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ABSTRACT 

Prescribed burning has been used over the past two decades to manage forests and restore 
shortleaf pine-oak woodlands in Mark Twain National Forest (MTNF). While soil studies have 
been completed, no assessments of burning practices on small drainage channel systems have yet 
been done. Headwater streams may account for more than two-thirds of total stream length and 
are important to the maintenance of hydrologic connectivity in watersheds. This study’s focus is 
on understanding the relationship between frequency of forest burning and channel morphology 
(size, shape, and substrate) of headwater streams (<1 km2). A combination of field 
measurements, geo-processing methods, hydraulic modeling, and statistical analysis will be used 
to analyze channel form, substrate properties, and tree/down wood composition in headwater 
stream channels. Thirty eight channel sites were assessed with drainage areas ranging from 0.003 
- 0.2 km2; reach slopes from 2 - 34%; bank-full channel widths from 0.4 - 10 m; average depths 
from 0.02 - 0.29 m; and areas from 0.01 – 2.2 m2. Valley width and drainage area were found to 
be the best overall predictors of channel form (r2= >0.70). Stepwise regression models improved 
single parameter morphology equations (r2= >0.85). Channel slope and elevation are important 
variables describing sediment size (r2=0.35-0.63). In-channel LWD and tree basal area equations 
were also developed (r2= 0.41-0.54).  Importantly, land use factors such as roads, timber harvest, 
and prescribed burning had little effect on channel morphology. In Big Barren Creek watershed, 
headwater channel systems were located within colluvial-alluvial transition zones, included both 
single- and multiple-threaded forms, and were quantified by traditional hydraulic geometry 
analysis. 
 
 
KEYWORDS:  hydraulic geometry, prescribed fire, headwater streams, forest management, 
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INTRODUCTION 

 

Stream channels cover only a small portion of any watershed, but serve as important 

hydrologic, geomorphic, and biologic conduits that connect and convey water within a watershed 

(Lowe and Likens 2005). Stream networks form and respond to surrounding environmental 

characteristics such as climate patterns, geology, soil conditions, vegetation cover, and land use 

history (Leopold and Maddock 1953; Montgomery and Buffington 1997; Alabyan and Chalov 

1998; Ward et al. 2003). Accordingly, the condition of a stream system can be used to assess the 

quality of a watershed. In particular, stream channel form, substrate and sediment, and stability 

can be used to assess disturbances such as land use change, infrastructure construction, 

implementation of land management practices, as well as natural disturbances (Jacobson and 

Primm 1994; Jacobson 1995). Geomorphic disturbances are defined as events that cause 

channels to change planform and shape faster or in a different way than the natural or referenced 

regime. Usually by increasing the amount of flow, sediment, and large woody debris that enters 

the stream (Jacobson 1995; Kondolf et al. 2002). Some indicators of stream response to 

disturbance include excessive erosion or sedimentation in adjacent riparian areas as well as 

changes in channel patterns (Leopold and Wolman 1957; Jacobson and Primm 1997). Measuring 

and interpreting changes in channel form can give researchers insight into how a watershed 

responds to different types of disturbances.  

Headwater streams constitute the small 1st and 2nd order streams where water collection 

and initial flow concentration first originates within a channel network (Horton 1945; Strahler 

1957). Headwater streams are located at the fingertips of the drainage network and serve as the 

interface between upland areas and the fluvial system (Figure 1) (Gomi et al. 2002; Adams and 
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Spotila 2005; Benda et al. 2005). Headwater streams are important to maintaining hydrologic 

connectivity and ecosystem integrity at regional scales and account for more than two thirds of 

total stream length (Leopold et al. 1964; Freeman et al. 2007). For the purpose of this study, 

headwater streams drain no more than 1 km2 and are initiated and maintained by local processes 

that cause water movement to become sufficiently concentrated to cut a definable channel 

(Montgomery and Foufoula-Georgiou 1993; Knighton 1984). Headwater stream boundaries can 

also be determined by assessing where hillslope colluvium transitions to alluvial landforms 

(Montgomery and Foufoula‐Georgiou 2010). Headwater stream attributes are more linked to 

local factors and hillslope characteristics than their downstream counterparts, and therein may be 

better indicators of watershed disturbance (Whiting and Bradley 1993; Gomi et al. 2002). 

Disturbances such as land-use and management changes can drastically affect hillslope 

characteristics and processes than can ultimately affect the hydrology and geomorphology of 

headwater streams (Jacobson and Primm 1997; Gomi et al. 2002). Currently, one of the largest 

threats to headwater stream stability is an increase in alteration due to anthropogenic 

disturbances (Elmore and Kaushal 2008). 

The Ozark Highlands (“Ozarks”) is a physiographic region in the southern Midwest of 

the United States that spans across southern Missouri and northern Arkansas and extends into 

eastern portions of Oklahoma and Kansas (Adamski et al. 1995). The Ozarks consist of a rugged 

landscape dominated by rolling hills dissected by stream networks that are connected to an 

underlying karst drainage system (Panfil and Jacobson 2001). Historically, the Ozark Highlands 

has been subjected to wide spread anthropogenic disturbances. This began with European 

settlement and land clearing that established row crops and pasture lands for agriculture between 

1820 and 1880 (Panfil and Jacobson 2001). Then from 1880 – 1920 a large timber harvesting 
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boom left forests depleted of pine species and altered the natural forest structure (Panfil and 

Jacobson 2001). Due to these historical disturbances by land clearing, agricultural practices, and 

logging alluvial channels in the Ozarks have been disturbed by increased gravel inputs, 

accelerated channel migration and avulsion, and excessive deposition of gravel bars (Jacobson 

1995; Jacobson and Gran 1999; Panfil and Jacobson 2001; Martin and Pavlowsky 2011). While 

numerous studies have been completed on alluvial channel disturbances in the Ozark Highlands, 

there have been few studies that assess headwater streams (Nickolotsky and Pavlowsky 2007; 

Shepherd et al. 2011; Mitchell et al. 2012; Thies 2017).  

Ozarks forests were in need of protection and restoration in the 1930s due to the 

widespread timber harvesting that occurred previously during the turn of the century (Panfil and 

Jacobson 2001). In the Missouri Ozarks, pre-settlement shortleaf pine was estimated to cover 1.1 

million ha compared to the estimated 0.17 million ha today, approximately 15% of historic 

conditions (Cunningham and Hauser 1989; Guyette et al. 2007). Changes in forest structure in 

the Ozarks due to historic watershed disturbances included a shift from shortleaf pine to oak 

dominance, increased canopy density, and changes in litter composition and species distribution 

(Figure 2) (Guyette and Dey 1997). Mark Twain National Forest (MTNF) is Missouri’s only 

national forest and was proclaimed in 1939 as a movement to conserve three million acres of the 

nation’s timberstands. Known early on as Clark National Forest, since 1976 it was established as 

Mark Twain National Forest (MTNF – History & Culture). The Current land use of MTNF is 

80% forested, 18% cold and warm-season grasses, and the remaining 2% glade complexes, row 

crops, barrens, wetlands, and urban areas (Brosofske et al. 2007). Of the 80% of forested area 

within MTNF, only 13% or approximately 312,000 acres, is shortleaf pine and shortleaf pine-oak 

forest and woodlands (Brosofske et al. 2007). To combat this, a combination of appropriate 
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management practices including cyclic harvesting, silviculture, and prescribed fire treatment has 

been recently instituted to help restore the forest to its original shortleaf pine-oak woodlands 

habitat (MTNF – Forest’s Collaborative Forest Landscape Restoration Project 2012-2022). 

The main focus of this study is to attempt to understand the geomorphic factors 

controlling channel form and describe headwater channel geomorphology in MTNF. The Eleven 

Point Ranger District of MTNF including the Big Barren Creek watershed (190.6 km2) has a 

unique topography and geology that allows for several fish species of conservation concern, a 

high density of rare freshwater mussel species, and a variety of other endemic species to thrive 

(Figure 3) (Finley 2013; MTNF - News & Events). The forest service also frequently institutes 

prescribed fire treatments in portions of Big Barren Creek watershed that are managed by MTNF 

in order to restore the forest’s shortleaf pine-oak woodlands (MTNF – Land & Resources 

Management). However, concerns over the effects of frequent prescribed burning on watershed 

health exists. Previous studies have assessed the effects of prescribed fire on upland vegetation 

and soil condition and the influence of anthropogenic disturbance on main stem channel 

morphology in the Big Barren Creek watershed (Bradley 2017; Hente 2017; Roman et al. 2019). 

However, little is known about headwater channel morphology in this watershed and if and how 

anthropogenic disturbances, such as prescribed fire, influence headwater channel morphology 

and sediment characteristics. The purpose of this study is to assess the channel geometry, 

substrate, and large woody debris (LWD) loads of headwater streams in Big Barren Creek. 

Furthermore, this study will attempt to determine if these headwater stream properties vary 

between channels that have and have not been treated with prescribed burns. 

 

Ozark Highlands Watershed Disturbance History 
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In the Ozark Highlands of Missouri, human control of fire in the landscape was first 

utilized by Native Americans in order to maintain open woodlands, savannas, and glades (Batek 

et al. 1999). When exactly Native Americans first started intentionally setting fires is 

controversial. Although, studies indicate that in the Current River basin increased incidence of 

fire after 1720 coincides with Native American procurement of the horse (Guyette and Cutter 

1997). Early European settlers arrived in the Ozark area in the early 1800s and permanent 

settlements were well established by the mid to late 1800s. (Jacobson and Primm 1997). A study 

conducted by Guyette and McGinnes (1982) assessed pre- and post- settlement conditions and 

determined that after settlement forest fire frequency dropped from a 3.2 year fire return interval 

to a 22 year fire return interval. However, uses of controlled fire by Euro-American settlers to 

convert the forested hilltops and valley bottoms into pastures and croplands changed the 

vegetation mosaic and reduced fuels that might be available during wildfires (Cutter and Guyette 

1994; Stambaugh and Guyette 2006).  

The encroachment of European settlers into the Missouri Ozarks initiated drastic changes 

to the landscape including forest clearing that likely initiated direct disturbance of stream 

channels (Jacobson and Primm 1997). Between 1880 and 1920 commercial timber harvesting 

and therefore extensive logging and clearing came to the Ozarks. These large-scale logging 

operations had negative effects on runoff and sediment supply of uplands and valley-side slopes 

which were coupled with decreases in erosional resistance through road building and extreme 

regional floods from 1895 to 1915 (Jacobson and Primm 1997).  

This stream disturbance factor was then magnified from 1920 to 1960 due to changes in 

both valley-bottom and upland riparian vegetation as a result of annual burning and over grazing 

of free roaming livestock (Law et al. 2004). Widespread erosion and a loss of soil moisture 
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holding capacity ensued from the loss of riparian vegetation (Law et al. 2004). Historical records 

indicate that smaller streams experienced increased rates of gravel release and longer-duration 

discharge periods (Jacobson and Primm 1997). It was also documented that erosion was notable 

especially on lands in row-crop cultivation, and that floods were “flashier” (Jacobson and Primm 

1997). 

During the same time period, the United States Forest Service (USFS) first officially 

endorsed fire-suppression programs under the Clarke-McNary Act of 1924 (Stephens and Ruth 

2005). This was done as a forest management solution to the increasing threat of wildfires due to 

westward expansion (Cooper 1960). However, throughout the mid-20th century there were 

numerous debates and studies related to fire ecology that showed the benefits of frequent, low to 

moderate intensity fire regimes (Stephens and Ruth 2005). It was also found that fire suppression 

policies were adversely affecting wildlife habitats (Leopold et al., 1963). Then in 1968, Sequoia-

Kings Canyon National Park installed the first prescribed natural fire program that lead to the 

USFS and National Park Service revising their fire exclusion policies (Stephens and Ruth 2005).  

Prescribed fire treatments were reintroduced as a restoration and conservation tool by 

land management agencies in the Ozarks during the late 1990s and early 2000s (Dey and 

Hartman 2005; Stambaugh and Guyette 2006). In MTNF, prescribe fire treatments began in the 

early 2000s in order to reduce the threat of wildfire and to improve the health of native plants 

and wildlife habitat as outlined by the 2005 Land & Resource Management Plan (MTNF - Land 

& Resources Management). In 2012, the Eleven Point Ranger District of MTNF was selected to 

be one of the Collaborative Forest Landscape Restoration Program’s (CFLRP) projects (MTNF – 

Forest’s Collaborative Forest Landscape Restoration Project 2012-2022). The CFLRP is 

intended to help restore priority forest landscapes across the country to their pre-settlement 
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condition (MTNF – Forest’s Collaborative Forest Landscape Restoration Project 2012-2022). 

Throughout the Missouri Ozarks, past anthropogenic disturbance in the form of agricultural 

practices and historic logging has left this area susceptible to invasive species and has degraded 

shortleaf pine-oak woodland habitats. In MTNF specifically, the CFLRP’s focus is on instituting 

a combination of appropriate silviculture and prescribed burn treatments to help restore the forest 

to its original condition. (MTNF – Forest’s Collaborative Forest Landscape Restoration Project 

2012-2022).  

As of 2015, approximately 250,000 acres (17%) of MTNF had been identified as priority 

burn acres that the forest intends to manage into the future (MTNF - Land & Resources 

Management). These priority burn acres were divided into burn units that have been scheduled to 

be burned approximately every 2-5 years at the beginning of treatment, and approximately every 

3-10 years in the maintenance phase of treatment (MTNF - Land & Resources Management). As 

of 2015, many of these burn units had been under a burn rotation for 15-20 years (MTNF - Land 

& Resources Management). In MTNF the forest service works closely with the National Weather 

Service to conduct prescribed burns under favorable atmospheric conditions that disperse the 

smoke quickly and minimize smoke impacts to local communities (MTNF - News & Events). 

Most commonly, prescribed burns in MTNF are scheduled to occur in the spring months, 

although burning in early winter can occur as well (MTNF - News & Events).  

Prescribed fire can reduce low vegetative cover and litter depth causing episodes of 

excess sediment and runoff entering stream systems (Robichaud 2000; Vega et al. 2005). 

Prescribed burns can expose bare earth which can lead to soil erosion and an increase in 

sediment supply and runoff to low order streams (Elliott et al. 1999; Hartman and Heumann 

2003; Lane et al. 2006; Singh et al. 2017). Prescribed fires can also decrease rates of infiltration 
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due to an increase in bulk density caused by a collapse in soil structure and clogging of pores by 

ash and charcoal residues (DeBano et al. 1998). The effect of prescribed fire on forest properties 

is often based on fire severity which can vary burn to burn, and even vary locally during the 

same burn event (Parr and Brockett 1999; Johansen et al. 2001). A study conducted by Vega et 

al. (2005) compared soil erosion and runoff rates between plots affected by different fire 

intensities during a prescribed burn. This study found that between intensely burned plots and 

lightly burned plots that runoff was 1.5 times greater, and overall, that burning resulted in runoff 

rates that were between 2.5 and 1.7 times greater than control plots. It was also determined that 

intensely burned plots caused significantly more soil erosion that was 5.8 times higher than 

unburned areas. In the Missouri Ozarks, little research has been conducted on the effects of 

prescribed burns on forest properties that could therein affect stream channels and water quality. 

 

Headwater Stream Geomorphology  

Evaluating the geomorphology of headwater streams is important to understanding 

watershed disturbance. This is because headwater streams are highly variable, prone to forcing 

by external influences, and transmit land use disturbances from upland areas down through 

drainage networks (Reid 1993). Streams channels can be evaluated using a variety of different 

methods, but are often assessed using a classification framework. Most channel classification 

frameworks classify rivers into reach types based on their physical characteristics that lend 

insight into the formative processes that shape that reach (Buffington and Montgomery 2013). 

