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ABSTRACT 

The REN1 region of the grapevine ‘Kishmish Vatkana’ was mapped as the locus that confers 

resistance to the economically important disease, grape powdery mildew. The purpose of this 

work was to extend the nucleotide sequence information of this region.  By sequencing a 

heretofore unknown bacterial artificial chromosome clone, the sequence information of this 

region was extended by 46,890 nucleotides. Sequencing was performed using the third-

generation sequencing method, named Oxford Nanopore Technology (ONT). In order to 

improve the accuracy of the sequence data, a modified ONT library preparation method was 

developed. ONT sequencing of a library prepared with the modified protocol generated a single 

69,750 nucleotide-long contig of the entire BAC insert. Comparative analysis of the Sanger, 

Illumina, and ONT sequence data of the same stretch of DNA has revealed, however, that ONT 

sequence quality still lagged behind that of the former two. Several gene-finding programs were 

able to identify in the BAC insert three new genes encoding a TCP-type transcription factor, a 

cinnamoyl-CoA reductase enzyme and CC-NBS-LRR-type resistance protein. Orthologs of all 

three of these proteins have been implicated in plant disease resistance. The newly acquired 

sequence information also made it possible to determine that the BAC insert represented the 

resistance haplotype of the ‘Kishmish vatkana’ REN1 region. Nonetheless, evidence that any of 

the three defense-related alleles discovered here contribute to the powdery mildew resistance 

phenotype will require more experimental work.  

 

 

 

KEYWORDS:  REN1, ‘Kishmish Vatkana’, plant disease resistance, Oxford Nanopore 

Technology, gene discovery, defense genes, haplotype   
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OVERVIEW 

               

There is considerable grower and consumer interest in reducing the input of pesticides in 

grape production. The most promising approach to accomplish this is to cultivate disease-

resistant grape varieties that have innate biological resistance against pathogens. Genes that 

confer resistance against pathogens are available in the vast genetic diversity of the Vitis genus 

and can be introgressed into cultivated varieties through traditional breeding or transgenesis. A 

number of sources for disease resistance genes have been explored from American and Asian 

Vitis species. One of these resources is the cultivated Central Asian Vitis vinifera variety 

‘Kishmish Vatkana’ carrying a single resistance locus, named REN1, which confers resistance to 

the economically important pathogen powdery mildew (Erysiphe necator). While the REN1 

locus has been mapped to a 1.4 million-base pair region of chromosome 13 using a positional 

cloning approach, its complete nucleotide sequence has yet to be deciphered. The purpose of this 

work was to complete the nucleotide sequence information of this entire region. While this goal 

could not be fully met, the sequencing of a heretofore unknown bacterial artificial chromosome 

(BAC) clone was accomplished, which extended the sequence information of the REN1 region 

by 46,890 nucleotides. 

       DNA sequence analysis was performed using the third-generation sequencing method 

Oxford Nanopore Technology (ONT). The first attempt to verify the sequence information of the 

entire known REN1 region in a single reaction resulted in poor-quality data. To improve the 

quality of the data, the rest of the work focused on a single BAC clone, namely BAC81D11, 

which had not previously been sequenced. Furthermore, a few modifications were also made to 

the Oxford Nanopore Technology library preparation procedure to ensure the generation of the 
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longest possible reads by the sequencing reactions. Key among these modifications was the 

restriction of the BAC clone with an enzyme that cut its target molecule at a single locus. The 

modified library preparation protocol led to increased data yield, deeper sequence coverage, 

improved read quality, and extended read length. The reads were then assembled into a single 

69,750 nucleotide-long contig, which represented the entire BAC insert. The accuracy of the 

sequence assembly was confirmed with BAC-end sequencing. Of this new clone, 22,860 

nucleotides overlapped with another BAC clone previously sequenced, and the remaining 46,890 

nucleotides represented new information. Stretches of DNA sequenced using ONT, Sanger and 

Illumina methods were aligned and compared. The comparison revealed that the quality of the 

ONT sequence was lower than the quality of either the Sanger or the Illumina sequence. 

Nonetheless, the ONT-generated sequence was contiguous and it could be used to subclone 

corresponding DNA haplotypes from ‘Kishmish Vatkana’ and its disease-resistant and 

susceptible parents ‘Vassagra Tschernaia’ and ‘Thompson Seedless’, respectively. Comparative 

analysis of these haplotypes confirmed that the DNA insert of BAC 81D11 represented the 

haplotype associated with powdery mildew resistance.   

      The ONT sequence also revealed that the BAC81D11 insert contained three complete open 

reading frames encoding functional proteins of a TCP-type transcription factor, a cinnamoyl-

CoA reductase enzyme, and a coiled coil-nucleotide binding site-leucine rich repeat (CC-NBS-

LRR)-type resistance gene. Interestingly, all three of these genes have been implicated in plant 

defense against pathogens. Orthologs of the TCP-type transcription factor gene have been shown 

to play a part of immune response in Arabidopsis thaliana, while orthologs of the cinnamoyl-

CoA reductase 1 (CCR1) gene have been demonstrated to strengthen disease resistance in rice. A 

gene similar to the CC-NBS-LRR-type resistance gene is a key determinant of resistance against 
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downy mildew in in A. thaliana. To determine if either of these grape genes present in BAC 

81D11 play a part in powdery mildew resistance in ‘Kishmish Vatkana’ requires further 

experimentation.  

      The significance of this work is that it provides important tools for further research. It 

presents an advanced ONT library preparation protocol which can be used by other researchers 

working with BAC libraries. It also opens opportunities for hypothesis-driven experiments. The 

evidence that the BAC81D11 insert is of the resistance haplotype and the exact demarcation of 

the coding sequences enables other researchers to clone these genes, transfer them to powdery 

mildew-susceptible plants, and measure the resistance of the resulting transgenic plants.  

            The limitations of my data are that the ONT sequence of the BAC81D11 insert is less 

than 100% accurate and that the gaps between the previously assembled contigs remain to be 

unfilled. Furthermore, this work does not provide evidence about the contribution of the genes to 

powdery mildew resistance. Nonetheless, it provides tools that make hypothesis-driven 

experimentation possible.  
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CHAPTER 1 

DEVELOPMENT OF AN IMPROVED OXFORD NANOPORE SEQUENCING 

METHOD 

 

Introduction 

DNA sequencing technology determines the order of nucleotide sequences in a DNA 

strand. This technology has become essential to detect coding sequences in genomic DNA and 

cDNA and thereby has become an essential tool in modern biology. All sequencing procedures 

include three phases: sample preparation, sequencing reaction, and sequence assembly (Schadt et 

al. 2010). Based on the method used, productivity, throughput, and read length, sequencing 

techniques are categorized into first-generation, next-generation, and third-generation methods.  

