-

ment. That means, instead of updating the weights in neurons after passing each image, we up-

date the weights after passing a batch of images. We tried several different values for batch size
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Figure 5.5: Structure of the CNN to learn sarcastic visual cues.

of images to the CNN. Batch size is a hyperparameter in CNN and determining the value of it is

an optimization problem. The larger the batch size, the CNN will require more memory to train.

On the contrary, a small batch size will require less memory. The choice of batch size for a CNN

poses a performance-time trade-off. For our final model, we settled for a batch size of 16. An-

other important hyperparameter that we had to choose is the number of epochs, i.e. how many

times all the training samples go through a cycle consisting of a forward and backward pass. We

set the number of epochs to 50, i.e., all our training images pass through the CNN 50 times in a

batch size of 16 while updating weights and biases values.

We implemented our CNN using Keras, a wrapper over Tensorflow. We used an input size

of 240x240. We chose binary crossentropy as the loss function for our model. Next, we find an

appropriate learning rate for our CNN. Przelaskowski et al. [70] discussed that image data has

a sparse representation. In a later study, Ruder et al. [71] gave an overview of gradient descent

optimization algorithms and concluded that for sparse input data, using one of the adaptive learn-

ing rate methods is most likely to achieve the best results. A well-suited algorithm for using with

sparse data is Adagard, a gradient-based optimization algorithm that adapts the learning rate to
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the parameters. We chose to use the RMSprop optimizer, an extension of Adagard that deals with

its radically diminishing learning rate.

We achieved an accuracy of 84%. Our dataset is not fully balanced. That means the num-

bers of images that belong to two categories: “sarcasm” and “non-sarcasm” are not equal. There-

fore, we need to choose a metric that ensures proper training for imbalanced dataset. F1 score is

a harmonic average of precision and recall. Unlike accuracy that is affected mostly by true pos-

itives and true negatives, F1 score reflects all four possible cases – true positives, true negatives,

false positives, and false negatives. Thus, F1 score is a better metric for optimizing on an imbal-

anced data. While training the model again with respect to F1 score, we kept the values of other

hyperparameters unchanged. This new training achieved an F1-score of 79%. A high F1-score of

the model indicates that the model is not biased towards any category.

5.3.3 Fine-tuning Existing Models. We also looked into the neural network based

work on image based sentiment analysis by Gajarla et al. [66]. They experimented using trans-

fer learning on different variations of VGG-ImageNet and ResNet. They reported 73% accuracy

for positive and negative senitment detection using visual cues identified by fine tuning the last

layers of the aforementioned models.

For fine-tuning existing models to perform the sarcasm detection task, we chose several

popular exsiting models, e.g., InceptionV3, MobileNet, ResNet50, and VGG-16. For each of

these, we replaced the final layer of the network with a layer having two output nodes so that it

can perform a binary classification task of “sarcasm” and “non-sarcasm” detection from images.

5.4 Results

We discuss the performance of our CNN-based model and compare its performance with

(1) image semantics based sarcasm detection, (2) image visual cues based sentiment analysis, and

(3) transfer learning based sarcasm analysis.

5.4.1 Semantic Based and Our Visual Cues Based Approaches. At first, we com-

pare our visual cues and CNN-based approach with image semantics based approach of sarcasm
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detection. To the best of our knowledge, Schifanella et al. [33] is the first, and till our work [72],

the only paper that discuss the importance of considering images for sarcasm detection with im-

plementation. They reported 65% and 72% accuracy on their two datasets using visual semantic

representations of images. Since they had a dataset having 50:50 ratio between the “sarcasm” and

“non-sarcasm” classes, we can consider their accuracy value as F1-score.

Our CNN based classifier trained to classify “sarcasm” and “non-sarcasm” classes from

images achieved 84% accuracy and 79% F1-score. Therefore, we can see visual cues based ap-

proach achieved superior performance over semantic representation based approach by 16.67%

(accuracy metric) and by 9.72% (F1-score metric).

Now, the question is, what kind of visual cues has our model learned? Understanding

these visual cues will help us understand what kind of images are posted on social media with

sarcastic intent and whether the learning of the model echoes our and our participants’ experience

on SNSs.

5.4.1.1 Sarcasm. The model learned to categorize images with writings in them as sar-

castic images. This aligns with the characteristics of widely used memes on social media. An-

other interesting type of image in this category is the crudely edited photos that are also used as

memes. Many of outdoor images of non-human objects were predicted to belong to this category

by our model. Besides, our model also learned to identify all hand-drawn cartoons as an indica-

tor of sarcastic images. These visual cues (e.g., crude edit, hand-drawn cartoon, memes, etc.) of

sarcastic images also align with our findings from our qualitative study (examples shown in Fig-

ure 5.6).

5.4.1.2 Non-sarcasm. The model identified most indoor images as non-sarcastic im-

ages. For outdoor images that the model identified as non-sarcastic had a common characteristics,

that is, those images were of human beings in outdoor settings. The model seems to learn human

faces as a good indicator of non-sarcastic posts that is also supported by some of our participants’

opinions. Some examples of images categorized as “non-sarcasm” by our model are shown in

Figure 5.7.
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(a) Image with text (memes) (b) Outdoor image of non-
human object

(c) Handdrawn image (cartoon)

Figure 5.6: “Sarcasm” Labeled Images

(a) Outdoor image of human (b) Human face (c) Indoor image

Figure 5.7: “Non-Sarcasm” Labeled Images

5.4.2 Visual Cues Based Sentiment and Sarcasm Detection Approaches. Gajarla et

al. [66] utilized visual cues of images for identifying sentiments. They used transfer learning to

accomplish their task. They fine-tuned only the final layers of VGG-Imagenet, VGG-Places205,

and Resnet50 and achieved 67.8%, 68.7%, and 73% accuracy respectively.

Our sarcasm detection CNN model with 84% accuracy exceeds the sentiment analyzers’

performances. It shows that visual cues is an effective feature not only for binary sentiment anal-

ysis but also for sarcasm detection. Thus, we argue that whereas Gajarla et al. [66] classifying

sentiment as positive and negative ignored sarcasm as a sentiment, considering sarcasm we can

come up with a tri-categories classification problem with “positive”, “negative”, and “sarcasm”
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classes; and a possible approach to this problem might be training neural networks on visual

cues.

5.4.3 Dedicated Learning and Transfer Learning. We also wanted to see how trans-

fer learning as done by Gajarla et al. [66] compares with dedicated learning of CNN architecture.

We chose four existing pre-trained models – InceptionV3, MobileNet, Resnet50, and VGG-16.

Deciding on the number of epochs for fine-tuning these pre-trained models poses a dilemma

of choosing between overfitting model by too many iterations and settling for a poor model by

too few iterations. To avoid overfitting, training should be stopped when val acc stops increas-

ing. To get this number of iterations for all four of the aforementioned pre-trained models, at first,

we let them fine-tune their final layer for binary sarcasm detection problem with 50 epochs. Fig-

ure 5.8 shows their performance of fine-tuning over 50 epochs.

(a) InceptionV3 (b) MobileNet

(c) Resnet50 (d) VGG16

Figure 5.8: Transfer learning on pre-trained models for sarcasm detection.
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For avoiding overfitting while transfer learning, we consider the model’s accuracy at the

epoch before the one when the value of val acc decreased for the first time. For example, while

finetuning InceptionV3, its val acc decreased for the first time at 10th epoch; hence, we consider

transfer learning of this model upto nine epochs and consider its accuracy at 9th epoch as its per-

formance accuracy.

We get accuracy as follows in Table 5.2. As we can see, transfer learning does not achieve

as high accuracy as we achieved with dedicated learning from the scratch, i.e., 84%. However,

transfer learning models needs few epochs to obtain comparable performance before running into

risk of overfitting.

Table 5.2: Performance of transfer learning models for sarcasm detection

Pre-trained model
Number of epochs
before decreasing
“val acc”

Accuracy

InceptionV3 9 73.44%
Mobilenet 24 66.44%
Resnet50 6 79.69%
VGG16 6 75%

5.5 Discussion

Image-based cues have proved to be a useful feature to detect sarcasm on social network-

ing sites. We collected data from Flickr using snowball sampling based on the tags associated

with the images. We trained a network from scratch so that it is dedicated to sarcasm detection.