Broad stream channel classification can be based on general stream trends such as active/stable, 

deposition/erosion, anthropogenic/natural, transport-/supply-limited, and state of equilibrium and 

or evolution (Montgomery and Buffington 1998). For example, Schumm (1977) developed a 
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framework for examining channel processes by broadly defining stream segments within a 

watershed as erosion, transport, and deposition reaches. More commonly, classification 

frameworks concentrate on channel form and setting as well as sediment characteristics (Kasprak 

et al. 2016). Montgomery and Buffington (1997) developed a widely used classification system 

that categorizes channels into dune ripple, pool riffle, plane bed, step-pool, cascade, bedrock, and 

colluvial reach types (Figure 4). Based on this classification scheme, headwater streams, 

especially in Big Barren Creek watershed, tend to lie in the transition between colluvial and 

alluvial/bedrock categorized channels.  

Headwater stream geomorphology can be influenced by a number of factors that affect 

channel form. The underlying geology of an area can significantly influence how rainfall is 

routed to streams and the type and quantity of sediment that can be introduced to the stream 

system (Panfil and Jacobson 2001). The geology of an area is also critical in establishing surface 

divides between watersheds, valley confinement of stream channels, and subsurface flow 

systems (Ward 2003). Slope, a factor influenced by geology, is also important when considering 

a reach’s sediment transport capacity and flow rates (Benda et al. 2005). For example, in the 

Pacific Northwest and the Rocky Mountains headwater streams are dominated by debris-flow 

processes and those with steeper slopes are more inclined to be supply-limited, while lower-

gradient headwaters tend to be transport-limited (Figure 5) (Montgomery and Buffington 1998).  

Soil type of a surrounding catchment is also a factor that influences headwater 

geomorphology. A variety of soil properties can directly influence rates of infiltration and 

erosion within a catchment (Menashe 1998). For example, shallow and dense soil types tend to 

have decreased rates of infiltration that can increase rainfall runoff entering adjacent streams 

(Gomi et al. 2002). It is also known that soils with high silt content tend to be more erodible 
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(Ward et al. 2003). Catchments composed of highly erodible soil types can lead to an excess of 

sediment entering nearby streams (Wohl 2014). The soil type of a surrounding catchment can 

also indicate what sediment may potentially be supplied to the stream. Soils types that contain 

large rock fragments may supply coarser sediment to headwater streams than soil types 

composed of finer grains (Wohl 2014). The geomorphology of stream channels, particularly 

headwater stream channels, is strongly dependent on inputs of sediment and discharge from 

surrounding catchments (Leopold and Maddock 1953).  

The local hydrology of an area and its associated discharge regime can also influence 

headwater stream geomorphology. Due to the location of headwater streams within a watershed, 

hillslope hydrology influences headwater channel morphology more so than larger channels 

(Gomi et al. 2002). For example, headwater channels situated within steep and confined valleys 

have shorter flow paths and smaller storage capacities (Adams and Spotila 2005). Headwater 

channels are also unique in that they can more easily accumulate shallow groundwater. 

Throughflow from the soil matrix at the foot of hillslopes and riparian areas contributes to 

increased channel flow that gradually increases with increasing wetness of the basin (Gomi et al. 

2002). In some steep catchments, subsurface flow can actually exceed overland runoff 

contributions (Sidle et al. 2000). This subsurface flow, especially during storm events, can also 

be supplemented by increased saturation overland flow from surrounding hillslopes due to 

shallow water tables emerging at the soil surface (Bonell 1998). Karstic features such as springs 

and hollows aid in the concentration of saturated overland flow that initiates channel incision 

(Jaeger et al. 2007). The rapid transmission of water from hillslopes to headwater streams due to 

hillslope proximity and contributions from groundwater connections can cause headwater 

hydrographs to be “flashier” (Figure 6) (Ritter et al. 1995; Bonell 1998; Adams and Spotila 
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2005). Overall, water inputs of similar magnitudes can have more drastic effects on headwater 

channels than larger stream channels, and therein be a larger factor in shaping channel 

morphology. 

The hydrology of forest catchments can be greatly affected by the neighboring land use. 

Land use shifts from forest to agriculture can increase rates of runoff and induce erosion (Lee 

1980). Channelization, through the use of agricultural ditches, as well as land clearing for row 

crops and pasture lands can increase the magnitude and frequency of runoff events (Allan 2004). 

Soil compaction from grazing-animal traffic can decrease soil infiltration rates and leave soils 

susceptible to increased runoff and subsequent erosion (Brion et al. 2011). Timber harvesting 

disturbances including the establishment of logging roads, extraction tracks, landings, and land 

clearing can also alter local hydrology. Research has also shown that timber harvesting can 

strongly influence the timing and amount of water, sediment, and nutrients exported to streams 

from surrounding hillslopes and upland areas (Roberts et al. 2007). Timber harvesting activities, 

especially the use of heavy machinery, can also lead to persistent surface soil compaction in 

harvest areas. Soil compaction can lead to increased soil bulk density and decreased rates of 

surface infiltration (Ole-Meiludie and Njau 1989; Croke et al. 2001). Forest stand composition 

and density can also lead to dissimilarities in the hydrologic regimes of headwater catchments. 

Lee (1980), found that annual runoff for mixed-deciduous forest was greater than annual runoff 

for an oak-hickory forest. Certain tree species also have a higher capacity for rainfall interception 

than others. Specifically, shortleaf pines have an anticipated interception rate of 0.14 in. 

compared to 0.10 in. for leafed out hardwoods and 0.05 in. for bare hardwoods (Ward et al. 

2003). Differences in dominant tree species and stand densities can affect rates of interception 

which can ultimately influence runoff rates in surrounding catchments.  
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Headwater stream geomorphology can also be shaped by forced obstructions. A frequent 

obstruction to headwater streams is the recruitment of large woody debris. In the Ozark Plateaus 

region, the geomorphic function of LWD in stream channels includes facilitating pool formation, 

altering stream flow, forcing local scour, stabilizing banks, increasing bed roughness and 

heterogeneity, and retaining sediment and coarse organic matter (Montgomery and Buffington 

1997; Mitchell et al. 2012). Standing trees within headwater channels have similar geomorphic 

functions as LWD, but also assist in LWD recruitment as well as bank armoring and stabilization 

due to root growth (Opperman and Merenlender 2007; Buffington and Montgomery 2013). 

LWD, standing trees, large clasts, and bedrock outcrops are all obstructions that can contribute to 

forced planforms such as forced pool-riffle and step-pool channels (Montgomery and Buffington 

1998; Nickolotsky and Pavlowsky 2007). The accumulation and distribution of LWD and larger 

grain sediment in the Ozarks is influenced mainly by inputs from hillslopes and or other low-

order tributaries and occasionally by infrequent landslides and debris flows (Montgomery and 

Buffington 1997; Gomi et al. 2002; Mitchell et al. 2012). Riparian timber stand age, natural 

perturbations such as ice storms, windstorms, and insect infestations can also contribute to the 

recruitment of LWD in Ozark headwater streams (Mitchell et al. 2012). Overall, the spatial 

arrangement of channel obstructions can have a profound effect on headwater morphology.  

 

Geomorphic Analysis of Channels 

It is a prominent geomorphic tenet that analysis of channel form can imply the formative 

hydrogeomrophic processes that control a channel reach (Kasprak et al. 2016). The focus of 

geomorphic inquiry is often put on understanding the processes at the bank-full stage due to its 

control on channel equilibrium state and wide application to the field of river management 
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(Wolman and Miller 1960; Dunne and Leopold 1978; Rosgen 1996). Wolman and Leopold 

(1957) defined bank-full discharge as the stage when the channel is completely filled just before 

flow begins to overtop the banks. Studies have indicated that this type of discharge occurs 

approximately every 1-2 years in humid regions and transports the majority of suspended 

sediment in many rivers, making this type of flow important for controlling sediment transport 

processes and channel form (Simon et al. 2014). The notion behind the bank-full concept is that 

channel form is maintained by the flood energy and sediment load imposed by the watershed 

over a timespan long enough for the channel to respond or adjust to the “average” hydrologic and 

sediment inputs (Wolman and Miller 1960). The bank-full concept is often used because it 

simplifies the complex interactions among flow, sediment, and channel geometry through time 

(Rosgen 1996). Consistent analysis of fluvial forms and processes at the bank-full stage can also 

give insight on a channel’s progression towards equilibrium (Wohl 2014). 

Channel equilibrium at the bank-full condition is typically evaluated in two ways. First, 

Lane (1955) conceptualized the equilibrium within a stream channel as a balance between force 

factors that affect flow energy (discharge & channel gradient) and resistance factors that reflect 

friction or the energy expended at the channel boundary (sediment load & sediment size).  

Lane’s Balance indicates that sediment transport is proportional to stream power and inversely 

proportional to sediment size (Brierley and Fryirs 2005). Second, Leopold and Maddock (1953) 

used hydraulic geometry analysis to describe the influence of discharge on channel dimensions 

both during rising stage at a single cross-section (i.e., at-a-station hydraulic geometry) and 

downstream variations among a series of cross-sections at bank-full discharge (i.e., longitudinal 

hydraulic geometry). Channel width, depth, and flow velocity tend to vary systematically with 

discharge in log-log regression equations, with intercept and slope coefficients varying with 
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water and sediment input regimes (Bieger et al. 2015). Disturbances in the water and sediment 

regime will first affect bed configuration and sediment size distributions.  Then, as the 

disturbance persists, adjustments will occur to channel geometry including width-depth ratios.  

Finally, more prolonged disturbances will affect the channel planform such as when braided 

channels transition to meandering forms (Wohl 2014).  

The continuity equation is used in all process-response models of channel form and is 

defined as Q = w • d • v, where Q is channel discharge (m3/s), w is the width of the water surface 

(m), d is the average flow depth (m), and v is the average velocity of flow (m/s) (Knighton 

1984).  Hydraulic geometry analysis uses regression equations that relate width, depth, and 

velocity to discharge as power functions: w = aQb, d = cQf, and v = kQm (Leopold and Maddock 

1953). In theory, the product of the intercept coefficients (a x c x k) and sum of the slope 

coefficients (b + f + m) should both equal unity (1) in a balanced stream channel. Dunne and 

Leopold (1978) also proposed that if stream discharge data are not available that drainage area 

could be used as a surrogate. Furthermore, these equations can be used to assess a channel’s 

resistance to changes in discharge and sediment regimes and can be adapted to form regional 

curves to improve the reliability of local width, depth, velocity, and discharge relationships for 

stream in different regions (Bieger et al. 2015).  

 

Purpose and Objectives 

The purpose of this study is to understand and describe variations in headwater stream 

channel geomorphology in an Ozarks watershed under forest management. In doing so, this 

study will attempt to identify geomorphic relationships which help to understand channel form 
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and assess the question of whether prescribed burns affect the hydrology and geomorphic 

characteristics of small headwater channels.  

Studies relating to the geomorphic assessment of headwater streams in the Ozarks has 

been limited. Shepherd et al. (2011) found that longitudinal characteristics of headwater streams 

in the Ozarks are controlled by land use and regional geology and that bank-full cross-sectional 

area and the distribution of bed materials can be used to assess response to land use change. 

However, these relationships were found on headwater streams that range in drainage area from 

12 - 36 km2 (Shepherd et al. 2011). Geomorphic assessments and classification as well as 

evaluation of watershed factors for larger streams have also been used to discuss the amount of 

stream reach dissimilarity within and between the Boston Mountains, Ozark Highlands, and 

Ouachita Mountains ecoregions (Splinter et al. 2010a; Splinter et al. 2010b; Splinter 2013). 

Mitchell et al. (2012) assessed the structure and function of large wood in Ozark headwater 

streams and found the primary functions are to store sediment and stabilize banks. Nickolotsky 

and Pavlowsky (2007) also determined that for headwater reaches in the Boston Mountains, 

variations in step height and wavelength are also largely affected by geology. More work that 

evaluates the variability of Ozark Highland headwater channel morphology and addresses how 

headwater channel form responds to disturbance events is needed. Recall, that headwater streams 

include more than two thirds of total stream length in a watershed (Leopold et al. 1964), are 

sensitive to local hydrogeomrophic conditions, and may therefore be suitable indicators of 

watershed health (Whiting and Bradley 1993; Sidle et al. 2000, Gomi et al. 2002).  

The aims of this research are to analyze and describe low order channel morphology and 

substrate in Big Barren Creek watershed. Additionally, this study hopes to determine if 
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continued prescribed fire use over multiple years produces variation in headwater geomorphic 

properties. In order to achieve this goal, four objectives have been identified: 

1) Complete a geomorphic assessment of headwater channels draining catchments with 
different prescribed burn histories and physiography in Big Barren Creek watershed; 
 

2) Evaluate hydraulic geometry relationships for headwater channels; 
 

3) Develop regression equations that use watershed characteristics and channel 
resistance variables such as LWD and standing trees, to predict channel form and 
substrate conditions; and 
 

4) Evaluate the influence of channel type, varying catchment relief, and prescribed burn 
history on headwater channel morphology and substrate. 
 
 

The information gathered by meeting these objectives will benefit both scientific research 

and local land management goals. Prescribed fires are becoming an increasingly popular land 

management tool in the Ozark Highlands and across the country. However, there is a gap in 

knowledge concerning the effects of prescribed fire on the morphology and substrate of 

headwater streams. In MTNF, a better understanding of the physical effects of prescribed fires on 

small streams that drain the majority of forested areas is needed. Additionally, this study will 

provide valuable insight about the influence of prescribed fires on runoff, sediment, and LWD 

inputs that control headwater morphology. By understanding how prescribed fires effect 

headwater channel morphology, this study gives land managers a better understanding of the 

effects of prescribed burning on forest systems and can aid land managers in making appropriate 

decisions to further prevent erosion and protect headwater stream stability and hydrologic 

connectivity. 
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Figure 1. Anatomy of headwater drainage systems (after Hack and Goodlett 1960; 
Montgomery and Buffington 1997; Benda et al. 2005). 
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Figure 2. Artist concept of changes at site 8 of the Missouri Ozark Forest Ecosystem Project 
(Guyette and Dey 1997). 
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Figure 3. Study area map of Mark Twain National Forest and Big Barren Creek. 
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Figure 4. Stream classification of mountain drainage basins (Montgomery and Buffington 
1997). 
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Figure 5. “Schematic illustration of generalized relative trends in sediment supply (Qs) and 
transport capacity (Qc) in mountain drainage basins,” (Montgomery and Buffington 1997). 
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Figure 6. “Idealized flood hydrograph and generalized responses to drainage basin 
characteristics. The effect of an individual characteristic is shown assuming the other 
characteristics are held constant,” (Ritter et al. 1995). 
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STUDY AREA 

 

This project was conducted in the Big Barren Creek watershed located in the Eleven 

Point Ranger District of Mark Twain National Forest (MTNF). The Big Barren Creek watershed 

has a drainage area of 190.6 km2 and is a tributary to the Current River (Figure 7). In August of 

1974, congress designated portions of the Current River and adjacent land as the Ozark National 

Scenic Riverways (Barks 1978). The was done to conserve and preserve Missouri free—flowing 

streams, springs, caves, and wildlife, as well as establish outdoor recreation resources (Barks 

1978). The Big Barren Creek watershed drains portions of Ripley, Oregon, and Carter County in 

southeast Missouri. The headwaters of Big Barren Creek are located in southwest Carter County 

and the main channel flows east-southeast toward the northwest corner of Ripley County where 

it reaches its confluence with the Current River. The Current River then extends down into 

Arkansas where it converges with the Black River, a tributary to the White River, that which 

eventually drains into the Mississippi River in east-central Arkansas (Panfil and Jacobson 2001) 

(Figure 7). Big Barren Creek tributaries include Cedar Bluff Creek (30.6 km2), Fools Catch 

Creek (9.9 km2), Devil’s Run (17.0 km2), Polecat Hollow (6.5 km2), Wolf Pond Hollow (8.7 

km2), Coward’s Hollow (9.2 km2), and Cave Fork (13.9 km2) (Figure 7). Headwater streams 

drain the majority of Big Barren Creek watershed and account for approximately 87% of total 

stream length in the watershed.  