First-generation sequencing methods include the Maxam-Gilbert (also known as the 

chemical method) and the Sanger technologies. The former, developed in 1977, has fallen out of 

favor since the 1980s because of its technical complexity and reliance on toxic chemicals. Sanger 

sequencing (also known as the dideoxy sequence termination method) depends on in vitro DNA 

synthesis and the random incorporation of the 2’-3’ dideoxy nucleotide, which terminates the 

activity of the DNA polymerase (Sanger et al. 1977). As DNA polymerase activity is primed 

with complimentary primers on all template molecules, all newly synthesized strands have the 

same 5’ terminus. As a result, each fragment length is represented by a cohort of DNA strands, 

the synthesis of which is terminated at the same position. In order to detect these strands, the 

ddGTP, ddATP, ddTTP, and ddCTP dideoxynucleotides are covalently attached to different 

fluorescent dyes. The DNA strands are fractionated using capillary gel electrophoresis and the 

terminal ddNTPs are identified by their fluorescence in response to laser excitation. The 
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automation and multiplexing of this method facilitated the scaling-up of this technology to an 

industrial scale, which ushered in the genomic era of biology. Sanger sequencing was the method 

that enabled the generation of the first reference genome sequence of Homo sapiens and several 

model species.  This method is still considered as the most accurate method of DNA sequencing 

(Heather and Chain 2016) and is commonly used today for small-scale sequencing.  However, 

the Sanger sequencing technique has limitations, such as low sequence length, low throughput, 

and high cost. Most of these limitations stem from the fact that the Sanger method requires two 

separate steps: DNA synthesis and electrophoresis. For large-scale genome-sequencing projects, 

Sanger has been supplemented by less accurate, but higher-throughput next-generation methods.  

Next-generation techniques were developed during the first decade of the 21st century. 

Solexa, Ion Torrent, and Pyrosequencing are some of the major next-generation techniques that 

have been developed and commercialized. Among them, Solexa emerged as the prominent high-

throughput method after being commercialized and renamed Illumina sequencing-by-synthesis 

(SBS) method. Illumina sequencing starts with sample preparation which includes addition of 

adaptors to the ends of randomly generated template DNA fragments of an entire genome. An 

adaptor incorporates indices, priming sites and sequences complementary to the flow cell oligo 

nucleotides into a single DNA fragment. The major step after sample preparation includes the 

clonal amplification of template DNA which is performed through bridge amplification. Bridge 

amplification is repeated several times to exponentially increase the number of all the fragments. 

After clonal amplification, the reverse strands are washed away, and the forward strands are kept 

in the flow cell. Addition of the labelled nucleotides and binding of the complementary 

nucleotide fluorescent with dye is then repeated until the desired length of sequence is obtained. 

Each nucleotide has its own fluorescence, which is detected and recorded while each nucleotide 
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is added at the same time of synthesizing the complementary strand (Schadt et al. 2010). The 

latest Illumina sequencer, named NovaSeq produces three terabase of data in a single flow cell 

reaction (Costello et al. 2018). The Illumina method ensures low error rate, because it facilitates 

the sequencing of the same DNA fragment many times and produces data of great sequencing 

depth. This enables to identification of single nucleotide polymorphisms (SNPs) and short 

fragment variation at a population scale (Lui et al. 2012). However, the read length obtained 

from Illumina is still much smaller than that of Sanger method (Metzker 2010, Whiteford et al. 

2009, Schatz et al. 2010). The low read length makes the assembly process difficult, but this 

difficulty can be overcome by aligning large numbers of reads to longer contigs. In highly 

repetitive genomic regions, however, contigs assembled in this way can lead to ambiguity, 

because it is impossible to determine the number of times a sequence is repeated in such regions 

(Alkan et al. 2011). High-throughput sequencing also creates challenges in the storage of the 

resulting immensely large data files (Schatz et al. 2010). The eukaryotic genome has highly 

complex repetitive sequences and these sequences constitute about half of the genome. These 

repetitive sequences require long reads for sequence alignment and assembly to generate a 

meaningful contigs to be further analyzed (Treangen et al. 2013).  

Third-generation sequencing technology (TGS) has been developed to improve read 

length as compared with Illumina. Unlike NGS technologies, TGS technologies produce 

sequences of an average of 10,000 nucleotide-long reads (Schatz et al. 2016). There are two main 

TGS techniques available. The SBS method, involves a single molecule of DNA polymerase 

being detected as it incorporates each nucleotide into the growing DNA chain. This is also 

referred to as Single-Molecule Real-Time Sequencing (SMRT) and is applied by Pac-Bio 

sequencing technology (Levene et al. 2003). The average read length generated per run by 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Treangen%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=22124482
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PacBio is 1.0-1.5×104 nucleotides and the single pass error rate of this method is 13%. The 

number of reads generated per run is 3.5–7.5×104 (Rhoads et al. 2015). Oxford Nanopore 

Technology (ONT) sequencing is based on the threading of prepared DNA through a nanopore 

that is fixed on a flow cell. ONT is simpler compared with other sequencing techniques (Loman 

et al. 2012). 

The ONT nanopore is either a biological or artificial pore protein with a 10-Å opening, 

fixed on an insulating membrane in the MinION flow cell. The membrane is submerged in saline 

solution with an electric gradient across it to maintain a positive charge at the internal pore 

region which attracts negatively charged DNA strands. The stretch of DNA traversing the pore is 

five nucleotides long. In this way, 5-mers are recognized as a single “event” and their electric 

current variation during their passage is detected as a signature current for each 5-mer 

combination. This signature current is then “translated” into nucleotide sequences by the 

software named MinKNOW (de Lannoy et al. 2017). 

The average read length produced by ONT is 2–5 × 103 nucleotides. ONT sequencing is 

real time and highly cost-effective, does not require PCR, produces long reads, and it can be 

performed in a small portable device. Along with these remarkable advantages, ONT has a major 

disadvantage, which is high error rate (Rhoads et al. 2015, de Lannoy et al. 2017). 

This study involves sequencing of BAC clones from the REN1 region of the powdery 

mildew (PM) disease-resistant grapevine ‘Kishmish Vatkana’ (KV) using ONT hardware and 

software. The study also includes a comparison of Sanger, Illumina and ONT sequences of a 2.8 

kb region from the REN1 locus. The grapevine KV is a seedless V. vinifera table grape variety 

from Uzbekistan (Hoffman et al. 2008). The genome of this variety contains a resistance locus 

named Resistance to Erysiphe necator 1 (REN1), which contains one or more resistance gene(s) 
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against the fungal disease powdery mildew, which is caused by the biotrophic fungus Erysiphe 

necator (Hoffman et al. 2008). The ultimate goal of studying KV and other disease-resistant 

grape genotypes is to introgress the gene(s) responsible for resistance into grapevines for the 

development of new grape cultivars, the cultivation of which will require a reduced input of 

fungicides. The REN1 region in KV has been delimited to a 1.4 cM (1.4 mega base pairs) region 

using simple sequence repeat (SSR) marker-based linkage mapping (Coleman et al. 2009). The 

presence of nucleotide binding site leucine-rich repeat (NBS-LRR) genes in the REN1 region of 

KV is identified within a genetic interval flanked by SSR markers (Coleman et al. 2009). These 

genes are key candidates for encoding the biological information responsible for PM resistance. 

An attempt had been previously made to sequence the REN1 region (Coleman 2016). This 

attempt was only partially successful, because the sequenced DNA fragments failed to cover the 

entire REN1 region. As a result, two DNA stretches of unknown length in the physical map 

remained unsequenced (Figure 1). The purpose of this current work was to fill in those two gaps 

with BAC clones and sequence information. 