This network performed with 84% accuracy. Then, we tested the merit of transfer learning for

our problem scenario. We achieved 79.69% accuracy from transfer learning among the four net-

works that we fine-tuned. Our contribution in this chapter is the collection of an image-based

sarcasm dataset YFS and the trained CNN model for sarcasm detection.
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6 A MULTIMODAL APPROACH TO SARCASM DETECTION

Our participants during the qualitative study talked about how they use different kinds of

cues in an SNS post to understand whether that post is sarcastic or not. Our study revealed the

usefulness of different streams/modes of data for sarcasm detection. Themes emerged from our

study extended an existing finding of prior sarcasm detection studies to multimodal level. Exist-

ing studies suggested that different sentiments as part of a single SNS post can denote that the

post is sarcastic [27]. Our participants opined that in a sarcastic post, the sentiments in different

parts of the post can be different. To elaborate on this, a sarcastic post can have a positive cap-

tion while the image conveys something very negative and vice-versa. This can also happen with

comments along with the post itself – some users might not understand the sarcasm in the post

and react opposite to what was expected, some might understand the sarcasm but want to play

along with it, while some might react in straight message after understanding the sarcasm. Thus,

a multimodal approach has the potential to be a more robust method of sarcasm detection.

In this chapter, we propose a multimodal sarcasm detection approach using text, image,

and reaction emoticons. We utilized Facebook as the multimodal SNS platform for our data col-

lection. However, we tried to keep the system generalized enough to be used for any other SNS

platforms.

In this chapter, we discuss the structure of a Facebook post, sentiment analysis, auto im-

age caption generation. Then, we discuss how we collected the multimodal dataset, followed by a

discussion about the structure of our system. Finally, after model training, we report the results of

our multimodal approach for sarcasm detection.

6.1 Background

6.1.1 Structure of a Facebook Post. Each social networking site has its own way of

organizing information. Facebook has two types of communication: direct messages and general

content posts. Both types of communication support several modes of content, including: text,
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image, reaction emoticon, video, and audio. Direct messages are limited to a small number of

people whereas general content posts target a range of group sizes from a small group of people

to a general public audience. We limit our discussion to general content posts and their structures.

General content posts can be posted by a user in three different scenarios: (1) on a user’s

own timeline (personalized page for each Facebook profile), (2) in a group (a separate channel

for a number of people with recommended maximum size of 5000 users), or (3) as a Facebook

page (usually used for advertisement or promotion of any idea, individual or organization). An

individual user can add up to 5,000 friends on Facebook with mutual acceptance, i.e., for that

he/she needs to send friend requests to others or has to accept friend requests from other users.

For a page, other users have to follow that particular page to receive updates from that, hence

communication in this case is mostly unidirectional. In a group setting, all members can view and

interact with each other irrespective of their connection status with each other as long as they are

member of the same group, i.e., they do not need to be friends.

Posts from individual users’ timelines can have different privacy settings – public, friends

only, friends of friends, etc. However, posts from pages are always public. That means, any post

from a page can be viewed by anyone, that includes users of Facebook, and people who do not

have an account on Facebook.

As discussed earlier, a post can have text, images, and/or videos as content. There are

three main ways to interact with a post: react, comment, and share. Facebook allows six reaction

emoticons (as shown in Figure 6.1) to interact with a post with minimal effort to express a user’s

attitude to one post: like, love, haha, wow, sad, angry – the name of each emoticon by its name

expresses what it is intended to express. Users can also comment on a particular post. Comments

can also consist of text, images, and/or videos. On Facebook, a user can also share a content with

his/her peers as long as it is permitted by the user who originally posted the content.

6.1.2 Sentiment Analysis. Sentiment analysis as a part of natural language process-

ing (NLP) in computer science is well studied in existing literature. Sentiment analysis is “the

process of computationally identifying and categorizing opinions expressed in a piece of text,
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Figure 6.1: Reaction emoticons available on Facebook.

especially in order to determine whether the writer’s attitude to particular topic, product etc. is

positive, negative, or neutral” [73]. A major field of application for sentiment analysis is social

media data. The role of social media and importance of understanding users’ sentiment on this

platform was repeatedly highlighted during political elections [74, 75], for instance. E-commerce

sites are also a major application space for sentiment analysis. Companies on those sites use sen-

timent analysis to get an overview of customer reviews about their products [76, 77]. Sentiment

analysis also goes by different other names, e.g., opinion extraction/mining, sentiment mining,

subjectivity analysis, etc.

Sentiment analysis can be termed as the detection of attitudes, i.e., beliefs or dispositions

towards something (objects or persons) based on one’s emotions or sentiment [78]. Sentiment

analysis largely focuses on text sentences or documents to identify such attitudes. The more com-

mon practice is to use simple weighted polarity of positive, negative, and neutral as types of atti-

tude.

The baseline algorithm for sentiment analysis was proposed by Pang et al. [79]. It utilizes

tokenization, feature extraction (e.g., with unigrams, bigrams, etc.), classification using Naı̈ve

Bayes, maximum entropy, and support vector machines (SVMs). Since sentiment analysis relies

on the tokens used in the text, at best it can identify the surface or literal sentiment expressed by

a text. Therefore, it cannot address the cases of sarcasm where people say something with the

opposite intended meaning of what they express with the literal meaning. An example of such

case is shown in subsection 8.1.2.

6.1.3 Image Auto-Caption Generation Model. Auto caption generation for images

can be described as the problem of describing the objects in an image in natural language based
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on the relation among the objects with respect to relative positions and actions. As the Figure 6.2

shows, an auto image caption generation model is expected to output one or more coherent sen-

tences that describe what is happening in a given image.

Input Image

Possible Caption A group of people shopping
at an outdoor market. There
are many vegetables at the
fruit stand

Figure 6.2: An example pair of input image and possible caption output. Example taken from
Vinyals et al. [2].

In our work, we used the “Show and Tell” auto image caption generation and Neural Im-

age Caption (NIC) model proposed by Vinyals et al. [2]. It is a generative model based on a deep

neural network architecture. The architecture has two parts. First, images are passed through a

deep convolutional neural network (CNN) that was pre-trained for image classification. They use

a CNN at the first phase, replacing the earlier practice of using recurrent neural network (RNN),

since it has been convincingly shown over the last few years that CNNs produce better represen-

tations for images using a fixed length vector embedding [80]. The encoded results from the last

layer of the CNN are fed to a language generating RNN decoder to perform machine translations

and generate captions for images.

6.1.4 Common Machine Learning Algorithms. In this chapter, we will use several

machine learning algorithms. Among those, random forest and multi layer perceptron were dis-
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cussed in the chapter 4 (on our text-only approach). At this point, we will discuss several other

common machine learning algorithms briefly.

6.1.4.1 Support Vector Machine. Support vector machine, widely known as SVM, is a

commonly used machine learning algorithm. Before ubiquity of fast computing resources, SVM

was thought to be one of the best machine learning algorithms. SVM, a supervised learning al-

gorithm, works with an objective of drawing a classifier hyperplane/decision boundary among

different classes while keeping the largest possible margins with close to borderline instances on

either side of the plane. These margins on either side of the decision boundary are called support

vectors.

As depicted in Figure 6.3, both hyperplanes–solid line and dashed separate the instances

of both classes correctly. However, it is apparent that B1 will be more likely to perform better

than B2 if we are given any new instance of the input data. This is because, B1 has a larger mar-

gin than B2. SVM works to optimize these two goals simultaneously–drawing decision boundary,

and maximizing margins. SVM can be used for both linear and non-linearly separable classes. In

fact, non-linear SVM are done by converting the problem into a linearly separable problem with a

method called Kernel trick.

Figure 6.3: Comparison between two SVM decision boundaries in a two-class problem setting.
Image taken from [3].
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6.1.4.2 Adaboost. As we discussed in 4.1.4.3, a combination of multiple weak classi-

fiers can produce a single strong classifier. In Adaboost, each weak classifier is trained using a

random subset of the total training dataset. These subsets can overlap. We can assign weights to

the training instances that determines their probability of appearing in the training subset. Af-

ter training a classifier, the weight of a misclassified example is increased so that the probability

of its appearing more frequently in next round of training increases and classifier in that round

learns to classify that large portion of examples correctly. After each classifier is trained, it is as-

signed a weight. A classifier with accuracy equal to random guessing is assigned zero weight,

one with higher accuracy is assigned a positive weight, and one with worse accuracy than random

guessing gets a negative weight.

6.1.4.3 Gaussian Naı̈ve Bayes. We discussed the basics of Bayesian classifiers and its

naı̈ve Bayes variant in 4.1.4.2. We concerned ourselves with discrete values in that subsection. To

deal with continuous values, we need to use Gaussian naı̈ve Bayes classifier (GNB).

GNB assumes that the continuous values associated with each class follow a Gaussian

distribution. The probability of an instance belonging to class Ck to have continuous attribute

value x = v is,

p(x = v|Ck) =
1√

2πσk2
e
�
(v − µk)

2

2σk2

where, µk is the the mean and σk2 is the variance associated with class Ck.