 

Geology and Soils 

Geology. The Big Barren Creek Watershed is located in the Salem Plateau subdivision of 

the Ozark Highlands physiographic province. The Salem Plateau consists of rolling uplands 
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dominated by dolomite and other carbonate rocks (Panfil and Jacobson 2001). These rocks are of 

Mississippian age and were originally deposited in shallow seas throughout the Ozark Highlands 

physiographic province (Orndorff et al. 2001). The Salem Plateau is underlain by a structural 

dome comprised of Precambrian metamorphic and igneous rocks that come to the surface to 

form the St. Francois Mountains (Adamski et al. 1995). This plateau contains five major 

formations, and from youngest to oldest they include: Jefferson City dolomite, Roubidoux 

Formation, Gasconade Formation, Eminence Formation, and Potosi dolomite (Orndorff et al. 

2001). Within the Current River Basin the Roubidoux Formation is found in small amounts and 

tends to cap ridges, the Gasconade Formation extensively underlies dissected uplands and steep 

hillslopes, and river valley bottoms consist mainly of the Eminence Formation and Potosi 

dolomite (Panfil and Jacobson 2001) (Figure 8). However, in eastern and middle portions of the 

Current Basin, where Big Barren Creek is located, the older geologic formations are more 

dominant (Panfil and Jacobson 2001).  

Within the Big Barren Creek watershed, the Roubidoux Formation and Gasconade 

Formation are the prominent formation types, with Jefferson City dolomite occurring 

occasionally. Headwater streams in the Big Barren Creek watershed predominately reside in 

areas underlain by the Roubidoux Formation. The Roubidoux Formation lies between the 

Gasconade Formation and the Jefferson City dolomite and is 100 to 300 feet thick (Repetski et 

al. 1998). The formation is composed of dolomite and sandy dolomite with interlaid beds of 

sandstone and cherty dolomite (Repetski et al. 1998). In the Ozarks, this formation caps the 

divides between most streams (Barks 1978). In Carter County, the Roubidoux Formation 

weathers rapidly and has reduced to layers of clay, sandstone, and chert (Butler 1990). Due to the 

rapid weathering of the Roubidoux, resulting slopes can be characterized by loose blocks of 
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sandstone (Repetski et al. 1998). Chert float blocks from the middle section of the formation are 

also common (Repetski et al. 1998).  

Soils. Soils in the Ozark Highlands form primarily in loess, hillslope colluvium, 

residuum, or gravelly alluvium (Kabrick et al. 2000). Within the Current River basin Quaternary 

loess deposits occur on flat, stable landforms (Kabrick et al. 2000). However, most upland soils 

are composed of alfisol and ultisol soil orders that are highly weathered and vary in texture, 

gravel content, and range in depth to bedrock (Adamski et al. 1995). These soil types can be 

described as deciduous forest soils that are found in semiarid to humid areas with a clay enriched 

subsoil and moderately low amounts of organic matter (Vander Veen and Preston 2006). Most 

bottomland soils are not as weathered, formed in alluvium, and include inceptisols and entisols 

soil order types (Kabrick et al 2000; Vander Veen and Preston 2006). Although soil types in this 

area are diverse, in general most of these soils have a high potential for nutrient leaching into 

groundwater and runoff (Adamski et al. 1995).  

Within the Big Barren Creek watershed, the most common soil series include Macedonia 

silt loam, Captina silt loam, Clarksville very gravelly silt loam, Coulstone gravelly sandy loam, 

Doniphan gravelly silt loam, Wilderness gravelly silt loam, Poynor very gravelly silt loam, and 

Viraton silt loam (Hente 2017). The majority of headwater streams located within the Big Barren 

Creek watershed are found in areas that contain Macedonia silt loam, Captina silt loam, 

Clarksville very gravelly silt loam, and Coulstone very gravelly sandy loam (Table 1; Figure 9). 

The majority of these soil series are part of the Ultisol soil order. The Macedonia, Clarksville, 

and Coulstone soil series are all typic paleudults while the Captina silt loam is a typic fragiudult. 

The distribution of soil series in the watershed shows that the Clarksville very gravelly silt loam 

is more commonly found near larger stream sections and is more ubiquitous throughout the 
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entire watershed than the other soil types. The Captina silt loam is more common in the eastern 

portion of the watershed, while the Macedonia silt loam and Coulstone very gravelly sandy loam 

tend to be located in the western half of the watershed. For headwater areas in this watershed, the 

Clarksville very gravelly silt loam appears to be situated at lower elevations than the other soil 

series (Figure 9).  

 

Climate and Hydrology 

Climate. The Missouri Ozark Highlands region has a temperate climate with humid-

continental and humid subtropical weather conditions that are consistent with mid-continent and 

middle latitude locations (Stambaugh and Guyette 2004). General circulation patterns dominate 

local climate with major weather systems typically moving across the region from west to east 

(Adamski et al. 1995). In early spring and throughout the summer months this region is 

influenced by moisture-laden air masses that move into the area from the Gulf of Mexico. These 

air masses can produce severe weather including thunderstorms, tornadoes, and intense rainfall 

(Adamski et al. 1995).  

In the Missouri Ozarks, mean monthly precipitation, generally in the form of rain, is 

approximately 9.25 cm (3.64 inches) (Adamski et. al 1995). Mean annual precipitation in the Big 

Barren Creek watershed is estimated to be 119.8 cm (47.2 in) for 1956 – 2014. This estimation is 

based on an inverse distance-weighted average of six stations within 70 km of the Big Barren 

Creek watershed (Pavlowsky et al. 2016). Annual rainfall has been increasing 0.22 cm (0.09 in) 

every year on average over the last 60 years (Pavlowsky et al. 2016). Similar to regional trends, 

in the Big Barren Creek watershed the highest rainfall totals tend to occur in the fall and spring 

(Pavlowsky et al. 2016). Historically, high magnitude rainfall events account for a large portion 
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of annual rainfall in the region and in recent years 7.5 cm (3”) per day events have become more 

common (Stambaugh and Guyette 2004; Pavlowsky et al. 2016). Overall, high magnitude 

rainfall events are becoming more intense and occurring more frequently in this region 

(Pavlowsky et al. 2016). 

Hydrology. Due to the abundance of carbonate rocks in the Missouri Ozarks, this region 

is dominated by karst terrain (Panfil and Jacobson 2001). Karst topography in this region allows 

for the development of subsurface drainage systems. These systems channel upland precipitation 

and runoff flow underground where it can be transported and resurface in valley bottom springs 

(Jacobson and Primm 1997). Extensive karst terrain gives the Ozarks defining features of 

sinkholes, losing streams, caves, and spring fed streams (Panfil and Jacobson 2001).  

In the Big Barren Creek watershed, segments of the main channel are dry almost all year 

due to extensive underground karst systems, while other segments are supplied with perennial 

baseflow from springs (Orndorff et al. 2001). For example, in the designated Big Barren Creek 

Natural Area, established in 1989 by the Missouri Department of Conservation, Big Barren 

Creek is fed by springs that provide continuous flow (Whitacre 2008). Upstream and 

downstream of this natural area, Big Barren Creek is a losing, ephemeral creek that runs dry for 

the majority of the year (Bradley RA 2017). The Missouri Department of Natural Resources has 

designated 36.7 km of Big Barren Creek as a losing stream. However, field visits have 

determined that the 2.4 km of Big Barren Creek that flows through the Big Barren Creek Natural 

Area was mis-categorized and is a gaining stream. The local topography and Big Barren Creek’s 

extensive connection to karst drainage systems contributes to the ephemeral nature of headwater 

channels in the watershed.  
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Land Use and Vegetation  

Land Use. Prior to European settlement in the Missouri Ozarks region, the people that 

occupied this area relied on hunting and gathering for subsistence and dwelled in caves or in 

small villages on river terraces. European settlement led to land clearing in order to establish row 

crops and pasture lands (Panfil and Jacobson 2001). From 1880 to 1920 commercial timber 

harvesting operations decimated the native short leaf pine forests in this region. A decrease in 

forested area made room for increased livestock grazing, row crop farming, and development 

which has continued into recent years (Adamski et al. 1995). Wildfires were relatively frequent 

in the Ozarks region before European settlement and contributed to fire dependent ecological 

structures. Wildfires persist in this area today but are almost exclusively human-initiated surface 

fires with rare cases of stand replacing fires (Stambaugh and Guyette 2006). Intentional use of 

controlled fires has been documented in this area since before European settlement. Historical 

accounts exist of fires that were set by Native Americans who inhabited the region as a way to 

improve grasslands for grazing by large game, aid in hunting, and to harass enemies (Jacobson 

and Primm 1997). When Ozark residents returned to farming practices after the timber harvest 

boom, annual burning of uplands was also common to increase grazing on open ranges (Panfil 

and Jacobson 2001). However, this practice was discontinued after regulations were set on open 

range grazing practices. 

The use of fire to alter the landscape in the Missouri Ozarks was not used again until 

prescribed burns became an integral part of land management practices in the late 1990s and 

early 2000s (Dey and Hartman 2005; Stambaugh and Guyette 2006). Currently, general land use 

practices common in this watershed include using land for timber production and agricultural 

purposes (Vander Veen and Preston 2006). Approximately 75% of the watershed is also owned 
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and operated by the National Forest Service as part of MTNF (Figure 7). Of the eastern public 

forest lands and according to the U.S. Forest Service website, MTNF is the largest government-

owned forest in Missouri (MTNF – Points of Pride).  

Vegetation. Historic accounts describe the pre-settlement Ozark landscape as one with 

abundant prairies, oak savannahs, and oak-pine forests with open, grassy undergrowth (Jacobson 

and Primm 1997). More than 4 million acres of Missouri Ozarks was dominated by pine species 

prior to European settlement (Ladd et al. 2007). Pre-settlement vegetation consisted of pine 

dominated woodlands, an open canopy, and a diverse yet consistent assemblage of perennial 

upland herbaceous vascular taxa associated with pine-based ecological systems (Ladd et al. 

2007). During the extensive timber harvest period in the late 1800s through early 1900s, poor 

transportation in the Reynolds, Carter, Shannon, and Ripley County areas led to the development 

of railroads and small tram ways to facilitate logging operations (Guyette and Larsen 2000). The 

spatial arrangement of this logging infrastructure played a large part in developing current forest 

vegetation structure as well as local geomorphology (Guyette and Larsen 2000; Bradley NS 

2017).  

Intensive land clearing from the timber harvest boom as well as fire suppression 

throughout the majority of the 20th century allowed for invasive species to infiltrate, thrive, and 

outcompete native species such as the shortleaf pine (Cunningham 2007). Due to this, forest 

structure has shifted more towards an oak-hickory dominated landscape as opposed to oak-pine 

dominated forest stands. Ozark regional forest health problems associated with oak decline and 

red oak borer have made pine restoration efforts critical to maintaining sustainable oak-pine 

forest types (Stambaugh and Guyette 2004). 
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Prescribed Fire Use in Mark Twain National Forest 

In the Ozarks during the late 1990s and early 2000s, prescribed fire treatments started to 

be used as a restoration and conservation tool by land management agencies (Dey and Hartman 

2005; Stambaugh and Guyette 2006). In 2012 the Eleven Point Ranger District of MTNF, 

including the Big Barren Creek watershed, was selected to be one of the Collaborative Forest 

Landscape Restoration Program’s (CFLRP) projects. The CFLRP was developed by the 

Omnibus Public Land Management Act of 2009 and is intended to help restore priority forest 

landscapes with the help of landowners and community partners (MTNF – Forest’s Collaborative 

Forest Landscape Restoration Project 2012-2022). The objectives of this project are to be carried 

out by the U.S. Forest Service and include encouraging ecological, economic, and social 

sustainability; leveraging local resources with national and private resources to meet forest 

management goals; facilitating the reduction of wildfire management costs and re-establish 

natural fire regimes; demonstrating which ecological restoration techniques are most efficient; 

and encouraging restoration practices that will lead to outcomes that offset treatment costs 

(Schultz et al. 2012). In the Eleven Point Ranger District of MTNF the CFLRP has focused on 

instituting a combination of appropriate silviculture and prescribed burning treatments to help 

restore the forest to its original shortleaf pine-oak woodlands habitat (MTNF – Forest’s 

Collaborative Forest Landscape Restoration Project 2012-2022).  

In the Big Barren Creek watershed located within the Eleven Point Ranger District of 

MTNF, the use of prescribed burns was first documented in 2002. After the Eleven Point Ranger 

District was instituted as a CFLRP project, the use of prescribed burns increased. As of 2018, 

approximately 21,300 acres of forest within the Big Barren Creek watershed has been subjected 

to prescribe burn treatments (Figure 10). Some of these areas, especially units in the northwest 
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portion of the watershed, are regularly burned on an approximate two to three year basis. 

Overall, these burns are used to mimic historic fire regimes in order to reduce fuel loading in 

hardwood ecosystems while stimulating grass and forb plant communities by maintaining open 

areas in glade and prairie ecosystems (MTNF – Prescribed burning on the Mark Twain National 

Forest). 
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Soil Series Landform Slope Classes Parent Material 

Chert 
Fragments 

in Top 
Layer of 
Soil (%) 

Depth 
to Bt 
(in) 

Depth 
to Bx 
(in) 

Macedonia 

Ridges, 
hillslopes, 
interfluves, 
and divides. 

3 to 8 and 8 
to 15 percent 

slopes 

Loess over 
residuum 
weathered 
from cherty 
limestone. 

0 9 - 

Captina Hillslopes 3 to 8 percent 
slopes 

Loess over 
pedisediment 
over residuum 
weathered 
from cherty 
limestone. 

0 5 25 

Doniphan 
Interfluves 

and 
Hillslopes 

3 to 8 and 15 
to 35 percent 

slopes 

Slope alluvium 
over residuum 
weathered 
from dolomite. 

7 13 - 

Clarksville Hillslopes 

8 to 15 and 
15 to 35 
percent 
slopes 

Slope alluvium 
over residuum 
weathered 
from dolomite. 

0-5 13 - 

Coulstone 
Hillslopes, 
interfluves, 
and ridges. 

3 to 8, 15 to 
35, and 35 to 

60 percent 
slopes 

Slope alluvium 
over residuum 
weathered 
from 
sandstone. 

5-15 8 - 

Tilk-
Secesh Drainageways 1 to 3 percent 

slopes 
Gravelly 
alluvium 0 8 - 

 

 

 

Table 1. Soil Properties (USDA-WSS, 2019). 
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Figure 7. The Big Barren Creek watershed location and tributary streams. 
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Figure 8. Geology and location of the Current River Basin. 
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METHODS 

 

The main goal of this project was to assess the geomorphic characteristics and channel 

properties of headwater streams. Additionally, these features will be compared among reaches 

with differing prescribe burn histories. In order to meet this goal a variety of methods were 

utilized. Geographic Information System (GIS) was used in site selection and to determine 

headwater catchment properties. Geomorphic assessments were also used in the field to collect 

data on the geomorphic, substrate, and vegetative characteristics of the selected stream channels. 