Materials and Methods  

Validation of KV BAC colonies. DNA fragments of the KV REN1 region from 

chromosome 13 were obtained from eleven BAC library clones of KV genomic DNA 

constructed by Lucigen in 2008. These BAC clones were previously identified as positive 

for REN1-specific SSR markers (Coleman 2016), but their validation was necessary before 

subjecting them to sequencing. To confirm that the BACs contained the predicted insert, a 

colony PCR was performed using insert-specific SSR primers designed by Coleman et al. 

(2009). The primer information is shown in Table 1. The BAC clones, namely 81D11, 75I23, 
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77I15, 67E16, 88C13, 24G05, 70KO3, 41N11, 07D12, 39C19, and 50J14, were stored as 

glycerol stocks in a -800C freezer. To perform colony PCR, selected BAC colonies from the 384-

well plate were streaked to a nutrient agar plate made with Terrific Broth (TB) medium 

(Sambrook et al. 2006), which was supplemented with 12.5 μg/mL chloramphenicol and 0.01% 

L-arabinose. Following a 12-hour growth at 370C, fast DNA extraction specifically designed for 

colony PCR was performed. Brief DNA extraction was performed by swiping an isolated colony 

with a pipette tip and transferring the bacteria into 100 μL deionized nuclease-free water in a 1.5-

mL Eppendorf tube. The bacteria were lysed at 94-990C for 10 min, immediately transferred to 

ice for 2 min and centrifuged for 5 min at maximum speed. Subsequently, 2 µL of the 

supernatant containing DNA was used as template for PCR. Resistance haplotype-specific SSR 

primers were used in the PCR reactions with a total reaction volume of 10 µL (0.1 U enzyme, 1X 

buffer with KCl, 0.2 μM of each primer, 2.5 mM MgCl2, 0.5 mM each dNTP, and about 4 ng 

bacterial DNA). A 25-µL PCR recipe was also used, which differed from the previous 

protocol in the use of 0.2 U of Taq polymerase enzyme per reaction. The touch-down (TD) PCR 

protocol was used to minimize non-specific primer annealing and amplification. The initial 

denaturation cycle was 94oC for 2 min, which was followed by 10 cycles of denaturation at 94oC 

for 30 sec, annealing at 62oC for 30 sec with 1oC decrease at each cycle at each cycle, then 

primer extension at 72oC for 45 sec. This was then followed by 28 cycles of denaturation at 94oC 

for 30 sec, annealing at the optimal annealing temperature for 30 sec, then primer extension at 

72oC for 45 sec.  The final primer extension temperature was 72oC for 15 min.  

BAC DNA Extraction and Purification. BAC clones that were confirmed as part of the 

REN1 resistant haplotype using colony PCR were selected for DNA extraction and ONT 

sequencing. First, the seven BAC clones validated with the 10 µL PCR recipe were selected for 
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DNA extraction and sequencing. To extract BAC DNA, all the seven BACs were inoculated in 

TB broth (Ledent et al. 1993) and grown for 12 hours in a 370C incubator shaker. BAC DNA 

extraction from the selected seven BAC cultures was performed using the FosmidMax DNA 

Purification kit (Epicentre, USA, Chicago, IL, USA), following the manufacturer’s protocol. The 

extracted DNA was precipitated with ammonium acetate (2M final concentration) and 100% 

ethanol was added to the solution at a 2:1 ratio. This solution was mixed and kept at -200C 

overnight for DNA precipitation and then incubated at -800C for 30 minutes, with subsequent 

centrifugation at 40C for 20 min. The precipitated DNA samples were washed using 500μL of 

freshly prepared 70% ethanol and air-dried overnight. The DNA pellet was resuspended in TE 

buffer and the concentration of the resulting DNA solution was measured using a Qubit 

Fluorometer (Thermo Fisher Scientific, Waltham, MA).  

Library Preparation and ONT Sequencing. Selected BAC DNA samples were 

prepared for sequencing using the ONT library preparation protocol 1D Genomic DNA-by-

Ligation (protocol SQK-LSK108) following manufacturer’s guidelines (ONT, Oxford, England). 

The 1D Genomic DNA-by-Ligation method was designed for the generation of ultra-long 

sequence reads. The beginning of the library preparation protocol provided by ONT involves a 

mechanical shearing step, which breaks the sample DNA into fragments. The DNA fragments 

are then end-prepared by adding adaptors. The resulting library was then purified using XP beads 

and loaded on a flow cell in an ONT MinION portable sequencer. Analysis of the ONT data was 

performed using ONT software. Sequencing was allowed to proceed for 48 hours on the flow 

cell.  

Sequence Analysis. The ONT Fast5 results were downloaded automatically and were 

transferred to FastQ format for downstream processing of the raw sequences using the python 
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software Poretools (Loman and Quinlan, 2014). It is downloaded 

from https://github.com/arq5x/poretools. The FastQ format sequences were then converted to 

FASTA format using a sequence converter available online 

at http://sequenceconversion.bugaco.com/converter/biology/sequences/. The FastA-formatted 

raw sequences were then assembled using the de novo genome assembler software Canu 

according to the guidelines provided by Koren et al. (2017). Low-quality and 

questionable sequences from the raw reads were trimmed and mapped by Canu before sequence 

assembly. The contigs produced by Canu were analyzed using quality control (QC) tools such as 

Nanoplot and Pauvre (de Coster et al. 2018). Nanoplot and Pauvre (github tools) are available 

at https://github.com/wdecoster/NanoPlot and https://github.com/conchoecia/pauvre, 

respectively.  

Improved Protocol for Sequencing. In the improved library construction method, only a 

single BAC clone, namely BAC81D11, was used. This BAC, 81D11, was specifically selected 

because it had not been previously sequenced. BAC DNA was extracted using the FosmidMax 

DNA Purification kit as described above. The BAC plasmid DNA was linearized using the 

enzyme FseI, which cuts BAC81D11 at only a single site. FseI was purchased from New 

England Biolabs (Ipswich, MA, USA). The linearized DNA was purified from cellular debris 

and proteins using phenol/chloroform extraction. In this procedure, equal amounts of 

phenol/chloroform were added to the linearized DNA at a 1:1 ratio, mixed thoroughly, then 

centrifuged. The aqueous supernatant was transferred to a clean Eppendorf tube, and then an 

equal amount of chloroform was added to further purify the sample. The supernatant containing 

the DNA was then transferred to a fresh Eppendorf tube. The purified DNA was then 

precipitated and washed as described above. In this library preparation, I avoided the mechanical 

https://github.com/arq5x/poretools
http://sequenceconversion.bugaco.com/converter/biology/sequences/
https://github.com/wdecoster/NanoPlot
https://github.com/conchoecia/pauvre
https://en.wikipedia.org/wiki/Ipswich,_Massachusetts
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shearing step to avoid breaking the DNA into fragments smaller than the full-length BAC 

plasmid. All remaining steps of the library preparation were performed using 1D Genomic DNA 

by ligation with the SQK-LSK108 kit according to the manufacturer’s protocol for the flow cell 

FAH11697 (ONT, Oxford, England). The raw sequences were provided in FastQ format by 

the MinKNOW software. The assembly of the raw sequences into a long contig was performed 

in the same manner as described above. 