6.2 Dataset Collection

To the best of our knowledge, there has been no prior work with implementation of mul-

timodal approach to sarcasm detection with a publicly available dataset. Therefore, in order to

experiment with multimodal approach for sarcasm detection, our first challenge was to build a

multimodal dataset. We aimed to build this multimodal dataset with publicly available data, and

make this dataset publicly available (link listed in Appendix E).
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6.2.1 Data Source Selection. Now, the question arises that what we can use as the

source of our data. We chose to collect data that has multimodal information (e.g. text, image,

etc.). Again, the focus application area of this research is the social networking sites. Therefore,

we evaluated several social networking sites. Facebook, which has the largest number of users

from around the world, allows posts with different modes of data. Many of these posts happen

with public view settings. Therefore, in the regard of data collection, we considered Facebook as

a good and viable source of data.

The next challenge is to know the differentiation of categories of posts–sarcastic, and

non-sarcastic. While independently labeling data by researchers or by crowdsourcing is a com-

mon and popular approach for dataset preparation, we used self-annotation on posts. Many pre-

vious works used hashtags (e.g. #sarcasm) as indicator of self-annotation of sarcasm on twit-

ter. We extended that using similar words with snowball sampling while collecting our image-

based dataset. However, instead of using snowball sampling [35], in this phase, we adopted word-

embedding for choosing the potential similar words. We consider the word “sarcasm” and “infor-

mation” as representative of sarcasm and non-sarcasm classes respectively. We used word2vec

model to identify potential synonyms of the word “sarcasm” based on their embeddings or vector

representations. Details about this process has been discussed in chapter 4.

Facebook offers a variety of privacy settings for posts at individual users-level, and the

users might want to change their privacy setting for a particular post that will not be reflected in

a collected dataset. Again, collection of these posts from individual users depend on the connec-

tions of researchers’ social connections on Facebook. Thus, the value of posts from individual

users decays for collecting research oriented datasets. On the other hand, posts from Facebook

pages are publicly viewable. However, to put a response to an existing post or to post a new con-

tent, one has to have an account with Facebook. Nevertheless, anyone can view these posts. Pub-

lic posts from Facebook pages have multiple modes of data (e.g., text, images, reaction emoti-

cons, etc.). Thus, these satisfy our criteria for data collection.

We chose several Facebook pages for collecting public contents posted by those. All
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pages we selected had at least one million followers. We decided on this threshold because it

emphasizes that at least one million users on Facebook endorse that these pages are serving a

purpose as their names suggest. For collecting sarcasm class data, we chose the pages that had

the word “sarcasm” or any of its synonyms in their names. We also verified the list of such pages’

contents for validity of our assumption of those publishing sarcastic contents. We consider such

pages as sarcasm related pages. The ten pages we selected for that are following: “Mother of Sar-

casm,” “Sarcasm,” “Sarcasm Society,” “Sarcasm Daily,” “Sarcasm, Because Killing People is il-

legal,” “Sarcasm World,” “I speak sarcasm as a 2nd language,” “Sarcasm Hub,” “Sarcasm Sodal-

ity,” and “Sarcasm Meets Humor.” Now, we need to decide on the pages that can serve as sources

for instances of non-sarcastic posts. It is fair to assume that news related posts are not sarcastic.

Though there are some satirical news portals, and some news sources that are not much reliable,

we can safely argue that mainstream news media do not spread sarcasm as form of news. There-

fore, we considered verified Facebook pages of ten popular mainstream news media as sources

of non-sarcastic posts. The pages that we selected are: “The New York Times,” “Time,” “The

Economist,” “The Economist, Asia,” “The Times of India,” “Hindustan Times,” “BBC News,”

“CNN,” “The Wall Street Journal,” and “Reuters.” The threshold of at least one million followers

created a good distribution in choice of non-sarcastic pages from different parts of the world that

eventually will result in better training.

6.2.2 Collection. We collected the data using Facebook Graph API. Our dataset prepa-

ration time was 1 July, 2018 to 3 July, 2018. This time period is after Facebook adopted the GDPR

guidelines.

For creating a dataset with mutlimodal data, we collected the description, message, im-

ages (if any), reaction emoticons of posts, and comments on those. We did not collect any users’

identifying information. We only collected the information/contents that were posted with “pub-

lic” privacy settings.

At first we collected all data from the date when a page was first created until 1 July,

2018. However, among all the modes of data associated with any post, reaction emoticons are rel-
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atively new. It was first introduced as a feature in Facebook on February 24, 2016. Thus, posts

before that time does not have this information unless a handful group of users decided to re-

visit any particular post. Again, it is reasonable to assume that after first launch, users might need

some time to get familiar with a new feature. Hence, we consider the rest of February 2016 as a

period for users to get familiar with reaction emoticons. Therefore, while preparing the dataset,

we preserved the contents posted after February 2016.

In total, we collected 20,120 instances of sarcasm category posts, and 21,230 instances of

non-sarcasm category posts. Our dataset with 48.65% sarcastic posts, and 51.35% non-sarcastic

posts in it can be identified as a balanced dataset. All of these posts had a set of reaction emoti-

cons, and description/message associated with it while a large portion of those (98.26%) included

images.

6.3 Methodology

In our multimodal dataset, there are three modes of data. These are: text, images, and re-

actions numeric (see Figure 6.4(a)). Now, let us discuss from where these data come from in a

Facebook post. As we discussed in the background section in this chapter 6.1, each Facebook

post has a description (labeled 3 in Figure 6.4(a)) or a message (labeled 1 in Figure 6.4(a) or

both). Usually, a post also receives one or more comments (labeled 5 in Figure 6.4(a)). Though

posts without any comments might be seen, it is not the common scenario since comments are the

one of the main ways to interact on a public post on Facebook. For most posts, there is an image

associated with it (labeled 2 in Figure 6.4(a)). Just like as comments, a post on Facebook usually

receives different reaction emoticons from the users who want to interact on the post (labeled 4 in

Figure 6.4(a)). Facebook has a pre-defined set of reaction emoticons available on their platform

(see Figure 6.1).

Both the original post and comments can be made up with combination of text, images,

videos, and reaction emoticons. Facebook also allows users to use react emoticons, comments

(called replies), and share (except certain cases) on an existing comments itself. Thus, a com-
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(a) (b)

Figure 6.4: (a) Sample of a Facebook post. (1) Message of the post; (2) Image of the post; (3)
Description of the post; (4) Count of users’ reactions to the post; (5) Users’ comments on the
post. (b)Symmetric structure of posts and comments. Replies are excluded for making the system
work with both post and comments separately.

ment on a post can be thought to be a post itself, and Facebook assigns an unique ID for each

post or comment. In our study, we used this concept of symmetric nature of post and comment.

If we consider a comment to be a post, replies can be considered as comments on it. Since our

objective in this phase is to detect posts that convey sarcastic intent, we wanted the approach to

be applicable to comments as well. We excluded the replies (shown with red color shaded area in

Figure 6.4(b)) from our computation while working with the original posts so that those can be

treated as parts of a comment (second level post), and thus, a symmetric pattern emerges.

We hypothesize that the message/description, image or any other part of the post might

not be sarcastic on its own, however all together, they might convey sarcasm. In this phase, we

are trying to study whether a post as a whole conveys sarcasm.
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6.3.1 Pre-processing Reaction Data in Facebook Posts. A concern is that the re-

actions received on a post varies with the reach of that post, i.e., to how many users Facebook

showed that post. Since the algorithm that Facebook uses to organize end-users’ newsfeed is not

known, there have been some studies to study users’ reasoning in this regard [37, 81]. These stud-

ies present some perspectives: reach of a post depends on who posted that online, how old the

account from which that content was posted, how much response the previous posts from that ac-

count received. Taking these factors into account, we chose to use normalization to eliminate the

factor of the age and popularity of the account to post the contents and time of post. We divided

the number of each reaction emoticon received by the total number of received reactions on each

post to remove the bias created by the post’s reach.

6.3.2 Sentiment Analysis of Text Data of Facebook Posts. Existing works suggest

that sentiment can be a useful factor in sarcasm detection [9, 20, 24]. We also used sentiment

of text data as a component in our multimodal system. For this, we considered two properties:

subjectivity and polarity of textual data. Unlike our work in chapter 4, we did not use IBM Tone

Analyzer based emotional trajectory approach in this phase because most of the text information

(e.g., description, message) are short, and have one to only few sentences that might not be useful

to form a wave-like trajectory of tones.