The rational equation as well as a precipitation database allowed for reference discharges to be 

estimated for each headwater channel to approximate the bank-full stage. The estimated 

reference discharges and cross-sectional survey data were entered into Hydraflow Express 

software for hydraulic modeling. Modeling outputs estimated channel geometry including width, 

depth, and velocity at bank-full discharge. Statistical analysis using linear regression was then 

used to evaluate the geomorphic characteristics and catchment relationships of headwater stream 

channels in the Big Barren Creek watershed and to determine if any statistically significant 

variation exits between reaches with different prescribe burn history.  

 

Site Selection 

A total of 38 headwater channel reach sites were evaluated in 13 different headwater 

catchments. Channel sites were generally nested in catchments where two or more first order 

streams converged to form a second order stream. A total of 26 first order channel sites were 

selected and have drainage areas that range from 0.29 to 14.73 ha. In addition, a total of 12 

second order channel sites were selected that have drainage areas that range from 3.11 to 20.9 ha. 
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Study catchments were generally selected based on their association to an ongoing Ozarks 

Environmental and Water Resources Institute monitoring program with permanent sites on 

uplands areas in Big Barren Creek watershed (Hente 2017; Roman et al. 2019).  

The channel reach sites and catchments used in this research were also selected based on 

four different factors. Firstly, study channel sites were selected in areas that drained soil series 

with loess parent material or with relatively high silt content such as the Macedonia soil series. 

Catchments that consist of soils with loess parent material and high silt contents are more 

vulnerable to erosion than catchments with different soil types (Ward et al. 2003). Secondly, 

catchments and sites were selected based on their prescribed burn histories. Sites selected 

represent a gradient of burn frequencies with burned sites having burn frequencies that range 

from 0 to 7 times burned since 2002. The burn history of the Big Barren Creek watershed was 

assessed using digitized burn unit polygons in ArcGIS as well as burn unit burn frequency 

records, both of which were provided by the U.S. Forest Service, to develop a burn index map 

(Figure 10). A total of 21 burn units have been established in the Big Barren Creek watershed by 

the U.S. Forest Service equating to 45.3% of the total area of the watershed. Thirdly, the study 

channel sites selected also represent a gradient of slopes. Slope can ultimately influence a reach’s 

stream power and ability to transport sediment (Benda et al. 2005). Therefore, sites with varying 

slopes may experience natural differences in geomorphology and may also be affected by 

prescribed burns in different ways. The fourth factor that was considered in site selection was 

forest stand type. Catchment hydrology and erosive potential can be affected by forest stand type 

by influencing rates of interception and forest floor composition (Lee 1980; Ward et al. 2003). 

Study catchments were populated by eight different forest stand types, with shortleaf pine being 

the most abundant followed by white oak. All four of these factors were considered during the 
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site selection process in order to generate a representative sample of headwater streams within 

the Big Barren Creek watershed. 

 

Field Methods 

Field data was collected during March, July, September, and December of 2018. 

Preliminary field surveys of catchments were performed in order to establish that an area had 

substantial headwater channel development and that further surveying was possible. If the 

potential study catchment was deemed suitable, a geomorphic assessment was completed on at 

least one or more first order streams and typically on a second order stream as well. GPS 

locations were recorded for each reach using a Trimble GPS tool and TerraSync software. GPS 

points were taken at the furthest upstream and downstream points of the reach, at the beginning 

and ends of the cross-section, and where the cross-section crossed the thalweg of the stream. 

GPS points were taken for the dual purpose of future GIS analysis and to record the location of 

the study site in case it needed to be revisited. Pictures were also taken to document the 

landscape of the reach when it was sampled and to validate cross-sectional surveys. 

Geomorphic assessments were completed at each channel reach site including a cross-

sectional survey, a pebble count, and large woody debris (LWD) and standing tree tallies 

(Wolman 1954; Harrelson et al. 1994; Rosgen 1996; Schuett-Hames et al. 1999). Channel cross-

sections were collected perpendicular to the channel in an area that most closely resembled a 

riffle or glide. A 100 meter tape was stretched across the cross-section and often extended to the 

valley walls so that geomorphic landforms could be surveyed. The reach width was estimated as 

the width of the active channel and was used to determine the reach length as five channel widths 

upstream and five channel widths downstream from the cross-section (Harrelson et al. 1994). A 
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100 meter tape was also stretched down the center line of the channel as a visual aid. An auto 

level, tripod, and stadia rod were then used to conduct the cross-sectional survey in a way that 

geomorphic landforms, such as channel banks, benches, and floodplains, could be distinguished 

(Harrelson et al. 1994). Points were also taken at surface slope breaks where landforms could not 

be discerned. The amount of survey points taken at each cross-section ranged from 7 - 15 with an 

average of 11 survey points per cross-section. The total stream length assessed was 1,200 meters 

with the average sample reach length being 31.6 m long with an average channel width of 3.2 m. 

Longitudinal profiles of each reach were later assessed using ArcGIS software and LiDAR 

imagery. 

Pebble counts were also conducted at each site in accordance with the Wolman (1954) 

method to classify substrate material for each reach. A total of 30 pebble count measurements 

were taken at each site using a gravelometer (Rosgen 1996). Depending on the length of the site, 

the number of transects as well as the number of pebbles counted at each transect varied. 

Typically sites were either 30 or 40 meters in length. For reaches 30 meters long, five pebbles 

would be counted along six evenly-spaced transects. For reaches 40 meters long, six pebbles 

would be counted along five transects. Particle size measurements collected in situ were then 

later used to develop grain size distributions for each headwater stream reach. 

A LWD and standing tree inventory was also completed for each reach. For this study, 

LWD was defined as any piece of wood equal to or larger than 10 cm in diameter for a length of 

1.5 m (Schuett-Hames et al. 1999). Any standing tree 13 cm in diameter at DBH or larger was 

also documented. All LWD and standing trees sampled were contained within the active width of 

the channel reach. For LWD, the diameter and length of each piece was measured and qualitative 

properties including type, orientation, age, anchor type, and geomorphic effect was recorded for 
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each piece. The DBH for each standing tree was also measured in addition to tree location in the 

channel and distance along the longitudinal tape.  

 

Geospatial Methods.  

Stream and Watershed Delineation. Streams in the Big Barren Creek watershed were 

delineated using a half-meter spatial resolution, LiDAR derived DEM provided by the U.S. 

Forest Service. This DEM and the ArcGIS hydrologic set of spatial analyst tools were used to 

create flow direction and flow accumulation rasters. These rasters were then used to classify 

pixels as either stream and non-stream pixels. Pixels that drain approximately 2,500 m2 were 

classified as stream pixels and collected to form a stream network. The stream network derived 

at this scale was used because it was most similar to stream systems observed in the field. The 

derived stream network was then ordered according to the Strahler method (Strahler 1957) using 

ArcGIS’s ‘stream order’ tool. Stream channels surveyed in the field were then verified as 

headwater channels using GPS locations. The flow direction and flow accumulation rasters were 

also used to delineate the headwater catchments associated with each study reach surveyed. The 

GPS location at the point where the cross-section and thalweg intersected was used as a 

reference point to delineate the surrounding catchments of each reach. Once a catchment for each 

study reach was created, the drainage area of each catchment was calculated using ArcGIS.  

Upland Forest Properties. Geospatial methods were also used to assess upland forest 

properties in the Big Barren Creek watershed. Overall watershed land use was determined using 

ArcGIS software and land use data sourced by the Multi-Resolution Land Characteristics 

Consortium. The land use for all headwater catchments included in this study is forested. The 

underlying geology of the area was also assessed using the Missouri Spatial Data Information 
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Service’s 500K scale bedrock geology data. All headwater catchments in this study tend to be 

underlain by the Roubidoux Formation. Soil data for the Big Barren Creek watershed was also 

retrieved from the Web Soil Survey operated by the USDA Natural Resources Conservation 

Service. This soil data was used to determine the composition and distribution of soil types in the 

Big Barren Creek watershed, especially in headwater areas and in each study catchment. The 

forest stand type and site management for each headwater catchment was also determined using 

ecological spatial data provided by the FSGeodata Clearinghouse. All of the data associated with 

Big Barren Creek watershed’s upland forest properties was stored in geodatabases on the 

OEWRI server.  

Channel and Basin Slope. Channel slope as well as basin slope were also calculated 

using ArcGIS for each study reach and catchment. The previously delineated stream network and 

ArcGIS’s ‘generate points along lines’ tool was then used to create longitudinal profiles of 

headwater streams surveyed. A point was placed every two meters along the stream feature for 

fifty meters above and below each cross-section. Elevation values from the half-meter DEM 

were then extracted to each point along the stream. Point elevations and distances were plotted in 

Microsoft Excel in order to develop the longitudinal profile of each stream. Channel slope was 

then calculated from these plots using linear trendlines. Basin slope was calculated using the 

methods described by Alexander and Wilson (1995). This method divides the difference in 

elevations at the points that are 10% and 85% of the distance from the reach’s cross-section to 

the basin divide, by the distance between the two points. Overall, these methods were used as an 

objective way to consistently derive channel and basin slope for each study reach.  

 

Hydraulic Modeling 
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Rational Equation. All headwater streams assessed by this study were ungaged, and so 

the rational method was used to estimate peak flow. The rational method was first developed by 

Kuichling (1889) for small urban drainage basins, but is the basic design for many small 

catchments. The ration equation is one of the simplest methods and is based on the assumptions 

that 1) rainfall is distributed uniformly over a drainage area; 2) peak rate of runoff is 

representative of the rainfall intensity averaged over the time of concentration for a drainage 

area; 3) time of concentration is the time required for flow to reach a specific point from the most 

out-lying part of the watershed; and 4) frequency of runoff is equal to the frequency of rainfall 

used (Ward et al., 2016). The rational equation is defined as q = kCiA. For this equation, q is the 

peak flow (ft3/s), k is 1.008 for q in ft3/s or 0.0028 for q in m3/s, C is an empirical runoff 

coefficient, i is the average rainfall intensity (in./h) during the time of concentration, and A is the 

drainage area (acres) (Ward et al. 2003).  

The methods outlined by Pavlowsky et al. (2016) and precipitation data collected from 

the Midwestern Regional Climate Center’s (MRCC) cli-MATE website were used to calculate 

the average rainfall intensity for headwater streams in the Big Barren Creek watershed. A total of 

30 years of data was selected to calculate the two-year precipitation recurrence interval. 

Considering the rational method assumes that the frequencies of peak runoff and rainfall are 

equal, the two-year precipitation recurrence interval was used to simulate the two-year discharge 

recurrence interval that is associated with bank-full, channel-forming flow in higher ordered 

streams (Wolman and Miller 1960). The time of concentration for each headwater drainage area 

was determined by using the Kirpich (1940) method and equation. The Kirpich Equation states 

that tc = kL0.77S-0.385, where tc is the time of concentration, L is the hydraulic length, S is the 

mean slope along the hydraulic length, and k is a numerical constant. Empirical runoff 
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coefficients can be selected from a published table and were selected from Table 5.5 in Ward et 

al. (2003). This runoff coefficient table uses the hydrologic soil group, slope range of a reach’s 

underlying soil type, and dominant land use to produce a value. For each headwater watershed, 

the empirical runoff coefficient, the average rainfall intensity during the time of concentration, 

previously calculated drainage areas, and the constant k were used to determine peak two-year 

recurrence interval discharges. 

Hydraulic Analysis of Channel Data. Hydraflow Express hydraulic modeling software 

was used to simulate how the calculated two-year recurrence interval discharge fills each 

headwater channel (Intelisolve 2006). The user-defined channel feature of Hydraflow Express 

was used to model discharge for each study reach site. Discharge values, cross-sectional survey 

measurements, and a manning’s n value, were used as the inputs for the Hydraflow software. For 

all headwater channel sites, a Manning’s n value was determined using the table developed by 

Chow (1959). The outputs of Hydraflow include water depth, cross-sectional area of flow, 

velocity, wetted perimeter, critical depth of flow, top width, and the energy grade line for a 

particular discharge. The Hydraflow software uses the know discharge and a series of hydraulic 

equations in order to determine the output values. These Hydraflow calculated variables were 

then used for statistical analysis. 

 

Statistical Analysis 

Channel reach (21) and watershed (25) variables were compiled into an Excel 

spreadsheet database. From this database linear regression models were developed using the 

IMB Statistical Package for the Social Sciences (SPSS) software in order to describe headwater 

stream geomorphology. Single and multiple parameter linear regression models were developed 
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to described channel morphology. Single regression models were used to assess the relationship 

between two variables based on the coefficient of determination (r2) which quantifies the percent 

of variance of the Y-variable explained by the regression equation with an r2 of 1 explaining 

100% of the variance and 0 explaining none (Rogerson 2001). Correlation matrixes were 

evaluated based on the correlation coefficient (Pearson r) ranging from -1 (perfect inverse 

relationship), to 0 (no correlation), and to +1 (perfect positive relationship) (Rogerson 2001). 

Multiple regression models, developed using step-wise regression methods, were also produced 

to understand what variables most influence and or best predict the dependent variable. A large 

amount of geomorphic variables were entered into the step-wise regression process using SPSS. 

To verify the results of the step-wise regression modeling, a hierarchical approach of adding and 

removing primary and secondary watershed variables to regression models was done to affirm 

variable relationships. Variables were retained in this process when the p-value associated with 

an F-test was 0.05 or below as to be significant at the 95% significance level. Final models were 

accepted when all variables met this criteria and the overall model was significant (p  0.05) 

(Mundry and Nunn 2009).  

If more than one predictive variable was used for each regression model, a 

multicollinearity test was also completed by assessing variance inflation factor (VIF) scores. If 

VIF scores were above five then it was assumed that variables experienced multicollinearity 

problems and the model was revised (Rogerson 2001). Models were also further assessed by 

examining the standardized residuals of each observation. A model residual is an error 

component that represent the deviation from the observed and the predicted values (Yi – Yp) of 

the model (Fernandez 1992). Residuals can be standardized by diving each individual residual by 

the standard deviation of all residuals produced by the model (Anscombe and Tukey 1963). By 
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standardizing and analyzing residuals, the amount of unexplained variance within a model can be 

indicated. Individual observations with standardized residuals of an absolute value greater than 

or equal to two were deemed influential outliers and removed from the regression model 

(Atkinson 1994). This was done in order to improve the strength and robustness of each linear 

regression model. In addition, some single and multiple linear regression models were also 

produced as power function (log-log) regression models in order to improve relationships 

between variables. 