Vector Sequence Removal. The vector sequences in the Canu-assembled contig were 

identified by aligning the contig to all the vector sequences present in the NCBI GenBank 

database using the Vecscreen tool available at https://www.ncbi.nlm.nih.gov/tools/vecscreen/. 

The sequence repeats and their coordinates in the Canu assembled contig were identified by 

aligning the contig to itself using the BLAST tool, available at 

https://blast.ncbi.nlm.nih.gov/Blast.cgi (Altschul et al. 1990). The vector sequences and sequence 

repeats were manually removed from the Canu-assembled contig using the functions within the 

CLC Genomics Workbench software. 

Validation of BAC 81D11 ONT Sequence. To amplify the terminal regions of the 

81D11 BAC DNA, primers specific to the pSMART vector sequences flanking the cloning site 

were used. The PCR product from the right SLR4 primer sequence 

(TTGACCATGTTGGTATGATTT) and left SL1 primer sequence 

(CAGTCCAGTTACGCTGGAGTC) were used to PCR amplify approximately 1000 nucleotides 

from each end of the 81D11 DNA sample and sequenced using the Sanger technique. BAC-end 

sequences from both the right and left ends were aligned to the 81D11 ONT sequence using the 

BLAST tool to compare the nucleotide sequences between the ONT and the Sanger sequences 

and to test the accuracy of the ONT sequence and the Canu assembly. Alignment of BAC-end 

https://www.ncbi.nlm.nih.gov/tools/vecscreen/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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sequences to the reference grapevine genome sequence was performed to find the coordinates of 

the corresponding sequence of 81D11 in the reference 12X genome V. vinifera PN40024, which 

is available at 

https://www.ncbi.nlm.nih.gov/genome/gdv/browser/?acc=GCF_000003745.3&context=genome 

(Jaillon et al. 2007). To validate the 81D11 ONT sequence again, the Illumina contigs of the 

BAC clone 71H20, which had been predicted to overlap with BAC 81D11 (Coleman 2016), were 

aligned with the 81D11 ONT sequence using the BLAST tool. To further validate the 

coordinates of BAC 71H20 in the reference genome sequence of PN40024, the 71H20 BAC-end 

Sanger sequences were aligned with the V. vinifera reference PN40024 sequence. The nucleotide 

sequences produced using both the ONT protocol (provided by the manufacturer) and the altered 

new protocol were compared by using the sequencing statistics generated by Nanoplot and 

Pauvre software.  

Cloning and Sanger Sequencing of the 2,777 nucleotide-Long Region from 81D11. A 

2,777-nucleotide region from the 81D11 ONT sequence was amplified using the primers 

5’AAAAAATTAAAATTAAAATTTTAAGAAATC3’ and 

5’CCTTCATATTTTTTTTTGAATATA3’. The amplified fragment was ligated to the pMiniT 

vector and transformed to Escherichia coli 10 beta cells using the NEB PCR Cloning Kit (NEB 

Bio Labs, USA). The Sanger sequence of this cloned fragment was generated using a set of 

additional internal forward primers such as 5’GGTCTTCGCTTTTCATTACCT 3’, 

5’AAATCTTGGAGTTACTATGCCACA3’, and 5’CCTAGGGTTTCGACCACAAA3’, and 

reverse internal primers including 5’AGTTGAATCGCACATTGCTCT3’, 

5’TCATTTGGTCATTTTAAAGGAGA3’ and 

5’TGAATGCAAAAGAAAATTAATAGTGG3’. The Sanger sequence is then compared to the 

https://www.ncbi.nlm.nih.gov/genome/gdv/browser/?acc=GCF_000003745.3&context=genome
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ONT sequence of 81D11 using a BLAST pairwise alignment. This sequence was also compared 

with the overlapping Illumina sequence contigs of the BAC clone 71H20. 

 

Table 1 Primers used for amplification of each BAC clone. 

BAC Forward primer Sequence  Reverse primer Sequence  

81D11 CTTGGCTAGATAGTGTCCTTCA GAAAATCAAAGGGATAAAGGGTC 

75I23 GAAAATCAAAGGGATAAAGGGTC AAGGATTTGAATGATATCTAATATAGG 

77I15 TTCGAGTTTTGTAGATCTATTTTTGG CCAATCCTATCAACTTGTTCAATG 

88C13 TCTACAGCGTCGGCTAGGTT ATCATCATGTGCACGTCTCC 

67E16 TCAACAGTGGCATTAAAAATGG CGAGCAAATCAGTGGAAGC 

24G05 TCAACAGTGGCATTAAAAATGG CGAGCAAATCAGTGGAAGC 

70K03 TTTAAGGGGCAGTGCCTAACT TTTCTCCTGACCCCGAATG 

41N11 TTTAAGGGGCAGTGCCTAACT TTTCTCCTGACCCCGAATG 

07D12 TCATTGCGTGGAAAATTTGTAT AAACCTGGAACTAATCTAGT 

39C19 TGCAAATATTATGGTTGGTTTG CATTGTACCTTGGCCACATTT 

50J14 GAAAAATCTCTTCATAGTTTTGATTGG GTTGGTTTGTTTGTGTACTTTAATTT 

 

Results 

Rationale. The purpose of this work is to close the gaps between contigs in the physical 

map of the REN1 region in the grapevine KV (Fig. 1). Using Illumina sequencing, it has been 

established that the REN1 region contains repeated elements (Coleman et al. 2009). Because the 

assembly of DNA regions with repeated elements is prone to assembly errors, it was also 

important to validate the correctness of such regions. Third-generation sequencing is able 



15 

produce long reads and is therefore well suited to resolve ambiguities in the nucleotide sequence 

of repeated elements. Resequencing the BAC clones around gaps 1 and 2 will not only help 

connect contigs 1, 2, and 3 (Figure 1), but may also improve the accuracy of the contig 

sequences. In this context, sequencing clone BAC81D11 is central to filling gap 2, because this 

BAC clone has been putatively localized to the right terminus of contig 1, but its nucleotide 

sequence has not been determined (Figure 1).  

Validation of KV BAC clones and ONT sequencing. BAC clones named BAC75I23, 

BAC77I15, BAC67E16, BAC88C13, BAC24G05, BAC70KO3, BAC41N11, BAC07O2, 

BAC39C19, and BAC50J14 were validated with polymorphic SSR markers specific to the 

resistance haplotype, and pBAC81D11 was validated with a non-polymorphic REN1 specific 

SSR marker. DNA purified from pBAC77I15, pBAC67E16, pBAC24G05, pBAC70KO3, 

pBAC41N11, pBAC07O2, and pBAC39C19 were combined and sequenced using the ONT 

protocol.  The sequenced long reads were then assembled into five non-overlapping contigs of 

lengths 85,751, 8,882, 27,406, 29,498, and 19627 nucleotides long, respectively. Summary 

statistics of the ONT sequences are listed in Table 2.  