Subjectivity means the characteristics of text to express a user’s sentiment, feeling, or

opinion. Thus, the subjectivity value of a piece of text represents how much sentiment related

information is available with that text. Polarity denotes whether the text information yields pos-

itive or negative sentiment. There are several sentiment analysis tools available, for example,

TextBlob [60] and Vader [82]. We used TextBlob for determining subjectivity, and polarity. Us-

ing this tool, subjectivity is measured in a scale of [0, 1], where a text with subjectivity equals

or near to zero does not contain much information about a user’s feelings (e.g., names of user’s

friends tagged as text in comment section of a post). On the other hand, polarity is measured in

a scale of [-1, 1], where a text that has a polarity value less than zero is expected to have a neg-

ative sentiment, while a greater than zero value of polarity means the text writer user’s positive

74



sentiment. To understand subjectivity and polarity better, we use a comparison between senti-

ment analysis output for two different statements. Let us assume, our two statements are: text1 =

“Bangladesh is a small country”, text2 = “Bangladesh is a beautiful country”. It is safe to say that

text2 is more expressive about one’s feelings about a country, Bangladesh. This is also reflected

by the output from TextBlob sentiment analysis – text2 having higher subjectivity than text1

(1.0 > 0.4), and text2 being more positive statement than text1 (polarity 0.85 > polarity 0.25).

Though message, description, caption of image, and comments – all are text based data,

there is a difference between comments and the former three. Whereas a post can have at most

one for each of these – description, message, and caption of image, a post can have more than

one comment. Therefore, for the former three data sources, we can have only one polarity value.

We determined the polarity and subjectivity of the text for these. Thus, we got sentiment based

features values from textual data. For calculating the features value for all comments in a post

overall, we calculated the sum of subjectivity scores, sum of all positive sentiments (when po-

larity >0), sum of all negative sentiments(when polarity <0) of all comments to obtain them as

three individual features.

6.3.3 Utilizing Image Data in Facebook Posts. We used two aspects of image data

included in a Facebook post. We used visual cues in images to know the probability of that be-

ing sarcastic. Second, we used the semantic representation of the images to compare against the

textual information available along with it in the post.

6.3.3.1 Sarcastic Visual Cues Detection. We argued and presented our experiment on

how visual cues in images can be used to identify sarcastic images in chapter 5, and in Das et

al. [72]. We used our CNN-based sarcasm detection model that can detect sarcasm using an im-

age’s visual cues with 84% accuracy. If a post does not have a description or message associated

with it, the image becomes the only content posted by the user and a major medium for determin-

ing whether the post has a sarcastic intent. We pass images associated with each post through the

CNN, developed and trained with our Yahoo Flickr Sarcasm (YFS) dataset, to get the probability

of that image to have sarcastic cues in it. We call this value the “CNN score”.
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6.3.3.2 Auto-Caption Generation. Schifanella et al. [33] discussed the importance of

considering visual and textual aspects of contents on social media to detect sarcasm in them.

They used semantic representation of the images only. However, a potential flaw of such repre-

sentation is that it is less capable to express the sentiment expressed by the image. We argue that

an image caption can both provide semantic representation and provide us with a hint about the

sentiment expressed by the image. As we discussed earlier, sentiment is important information

for sarcasm detection.

For automatically generating captions for images, we used the model proposed by Vinyals

et al. [2]. We trained the model using the COCO dataset [83]. Our training dataset for this Show-

and-Tell image captioning component had 118K images of total size 18 GB, and the validation

dataset had 5K images of total size 1 GB. We also used the corresponding annotation data from

their website http://cocodataset.org of size 1.1 GB and 821 MB respectively. We lim-

ited the maximum token count of auto generated caption up to 30.

With the help of this auto-caption generation component, each image now has one model-

generated caption. Besides, each image might have a user-assigned caption with it as message/de-

scription. We can hypothesize that for a non-sarcastic post, the sentiment in user-assigned cap-

tion and the auto-generated caption will be almost same. On the contrary, for a sarcastic post, the

user-assigned caption and the auto-generated caption are likely to have sentiments of opposite

polarities. For example, let’s assume a post has a user-assigned caption: “I had a WONDERFUL

day!”, and it has an image associated with it of a crying person. We can easily understand that we

discussing about an instance of sarcastic post. For the image in this post, the auto-caption gen-

eration component is likely to generate a caption like this: “A person is crying”. Here, positive

sentiment in the user-assigned caption, and negative sentiment in the auto-generated caption have

two different polarities that is likely to be a useful hint for classifying sarcasm and non-sarcasm

categories of posts.

6.3.4 Model Training. From our collected dataset, we calculated values of sixteen fea-

tures listed in Table 6.1 for each data instance. For any possible missing value of a feature (e.g.,
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unavailable values of auto caption polarity, subjectivity, CNN score if there is no image contained

in that post), we used the average value of that feature as the placeholder/representing value. A

diagram of our multimodal sarcasm detection feature extraction system is shown in Figure 6.5.

Figure 6.5: Feature value extraction for multimodal SNS post for sarcasm detection.

We used ten-fold cross validation for validating our models. We used five supervised ma-

chine learning algorithms as follows: support vector machines (SVM) with linear kernel; two en-

semble algorithms: Ada Boost with Decision Tree classifier of depth 1 and Random Forest; Multi

Layer Perceptron (MLP); and Gaussian Naı̈ve Bayes. A high level overview of the model training

process can be presented as in Figure 6.6.
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Figure 6.6: Supervised Model Training Process and Usage Diagram

6.4 Results

Evaluation of our system has two parts. Since we discussed a multimodal system based

approach to sarcasm detection in this chapter, it is imperative to know which feature contribute

to what amount to decide on the classification of the posts, besides the performances of different

models. While presenting the performances of different models, we also present reasoning behind

the algorithms’ performances.

6.4.1 Contribution from Different Features. In total, the system uses sixteen dif-

ferent features to classify a post whether it is sarcastic or non-sarcastic. Among these features,

only counts of reaction emoticons (like, love, haha, wow, sad, angry) are specific to the platfor-

m/source of our data collection (Facebook). The rest of the features are general to any social net-

working site. To rank the features according to their contribution, entropy based information gain

can be used. The higher the information gain for one feature, the more it might be useful for clas-

sification machine learning algorithms [84, 85]. Table 6.1 shows the entropy based information

gains for the features used by the system.

Here, we can see that the distributions of reaction emoticons is highly useful while decid-

ing the class of a post on Facebook. High information gain for most of the features’ values in that

mode of data tells us that posts in sarcasm and non-sarcasm classes have different distributions

in the reaction emoticons they receive, while the distribution is mostly similar for posts in the

same class. Again, we can see the features sourced from comments have high information gain,

i.e., more usefulness to classification of posts. This reemphasizes our observation in qualitative
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Table 6.1: Information gains of features

Mode of Data Feature Information Gain

Reaction emoticons1

angry 0.3217
haha 0.4904
like 0.5534
love 0.4275
sad 0.3328
wow 0.4493

Image
auto caption polarity 0.0174
auto caption subjectivity 0.0173
CNN score 0.0263

Text

comments negativity 0.2503
comments positivity 0.4185
comments subjectivity 0.4626
description polarity 0.0237
description subjectivity 0.0253
message polarity 0.1825
message subjectivity 0.2044

study that comments help understand the context of the posts while trying to identify if a post is

sarcastic or not. In fact, value wise, comments subjectivity has the third to the highest informa-

tion gain. Again, messages associated with posts have a useful role in this classification task. If

we look at the information gain of the image based features, we have a reasonable observation.

While CNN score of the images have a moderate usefulness to understand whether a Facebook

post is sarcastic or not, auto caption polarity and auto caption subjectivity are not as useful as it.

In fact, these two features are the least two useful features in our system. A possible explanation

behind this might be that as the image caption generation model is a comparatively new and less

developed area, and there is no definitive way to measure the performance of such a caption gen-

eration model, this component of our system cannot be guaranteed to be fully optimized. Thus,

the feature contributions from this component might not be as useful as the other features used in

the system.

6.4.2 Performances of Models. We present the accuracies of the five algorithms men-

tioned in the previous section in Table 6.2. We also used some stochastic algorithms that rely on

some randomization inherently. Therefore, we repeated those algorithms 25 times, and calculated
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their mean accuracy to present more reliable measure. We can identify the stochastic algorithms

by their non-zero value of standard deviation in the table.