 

Rosgen Channel Classification 

The Rosgen channel classification method is morphology-based and can be used to infer 

the processes that influence the pattern and character of a river system. This classification 

method has also been used in a variety of applications including hydraulic geometry analysis and 

channel restoration (Rosgen 1996). The Rosgen method categorizes stream reaches into seven 

major stream types based on differences in channel morphology (Figure 11). The seven stream 

types differ in entrenchment, gradient, width-depth ratio, and sinuosity in various landforms at 

the bank-full stage (Rosgen 1996). Each of the seven stream types can then be further delineated 

into six categories based on dominate channel substrate including the median diameter of bed 

material. Entrenchment ratio is defined as the ratio of the width of the flood-prone area at two-

times the maximum bank-full depth to the bank-full surface water width of the channel. It 

describes the vertical containment of a river channel and the degree to which it is incised in the 

valley floor (Rosgen 1996). Slope is used in this method due to its importance to the 

morphological character of the channel and its sediment, hydraulic, and biological function 

(Rosgen 1996). Width-depth ratio is defined as the bank-full channel width to bank-full mean 
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depth and is representative of the frequency and magnitude of bank-full discharge (Rosgen 

1996). Sinuosity, the ratio of stream length to valley length, is also used described the ratio of 

valley slope to channel slope. 
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RESULTS AND DISCUSSION 

 

Channel Assessment and Classification 

Thirty-eight channel reach sites were surveyed among13 catchments with 2-4 sites per 

catchment (Figure 9; Appendix A-2). Sampling sites were selected to include catchments 

characteristics across a range of relatively low and high relief (Figure 9) and burned and 

unburned sites (Figure 10) within four areas in Big Barren Creek watershed above Hwy C: (i) 

western headwaters (nos. 4, 6, & 7); (ii) central tributaries (nos. 5, 9, 10, & 11); (iii) north-central 

headwaters (nos, 1 & 8); and (iv) north-east tributaries (nos. 1, 2, 3, 12, & 13) (Figure 9; 

Appendix A-2).  Multiple watershed, hydraulic, channel, and substrate variables were calculated 

for each site (Appendix A-1, A-3, A-4, & A-5).  

Channel morphology metrics at bank-full conditions for 38 headwater stream sites in Big 

Barren Creek had average values and ranges as follows: width, 3.24 m (0.41 - 10.1 m); average 

depth, 0.09 m (0.02 - 0.29 m); channel area, 0.41 m2 (0.01 – 2.17 m2 ); width-depth ratio, 43.0 

(7.2 - 158.8); and entrenchment ratio, 1.8 (1.09) (Appendix A-2). Width, mean depth, and 

channel area gradually increased with drainage area (Table 2). Velocity does this as well, but 

velocity slightly decreases for channels draining 3-5 ha. However this could be due to the small 

number of channel sites sampled in this range (n=2). Over 40% of the stream sites evaluated for 

this study had width-depth ratios >40 indicating that multiple channel D-types are both present 

and common in this area of the Ozark Highlands (Table 3) (Rosgen 1996). It also appears that 

these headwater streams become less entrenched with increasing drainage area, except for the 

smallest channels with drainage basins smaller than 1 ha which were less entrenched (Table 2). 

The smallest channels occur in topographic settings associated with colluvial channel types. 
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Colluvial channels typically form in drainage-ways on soil materials where incision is limited by 

low stream power or bedrock (Montgomery and Buffington 1997). 

The Rosgen channel classification was used in this study to better understand the 

variability of different headwater channel types in Big Barren Creek watershed (Rosgen 1996) 

(Table 3; Appendix A-2). Multiple channels (D type) were the most common channel form 

observed (16 out of 38 sites, 42.1%). As described by Rosgen (1996), the “D” stream type often 

exhibits a braided or bar-braided pattern with high sediment supply and can be laterally confined 

by narrow valleys (Rosgen 1996). However, the D channels in the Big Barren Creek watershed 

were more stable with low sediment load and high bank stability. Therefore, maybe those in this 

study better represent the characteristics of a DA-type channel with 2-3 channels separated by 

stable islands with trees growing in the active channel zone (note: they may be a form of 

anastomosing channel in mountain setting) (Rosgen 1996). The second most common channel 

type found in the study was the single channel “B” stream type (36.8%) (Table 3). The “B” 

stream type can be found in transitional colluvial-alluvial segments that are structurally-

controlled by valley side-slopes, in relatively narrow valleys, with low sinuosity, and a limited 

floodplain (Rosgen 1996) (Table 3).  

Other stream types in headwater channels were categorized as “F” (13.2%), “C” (5.3%), 

and “E” (2.6%). As observed in this study, these streams are probably an early transitional form 

of the riffle-pool configuration more common in larger channels farther downstream. According 

to Rosgen (1996), the “F” stream type describes entrenched meandering riffle/pool channels that 

occur on low gradients with high width depth ratios. The “C” and “E” stream types are defined 

as low gradient, meandering riffle/pool alluvial channels that tend to be very stable (Rosgen 

1996). While the Rosgen channel classification was helpful in the identification of similar 
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channel types in this study, not all channels fit precisely into a Rosgen channel class. Channel 

sinuosity was not directly measured during this study, however it is assumed that all headwater 

channels assessed have a reach sinuosity <1.2 which was too low for the riffle-pool stream types 

described in the Rosgen classification system (Rosgen 1996). Further, headwater channel slope 

was generally too steep to fit the Rosgen channel criteria.  However, the Rosgen classification 

method was not designed for such small headwater streams which tend to have steeper slopes 

and less sinuous channels than streams with much larger drainage areas (Knighton 1984).  

Some trends are apparent from the Rosgen classification of headwater stream channels 

(Table 3). The majority of streams with drainage areas below 1 ha all were classified as type “B” 

streams. Streams with smaller drainage areas may be closer to the point of channel initiation 

which tend to be more controlled by hillslope processes and colluvial channel characteristics 

often associated with type “B” channels (Rosgen 1996; Montgomery and Buffington 1997). 

Nevertheless, headwater stream channels may be expected to exhibit considerable variability in 

the Rosgen classification procedure. Adams and Spotila (2005) found that headwater streams in 

the Appalachian Mountains lack predictable trends or functional relationships among hydraulic 

variables due to the close coupling of channel form and function with local boundary conditions. 

Generally, headwater streams in Big Barren Creek watershed were able to be classified using the 

Rosgen classification method which distinguished headwater channel types based mainly on 

degree of entrenchment and width-depth ratios. However, headwater channels in this study had 

slope values which were too high and sinuosity values that were too low to fit into the Rosgen 

system. Therefore, a more process-based approach specifically developed for headwater streams, 

such as proposed by Whiting and Bradley (1993) and Montgomery and Buffington (1998), may 

be more applicable to Ozark streams. 
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Channel Substrate and Vegetation 

Sediment size distribution was also assessed using grain size measurements from pebble 

counts conducted in the field (Table 4; Appendix A-6). Median particle sizes for headwater 

streams ranged from fine gravel to large cobble averaging 39 mm with a range from 5 – 240 mm 

(Table 4). The D84 particle size ranged from coarse gravel to small boulder averaging 103 mm 

with a range from 16 – 343 mm (Table 4). The largest mobile clast size (average of 5 samples) 

ranged from small cobble to medium boulder in headwater channels with an average of 211 mm 

and range of 83 - 612 mm (Table 4). Adams and Spotila (2005) found similar ranges in sediment 

size distribution for their smallest headwater streams. Sediment size and distribution do not 

necessarily trend with drainage area, except for the largest mobile clast size which increases as 

drainage areas becomes larger. However, headwater streams with drainage areas between 1 and 3 

ha consistently have the largest sized sediment for all sediment parameters. This may be the 

result of geological control on weathering and sediment supply from nearly-horizontal bedrock 

units outcropping at similar elevations in the region (Repetski et al. 1998). 

Other sediment characteristics show downstream trends in headwater channels within the 

Big Barren Creek watershed (Table 4). In-channel fine sediment area (%) ranged from 0.0% – 

46.7%, bedrock area (%) ranged from 0.0% – 26.7%, and percent embeddedness ranged from 

0.0% - 30.0%. Fine sediment generally decreased with increasing drainage area, while percent 

bedrock increased with drainage area, and embeddedness showed no trend. This could imply that 

as drainage area increases the sediment transport capacity of headwater streams also increases 

and removes fine grained sediment and exposes bedrock. Further, colluvial channels at higher 

elevations may produce finer beds which coarsen downstream as alluvial channels become more 
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common (Montgomery and Buffington 1997). Additionally, wider channels typically have 

largest mobile clast sizes above 200 mm, most likely as a result of the local influx of large 

boulders from hillslopes. Higher percentages of fine-grain sediment on the channel bed above 

15% were often found in channels with v-shaped or incised forms (Tables 3 and 4) as also noted 

by Whiting and Bradley (1993).  

The number of standing trees and their locations within the channel were also recorded 

for the 38 headwater sites (Table 4; Appendix A-6). The number of in-channel trees averaged 4.6 

per site ranging from 0 - 16 trees. Basal area averaged 39.3 m2/ha and ranged from 0.0 - 206.0 

m2/ha. The number of trees present in the active channel does not appear to trend with drainage 

area, although basal area decreases with increasing drainage area (Table 4). Basal area in upland 

forest stands of the Big Barren Creek watershed was assessed by Roman et al. (2019) who 

reported an average of 130 m2/ha basal area for pine-dominated forests and 90 m2/ha for 

oak/mixed hardwood forests. The range of basal area for headwater streams overlaps with the 

range of basal area for upland areas, but headwater channels tend to have more variable basal 

areas than upland areas with a CV of 122.9% versus 45.1% for upland areas. Considering basal 

area decreases with increasing drainage area, basal area may be associated with increased 

disturbance caused by increased discharge for headwater channels with larger drainage areas.  

LWD in headwater reaches was also assessed to determine its geomorphic contribution 

(Table 4; Appendix A-6). LWD volume per channel bed area had a range of 0 – 0.029 m3/m2 and 

a mean of 0.005 m3/m2. The length of a single piece of LWD averaged 4.1 m and the average 

diameter was 0.16 m among all sites. LWD loads were fairly consistent among headwater 

streams with different drainage areas, although streams with drainage areas greater than 10 ha 

showed reduced LWD loads. This again, could be due to increased transport capacity as drainage 
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area increases and moves LWD downstream or due to lower inputs considering basal area 

decreases downstream (Montgomery and Buffington 1997). Roman et al. (2019) also evaluated 

coarse woody debris (CWD) in upland areas of the Big Barren Creek watershed. Average CWD 

for burned and unburned pine sites was 0.007 m3/ha and 0.010 m3/ha and for burned and 

unburned oak/mixed sites was 0.005 m3/ha and 0.006 m3/ha, respectively. In comparison, 

volumes of LWD and CWD tend to be similar among headwater channels and upland forest 

stands, although sites dominated by pines may produce more CWD. The majority of LWD in 

headwater streams was found perpendicular to the stream and in the middle stages of 

decomposition. The dominant geomorphic effect of LWD in headwater channels was the 

deposition of organic debris and fine-grained sediment immediately upstream of the obstruction. 

This was closely followed by the geomorphic effect of creating a forced riffle. Other geomorphic 

consequences of LWD that were noted included scour pool formation, thalweg deflection, and 

bank armoring. These results are consistent with those found for other Ozark streams reporting 

that LWD facilitates pool formation, alters stream flow, forces local scour, stabilizes banks, 

increases bed roughness and heterogeneity, and helps retain sediment and coarse organic matter 

(Mitchell et al. 2012). 

 

Hydraulic Geometry Relationships 

Hydraulic geometry was first described by Leopold and Maddock (1953) to relate mean 

stream channel form and discharge both at a cross-section and downstream along a stream 

network. When width, mean depth, and velocity are plotted against discharge, each relationship 

can be expressed by nearly straight lines as simple power functions (Leopold and Maddock 

1953). This type of analysis describes the regulation of flow adjustments by channel form in 
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response to increasing discharge downstream (Singh 2003). It is thought that hydraulic geometry 

analysis can help to understand how channel form undergoes systematic change towards a quasi-

equilibrium state as a function of the combined influences of flow regime and channel boundary 

conditions (Knighton 1977; Singh 2003) 

In Big Barren Creek watershed, headwater channels indicate the strong influence of 

hydraulic geometry on describing downstream variations in width (r2=0.73), mean depth 

(r2=0.88), and velocity (r2=0.45) as a function of bank-full discharge (Table 5; Figure 12). 

Recall, the relationships of discharge to these properties in natural rivers can be expressed as w = 

aQb, d = cQf, and v = kQm, where w is width, d is mean depth, v is mean velocity, Q is 

discharge. In this study, the intercept coefficients have the following values: a= 4.97, c= 0.145, 

and k= 0.139 and their product is 1 (Table 5). The slope coefficients have the following values: 

b=0.423, f=0.432, and m=0.1465 and sum to 1 (Table 5). Coefficient unity verifies the 

theoretical significance of hydraulic geometry analysis as an indicator of equilibrium between 

form and discharge regime for headwaters streams in Big Barren Creek watershed. 

Parker (1979) has stated that the exponent values, a, c, and k, tend to vary more from site 

to site, but the exponents, b, f, and m, exhibit more consistency and appear to be independent of 

location and only weakly dependent on channel type. This is consistent with the results obtained 

from the headwater streams assessed by this study. The sensitivity of velocity to variations in 

channel form may have been reduced by assuming a constant Manning’s n value in hydraulic 

calculations. It has also been noted by Klein (1981) who analyzed the variation of channel width 

with downstream discharge that b = 0.5 was an appropriate average. For headwater streams in 

the Big Barren Creek watershed b = 0.423, however Klein (1981) states that low b values 

normally occur for smaller catchment sizes such as those being evaluated in this study. 
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Drainage Area-Channel Form Relationships 

Drainage area is often an important independent variable used to describe spatial trends 

in channel morphology since it controls the amount of precipitation collected annually, 

characteristics of rainfall-runoff relationships, and the number of channels contributing to runoff 

and sediment load at the watershed outlet (Horton 1945; Montgomery and Buffington 1997; 

Ward et al. 2003). For example, bank-full discharge typically increases with drainage area along 

with systematic trends in other channel variables such as increasing width and mean depth and 

decreasing slope and bed material size (Leopold et al. 1964).  In this study, the arithmetic and 

logged relationships of drainage area to other watershed-scale variables were evaluated to 

investigate drainage area-channel form relationships in the Big Barren Creek watershed 

(Appendix B-1, B-2, B-3, & B-4).  Drainage area is strongly correlated (r= >0.6) with valley 

width, total stream length, and compactness (-), moderately correlated (r= >0.3) with basin slope 

(-), relief, ruggedness number, and form factor, and poorly correlated (r= <0.3) with elevation (-) 

(p=0.05 at r= 0.317) (Appendix B-1 & B-2). Variables related to upland and valley topography 

are also strongly correlated such as site elevation, basin slope, relief, and ruggedness number 

(Appendix B-1 & B-2).  Splinter et al. (2010a) also found that ruggedness number increases with 

stream order and watershed size in the Ozark Highlands region of Oklahoma. 

Drainage area relationships were also developed for other channel variables to quantify 

and evaluate headwater channel morphology in the Big Barren Creek watershed (Table 6, Figure 

13). As expected, given the strong dependence of bank-full discharge calculations on drainage 

area in the rationale equation, strong positive relationships were found between log drainage area 

and channel variables of log width (r2=0.707), log mean depth (r2=0.850), and log area 
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(r2=0.935) (Table 6). However, drainage area explained only 40% of the variance in channel 

slope (Table 6) since local relief tends to increase downstream along the main channel of Big 

Barren Creek as valley elevation decreases from the upland divide to its mouth on the Current 

River. In addition, width-depth ratio was not related to drainage area (r2= 0.0004). The poor 

relationship may have been caused by the variable mixture of different channel types observed 

among the 38 headwater stream reaches including two channel pattern types and three 

entrenched types (Table 3; Rosgen 1996).   