Development of an improved sequencing protocol to sequence BAC81D11. The 

extracted BAC81D11 DNA was linearized, phenol/chloroform-purified and sequenced using an 

altered ONT protocol, as detailed in Materials and Methods. The raw sequences were assembled 

into a 116,607 nucleotide-long single contig using the software Canu. An examination of the 

resulting contig sequence revealed that a long stretch of DNA was present twice, which was 

likely an artifact due to incorporating vector sequences into the contig twice. To correct this 

problem, the vector sequences from coordinates 8,315 to 45,857 and 115,609 to 116,605 and 

sequence repeats from coordinates 1 to 45,858 and 115,609 to 116,607 from the 116,607-
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nucleotide-long 81D11 contig were removed from the 116,607 nucleotide-long sequence. This 

resulted in a contig of 69,750 nucleotides, which represented the insert of BAC81D11. 

Sequencing quality indices and statistics clearly indicated that the improved library preparation 

protocol was more efficient than the original ONT protocol (Table 2). To validate the correctness 

of the BAC insert, I used BAC-end primers to amplify and Sanger-sequence the terminal 

stretches of BAC81D11. The Sanger data were 747 and 941 nucleotides long on the right and left 

ends of BAC insert, respectively, and were in agreement with the ONT data. The region that 

corresponds to the 81D11 sequence in the V. vinifera PN40024 reference genome sequence 

(Jaillon et al. 2007) spans from coordinate 16,836,214 to 16,921,940 on chromosome 13. When 

aligned with BAC 71H20 (Coleman 2016), the BAC81D11 overlapped from coordinates 1 to 

22,860 with 7 different Illumina contigs of the 71H20 insert. The BAC71H20 Illumina contig 

overlap information with BAC81D11 is listed in Table 3.  

Comparison of data from traditional and modified ONT sequencing protocols. A 

bivariate graph showing sequencing quality plotted against read length is depicted in Figure 2. 

Read quality was filtered, and read length, phred quality, and the number of read data within the 

specified range and within a cut-off read quality value of 5 are shown in Figure 3. The extended 

length of most reads generated with the modified protocol is confirmed by Figure 4, which 

shows the number of reads plotted against read length. This is further corroborated by data in 

Figure 5, which is a histogram of total number of bases sequenced weighted by the number of 

nucleotides per read-length bin. This histogram clearly demonstrates that a substantially larger 

quantity of sequence data was generated in the improved protocol than in the original ONT 

protocol and that more of the data were generated as longer reads in the improved protocol 

(Figure 5). Figure 6 depicts a graph in which the cumulative yield is plotted against log-
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transformed read length, which demonstrates that a substantially greater quantity of the sequence 

data was generated by reads in the 10 to 40 kb length by the improved protocol than by the 

original ONT protocol, further substantiating the higher efficiency of the modified protocol than 

the original ONT protocol.  

Cloning and Sanger sequencing of a 2,777 nucleotide-long region from 81D11. The 

comparison of 2.777 kb ONT fragment from BAC 81D11, and its corresponding Sanger 

sequence (ONT coordinates 14,339-17,115) generated one mismatch and 31 indels (insertion or 

deletion) after aligning both sequences using BLAST tool. The Sanger sequence length was 

2,807 for the 2,777-nucleotide long ONT sequence. The corresponding Illumina-sequence 

contigs from the overlapping BAC 71H2O was aligned with the Sanger sequence and produced 

one indel, one insertion in Illumina contig (Figure 7). These alignments clearly demonstrate that 

the improved ONT protocol was able to generate a continuous sequence in a region that could 

only be captured by two non-overlapping contigs by the Illumina method. Sequencing accuracy 

is more difficult to compare, because of the gap in the Illumina contigs. Nonetheless, the 

alignments reveal that, aside from the gap between the Illumina contigs, the Illumina and the 

Sanger sequences differ only at one indel, while the ONT and Sanger sequence differs at as 

many as 31 indels. The 2,807-nucleotide sequence is correctly assembled by the Canu software 

as demonstrated by the continuity of the corresponding Sanger sequence. The entire Illumina 

contigs which have an overlap with the 81D11 region is also aligned along with the 81D11 ONT 

sequence. The alignment produced 7 contigs with 5 gaps. Among 7 Illumina contigs, 5 of them 

were non overlapping contigs. The total number of nucleotides present in the gaps produced by 

the Illumina contigs are 982-nucleotides according to the 81D11 ONT sequence.  
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Table 2 Summary statistics on sequence data with ONT and modified library preparation. 

Parameters ONT Method Modified Method 

Total Number of Nucleotides Sequenced 
53,232,565 nt  

1,373,305,247 nt 

Mean Read Length in Nucleotides 3,326.2 nt 4,986 nt 

Total number of raw sequences generated 16,004 275,433 

Mean Read Length in Nucleotides 3,326.2 nt 4,985.99 nt 

Median Read Length in Nucleotides 2,257.5 nt 2,120 nt 

Median Read Length (≥1000 nt) 4,046 nt 6,287.5 nt 

Mean read quality 4.8 7.3 

Median Read Quality 4.6 6.4 

N50 Value 4,997.04 nt 12,895 nt 

L50 Value 2,873 29,022 

Sequencing Depth 2.93X 17818.8X 

 

Table 3 Comparison of ONT- and Illumina-generated sequence data.  

71H20 Contig Number Coordinates* Percentage Identity  

Contig-14 1 – 7,148 98%  

Contig-22 7,154-7,903 99%  

Contig-12 8,730-10,381 98%  

Contig-26 10,763-12,186 98%  

Contig-09 12,184-15,160 99%  

Contig-03 15,228-17,111 99%  

Contig-02 17,152-22,860 99%  

* Coordinates based on the 81D11 sequence. 
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Figure 1 Schematic diagram of the physical map of REN1 region. The vertical bar on the right 

represents the entire chromosome 13 with the red color representing the approximate position of 

the REN1 region. The REN1 region is enlarged in the horizontal bar with coordinates 16,690,324 

to 18,130,936. Each colored bar under the enlarged REN1 region represents each contig. Map is 

not drawn to scale.  

 

 
Figure 2 Relationship between read length and average read quality of ONT sequence data 

generated. (a) the original and with (b) the modified library preparation protocols. Read length is 

plotted on X axis and average read quality is plotted on Y axis.  
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Figure 3 Relationship among phred quality, read length and number of reads of raw ONT 

sequence data generated. The graphs depicted the three different variables. (a) the original ONT 

protocol data and with (b) the modified library preparation protocol on BAC 81D11. The reads 

were filtered by read quality score of 5.    

 

Figure 4 Relationship between read length and number of reads of the untrimmed base called data 

generated. (a) the original ONT protocol data and (b) with the modified library preparation 

protocol on BAC 81D11. Read length is plotted on X axis and number of reads is plotted on Y 

axis.  
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Figure 5 Relationship between the number of bases sequenced and read length in data generated. 

(a) the original and (b) with the modified library preparation protocols. Each bar represents the 

number of bases plotted in read-length bins of 500-nucleotide increments.  