Table 6.2: Applied machine learning algorithms, accuracies with standard deviations

Algorithm Accuracy Standard Deviation
Ada Boost 90.61 0.00
Gaussian Naı̈ve Bayes 73.66 0.00
Multi Layer Perceptron (MLP) 92.06 0.19
Random Forest 93.11 0.196
Support Vector Machine (SVM) 88.39 0.00

In this phase of our study, we used a bag-of-features approach. Usually in such approach,

ensemble machine learning algorithms perform well. In this algorithm family, a weak classifier

can be trained using each feature in our system. Using the gathered decisions of all weak classi-

fier, we can expect to get a more robust and accurate prediction from a good high level ensemble

classifier. This is also reflected by the performances of the two ensemble algorithms we used –

Random Forest and Ada Boost. Both of these showed convincing performances (>90%) for sar-

casm detection. Again, we also evaluated the performance of a multi layer perceptron (MLP) for

the task of sarcasm detection. Since we are using a supervised approach for sarcasm detection,

and we already have some deep neural network based components in earlier stages of our multi-

modal system, we used an MLP with a small number of layers and nodes. Despite limited num-

ber of layers and nodes, the MLP based approach performed well with >90% accuracy. However,

the performance of SVM is not as good as the ensemble based and MLP based approaches. As

we discussed earlier, nav̈e Bayes is a family of algorithms and widely used for text classifica-

tion, and sentiment data analysis. We also saw its applicability in the text-based approach chap-

ter. Since the features used by our multimodal system have continuous values, we chose to use

Gaussian Naı̈ve Bayes algorithm. However, among all the algorithms that we used for supervised

approach to sarcasm detection, this performed the worst.
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6.5 Discussion

Performances of our multimodal models showed the superiority of a multimodal approach

over unimodal ones. We achieved highest 93.11% accuracy (std. dev. = 0.196) with random for-

est classifier using multimodal data [86]. It is higher than accuracies of both of our text-based

approaches – tone-based model (82.5%) and improved naı̈ve Bayes based model (75.8%). Mul-

timodal approach has also achieved higher accuracy than only image based approach (84%). Our

experimental result supports our qualitative finding.

Since we utilized only three modes of data and these made the sarcasm detection ap-

proach more robust, a future direction can be inclusion of more modalities into the system for

better performance.
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7 RECREATING AND STUDYING THE ATTENTION MODEL OF SARCASM IN

VIDEOS

Our participants during the qualitative study agreed that sarcasm helps a particular content

get popular on social media. According to them, it works as a cycle – a particular content gets

popularity, that content is used as template for other new sarcastic posts, the template gets more

popularity, and it goes so on. We also observed similar trends in our image based model training

results. Thus, we became interested to study if similar trend exists for videos and what are the

objects that are usually looked at in sarcastic videos. In short, we were intrigued to study the at-

tention model of human users in sarcastic videos. We used two deep learning based approaches –

regression and semantic segmentation to experiment whether we can replicate the attention model

of human user with deep learning. We also studied what are the objects that are looked for while

being attentive to sarcastic videos.

In this chapter, at first we discuss some background about deep learning concepts. Then

we discuss data collection process and our experiment methodologies. Finally, we reflect on our

findings about the attention model in sarcastic videos and usability of deep learning in this con-

text.

7.1 Background

7.1.1 Regression. Regression is a supervised learning approach that tries to estimate a

real value for given input. It tries to find out a real valued function between a set of independent

variables and a set of (usually one) dependent variable(s). There are three types of regressions.

1. Simple regression model attempts to fit a linear regression model with a single independent

variable.

2. Multiple regression model attempts to predict a dependent variable based on the values of

two or more independent variables.
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3. Multi-target regression model attempts to predict multiple dependent variables on values of

a set of independent variables.

7.1.2 Semantic Segmentation. Semantic Segmentation [87] is the process of assigning

a label to every pixel in an image such that pixels with the same label share certain characteris-

tics. From a classification perspective, a single class is assigned to the whole image. In our case,

all the image frames belong to a single class of sarcasm. However, attention wise, the pixels in

these frames can be assigned to different classes: gazed (attention given pixels) and non-gazed

(not attention given pixels). Semantic segmentation classifies every pixel of the image to one of

these classes.

7.2 Dataset Preparation

We collected and prepared our own video-based dataset. Then we recorded the gaze points

and generated the corresponding gaze videos. We also processed the video data in ways that

would be useful as inputs to neural network-based architectures.

7.2.1 Video Data Collection. We collected 50 short sarcastic video clips from popular

TV series: Friends (20), Silicon Valley (10), The Big Bang Theory (10), and Two and a Half Men

(10). All the videos were collected from YouTube. All videos were tagged with “sarcasm”. As a

double checking on the labeling on the data, the student researcher and another student helping

in labeling of the data agreed upon whether the video contained sarcasm or if it was only enter-

taining. To abide by the limitation imposed by the gaze recording software (discussed later in this

section), we only used video clips that are up to 1 minute in length. However, we also ensured

that the sarcastic incident in the video had enough context information in the video. This created

a variation in the lengths of our collected videos ranging from 45 seconds to 1 minute.

7.2.2 Gaze Labeling of the Data. Like many supervised learning approach-based stud-

ies, we needed to label our dataset. In our case, these labels were gaze points of a person on the

videos. There are two ways to record these gaze points: dedicated hardware based or a webcam

based.
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The Tobii eye tracker is popular among the affective computing community for its higher

precision. However, due to their high cost, many studies utilize webcam-based solutions like

Gaze Recorder, Ogama, or Gaze Parser.

In our experiment, we used Gaze Recorder. This software package allows users to config-

ure several settings including degrees of field of view (FOV), resolutions, gender, adaptive/non-

adaptive extend time during static scenes, and how much change in frames would be enough to

consider a frame as a new one. In this software, one needs to record gaze data in this order: start

camera→ initialize face→ calibrate gaze→ play video→ record→ generate results. Figure 7.1

shows the interface and settings of the Gaze Recorder software.

Figure 7.1: Interface and available configurations of Gaze Recorder

After we recorded the gaze points for all videos, we ended up with a collection of pairs of

videos with 50 original videos and 50 gaze labeled videos. Figure 7.2 shows an example pair of

frames from original and gaze labeled videos.

Figure 7.2: Example pair of frames from original and gaze labeled videos.

7.2.3 Locating the Gaze Point. We located gaze points in the frames of gaze labeled

videos by subtraction. For any frame after the first one, subtraction result of each frame and the

previous one of that frame gives the gaze point. Though this approach works well for most cases,
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this faces issues when there is sudden and drastic changes in video frames. We call the result

frame obtained in this way as subtracted gaze frame, as shown in Figure 7.3. In heat map, Red

denotes the region where the spectator gazed for a longer time, and green for short period of time.

7.2.4 Preparing Final Dataset. At this stage, original video and the result video with

gaze points had different fps for Adaptive FPS due to (a) not enough frame change, and (b) ambi-

ent lighting. This resulted in unequal numbers of frames generated from original videos and gaze

recorded videos. We discarded frames from the videos with larger fps keeping the ratio between

the numbers of read frames from original and gaze video equal to 1.0. Then we passed each sub-

tracted gaze frame for finding the gaze point coordinates.

In end dataset, we have 31,307 frames in total. Each frame has a size 1536 x 864. The

frames are in RGB having values ranging 0-255. We could not scale the RGB values in [0, 1]

range because of memory constraints of the used GPU since usual OpenCV unsigned integer

frames have a size of 1 byte per pixel per channel whereas converting frames into scale of 0-1,

i.e. float requires 4 bytes per pixel per channel. Thus, this increases the memory requirement by

four times.

7.3 Methodologies

7.3.1 Regression Based Approach.

7.3.1.1 Calculating the Gaze Point Coordinates. To find the gaze center, we first try to

use a popular OpenCV HoughCircle function [88]. It takes an image as an input and return all the

existing circle in the image. However, when we try with our image it does not return any circle.

After careful analysis, we find out few issues that are the more likely reasons for HoughCircle

function not returning any circles. First, most of the input images do not contain proper circular

shape as shown in Figure 7.3(a). They are often half circular shape. Second, different color circle

overlapped with one another. Third, image quality was poor.

Next we try with depth first search for finding out circle. But it failed when the image

contains circles that have discontinues RGB value as shown in Figure 7.3(b).
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(a) (b)

Figure 7.3: (a) Example of half circle shaped gaze points that could not be detected by Hough-
Circle function (b) Example of discontinuous RGB areas that could not be located correctly with
DFS.

Finally, we come up with our own approach for finding circle in the image. First, we fig-

ure out which color circle we are searching. After RGB value calibration, we understand that all

the images contain three colored color. Their RGB values are following: Red (R >60, G <10, B

<10), Green (G >60, R <10, B <10), Blue (B >60, G <10, R <10). We come up with a sim-

ple approach called first and last point finding. We scan each image row by row and keep the first

and last point of the desired color. Then using those two points as a diameter of a circle we draw

circle. Our result shows that our algorithm can detect circle with a very good accuracy.