Interestingly, none of the bed material size classes derived from pebble counts were well 

explained by drainage area including D50 (r2= 0.002), D85 (r2= 0.006), and largest mobile clast 

size (r2= 0.070) (Table 6; Figure 13). These poor relationships may relate to variable local slope 

controls and sediment supply conditions within these catchments, however, evaluating these 

factors is beyond the scope of this study. Nevertheless, Benda and Dunne (1997) state that 

sediment influx to channel networks in low order streams is stochastic because it is driven by 

debris flow from rainstorms and other complex processes that trigger hillslope erosion. This can 

create considerable sediment distribution variability in headwater streams that cannot be 

described solely by drainage area. 

Sediment and vegetation properties were also evaluated to determine their relationship 

with watershed factors (Appendix B-3 & B-4). Channel slope was found to be most strongly 

correlated with sediment size variables including the D50 particle size (r=0.58) and D84 particle 

size (r=0.67). Basin slope was also correlated with D50 and D84 particle size, but not to the same 

extent. These relationships were also found when values were logged. This may indicate that 

local factors are more influential in sediment distribution than larger watershed factors. For 

example, Benda and Dunne (1977) commented that sediment influx to channel networks in low 
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order streams is driven more by local hillslope processes. Largest mobile clast size was also 

evaluated and correlates best with elevation (r= -0.32) and LWD volume (r= -0.30). However, 

when values were logged it was determined that the largest mobile clast size was more correlated 

with ruggedness number (r=0.39) than elevation (r= -0.28) or LWD (r= -0.31). Vegetation 

properties appear to be better related to watershed factors in that LWD was most correlated with 

basin slope (r=0.59) and basal area was most correlated with compactness coefficient (r=0.58). 

Yet, when these values were logged it was found that valley width also correlated with both 

LWD (r= -0.67) and basal area (r= -0.59).  

Thies (2017) also reported drainage area regression models for sites along the main stem 

of Big Barren Creek for drainage areas from 1-100 km2 that examined channel relationships at 

bank-full discharge including width, mean depth, channel area, width-depth ratio, largest mobile 

clast size, and channel slope (Table 7). The relationships in Thies (2017) were displayed with the 

results of this study (Figure 13). While Thies’ study included natural, channelized, incised, and 

aggraded channel conditions, only channels recognized as in natural or aggraded condition were 

evaluated here (Figure 13). Even though, the main stream and large tributary sites in the Thies 

analysis have drainage areas from one to two orders of magnitude larger than in the present 

headwater channel study, similar hydraulic geometry trends are indicated (Table 7). Further, all 

trends appear to be consistent across drainage area-scale given allowance for different channel 

types, bank-full discharge analysis methods, and differences in sample size. Mean depth shows 

the largest difference in trend between the two studies, which may reflect differences in the use 

of field channel indicators in 2017 compared to hydraulically modeled stage in the present study 

(Figure 13). 
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Drainage area was a better predictor of channel morphology in the headwaters compared 

to lower valley streams (Tables 6 & 7). Headwater channels typically have higher drainage 

density than larger downstream reaches due to the close coupling of reaches to hillslope 

hydrology (Gomi et al. 2002; Adams and Spotila 2005). Montgomery and Buffington (1997) 

reported that slope-drainage area equations for alluvial channels tend to have slope exponent 

values of 0.26 ± 0.05 (r2 = 0.58), while colluvial channels tend to have exponent values of 0.72 ± 

0.08 (r2 = 0.72). Thies’ (2017) data show that main stem channels have a slope exponent value of 

0.19 which is more consistent with alluvial channels. However, the slope exponent for headwater 

channels is 0.42 and falls in the transition area between colluvial and alluvial channel types in 

the Big Barren Creek watershed (Montgomery and Buffington 1997). 

 

Geomorphic Analysis of Channel Morphology 

In order to more completely understand the controls of headwater stream morphology, 

best-fitting linear regression models were created using step-wise linear regression methods 

(Table 8). A combination of large-scale watershed factors, upland forest and soil properties, and 

reach-scale variables were used to model hydraulic geometry, sediment, and roughness variables. 

Models were improved by removing observations that were deemed as outliers. Outliers were 

determined by examining each observation’s standardized residual value and observations with 

values greater than or equal to two standard errors of the Y-estimate were removed from the 

model (Atkinson 1994). 

Channel width and mean depth. The hydraulic geometry variables that were given a 

more in depth examination include width, depth, channel area, and width-depth ratio. Channel 

width variability was best explained by both valley width and drainage area independently. It 
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was determined that log-linear models described both relationships best. With the removal of 

three outlying observations, valley width explained 94% of the variance in channel width. Valley 

width was able to explain more variation in channel width than drainage area which only 

explained 86% of the variance in channel width. The drainage area-channel width model also 

excluded six observations and still had standardized residuals greater than two. This indicates 

that valley width is a better parameter to use when modeling channel width for these headwater 

streams. Due to drainage area and valley width being highly correlated, the two variables could 

not be combined into a single model in order to describe channel width. Comparatively, drainage 

area was the single best predictor of channel mean depth for the headwater sites assessed. A total 

of five observations were removed as outliers in order to improve the model. As a result it was 

determined that drainage area explains 96% of the variation of mean depth.  

Channel area and width-depth ratio. Two models with equal r2 values were developed 

with each explaining 98% of the variance in channel cross-section area (Table 8). Drainage area 

(+), basin relief (-), and basin form factor (-) were the significant variables in the first model. 

This model shows an overriding control of drainage area on channel cross-section area with 

secondary effects of decreasing area in catchments with higher relief and/or more circular shape.  

In the second model, channel area is explained by total stream length (+) and channel elevation 

(+) which links channel conveyance and upland drainage area to channel size. Width-depth ratios 

were also evaluated to describe headwater channels. However, no acceptable models could be 

produced to explain the width-depth ratio variation in headwater streams in the Big Barren Creek 

watershed. Considering that drainage area has been used as a surrogate for discharge in 

ungagged streams in this study, it is expected that drainage area would explain a large amount of 

hydraulic geometric variability (Dunne and Leopold 1978). Valley width is also a good predictor 
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of channel widths (r2 = 0.94) which is expected in this study since many channels with a v-

shaped valley are narrow and have similar channel and valley width measurements. It also 

appears that the variability of channel area is better explained with the addition of a variable that 

describes the local setting of the channel within the watershed like elevation or relief. 

Sediment size. Linear regression models were also used to evaluate sediment size of the 

channel bed (Table 8). Excluding three outliers, channel slope (+) explained 63% of the variance 

in the D50 (median particle size). However, for this model not all observations with residuals 

over two could be excluded without a significant removal of observations. Channel slope (+) and 

basin ruggedness number (+) explained 56% of the variance in the D84 particle size. Excluding 

three outliers, elevation (-) explained 35% of the variance in the maximum mobile clast size, and 

not all observations with residuals above two could be removed. This equation suggested that 

larger clasts are released to the channel or deposited in the channel at relatively lower elevations, 

possibly reflecting geology factors controlling the source of the largest particles in the channel. 

Overall, sediment regression models were not as well suited for explaining spatial variability as 

the hydraulic geometry models, but showed clear relationships between watershed factors and 

channel sediment characteristics. Bed material size is typically explained by slope relationships 

and source factors in headwater streams (Whiting and Bradley 1993; Benda and Dunne 1997). 

In-channel large woody debris (LWD) and tree basal area. After the removal of four 

outliers, basin slope (+), largest mobile clast size (+), and burn frequency (-) were able to explain 

41% of the variance in LWD volume (Table 8). Logically, it would be expected for LWD input 

to increase with steeper slopes, larger bed material to obstruct and collect wood, and less burning 

that weakens and removes wood (Mitchell et al. 2012; Roman et al. 2019). Basal area was best 

explained using the compactness coefficient. After removal of seven outliers, it was determined 
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that compactness coefficient can explain 54% of the variation of basal area. This model 

relationship may be a spurious result. Considering the amount of observations excluded from the 

model and the fact that not all observations with residuals over two could be removed, this may 

not be an appropriate model to describe all headwater streams in the Big Barren Creek 

watershed. 

Influence of channel planform on model prediction. In the Rosgen classification 

system, channel pattern is one of the first characteristics assessed by using width-depth ratio to 

distinguish between single (w/d <40) and multi-threaded (w/d >40) channels (Rosgen 1996). 

When drainage area relationships are stratified by channel planform according to multi-threaded 

and single channel sites, slope coefficients tend to remain similar, but Y-intercept values shift up 

and down (Parker 1979) (Figure 14). In almost all cases, relationships between channel form and 

drainage area improved in the stratified models (compare Table 6 and Figure 13 to Figure 14). 

For single channel streams, the percent of variance explained by drainage area increased by 10% 

for width (r2=0.84), 8% for mean depth (r2=0.93), 2% for channel area (r2=0.96), and 0.6% for 

width-depth ratio (r2=0.006). For multiple channel streams, the percent of variance explained by 

drainage area increased by 10% for width (r2=0.80), 1.4% for mean depth (r2=0.86), and 0.1% 

for width-depth ratio (r2=0.001), but decreased by -2.5 % for channel area (r2=0.91).  As 

expected according to the Rosgen criteria for multi-threaded (D/DA) channels, multi-channel 

types are wider and shallower compared to single-channel types, but drainage area-channel area 

relationships are similar (Figure 14). The lack of variability between single and multiple channel 

types may result from co-variation by using drainage area in the rationale equation to determine 

the 2-year “bank-full” equivalent discharge. Future studies are needed to evaluate the 
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geomorphic evolution, distribution, and behavior of multi-threaded headwater streams in 

comparison to single-channel types in the Ozark Highlands. 

To test for the influences of other watershed- and reach-scale variables on channel types, 

average standardized residuals from the geomorphic models were compared between headwater 

streams classified as multi-channel type “D” channels and those classified as single channel 

types (Figure 15). For each geomorphic model it was determined that average standardized 

residuals for “D” streams were generally larger than the average standardized residuals of other 

stream types, except for mean depth. Additionally, there was little difference between average 

standardized residuals for the largest mobile clast size, LWD, and basal area geomorphic models. 

This may indicate that multi-threaded stream pattern morphology is not as well explained by the 

models as single threaded morphology, however more investigation is needed.  

Valley Topography Effects on Channel Morphology. For a given drainage area of a 

headwater stream, relative relief tends to increase for catchments located further downstream 

along the main valley as the valley floor elevation of Big Barren Creek drops to meet the base-

level control of the Current River. To evaluate the effect of valley relief on channel morphology, 

regression analysis was used to test for the relationship between (i) standardized residuals from 

geomorphic models over (ii) physiographic variables including basin slope, relative relief, 

ruggedness number, and form factor (Tables 8 & 9). Almost all the 40 regression tests between 

geomorphic model residuals and physiographic variables generally indicated no relationship 

(50% with r2 = 0.00) with only one significant negative relationship between mean depth 

residuals and basin slope (r2 = 0.14, p = 0.03) (Table 9). While explaining 14% of the remaining 

(residual) variance in depth, basin slope actually explains <1% of the total variance in depth 

since the original geomorphic depth model explained almost 96% of the variance in depth (Table 
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8). Therefore, changes in down-valley physiography had little influence on headwater channel 

form variables as evaluated in this study for drainage areas < 1 km2. 

Land Use Effects on Headwater Channel Morphology. It is well know that land use 

practices can affect runoff and sediment condition in forested watersheds being managed for 

timber production (Davies and Nelson 1994; Megahan et al. 1995; Roberts et al. 2007). To check 

for land use effects on headwater channel morphology, geomorphic model residuals were again 

regressed over several land use variables to test for significant effects (Table 9). The land use 

effects examined include prescribed burn frequency (no. of years), timber harvest area (% of 

drainage area), pine cover (% of drainage area), and percentage of road area (% of drainage 

area). In general, while land use effects were better related to geomorphic model residuals 

compared to physiographic variables, the relationships were still relatively very weak and largely 

insignificant. Eighty-five percent of the 40 regression tests between geomorphic model residuals 

and land use variables had r2 values <0.06 (30% with r2 = 0.00) (Table 9). Timber harvest and 

pine cover variables did not indicate a significant relationship with any geomorphic model, 

however, road area and burn frequency did show some effects. 

Road area (%) trended with the residuals of the D50 geomorphic model with a negative 

slope, r2 = 0.13, and p = 0.03 (Table 9). When the original model is considered, road area 

explains an additional 5% of the total variance in D50. This finding suggests that channel beds 

might be slightly finer in drainage areas draining relatively more road area. In MTNF, road 

drainage tends to be directed by design from road sides into surrounding low areas where water 

can infiltrate into the forest soil. However, in some instances, road drain channels extend 

downstream by erosion into the drainage network and deliver fine-grained sediment to headwater 

channels. The potential effect of roads on increased fine-sediment supply to headwater channels 
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needs to be studied further. While not finding a strong relationship (explaining only 5% of the 

variance in fine sediment), the sampling design of the present study was not aimed at evaluating 

road hydrology and sediment effects. 

Prescribed fire burn frequency correlated with the residuals of three geomorphic models: 

(i) width (A) with a positive slope, r2 = 0.14, and p = 0.03; (ii) D50 with a negative slope, r2 = 

0.13, and p = 0.03; and (iii) basal area with a negative slope, r2 = 0.15, and p = 0.03. (Table 9). It 

is logical to expect that catchments burned more frequently might have slightly wider channels 

due to minor increases in runoff since litter depth is temporarily reduced for several months after 

burn events (Robichaud 2000; Vega et al. 2005, Roman et al., 2018). However, burn frequency 

explains <1% of the total variance in width, and therefore, its effect on channel form is not 

significant or measureable in this study. Interestingly, while of low significance, burn frequency 

may be associated with a decrease in sediment size on the channel bed since it explains 5% of the 

total variance in D50 (Tables 8 & 9). The reduction of soil litter and ground cover by controlled 

burning may be expected to increase soil erosion and the delivery of fine-grained sediment to 

headwater channel beds, thus reducing the D50 (Elliott et al. 1999; Hartman and Heumann 2003; 

Lane et al. 2006; Singh et al. 2017). Finally, burn frequency indicates a weak inverse-

relationship and explains only 7% of the total variance in basal area of trees within the active 

channel. This outcome may be expected due to the overall influence of stem removal due to 

silvicultural practices and occasional seedling/sapling mortality by fire in these managed stands. 

Road and burn variables only explain 13-15% of the remaining variance and 5-7% of the total 

variance in three of the ten geomorphic models developed for this study. Recall, the effects of 

these land use variables were not significant enough to be included in models developed by the 

stepwise regression process. Therefore, future studies may be needed using sampling plans and 
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methods aimed to specifically test and/or verify hypothesized burn frequency and road area 

effects. Nevertheless, using statistical analysis, this study did not find significant effects of 

prescribed burn frequency on headwater channel morphology. 
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Drainage 
Area 

Reach 
# 

Width 
(m) 

Mean 
Depth 

Velocity 
(m/s) 

Channel 
Area 
(m2) 

Width-
Depth 
Ratio 

Entrenchment 
Ratio 

<1 ha 7 0.79 0.03 0.86 0.02 31.00 1.90 
1-3 ha 16 2.06 0.05 1.08 0.10 47.36 1.58 
3-5 ha 2 4.21 0.07 0.88 0.27 65.73 1.61 
5-10 ha 7 5.26 0.12 1.10 0.58 50.96 1.89 
>10 ha 6 6.57 0.24 1.78 1.54 28.45 2.16 

 

 

Drainage 
Area 

Single Thread 
Multiple 
Channel 

Entrenched Moderately 
Entrenched Slightly Entrenched 

A G F B E C D 
<1 ha - - - 71.4% - - 28.6% 
1-3 ha - - 18.8% 25.0% - 12.5% 43.8% 
3-5 ha - - - - - - 100% 
5-10 ha - - 14.3% 28.6% - - 57.1 
>10 ha - - 16.7% 50.0% 16.7% - 16.7% 
Total - - 13.2% 36.8% 2.6% 5.3% 42.1% 

 

 

 

 

 

 

 

 

Table 3. Rosgen classification of headwater channels. 