 

 
Figure 6 Cumulative sequencing yield as a function of read length in Gb in data generated. (a) 

the original and with (b) the modified library preparation protocols. Read length is plotted on X 

axis and cumulative yield per minimal length is plotted on Y axis.  
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Figure 7 Schematic diagram of the relative position of the Sanger-, Illumina- and ONT- 

sequenced DNA.  Numbers refer to the corresponding chromosome-13 coordinates in the 

reference genome of PN40024. Gold, blue and green arrowheads represent Sanger, Illumina and 

ONT sequence coordinates, respectively. 

Discussion 

In plant genomes, resistance (R) genes are commonly located in regions of highly 

repetitive DNA, which is also a characteristic of the REN1 region. Therefore, successful 

sequencing and assembly of this complex region demand long reads and are generated by third-

generation sequencing techniques. In this thesis project, I used an ONT MinION sequencer to 

generate long reads of the REN1 region. To overcome the problem of the high error rate 

associated with ONT technology, I performed deep sequencing of the region. Sanger sequencing 

was performed of the 2.8 kb sub-region of BAC81D11 to assess the accuracy of the ONT-

generated data. I also made a comparison between Sanger and ONT sequences. In my first 

attempt, I ONT-sequenced seven BACs from both contigs 2 and 3 of the REN1 region (Fig. 1), 
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but this resulted in a shallow sequencing depth. To increase depth, I followed up with an 

alternative method and applied it to the sequencing of a single BAC clone, BAC81D11. This 

second attempt has led to a substantially deeper sequence and improved data quality.  

Sequence assembly was performed using an assembler tool, named Canu, which was 

developed by Koren et al. (2016). Canu does correction, trimming and assembling of raw ONT 

base-called reads generated by the MinKNOW software. Canu is able to assemble entire 

genomes, requires relatively low sequence coverage (~10X), and it functions faster than any 

other assemblers. It takes only ~20,000 CPU hours to assemble a human genome with this 

software (Koren et al. 2016). However, my first sequencing attempt of seven BACs from both 

contigs 2 and 3 of the REN1 region produced sequences of low quality with a sequence depth of 

2X. The read lengths were short and the number of reads were low (Table 2), therefore, the 

sequence assembly did not produce overlapping contigs. To improve sequence quality, I 

developed a new ONT sequencing library preparation method. The original idea to improve raw 

sequence length was obtained from Jain et al. (2018), who successfully sequenced the 

centromeric region of the human Y chromosome with increased length for each read. They 

accomplished this by linearizing the BAC clones using a transposase enzyme, which cut into a 

clone at a single location. Sequencing these full-length linearized clones enabled them to solve 

the structure of the highly repetitive centromeric region (Jain et al. 2018). This idea prompted me 

to eliminate the mechanical shearing step and replace it with the linearization of BAC81D11 

with a restriction enzyme that cuts the clone at a single location. 

The BAC clone 81D11 had not been fully sequenced previously with the Illumina 

method, therefore, it served not only as a test DNA for the new method, but it generated novel 

information in the REN1 region. The restriction enzyme that cut BAC81D11 at a single site was 



24 

FseI, and its restriction site was identified by a fellow lab member Dr. Courtney Coleman. To 

ensure that the FseI enzyme was completely eliminated following the restriction reaction, the 

linearized BAC DNA was subjected to a phenol/chloroform purification. This may also have 

increased the quality of the DNA and consequently of the read data. This alternative method 

dramatically increased the number of raw reads, the read length (Figure 2), the sequencing depth, 

the number of nucleotides sequenced, the read quality (Figure 2), and the N50 and L50 indices. 

The median read length was likely decreased in the modified method because of the large 

number of short (< 10,000 bases) outliers. However, removing these short outliers from the 

dataset considerably increased the median read length (Table 2). The raw reads were assembled 

into a single contig of 69,750 nucleotides.  

While comparing both old and modified library preparation methods, the total number of 

nucleotides sequenced is 2.58 times higher with the modified method than with the ONT-

provided protocol. The total number of reads produced is 17.2 times higher in the new method.  

While extended overlaps of raw reads certainly improved sequence accuracy, a 

comparison between ONT- and Sanger-sequenced data reveals that ONT still produces data with 

considerable inaccuracy. Firstly, there are 31 indels between ONT and Sanger sequences of the 

same DNA fragment. The ONT method produced a 2,777-nucleotide long sequence, but Sanger 

produced a 2,807-nucleotide long sequence (Figure 7). These errors are attributed to the indel-

specific events during nanopore sequencing. The multiple deletions and the single insertion in 

the ONT sequence relative to the Sanger sequence are explained as “skips” and “stay”, 

respectively. A skip occurs when a k-mer, of length 5 nucleotides DNA stretch, is erroneously 

read as only a single nucleotide.  A stay is due to reading the same k-mer twice by falsely 

splitting an event into two events (de Lannoy et al. 2017). Skips and stays are common in the 
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ONT sequence because of the occasional aberrant functioning the motor protein and noise in the 

electrical signal due to voltage change. Currently, there is no reliable computational method to 

correct skips and stays.  

While ONT managed to generate a sequence that covers the entire BAC81D11 insert, and 

is therefore superior at sequencing complex genomic regions, it still has a serious disadvantage, 

which is high cost. To obtain the sequence quality reported for the second ONT attempt, I had to 

use one MinION flowcell for a single BAC clone. The cost of one MinION flowcell is currently 

$900, which makes the sequencing all 13 BAC clones prohibitively expensive for small 

laboratories. This is the reason why I was unable to sequence all of the BAC clones and fill gaps 

1 and 2 in the REN1 region physical map. 

Aligning of the newly obtained sequence of BAC81D11 with existing BAC sequencing 

revealed that BAC81D11 overlapped 22,860 nucleotides with BAC71H20, a BAC clone that has 

been previously sequenced using Illumina technology. Fortuitously, the stretch of DNA 

corresponding to the 2,807-nucleotide long Sanger-sequenced region is part of this overlap. 

Therefore, I had Sanger, Illumina, and ONT data for this 2,777-nucleotide-long stretch of DNA, 

and this allowed me to compare and draw conclusions about the accuracy of all three sequencing 

methods. In these comparisons, I considered the Sanger sequence as the standard reference, as it 

is the method producing reads of the highest accuracy. Within the 2,777- nucleotide-long stretch 

of DNA shared by all three data types, Illumina has an insertion (an extra T) relative to Sanger 

data. This extra T nucleotide is likely be due to the homopolymer related error, which often 

occurs in the Illumina sequencing (Konstantinidis et al. 2012). Further supporting the erroneous 

nature of this insertion is that the ONT and the Sanger data agree in having only nine T 

nucleotides at this location. Moreover, this ‘T’ falls at the end of an Illumina read where there is 
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a higher probability of producing errors (Hillier et al. 2008, Van Tassell et al. 2008, Dohm et al. 