7.3.1.2 Regression Network. To convert a traditional image classification CNN to a

image regression CNN, we needed to do the followings:

• Remove the fully-connected softmax classifier layer typically used for classification

• Replace it with a fully-connected layer with a single node along with a linear activation

function.

• Train the model with a continuous value prediction loss function such as mean squared

error, mean absolute error, mean absolute percentage error, etc. We used root mean square

in our experiment, customizing it to handle two variables (x, y) as parameters.

At first, we started with a network written from scratch. The inputs to the network were

original video frames and gaze center points coordinates. We used standard data augmentation

techniques like shearing, zooming, etc. We optimized the network using Adam with learning
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rate = 0.003, decay = 1e-3/200. We trained the network on NVIDIA 1060 using 20 epochs. How-

ever, we did not achieve much promising values of RMSE metric. Therefore, we turned to trans-

fer learning. We used VGG-16 as the backbone network with their trained weights on ImageNet

dataset [89]. After 20 epochs, we achieved performance as in Figure 7.4 and Table 7.1:

Figure 7.4: Performance graph of transfer learning with VGG-16 for recreating the sarcasm
attention model.

Table 7.1: Performance of regression approach for recreating attention model of sarcasm

metric score
loss 29406.0408
rmse 666.9297

As evident by the large value of RMSE, we can understand that the regression based ap-

proach might not be well suited for recreating attention model of sarcasm. We also looked at the

changes of the rmse and loss value with increasing epochs. The values were not decreasing with

epochs by any considerable amount, if they were improving at all. We took this as an indication

that allowing the network for more epochs might not help us to achieve better performance.
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7.3.2 Semantic Segmentation Based Approach. While locating gaze points by sub-

tracting subsequent frames, we removed the non-gazed areas of frames as background. The gazed

regions of frames can be thought as one segment, and the non-gazed regions as another. We used

black and white colors for binary labeling of pixels to have semantic segmented images.

We used 25,308 frames from first 40 videos in our dataset for training and 5,999 frames

from rest 10 videos for testing. Besides, we also used standard data augmentation methods.

We started with a pre-written U-net from a github repository1. The inputs to the network

were original video frames and binary colored segmented video frames. We optimized the net-

work using Adam with learning rate 0.004. We used binary cross entropy loss function and accu-

racy as metric for training the network. At first, we trained the network with 20 epochs and 300

steps per epoch. This did not give us satisfactory performance. The prediction for all test images

contained random black and white pixels resulting noisy gray images as outputs. Then we in-

creased the epoch to 50. This helped improve our performance. After 50 epochs, our results are

as in Figure 7.5 and Table 7.2:

Figure 7.5: Performance graph of semantic segmentation approach for recreating the attention
model of sarcasm in videos.

Though metric-wise, these results seem promising, when we looked at the prediction by

1https://github.com/zhixuhao/unet
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Table 7.2: Performance of semantic segmentation based approach for recreating attention model
of sarcasm

metric score
loss 0.1781
accuracy 0.9542

the network as images, as in Figure 7.6, we can see the networks performance was not enough to

pinpoint the gaze point. Rather it identifies a larger area as the attention area that includes both

the original gaze point area and also some non-gazed or non-attention gained background areas.

(a) (b) (c)

Figure 7.6: Performance of semantic segmentation approach as images (a) original output (b)
inverted output (c) inverted output with increased contrast for better view.

7.3.3 Object Location and Distance Based Approach. We did not obtain promis-

ing performance from our regression based approach. Though the semantic segmentation based

approach achieved numerically promising result, it was not easily comprehensible and also has

room for improvement. At this stage, we modeled the experiment in a different way. We wanted

to see what objects are often looked for in a sarcastic video. In other words, what are the objects

that are often close to the gaze points on the videos.

We passed the original frames in the dataset to a YOLO object detection model [90]. We

identified the objects in the frames with their corresponding locations. YOLO can detect 80 dif-

ferent objects. If there is no object in a frame that can be detected by a YOLO network, we used

a default object “unidentified” with default location (0, 0). If the frame had multiple objects that

YOLO model can identify, we saved all of the objects and their locations.

We calculated the center coordinates of gaze points as described in our regression based
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approach subsection. Then, we calculated which object’s location is the closest to the center

of gaze point for a particular frame. We showed the top five objects that are seen near the gaze

points in sarcastic videos, in Table 7.3.

Table 7.3: Top five objects that were closest to the gaze center points

Object In how many frames it was
the closest to the gaze center

Person 25,662
Unidentified 1,247
Refrigerator 704
Sofa 535
Tie 412

7.4 Discussion

Our experiment with deep learning in attempt to understand the attention model of users

in sarcastic videos has two folds – first, we wanted to recreate the attention model with regres-

sion and semantic segmentation; second, we studied what objects are often looked at in sarcas-

tic videos. Our experiment suggests that semantic segmentation has more potential to recreate

the attention model of sarcasm than regression based approach. Our experiment with attention

model in videos also showed contradictory results to our image based sarcasm detection ap-

proach. While our image based sarcasm detection approach showed human as a non-sarcasm

object, our attention model based experiment result says, humans are the centers of gaze in most

sarcastic video frames. However, there is a threat to the experiment conducted in this phase. We

used video clips from directed TV series that might be very different from the real life occur-

rences of sarcasm that are more likely to be seen on social media. This might be the reason of the

contradiction between the results from our two experiments.
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8 CONCLUSION

Social networking sites (SNSs) are popular among users of different age, nationality, cul-

tures, and languages. The availability of large amounts of user interaction data has also boosted

sentiment analysis research. Despite major breakthroughs in affective computing, sarcasm is a

less studied area. In this thesis, we focused on sarcasm detection and satire in several domains.

Unlike the previous works in sarcasm detection on social media that used only one mode of data,

mostly text, we experimented on the potentials of several modes of data, e.g. text, image, and

then came up with a multimodal approach to detect sarcasm on SNSs. Our multimodal approach

is backed up with a qualitative study with a group of participants recruited from two different

countries speaking two different languages. Our study shows the superior performance of mul-

timodal model over traditional unimodal approaches for sarcasm detection. We made our code

publicly available as well (See in Appendix F).

8.1 Design Implications

It is imperative for any human-computer interaction research to suggest design implica-

tions from the findings of the study. With our problem of sarcasm detection on online platforms,

we discuss design implications in this section. SNS developers can consider these to incorporate

into their platforms to improve user experience.

8.1.1 Social Networking Sites Design. SNSs by their very nature utilize persuasive

design to engage more and more users on their platforms. In order to understand effective persua-

sive designs, we need to understand human behavior model. We discuss the persuasive nature of

SNSs using a seminal work, Fogg Behavior Model (FBM) [91].

According to FBM, to persuade a user do a target behavior, he/she must (1) have suffi-

cient motivation, (2) have enough ability, and (3) be triggered to perform it. We can assume that

a large number of users of SNSs in general have sufficient motivation to interact with other users

because interaction is the fundamental reason of users joining an SNS platform. However, the
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ability of a user to interact with others depends on various factors. For example, there are some

basic ability needs from the users like being able to read and write in English (or in his/her lan-

guage if it is supported by that particular platform). Besides there are some abilities that users can

acquire only over time by using a platform as different SNS platforms organizes their features

differently according to the demand of their user-base.

For sarcasm detection on social media, the motivation for users can be described as inter-

acting with users. However, since there are users on these platforms who are not always familiar

with each other, and yet communicate with each other through posts, reactions, and comments, a

difference of ability among them to understand others’ posts and intentions of those posts arises

due to their variation of experience–both online and real-life (e.g., cultural, social, national, etc.).

Our qualitative study suggests that people unfamiliar with each other often misunderstand sar-

casm, especially if they are from different countries and cultural backgrounds. Again, both our

qualitative study and Phillips et al. [92] suggest that older adults have difficulty in understand-

ing sarcasm. Older adults are often new users to SNS platforms, and so they lack experience with

these. Thus, we can say they might have difficulty to distinguish between sarcasm and general

statements in an SNS post.

According to FBM, there are three kinds of triggers called spark, facilitator, and signal.

Among those, facilitator is highly appropriate in persuasive design when users have enough mo-

tivation but lack ability. In our case, the inexperienced users have motivation to interact on social

media but they might not have ability to recognize sarcastic content. An effective facilitator trig-

ger tells users that the target behavior is easy to achieve, i.e., users will not need any further re-

sources or ability. This facilitator can be in form of a text, video, graphics, etc. We suggest that if

we can offer a feature on SNS platforms to suggest users whether a post might be sarcastic or not,

it will help inexperienced users to be cautious about interaction on the post, and also help them

to get accustomed with the platform they are using. However, for experienced social media users

it might seem to be an overhead. Hence, the option to enable/disable this feature at user’s own

discretion should be available.
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8.1.2 Natural Language Processing, Understanding, and Generation Tasks. Natural

language processing (NLP) means when an ML model converts unstructured text input data to

structured data. Computers being able to understand captured textual/statistical data is termed

as natural language understanding (NLU). When ML models can convert structured data into

text and write, i.e., generate information in human language is called natural language generation

(NLG).