Table 2. Average channel properties of headwater channels by drainage area. 
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Geomorphic Variable R2 

(n = 38) 

s.e. (Er. 
of Y 
est.) 

Y-int 
b1 coef. p-value bo 

Width (m) 0.707 1.57 20.84 0.596 3.9E-11* 
Mean Depth (m) 0.850 1.35 0.62 0.607 2.0E-16* 
Channel Area (m2) 0.935 1.46 12.98 1.202 6.7E-23* 

Channel Slope (%) 0.405 1.83 1.58 -0.423 1.7E-05* 
Width-Depth Ratio 0.0004 1.46 33.48 -0.011 0.906 
D50 (mm) 0.002 2.14 25.35 -0.029 0.789 

D85 (mm) 0.006 1.84 74.68 -0.039 0.649 
Largest Mobile Clast Size (mm) 0.070 1.45 266.88 0.084 0.118 

 

 

 

Geomorphic Variable 
(Drainage Area = independent var.) 

R2 

(n = 14) 
s.e. (Er. 

Of Y est.) 
Y-int b1 coef. p-value bo 

Width (m) 0.116 1.55 16.37 0.1200 0.233 
Mean Depth (m) 0.623 1.40 0.22 0.3292 7.8E-04* 
Channel Area (m2) 0.710 1.45 3.80 0.4412 1.5E-04* 

Channel Slope (%) 0.218 1.65 0.82 -0.1897 0.126 
Width-Depth Ratio 0.135 1.96 70.85 -0.2020 0.196 
D50 (mm) 0.012 6.09 5.98 0.1440 0.726 

Largest Mobile Clast Size (mm) 0.280 1.60 117.22 0.2148 0.063 
 

 

 

 

 

Table 6. Log-linear regression model equations for headwater channel relations among 
geomorphic variables and drainage area. 

Fitted regression equation: Log Y =  bo log X1 b1 
Significant relations are denoted by *. 
 

Fitted regression equation: Log Y =  bo log X1 b1 
Significant relations are denoted by *. 
 

Table 7. Thies (2017) log-linear regression model equations for Big Barren Creek relations 
among geomorphic variables and drainage area. 
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Figure 12. Log-linear regression model equations for headwater channel relations among 
width, mean depth, velocity and discharge. 
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Figure 15. Comparison of Rosgen channel types to the average standardized residuals of the 
geomorphic models. 
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CONCLUSION 

 

Most previous research on channel morphology has focused on understanding form and 

process relationships in larger, downstream channels of a watershed and their response to 

disturbance events. However, headwater streams can account for more than two thirds of total 

stream length in a watershed, are sensitive to local hydro-geomorphic conditions including land 

use effects, and can be effective indicators of watershed health (Leopold et al. 1964; Whiting and 

Bradley 1993; Sidle et al. 2000; Gomi et al. 2002). Understanding what watershed factors are 

strongly associated with channel form, substrate, and vegetation can be beneficial for land 

managers trying to preserve the integrity and hydrologic connectivity of headwater streams. 

Results of this study can help managers to understand stream processes and causes of spatial 

variability. Moreover, while prescribed burning has become a popular forest management tool in 

the United States, the environmental effects of frequent prescribed burning are not yet well 

understood. In MTNF, frequent treatments of prescribed fire are being used to restore the forest 

landscape to its original shortleaf pine-oak composition. In this study, a combination of field, 

geospatial, hydraulic modeling, and statistical methods were used to assess what geomorphic 

watershed factors are connected to headwater channel form, substrate, and vegetation properties. 

Relationships among these factors were analyzed by regression analysis and the residuals were 

assessed to evaluate if prescribed fire influences headwater stream channel form, sediment, or 

vegetation. There are four key findings of this study: 

1. The rational method can be used to simulate bank-full discharges to evaluate bank-
full stage headwater channel morphology in forested watersheds. A precipitation 
database was created for the Big Barren Creek watershed and analyzed to determine the 
two year 24-hour recurrence interval rainfall event. Using the rational method and the 
Kirpich (1940) equation to determine time of concentration, an estimated two year 
recurrence interval bank-full discharge was calculated. Channel morphology of the bank-



78 

full stage was then determined by using Hydraflow Express hydraulic modeling software. 
When channel geometry values were evaluated by increasing discharge it was determined 
that discharge and width, mean depth, and velocity relationships can be described by 
simple power functions first described by Leopold and Maddock (1953). The product of 
b, f, and m coefficients and the sum of a, c, and k coefficients of the power function 
equations were both equal to one. These relationships imply that headwater streams in 
Big Barren Creek follow the geomorphic principle that width, mean depth, and velocity 
increase systematically downstream with discharge. Comparison of exponent values with 
other studies indicates that headwater channel morphology is in transition between 
colluvial and alluvial process-dominated systems.  
 

2. The Rosgen Classification method can be used to categorize headwater streams 
within the Big Barren Creek watershed. The Rosgen classification method was also 
applied to headwater streams in the Big Barren Creek watershed in an attempt to compare 
channel morphology. The majority of headwater stream channels assessed were classified 
as either type “B” (36.8%) or type “D” streams (42.1%). Type “B” streams represent 
single-threaded channels that exist on moderately steep slopes and are structurally 
controlled by narrow valleys and side-slopes. The “D” stream type describes multi-
threaded braided or bar-braided channels with very high width-depth ratios. The Rosgen 
classification method was able to adequately classify and describe headwater stream 
channels. However, headwater channel sinuosity values were occasionally lower and 
slopes were usually greater than Rosgen criteria. Thus, a process-based classification 
approach specifically developed for headwater streams may be a more appropriate option 
for future classification. In general, headwater streams were classified as having either 
single or multi-threaded channels. Those that are single-threaded can be further sub-
classified by entrenchment ratios. Moreover, residual analysis and re-examination of 
channel form-drainage area relationships based on single or multi-threaded channel 
pattern showed some geomorphic differences present between streams with single and 
multi-threaded channels. Specifically, multi-threaded channels typically have more 
variable geomorphic features and substrate distributions than single-threaded channels. 
 

3. Headwater channel properties are best explained by drainage area of the basin and 
channel slope. Correlation matrices, drainage area relationships, and geomorphic 
analysis models indicate that drainage area and basin/channel slope consistently explain 
the highest percent of variance for in channel-reach form, substrate, and vegetation 
variables. Two groups of primary watershed variables were found to correlate with 
headwater channel variables including those that describe the size or shape of the 
drainage system such as drainage area, total stream length, valley width, and compactness 
coefficient and those that describe the local topographic situation of the headwater 
watershed such as elevation, relief, basin slope, and ruggedness number. Geomorphic 
analysis models developed using step-wise linear regression confirm that these variables 
are good predictors of headwater stream channel form, sediment, and vegetation 
characteristics. The best models produced show that drainage area was the best overall 
predictor of hydraulic geometry variables, sediment characteristics were best predicted by 
channel slope and local factors, and vegetation factors such as LWD volume and basal 
area were best explained by basin characteristics including basin slope and compactness. 
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4. Analysis of headwater channel models and their outliers reveals that frequent 

prescribed burning has little effect on headwater stream geomorphology. Stepwise 
regression did not include burn frequency, or any other land use variable, in final model 
selection. To investigate further, the standardized residuals for each channel variable 
were plotted against burn frequency and weak relationships were found with channel 
width, sediment size (D50), and in-channel tree basal area. Although these residual-over-
burn frequency relationships were significant, they only explained 1-7% of the total 
variance in the geomorphic models developed for this study. Given this low level of 
statistical effect on only a few variables, it was concluded that channel morphology has 
not responded to prescribed burn frequency over the 16 year period of burning in the 
watershed. However, the LWD geomorphic model indicated that as burn frequency 
increases, the volume of LWD decreases. This effect and the implications of LWD 
reduction may be the only potential geomorphic consequence on headwater streams due 
to prescribed burning in the Big Barren Creek watershed.  

 

In conclusion, based on field channel surveys and modeled bank-full discharges, 

headwater streams (draining <0.2 km2) in the Big Barren Creek watershed occur in narrow 

valleys (0.8-16.1 m), with moderately steep slopes (2-34%), channel widths averaging 3.2 m 

ranging from 0.4-10 m, and low reach sinuosity (<1.2). Two planform types occur in headwater 

catchments: (i) multi-threaded channels (w/d >40) with a low-relief braided pattern stabilized 

with vegetation and bedrock/boulder resistance (42% of study sites); and (i) single channels 

including entrenched (13%), moderately entrenched (37%), and slightly entrenched (8%) forms. 

These channels occupy narrow valleys with limited floodplain development and have variable 

substrates composed of colluvial and alluvial deposits, and bedrock in some places. Similar to 

larger alluvial channels, headwater stream morphology is significantly related to drainage area 

and slope, as well as other watershed and reach variables. More research is encouraged to follow 

up on some possible effects of land use disturbances on headwater stream stability. However, in 

the Big Barren Creek watershed, catchments treated frequently (once every 1-2 years) by 

prescribed fire do not have channel form or sediment properties that vary significantly from sites 

that were never burned. 
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APPENDICES 

 

Appendix A. Headwater Channel Site Information 

 

Variable Description

Drainage Area (km2) Total area drained upstream of site location.

Channel Slope (%) Slope of the channel along the site reach. (Rise/Run x 100)

Basin Slope (%)

Slope of the drainage area. Calculated as the difference in 
elevations at points 10 and 85 percent of the distance along 
the main channel site location to basin divide, divided by 
the distance between the two points (Alexander and 
Wilson, 1995)

Relief (km) Difference in elevation from the watershed divide to the 
channel site.

Burn Frequency (#) Number of times a site has been treated with prescribed 
fire since 2002.

Percent Pine (%) Percent area of the drainage area dominated by shortleaf-
pine forest.

Area Affected by Timber Harvest (%) Percent area of the drainage area affected by timber 
harvesting since 1980.

Appendix A-1. Geomorphic variable descriptions 



92 

 

 

 

 

Variable Description

D95 (mm) Size of the particle that is greater than 95% of the sediment 
distribution. 

D84 (mm) Size of the particle that is greater than 84% of the sediment 
distribution.

D50 (mm) Size of the particle that is greater than 50% of the sediment 
distribution. 

Percent Bedrock (%) Percentage of bedrock present along the length of the 
reach.

Percent Embedded (%) Percentage of embedded sediment present along the length 
of the reach.

Percent Fines (%) Percentage of fine grained material along the length of the 
reach.

Largest Mobile Clast Size (mm) Average of the five largest mobile clasts found within the 
reach.

Appendix A-1 continued. Geomorphic variable descriptions 
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Variable Description

LWD (m3/m2)
Total volume of large woody debris found within the 
reach.

Basal Area (m2/ha)
Total basal area of standing trees found within the active 
channel of the reach.

Tree Count (#) The amount of trees within the active channel of the reach.

Percent Silt (%) Percent area of the drainage area containing soil types with 
high silt content.

Depth to Bt (in) Area weighted depth to the Bt soil horizon from USDA-
NRCS Web Soil Survey.

Elevation (m) Distance above sea level.

Perimeter (km) Perimeter of the drainage area.

Appendix A-1 continued. Geomorphic variable descriptions 
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Variable Description

Relative Relief (m/m) The relief of the drainage area divided by the perimeter.

Channel Length (km) Length of the main channel from the site location to the 
watershed divide.

Basin Shape (m2/m2) Channel length squared divided by the drainage area.

Basin Sinuosity (km/km) Channel length divided by basin length.

Valley Width (m) Width of the valley occupied by the channel.

Maximum Capacity of the Most 
Limiting Layer to Transmit Water 
(in/hr)

Water transmission capacity of the most limiting soil layer 
from USDA-NRCS Web Soil Survey.

Total Stream Length (km) Total length of all streams within the drainage area.

Appendix A-1 continued. Geomorphic variable descriptions 
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Variable Description

Drainage Density (km/km2) Total stream length divided by drainage area.

Circulatory Ratio (m2/m2)
The ratio of drainage area to the area of a circle having the 
same perimeter as the basin.

Ruggedness Number (m/m) Drainage density multiplied by drainage area relief.

Basin Length (km) Straight-line length of the basin along the main channel. 

Form Factor (m2/m2) Drainage area divided by the square of basin length.

Compactness Coefficient (m/m) The ratio of the perimeter to the circumference of a 
circular area which equals the drainage area.

Elongation Ratio (m/m) The ratio of the diameter of a circle of the same area as the 
basin to the maximum basin length.

Appendix A-1 continued. Geomorphic variable descriptions 
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Variable Description

Percent Roads (%) Percent area of the drainage area occupied by roads.

Max Depth (m) The maximum depth of  bank-full discharge.

Q (m3)
Bank-full discharge as estimated by the 2-year 24hr 
rainfall using the rational equation.

Channel Area (m2) The cross-sectional area of bank-full discharge.

Velocity (m/s) Average velocity of bank-full discharge.

Wetted Perimeter (m) The wetted perimeter of the channel at bank-full discharge.

Yc Critical depth of flow of bank-full dishcarge.

Appendix A-1 continued. Geomorphic variable descriptions 
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Variable Description

Width (m) Distance across the top of the water surface at bank-full 
discharge.

Energy (m) The energy grade line.

Mean Depth (m) Mean depth bank-full discharge.

Width-Depth Ratio The ratio of channel width to mean depth at bank-full 
discharge.

Entrenchment Ratio The ratio of channel width to valley width at bank-full 
discharge. 