2008). Additional information that sheds light on the Illumina read quality comes from my 

observation that the overlap in Illumina sequences does not perfectly correspond to the 22,860 

nucleotides of the ONT sequence but fall into two non-overlapping contigs with a 460-nucleotide 

long gap between the contigs.  
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CHAPTER 2 

SEQUENCE ANALYSIS AND HAPLOTYPING OF PART OF THE REN1 REGION  

 

Introduction 

Grapevine is a highly heterozygous species, which means that the nucleotide sequence of 

each of its chromosomes is different from the corresponding homolog (Fang et al. 2010).  Most 

of the heterozygosity in grapes is due to single nucleotide polymorphisms, or SNPs, which may 

occur in both coding and non-coding regions of the DNA. Lijavetzky et al. (2007) found that, on 

average, there is one SNP in every 64 nucleotides of grape DNA, with a distribution of one SNP 

in every 47 nucleotides in non-coding regions and one SNP in every 69 nucleotides in coding 

regions. Depending on their location in a chromosome, SNPs can have potentially important 

functional consequences. Those outside of protein-coding regions can influence the binding of 

regulatory proteins, which, in turn, can alter gene expression levels. SNPs inside protein-coding 

regions can cause missense mutations, non-sense mutations or silent mutations. Missense 

mutations lead to different sense codons, whereas non-sense mutations convert codons to 

translation termination sites and lead to truncated proteins. These altered variants of the wild-

type proteins may cause a dramatically different phenotype in the plant. Heterozygosity can also 

be caused by polymorphism at repetitive sequences in grapevines. Repetitive sequences can be 

tandem repeats or dispersed repeats, and depending on genomic location, either of these may 

have an impact on the phenotype of the plant. If a repetitive sequence is distributed randomly 

along chromosomes, then it is termed a dispersed repeat. Dispersed repeats constitute 

transposons as well as complete and truncated copies of retroviruses and gene paralogues, and 

found in all chromosomes of a plant. Tandem repeats are most commonly constituted by 
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microsatellites and minisatellites (Richard et al. 2008), but tRNA genes and repeat sequences at 

the telomeric region are also categorized as tandem repeats (Sharma et al. 2005). Microsatellites 

have a 2-5 nucleotide motif that is repeated 5-50 times (Richard et al. 2008, Gulcher, 2012), 

whereas minisatellites have a 6-100 nucleotide repeat size, with an average of a ~15 nucleotide 

motif. Both microsatellites and minisatellites together are termed as variable number of tandem 

repeats (VNTRs).  

As both SNPs and transposons are the results of random mutations and transposition 

events, the majority of them occur in regions of the genome where they have no phenotypic 

impact at all. Variation in the number of repeated elements also rarely affect phenotype. 

Regardless of phenotype effect, SNPs and microsatellites are used as markers of chromosomal 

locations. If a polymorphic SNP or microsatellite is identified and an assay is developed for its 

routine detection, then it is referred to as a molecular marker, and its variants are considered 

marker alleles.  The abundance of SNPs and microsatellites in grapevine facilitated the 

development of dense linkage maps, which in turn, enabled geneticists to map the position of 

important genes in the grape genome. In addition, the use of molecular markers helped identify 

grape genotypes and reveal important information about diversity among cultivated vines and 

wild populations (Myles et al. 2011, de Andres et al. 2012). 

One phenomenon in which the role of high heterozygosity in grapevine is well 

understood is immunity against pathogens. Grapevines, as most other woody perennial plant 

species, maintain a high-level of polymorphism in resistance genes, and the resulting 

heterozygote advantage helps protect wild populations of grapes from rapidly evolving 

pathogens. In contrast to animals, plants depend exclusively on a cell-autonomous defense 

system against disease. Consequently, plants cells evolved to have a sophisticated innate defense 
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against pathogens, which is efficient at in recognizing and killing pathogens (Jones et al. 2006). 

Innate immunity in plants has two layers: (1) pathogen- or microbe-associated molecular pattern 

(PAMP or MAMP) triggered immunity (PTI) and (2) effector-triggered immunity (ETI). The 

primary immunity is PTI and is activated immediately after the pathogen comes into contact with 

the host cell. The ETI may be initiated when the pathogen is successful at subverting PTI by 

secreting its effector proteins into the plant cell. 

PTI is initiated when the plant cell recognizes PAMPs/MAMPs or endogenous danger-

associated molecular patterns (DAMPs) at the host cell plasma membrane (Macho et al. 2014). 

These PAMPs are detected as foreign molecular entities by plant transmembrane proteins termed 

pattern recognition receptors (PRRs). PAMPs include flagellin, lipopolysaccharide, and chitin, 

cellular components that are essential for the pathogen’s survival and reproduction (Chishlom et 

al. 2006). PAMPs are highly conserved among microbes and are absent in the host, which 

enables them to be specifically recognized as “foreign” by the host PRRs. Among the best-

understood examples of PRRs are FLAGELLIN-SENSITIVE 2 (FLS2) and HOST 

ELONGATION FACTOR RECEPTOR (EFR) in Arabidopsis thaliana, which recognize the 

bacterial proteins flagellin and elongation factor EF-Tu, respectively (Kunze et al. 2004, Zipfel et 

al. 2004). PTI provides immunity to plants against adapted and non-adapted pathogens and so it 

is a basal line of non-specific immunity or primary immunity (Spoel et al. 2012). The PRR at the 

plasma membrane is complexed with several co-receptors and kinases to enable PRRs to initiate 

a signaling cascade (Macho et al. 2014). The signal from the receptor is transferred to the MAP 

kinase signaling pathway and then to WRKY transcription factors. Transcription of PTI related-

genes by WRKY factors will then sets the counterattack against the pathogen into motion. 
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Pathogens evolved to inhibit PTI by either preventing the plant cell from recognizing 

PAMPS or, more commonly, by blocking the ability of the plant to transfer the intracellular 

signal from the PRRs to the nucleus. Both bacterial and fungal pathogens block signaling by 

secreting effector proteins into the plant cell. If the plant cell is unable to detect the presence or 

activity of the effector, then PTI fails to be activated and the pathogen will kill the plant cell or 

draw its resources unimpeded. Plants, however, evolved to express resistance (R) proteins, which 

have the ability to recognize pathogen effectors. If this recognition of an effector is successful, 

the plant cell initiates the second layer of defense, ETI (Shao et al. 2003, Chisholme et al. 2006). 

        The key players of ETI are the R proteins. R proteins are large polypeptides that detect the 

presence or activity of an effector in the plant cell cytoplasm and initiate the transduction of a 

signal to the nucleus. Most R proteins do not interact directly with their specific cognizant 

effector proteins. Instead of directly interacting with the R protein, another protein, named the 

guard protein may interact with the effector. This interaction is then detected by the R protein 

and activates resistance. In this case, the target of the effector protein is the guard protein (Der 

Biezen et al. 1998). The strongest experimental support for this hypothesis comes from the 

interaction of the R protein Rps2, which detects the ubiquitination of the RIN4 guard protein by 

the bacterial effector Rpt2 in A. thaliana (Mackey et al. 2003). Most R proteins have a conserved 

structure, which contains a nucleotide-binding leucine-rich repeat domain (NB-LRR) domain. 

NB-LRR proteins fall in one of two categories based on the N-terminal domains present in the 

protein. The first NB-LRR class is the Toll Interleukin-1 receptor (TIR)-NB-LRR, which 

contains the TIR domain at the amino terminal end of the protein. The second class is the coiled 

coil (CC)-NB-LRR protein with a CC domain at its amino terminal end.  The coiled coil or the 

TIR region present at the amino terminal end of the NB domain is responsible for binding to 

https://en.wikipedia.org/wiki/Arabidopsis_thaliana


33 

other cellular proteins, which causes downstream signaling (Tao et al. 2002, Xu et al. 2000). The 

NB domain is specific for binding with ATP or ADP (Reidl et al. 2005, Yan et al. 2005). The 

ADP-bound state is inactive and the ATP-bound state is the active signaling state of the NB-LRR 

protein.   