We used many NLP techniques in our study. We will discuss how our findings can be

used to complement NLG tasks. Therefore, we believe a little further elaboration of NLG task

is in order. NLG in fact depends on NLU and NLP. NLG in application is well-known and well-

used for following two purposes: automation of content generation and data delivery in an ex-

pected format. For example, a widely seen application of NLG is to produce textual weather fore-

cast reports from input weather data. This can reduce human involvement for trivial tasks.

The scenario that we are going to discuss for NLG is related to auto-replier or chatbot.

Chatbots or chatbot-like systems have gained much popularity in online platforms. For example,

chatbot-like systems in social media apps suggest some potential replies based on immediate pre-

vious sections of a conversation. Again, chatbots deployed in e-commerce sites can take care of

replying to trivial positive/negative customer reviews. Let’s consider the following two scenarios

in Table 8.1. As we can see, the auto-replier system tries to understand the overall general senti-

ment in the customer review using NLP techniques like sentiment analysis. Then, in NLG phase,

if the sentiment in the review is positive, it replies with a general thank-you statement. On the

other hand, if the review is negative, the system generates an apologetic reply.

Now, let us consider the following review in Table 8.2. As we can see, this review con-

sists of a text review saying “Thank you for your WONDERFUL service!”, and an image of

a broken luggage wheel. We can easily understand that this is, in fact, a negative review that

was presented sarcastically. If we consider only the text part of this review, using common NLP

sentiment analysis, we will be misled to understand the sentiment. For example, when we used

TextBlob [60] sentiment analyzer, it showed the following output.
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Table 8.1: Sample positive and negative reviews, and replies from chatbot-based auto-replier
system.

Sample
positive
review:

I am satisfied with the
service. I received the
product within two
days with ordinary
shipment. They offered
a great price. Defi-
nitely, I’d recommend
ABC company to my
friends.

Sample
negative
review:

Terrible! The product
was broken when I
received it. After or-
dering, I also found
another site that is
offering less price for
the same item. Use
this company only if
you do not love your
money.

Sample
auto-
reply:

Thank you for your
kind words.

Sample
auto-
reply:

We are sorry for your
inconvenience. Our
support team will be
in touch with you for
helping you with our
service.

1 from textblob import TextBlob

2 text1 = TextBlob("Thank you for your WONDERFUL service!")

3 print(text1.sentiment)

4 # output: Sentiment(polarity=1.0, subjectivity=1.0)

That means, a traditional sentiment analyzer is highly confident that this review has much subjec-

tive information (i.e., information about feelings) in it. This is true for most commercial product

reviews. However, the traditional TextBlob sentiment analyzer is fully confident that this is a pos-

itive review. This could have been true if we did not have context information, i.e., information

about the product’s actual quality from the image. That means, despite context information be-

ing available through image, if an auto-replier generates an auto reply like “Thank you.”, that will

not be an appropriate response for this multimodal (text + image) sarcastic review. Thus, we can

safely imagine a potential application of our multimodal approach to sarcasm detection in such

cases.
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Table 8.2: Inappropriate response from auto-replier for a multimodal sarcastic review.

Sample sarcastic review: Thank you for your WONDERFUL service!

Sample auto-reply: Thank you for your kind review.

8.2 Threats to Validity

In any human-centric system that is based on observation of human behavior, it is impor-

tant to consider potential threats to validity. Such considerations can increase confidence in both

the study and the resulting system. This also helps identify and reemphasize the strengths and

weaknesses of the system recognizing the limitations, and corner cases. That means, considera-

tion of threats to validity reemphasizes the scope of the study, redraws the application boundaries

of the system, and paves the ways to future works.

There have been a significant amount of work on what aspects researchers should con-

sider while evaluating threats to validity of a study. Among them, works by Wohlin et al. [93] and

Juristo et al. [94] are considered to be semenal works. In our work, we follow the framework pro-

posed by Wohlin et al. [93]. According to them, there are four main types of threats to validity of

human-centric software studies: conclusion, internal, external, and construct validity.

8.2.1 Conclusion Validity. This validity concerns how sure we can be that the treat-

ment we used in the experiment is related to our observed outcome. In our study, the research

protocols we used are fairly usual for similar research works. At first to study a previously un-

explored problem, we turned to a qualitative study with human users to come up with theories

about the sarcasm detection and expression incidents on social media. Then, we collected data

from social media platforms. We followed standard data preprocessing, model training and val-
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idation methodologies. Thus, we can rule out the probability of the study being associated with

conclusion validity threat.

8.2.2 Internal Validity. Internal validity focuses on how sure we can be that experi-

ment actually caused the outcome. For our qualitative phase of the study, we used grounded the-

ory approach for data analysis. Grounded theory builds themes only from the data collected in

the study instead of relying on existing theories or intuition based hypotheses. Thus, we can en-

sure that the themes emerged at qualitative phase of our study were directly caused by the data

collected during the experiment. The only way the qualitative phase of the study having internal

threat validity is the grounded theory based data analysis being subconsciously impacted by our

personal experience. We tried to keep that to a minimal level. Again, for the big data based model

development phase, we collected the data from social media and used them as training and testing

datasets. The one-to-one relationship between the inputs and outputs of the models in our study

nullifies the internal validity threat.

8.2.3 Construct Validity. Construct validity evaluates the relationship between the the-

ory behind the experiment and the observation. With a view to avoiding this validity threat, we

designed our research approach accordingly. Instead of relying on hypothesis based on intuitions

to design the sarcasm detection model, we chose to proceed with a qualitative study at first. Our

big data based experiment for sarcasm detection on social media and the models resulted by that–

unimodal ones (text, image) and the multimodal one are designed according to the themes that

emerged from the preceding qualitative study. We ensured the participants of our study are so-

cial media users of the major platforms from where we collected the data for training our models.

Thus, we can safely conclude that we addressed the construct validity concern.

8.2.4 External Validity. External validity draws the application boundary of the sys-

tem. In our study, we aimed to develop a sarcasm detection system for contents on social media.

As we have discussed earlier, for in-person communication, people have access to various non-

verbal cues and context information that becomes unavailable or narrowed down for expressing

with a small number of modes of data. This objective of our study determined our participant re-
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cruitment process of social media users, data collection from social medias, and over all, drew the

boundary of application of the system. Though currently our system is designed to accept data

from several popular social media like Facebook, Flickr, Twitter, at this phase, we concern our-

selves with whether we can generalize the results for other social media,

8.3 Future Works

Evaluations of the potentials threats to validity of our study inspires some new directions

for future works of this study.

8.3.1 Generalization to non-English texts. As our qualitative study suggested, there

are ways to convey sarcastic cues with text that are applicable to particular languages. In our text

based analysis section, we utilized the non-English data by translation. Though it allowed us to

validate our model’s and existing model’s performance on a more challenging data, we could not

use the language specific features and cues to improve the model since our model was fed En-

glish translation as input. Exploration of ways to incorporate the language and alphabet specific

cues to improve sarcasm detection can be a future direction.

Our multimodal model relies on the sentiment of the texts as well. To the best of our

knowledge, sentiment analysis for non-English language is not well developed. Inclusion of

working non-English sentiment analyzer will help the multimodal sarcasm detection become

more generalized.

8.3.2 Utilizing High Level Features of Images. In our work, we utilized image as a

source of sarcastic cues. However, we used two types of features of images. First, we investigated

how the visual representation style of images can hint about sarcasm conveyed by a post. Second,

we generated captions for images to get both sentiment and semantic information about the im-

ages. However, as our participants revealed during the qualitative study, the presence of particular

objects or persons in the image or as inset of the image can be a vital cue for an image to contain

sarcastic content. Closer study to identify such high level features of images can be helpful to

detect sarcasm on social media.
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8.3.3 Inclusion of More Modalities. In our work, we showed that multimodal ap-

proach is better than unimodal approach for sarcasm detection. We utilized text, image, and emoti-

cons as major modalities in our system. Though we used videos for our attention model phase

of study, we only used the image channel of video. We did not explore the audio channel as a

modality in our study. It might be interesting to study how audio itself as well as the image chan-

nel as part of video contributes to sarcasm detection or identify the attention model of sarcasm.

Since audio enabled videos can represent more human-like communication on social media, in-

clusion of it is expected to improve the performance of sarcasm detection.