Appendix A-1 continued. Geomorphic variable descriptions 
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Appendix A-2. General site information 

Channel Site Catchment Stream Order Rosgen 
Classification Latitude Longitude

1 1 1st D3b -91.074709 36.875192
2 1 1st D3b -91.075441 36.875201
3 1 1st B3a -91.075289 36.875329
4 2 2nd B4 -91.049042 36.893349
5 2 1st D4b -91.047433 36.893882
6 2 1st B4a -91.047248 36.893276
7 1 2nd D4b -91.075608 36.87548
8 3 2nd D4b -91.075419 36.876058
9 3 1st B4a -91.074737 36.876816
10 3 1st D4b -91.07418 36.876685
11 4 2nd D4 -91.213979 36.854893
12 4 1st D4b -91.213591 36.854122
13 4 1st D4b -91.213045 36.854094
14 5 1st F4b -91.14986 36.862059
15 5 2nd B4a -91.147751 36.862421
16 5 1st B4a -91.148399 36.862882
17 5 1st B4a -91.148672 36.862788
18 6 2nd D4b -91.213603 36.884992
19 6 1st B4a -91.214723 36.884385
20 6 1st D4b -91.215294 36.884503
21 6 1st B4a -91.215185 36.885219
22 7 2nd D4b -91.215671 36.889249
23 7 1st B4a -91.217319 36.889514
24 8 1st F4b -91.139344 36.892163
25 8 1st D4b -91.139431 36.891672
26 8 2nd F4b -91.140502 36.891927
27 9 1st C4b -91.124825 36.854564
28 9 1st D4b -91.125874 36.854577
29 9 1st B4a -91.126187 36.854504
30 9 2nd B4a -91.12584 36.854077
31 10 1st F4b -91.143409 36.85715
32 10 2nd E4b -91.091899 36.840783
33 11 1st C4b -91.143251 36.856005
34 11 2nd D4b -91.09249 36.841669
35 12 1st D4 -91.082788 36.889674
36 13 1st F4b -91.103083 36.881214
37 13 1st B4a -91.102669 36.882024
38 13 2nd B4 -91.102124 36.882434
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Channel 
Site Catchment Burn 

Frequency 
Percent 

Pine (%)

Area 
Affected by 

Timber 
Harvest (%)

Percent 
Silt (%)

Depth to Bt 
(in)

Maximum Capacity 
of the Most Limiting 

Layer to Transmit 
Water (in/hr)

Percent 
Roads (%)

1 1 0 18.1 0.0 68.4 10.3 0.76 0.0
2 1 0 0.0 0.0 61.8 10.5 0.88 0.0
3 1 0 28.2 0.0 48.5 11.1 1.12 0.0
4 2 0 29.8 62.8 74.3 9.0 0.66 1.5
5 2 0 53.4 46.6 87.6 9.5 0.42 1.7
6 2 0 57.8 39.8 97.8 9.1 0.24 3.7
7 1 0 0.2 0.0 50.8 11.0 1.07 0.0
8 3 0 98.2 0.0 52.9 10.9 1.04 2.4
9 3 0 100.0 0.0 61.9 10.5 0.88 0.5
10 3 0 95.7 0.0 74.7 10.0 0.65 5.3
11 4 0 0.0 100.0 78.2 9.9 1.45 0.5
12 4 0 0.0 100.0 100.0 9.0 0.20 0.2
13 4 0 0.0 100.0 100.0 9.0 0.20 1.2
14 5 2 100.0 0.0 84.9 8.8 0.47 2.4
15 5 2 97.0 3.0 63.4 8.6 0.85 1.8
16 5 2 79.5 20.5 78.1 8.8 0.59 2.7
17 5 2 100.0 0.0 61.4 8.6 0.89 0.0
18 6 5 43.0 95.4 60.1 10.6 2.49 2.0
19 6 5 100.0 100.0 72.8 10.1 1.77 1.8
20 6 5 46.5 80.9 99.1 9.0 0.25 6.7
21 6 5 0.0 85.1 87.5 9.5 0.92 7.6
22 7 5 0.1 90.5 71.6 9.3 1.83 2.1
23 7 5 0.0 100.0 99.5 5.2 0.23 2.0
24 8 7 100.0 0.0 100.0 9.0 0.20 0.0
25 8 7 100.0 0.0 100.0 9.0 0.20 0.0
26 8 7 100.0 0.0 99.8 9.0 0.20 0.0
27 9 4 0.0 100.0 88.5 8.9 0.40 0.0
28 9 4 0.0 41.1 21.7 10.6 0.67 3.0
29 9 4 0.0 21.8 0.0 11.6 0.61 0.0
30 9 4 0.0 69.7 37.7 9.6 0.85 2.2
31 10 4 0.0 77.1 79.4 8.8 0.57 4.8
32 10 4 17.1 51.9 57.8 8.6 0.95 2.1
33 11 0 0.0 100.0 0.0 13.0 0.06 0.0
34 11 0 0.0 91.3 51.7 10.9 0.13 0.6
35 12 0 0.0 0.0 78.0 8.2 1.46 1.5
36 13 0 12.2 86.1 92.6 5.6 0.62 0.5
37 13 0 17.7 84.0 89.3 5.9 0.82 0.5
38 13 0 39.0 69.0 84.4 6.3 1.10 0.7

Average 2 37.7 47.8 71.5 9.3 0.76 1.6
Minimum 0 0.0 0.0 0.0 5.2 0.06 0.0
Maximum 7 100.0 100.0 100.0 13.0 2.49 7.6

Appendix A-4. Secondary watershed variables 



101 

 

 

 

 

Channel 
Site Catchment Max Depth 

(m) Q (m3)
Channel 

Area (m2)
Velocity 

(m/s)

Wetted 
Perimeter 

(m)
Yc Width (m) Energy (m) Mean 

Depth (m)

Width-
Depth 
Ratio

Entrenchment 
Ratio

1 1 0.04 0.05 0.04 1.1 1.7 0.1 1.68 0.09 0.03 64.6 1.19
2 1 0.11 0.08 0.07 1.1 1.8 0.1 1.78 0.17 0.04 45.3 1.74
3 1 0.10 0.10 0.06 1.7 1.2 0.1 1.21 0.24 0.05 24.0 1.74
4 2 0.38 3.42 1.91 1.8 7.7 0.4 7.66 0.55 0.25 30.8 1.63
5 2 0.09 0.16 0.17 0.9 2.6 0.1 2.61 0.14 0.06 41.1 1.37
6 2 0.07 0.03 0.03 0.8 0.8 0.1 0.81 0.10 0.04 20.7 1.63
7 1 0.11 0.21 0.19 1.1 2.9 0.1 2.85 0.17 0.07 41.8 1.39
8 3 0.16 0.39 0.33 1.2 4.0 0.2 4.01 0.23 0.08 49.0 2.15
9 3 0.10 0.04 0.02 1.7 0.5 0.1 0.41 0.26 0.05 8.0 2.00
10 3 0.09 0.08 0.08 0.9 3.7 0.1 3.65 0.13 0.02 158.8 1.38
11 4 0.15 0.24 0.35 0.7 5.6 0.1 5.58 0.17 0.06 89.6 1.82
12 4 0.03 0.01 0.02 0.5 1.1 0.0 1.10 0.05 0.02 65.9 1.91
13 4 0.08 0.07 0.10 0.7 2.4 0.1 2.41 0.10 0.04 57.5 1.65
14 5 0.11 0.19 0.17 1.1 2.4 0.1 2.43 0.17 0.07 34.5 1.30
15 5 0.33 0.89 0.62 1.5 3.9 0.4 3.86 0.44 0.16 24.2 2.09
16 5 0.09 0.06 0.06 1.1 1.3 0.1 1.31 0.14 0.04 29.3 1.57
17 5 0.04 0.01 0.02 0.7 0.8 0.1 0.81 0.06 0.02 38.1 1.88
18 6 0.28 0.49 0.68 0.7 9.1 0.3 8.99 0.31 0.08 118.8 1.24
19 6 0.09 0.06 0.09 0.7 1.8 0.1 1.76 0.12 0.05 35.9 1.52
20 6 0.05 0.02 0.03 0.7 1.3 0.1 1.29 0.08 0.03 49.7 1.87
21 6 0.09 0.06 0.07 0.8 1.6 0.1 1.57 0.12 0.05 33.9 1.49
22 7 0.16 0.85 1.04 0.8 8.8 0.1 8.75 0.20 0.12 74.0 1.34
23 7 0.12 0.03 0.04 0.8 0.7 0.1 0.65 0.16 0.06 10.4 2.00
24 8 0.13 0.17 0.13 1.3 1.7 0.2 1.67 0.22 0.08 21.4 1.22
25 8 0.09 0.25 0.23 1.1 3.9 0.1 3.89 0.15 0.06 66.5 1.09
26 8 0.23 0.70 0.58 1.2 3.7 0.2 3.65 0.31 0.16 22.9 1.32
27 9 0.13 0.10 0.08 1.3 1.2 0.2 1.19 0.22 0.06 18.6 2.66
28 9 0.07 0.09 0.09 1.0 2.8 0.1 2.79 0.12 0.03 82.2 1.64
29 9 0.04 0.01 0.01 0.9 0.5 0.1 0.48 0.08 0.02 24.2 2.00
30 9 0.20 0.49 0.34 1.5 3.0 0.2 2.97 0.31 0.11 26.2 1.62
31 10 0.15 0.27 0.15 1.8 1.7 0.2 1.70 0.31 0.09 19.0 1.31
32 10 0.49 1.15 0.60 1.9 2.4 0.5 2.09 0.67 0.29 7.2 4.69
33 11 0.11 0.05 0.07 0.8 1.3 0.1 1.28 0.14 0.05 25.1 2.40
34 11 0.43 3.25 2.17 1.5 10.3 0.4 10.13 0.54 0.21 47.2 1.38
35 12 0.31 0.44 0.51 0.9 4.7 0.3 4.61 0.35 0.11 41.6 3.48
36 13 0.25 2.06 1.18 1.7 6.1 0.3 6.02 0.40 0.20 30.7 1.22
37 13 0.35 2.59 1.41 1.8 6.6 0.4 6.45 0.52 0.22 29.5 1.91
38 13 0.51 3.80 1.96 1.9 7.2 0.5 7.05 0.70 0.28 25.3 2.15

Average 0.17 0.60 0.41 1.1 3.3 0.2 3.24 0.24 0.09 43.0 1.79
Minimum 0.03 0.01 0.01 0.5 0.5 0.0 0.41 0.05 0.02 7.2 1.09
Maximum 0.51 3.80 2.17 1.9 10.3 0.5 10.13 0.70 0.29 158.8 4.69

Appendix A-5. Channel form variables 
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Channel 
Site Catchment D95 (mm) D84 (mm) D50 (mm)

Percent 
Bedrock 

(%)

Percent 
Embedded 

(%)

Percent 
Fines (%)

Largest 
Mobile 

Clast Size 
(mm)

LWD 
(m3/m2)

Basal Area 
(m2/hectare)

Tree Count

1 1 640 343 240 0.0 0.0 0.0 612.0 0.000 118.3 5
2 1 450 301 180 0.0 0.0 3.3 105.2 0.011 21.1 0
3 1 353 281 128 0.0 0.0 16.7 83.4 0.029 34.9 15
4 2 90 90 27 26.7 0.0 3.3 272.0 0.004 28.4 7
5 2 128 90 45 0.0 10.0 10.0 - 0.006 54.9 4
6 2 151 90 23 0.0 13.3 30.0 212.0 0.007 115.3 3
7 1 128 78 23 0.0 10.0 6.7 - 0.008 8.2 3
8 3 350 90 23 3.3 0.0 6.7 172.8 0.027 26.6 1
9 3 286 128 55 0.0 16.7 10.0 180.0 0.006 141.9 6
10 3 323 128 45 0.0 20.0 6.7 220.0 0.001 36.3 4
11 4 149 92 45 0.0 3.3 16.7 189.0 0.000 29.3 13
12 4 107 64 27 0.0 3.3 23.3 151.6 0.020 61.7 4
13 4 90 64 23 3.3 13.3 30.0 120.4 0.006 21.4 5
14 5 300 128 30 0.0 10.0 23.3 222.0 0.000 99.2 2
15 5 93 64 32 0.0 0.0 3.3 240.0 0.000 14.2 2
16 5 234 128 32 0.0 3.3 16.7 186.0 0.008 120.5 3
17 5 223 92 27 0.0 13.3 40.0 221.0 0.000 206.0 5
18 6 128 90 19 0.0 0.0 20.0 208.0 0.001 5.4 12
19 6 128 92 34 0.0 16.7 16.7 145.6 0.001 38.3 8
20 6 90 46 5 0.0 6.7 46.7 130.0 0.004 59.3 1
21 6 54 33 8 0.0 0.0 30.0 132.8 0.006 0.0 0
22 7 54 45 11 0.0 0.0 6.7 141.2 0.000 0.5 5
23 7 45 16 8 0.0 0.0 20.0 112.8 0.000 16.3 0
24 8 180 128 27 0.0 13.3 3.3 192.0 0.006 0.0 6
25 8 254 128 27 0.0 30.0 10.0 310.0 0.002 0.0 2
26 8 151 46 14 0.0 3.3 13.3 315.0 0.004 0.0 5
27 9 323 90 32 0.0 30.0 20.0 186.2 0.001 109.7 0
28 9 273 128 45 0.0 16.7 0.0 280.0 0.003 24.4 4
29 9 273 128 32 0.0 10.0 6.7 280.0 0.017 12.3 8
30 9 160 65 23 0.0 0.0 0.0 270.0 0.002 41.9 0
31 10 273 130 45 0.0 16.7 6.7 210.0 0.000 0.0 0
32 10 151 65 32 0.0 3.3 0.0 196.0 0.000 0.0 5
33 11 54 33 14 0.0 3.3 36.7 138.4 0.007 5.5 10
34 11 107 64 23 0.0 10.0 16.7 202.0 0.001 0.0 5
35 12 107 65 19 0.0 13.3 13.3 172.8 0.001 17.1 0
36 13 212 90 23 0.0 10.0 3.3 300.0 0.002 9.5 16
37 13 180 128 23 0.0 13.3 0.0 211.6 0.001 11.5 4
38 13 128 47 27 0.0 10.0 0.0 284.0 0.000 4.3 1

Average 195 103 39 0.9 8.5 13.6 211.3 0.005 39.3 5
Minimum 45 16 5 0.0 0.0 0.0 83.4 0.000 0.0 0
Maximum 640 343 240 26.7 30.0 46.7 612 0.029 206.0 16

Appendix A-6. Channel substrate and vegetation variables. 
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Appendix B. Correlation Matrices among watershed and channel variable. 

 

 

 

 

 

 

 

 

 

 

Appendix B-1. Correlation matrix for primary watershed variables.  

Drainage 
Area (ha)

Channel 
Slope (%)

Basin Slope 
(%)

Elevation 
(m) Relief (m) Valley Width (m) Total Stream 

Length (km)
Ruggedness 

Number Form Factor Compactness 
Coefficient

Drainage Area (ha) 1.00

Channel Slope (%) -0.47 1.00

Basin Slope (%) -0.42 0.64 1.00

Elevation (m) -0.22 -0.41 -0.62 1.00

Relief (m) 0.29 0.12 0.57 -0.81 1.00

Valley Width (m) 0.82 -0.55 -0.48 -0.01 0.15 1.00

Total Stream 
Length (km) 0.99 -0.46 -0.43 -0.23 0.27 0.80 1.00

Ruggedness 
Number 0.24 0.13 0.56 -0.79 0.96 0.09 0.26 1.00

Form Factor 0.39 -0.41 -0.30 0.00 -0.09 0.42 0.35 -0.20 1.00

Compactness 
Coefficient -0.68 0.47 0.26 0.27 -0.44 -0.68 -0.67 -0.39 -0.57 1.00
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Appendix B-2. Correlation matrix for logged values of primary watershed. 
variables.  Logged 

Drainage 
Area (ha)

Logged 
Channel 

Slope (%)

Logged Basin 
Slope (%)

Logged 
Elevation 

(m)

Logged 
Relief (m)

Logged 
Valley Width 

(m)

Logged Total 
Stream 

Length (km)

Logged 
Ruggedness 

Number

Logged Form 
Factor

Logged 
Compactness 
Coefficient

Logged 
Drainage Area 

(ha)
1.00

Logged Channel 
Slope (%) -0.64 1.00

Logged Basin 
Slope (%) -0.44 0.61 1.00

Logged 
Elevation (m) -0.28 -0.38 -0.54 1.00

Logged Relief 
(m) 0.48 0.11 0.48 -0.83 1.00

Logged Valley 
Width (m) 0.87 -0.73 -0.50 -0.03 0.25 1.00

Logged Total 
Stream Length 

(km)
0.99 -0.59 -0.41 -0.32 0.53 0.84 1.00

Logged 
Ruggedness 

Number
0.46 0.14 0.44 -0.80 0.97 0.21 0.53 1.00

Logged Form 
Factor 0.53 -0.43 -0.34 0.00 -0.12 0.56 0.46 -0.21 1.00

Logged 
Compactness 
Coefficient

-0.99 0.64 0.40 0.28 -0.47 -0.86 -0.97 -0.44 -0.59 1.00
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