8.3.4 Deployment at User Level. A major outcome of our study is the multimodal

model of sarcasm detection. This model is constructed with generalization to major social net-

working sites in mind. However, since we developed the model for research purpose, it is not

exactly ready for end users. To make it useful for real end users, we can make a web browser ex-

tension that will identify a post’s probability of being sarcastic. This web browser based solution

may pose privacy concerns. For this reason, a website based solution that can do the same proba-

bility calculation as browser extension given a link to a social media post might be preferred. Our

developed model can serve as the backend engine for both of these end-users solutions.
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Appendix A. IRB Approval Letter

To:

Anthony Clark

Computer Science

RE: Notice of IRB Approval

Submission Type: Initial

Study #: IRB-FY2018-700

Study Title: Sarcasm Detection on Social Media

Decision: Approved

Approval Date: November 9, 2018

Expiration Date: November 9, 2019

This submission has been approved by the Missouri State University Institutional Review

Board (IRB) for the period indicated.

Federal regulations require that all research be reviewed at least annually. It is the Prin-

cipal Investigators responsibility to submit for renewal and obtain approval before the expira-

tion date. You may not continue any research activity beyond the expiration date without IRB

approval. Failure to receive approval for continuation before the expiration date will result in au-

tomatic termination of the approval for this study on the expiration date.

You are required to obtain IRB approval for any changes to any aspect of this study before
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they can be implemented. Should any adverse event or unanticipated problem involving risks to

subjects or others occur it must be reported immediately to the IRB.

This study was reviewed in accordance with federal regulations governing human subjects

research, including those found at 45 CFR 46 (Common Rule), 45 CFR 164 (HIPAA), 21 CFR 50

& 56 (FDA), and 40 CFR 26 (EPA), where applicable.

Researchers Associated with this Project:

PI: Anthony Clark

Co-PI:

Primary Contact: Dipto Das

Other Investigators: Dipto Das, Anthony Clark
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Appendix B. Recruitment Flyer

Missouri State University

Sarcasm Detection on Social Media

Participants Wanted for a Research Study

This research aims to find out the patterns of contents that users post on social media with

sarcastic intents. We will ask the participants how they structure the posts they share on social

media by which they want to convey a sarcastic message and how they detect sarcasm in the con-

tents shared by other users both in cases when they do and do not have enough context informa-

tion. This research will not collect any identifiable information from the participants. The infor-

mation collected from the participants will only be used by the researchers for the sole purpose of

research. The research does not have any commercial objective or goal.

The participants of this study are expected to be active users (using for at least 5-7 hours

per week) of social media (e.g., Facebook, Twitter, and etc.). The participants will be required to

attend one session of interview with the following researchers of about 30 minutes. Participation

in this study is voluntary i.e., a participants can leave the interview at any point if he/she wants.

To learn more about this research, you can contact the following person:

Dipto Das,

Graduate student,

ARCS Lab, Computer Science (CSC),

Missouri State University

Email: dipto175@live.missouristate.edu

This research is conducted under the direction of Dr. Anthony J. Clark, Computer Sci-

ence, Missouri State University.
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Appendix C. Inform Consent Form

Informed Consent

Sarcasm Detection on Social Media

TITLE OF STUDY

Sarcasm Detection on Social Media

PRINCIPAL INVESTIGATOR

Dr. Anthony Clark

Computer Science Department

Cheek 307

(417) 836 - 5438

AnthonyClark@MissouriState.edu

PURPOSE OF STUDY

You are being asked to take part in a research study. Before you decide to participate in

this study, it is important that you understand why the research is being done and what it will in-

volve. Please read the following information carefully. Please ask the researcher if there is any-

thing that is not clear or if you need more information.

The purposes of this study are to discover the structure of sarcastic posts on social net-

working sites and the methods users use to identify sarcasm on such platforms.

STUDY PROCEDURES

You will be asked questions about your behavior on social networking sites, particularly

as it relates to sarcasm. For example, how do you identify that a post on a social networking site

is sarcastic; how do you understand the differences between a sarcastic and a non-sarcastic post;

and how do you construct your posts or contents when you want them to convey sarcastic senti-

ment?

You should be prepared to participate in an interview for approximately 30 minutes. It is

expected that you will only need to participate one such session.
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Interviews will be audio-recorded so that researchers can refer back to conversations that

took place. Researchers will compare responses among participants to identify common themes

of sarcastic posts. Researchers are also interested in a identifying a general method for identify-

ing sarcasm from non-sarcasm on social media sites.

RISKS

You are unlikely to experience any risks.

You may decline to answer any or all questions and you may terminate your involvement

at any time.

BENEFITS

There will be no direct benefit to you for your participation in this study. However, we

hope that the information obtained from this study will help build automated systems to detect

sarcasm on social media sites. This research will provide insights to researches in data science,

recommender systems, and linguistics.

CONFIDENTIALITY

Your responses to the interview will be anonymous. Please do not reveal any identifying

information about yourself during the interview. Every effort will be made by the researcher to

preserve your confidentiality including the following:

• Assigning code names/numbers for participants that will be used on all research notes and

documents,

• Keeping notes, interview transcriptions, and any other identifying participant information

in a locked file cabinet in the personal possession of the researcher, and

• Storing digital recordings of interviews on a password protected computer.

Participant data will be kept confidential except in cases where the researcher is legally obligated

to report specific incidents. These incidents include, but may not be limited to, incidents of abuse

and suicide risk.

CONTACT INFORMATION
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If you have questions at any time about this study, or you experience adverse effects as the

result of participating in this study, you may contact the researcher whose contact information is

provided on the first page. If you have questions regarding your rights as a research participant,

or if problems arise which you do not feel you can discuss with the Primary Investigator, please

contact the Institutional Review Board at (417) 836-8362, ext. 8991.

VOLUNTARY PARTICIPATION

Your participation in this study is voluntary. It is up to you to decide whether or not to

take part in this study. If you decide to take part in this study, you will be asked to sign a consent

form. After you sign the consent form, you are still free to withdraw at any time and without giv-

ing a reason. Withdrawing from this study will not affect the relationship you have, if any, with

the researcher. If you withdraw from the study before data collection is completed, your data will

be returned to you or destroyed.

CONSENT

I have read, and I understand the provided information and have had the opportunity to

ask questions. I understand that my participation is voluntary and that I am free to withdraw at

any time, without giving a reason and without cost. I understand that I will be given a copy of

this consent form. I voluntarily agree to take part in this study.

Participant’s signature Date

Investigator’s signature Date
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Appendix D. Questionnaire for Sarcasm Detection on Social Media Project

Demographic Questions

1. How old are you?

2. What is the level of highest education you attended?

3. What is your occupation?

General questions about participant’s experience with Social Media

1. What social media platforms do you currently use? (e.g., Facebook, Twitter, Instagram,

etc.)

2. What other social media platforms have you heard of, but do not currently use?

3. Why dont you use these other platforms?

4. How long have you been using social media?

5. What kind of content do you prefer on social media?

6. From whom do you prefer to receive posts on social media? (e.g., close friends, family,

acquaintances, pages, etc.)

7. How much time do you spend regularly on social media?

8. With whom do you mostly interact on social media?

Questions about Sarcasm Detection Approach on Social Media

1. How frequently do you see posts that you think are sarcastic?

2. How do you recognize that a post is sarcastic?

3. How important do you think context (e.g., prior conversations, images, etc.) is for detecting

sarcasm?
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4. If enough context information is not available, how do you differentiate sarcastic posts

from non-sarcastic posts?

5. How does sarcasm effect the popularity/reachability of a post?

6. How do you convey sarcasm with your posts?

7. How are sarcastic posts received by others?

8. How do you react to sarcastic posts?

9. How do other users react to sarcastic posts?
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Appendix E. Datasets

1. Yahoo Flickr Sarcasm (YFS) Dataset:

http://bit.ly/yfsdataset

2. Bengali Satire-Fake News Dataset:

http://bit.ly/bengalisatirefakenewsdataset

3. Multimodal Sarcasm Dataset:

http://bit.ly/multimodalsarcasmdataset

4. Sarcasm Video Attention Dataset:

http://bit.ly/sarcasmvideoattention
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Appendix F. Codes

1. Sarcasm detection on Flickr using a CNN:

https://github.com/DiptoDas8/imagenet.git

2. A multimodal (image, text, emoticons)-based approach to sarcasm detection on Facebook:

https://github.com/DiptoDas8/imagetext.git

3. Sarcasm detection in text with narrative trajectory of tones:

https://github.com/DiptoDas8/sarcasmtone.git

4. Analyzing the attention model of sarcasm in videos:

https://github.com/DiptoDas8/sarcasm-attention.git
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