In my thesis research, I sequenced a cloned DNA fragment of the powdery mildew-

resistant Vitis vinifera grape variety ‘Kishmish Vatkana’ (KV) and took advantage of the high 

heterozygosity of the species to determine that the cloned fragment is derived from the resistance 

homologue. I also searched the nucleotide sequence of the clone and identified an NB-LRR gene, 

which may be a candidate to confer resistance to this grape variety against powdery mildew. 

Materials and Methods  

Sequence Analysis. The ONT sequence of BAC 81D11 was aligned with the V. vinifera 

PN40024 genome sequence to identify the coordinates that delimit the 81D11-homologous 

region in the reference genome sequence (Jaillon et al. 2007), and to compare the two 

haplotypes. Sequence alignments were performed using the Basic Local Alignment Search Tool 

(BLAST) with default parameters (Altschul et al. 1990; accessible at 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LIN

K_LOC=blasthome). The gene content of the 81D11 ONT sequence was analyzed using an ab 

initio gene identification software FGENESH (Salamov et al. 2000; accessible 

at http://www.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind). 

The predicted genes and their predicted mRNA and amino acid sequences were analyzed by 

BLASTN and BLASTP software. The predicted polypeptides encoded by the hypothetical genes 

were characterized based on amino acid sequence similarity searches using the Interproscan 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://www.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind
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tool (Zdobnov et al. 2001; accessible at http://www.ebi.ac.uk/interpro/search/sequence-

search). This tool aligns the amino acid sequences against protein signature databases from 

InterPro (Mulder et al. 2005). Gene ontology (GO) information about all predicted proteins was 

obtained by searching the Arabidopsis GO database; accessible at https://www.arabidopsis.org/. 

Predicted proteins were also characterized by comparing them with their Arabidopsis orthologs.  

Haplotyping of 81D11. To determine which haplotype of KV chromosome 13 was 

represented by the 81D11 BAC clone, a 1,044-nucleotide-long internal fragment within the 

2,777 nucleotide fragment from both haplotypes of the susceptible parent ‘Thompson Seedless’ 

(TS) was compared to the corresponding 81D11 fragment. This was accomplished by cloning 

and Sanger-sequencing several PCR-amplified copies of this fragment. PCR amplification was 

accomplished using unique primers and cloning was performed using the T/A cloning kit (NEB 

BioLabs, Ipswich MA, USA). Sanger sequencing and alignment was performed to identify indels 

and SNPs that could differentiate the resistance-associated KV haplotype from the two different 

TS haplotypes. The primers from both ends were designed using Primer 3 software accessible 

at http://primer3.ut.ee/. 

To clone the 2,777-nucleotide long fragment, a high-fidelity PCR reaction was carried 

out with 81D11, KV, ‘Vassarga Tchernaia’ (VT) and TS template DNA. High-fidelity PCR 

reactions contained buffer (1X), MgCl (0.425mM), dNTP (0.2 mM), HiFidility Taq polymerase 

(0.02 U), forward and reverse primers (1 uM each) and about 10 ng of DNA. High-fidelity PCR 

reactions for TS included buffer (1X), MgCl (0.875mM), dNTP (0.2 mM), enzyme (0.02 U), 

primers (1 uM each) and about 4 ng of DNA. Agarose gel (1%) electrophoresis was performed in 

order to identify the PCR products. The ‘TS’ PCR amplicons were fractionated using agarose gel 

electrophoresis in TAE buffer, and the band of interest was extracted from the gel. Another 

http://www.ebi.ac.uk/interpro/search/sequence-search
http://www.ebi.ac.uk/interpro/search/sequence-search
https://www.arabidopsis.org/
http://primer3.ut.ee/
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round of PCR was performed using 4 internal primer sets within the 2,777-nucleotide region of 

the separated DNA band. The 2.7 kb PCR amplified products from 81D11, KV and VT were 

ligated to the pMiniT vector and transformed in E. coli 10 beta cells according to the 

manufacturer’s protocol (New England PCR Cloning Kit, New England BioLabs, Ipswich MA, 

USA). The 1,044 nucleotide fragment within the 2.7 kb fragment was cloned to the TOPO ® 

vector and transformed in One Shot ® E.coli cells according to the manufacturer’s protocol using 

NEB PCR Cloning Kit (NEB BioLabs, Ipswich, MA, USA). A colony PCR was performed on 

colonies selected from all samples to identify the banding pattern produced, in an assumption 

that all colonies that produced the same banding patterns likely contained the same haplotype. 

Two haplotypes were selected for sequencing from each individual (KV, VT, and TS). Since 

81D11 is a single haplotype, one of the 81D11 colonies was selected randomly from all of the 

colonies. Plasmid DNA was extracted from all seven samples using the GenEluteTM Plasmid 

Miniprep Kit (Sigma Aldrich, St. Louis , MO, USA) according to the manufacturer’s protocol 

(81D11, KV-1, KV-2, VT-1, VT-2, TS-1, and TS-2), and Sanger sequencing was performed by 

Nevada Sequencing Center, Reno, NV.  

Results  

Sequencing and haplotyping of BAC81D11. BAC81D11 is homologous to the 

corresponding V. vinifera PN40024 reference genome sequence between coordinates 16,836,214 

and 16,921,889 on chromosome 13. There are four regions in the BAC81D11 ONT sequence 

that are absent from the corresponding region in PN40024. These four regions fall between 

coordinates 17,290 and 17, 471, between 23,383 and 23,631, between 49,378 and between 

64,112, and 69,614 and 69,750 in the BAC81D11 insert, respectively. There are six regions in 
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the corresponding region of the reference sequence that are not present in the BAC 81D11 ONT 

sequence. The length of the PN40024 reference sequence corresponding to the 69,750 

nucleotide-long 81D11 ONT sequence is 85,676 nucleotides. Two different haplotypes from TS, 

KV, and VT were separated by ligating each haplotype fragment into a separate plasmid vector. 

Both haplotypes from TS, VT, and KV are Sanger sequenced and were differentiated into TS-1, 

TS-2, VT-1 and VT-2, and KV-1 and KV-2. The Sanger sequences of each haplotype from the 

susceptible parent, TS, were compared with the BAC81D11 Sanger sequence. Genotyping based 

on Sanger sequencing of selected fragments was performed with a 304-nucleotide fragment from 

both haplotypes of TS and 81D11. There were four SNPs and one indel between the two TS 

haplotypes in the 304-nucleotide fragment from the REN1-homologous region. Three SNPs were 

observed between one haplotype (TS-1) of TS and BAC81D11 and eight SNPs, including one 

indel, were observed between the other haplotype (TS-2) of TS and the BAC81D11 fragment 

(Figure 8). This is further supported by my results that the Sanger-sequenced haplotype of the 

2.7 kb fragment from both KV and VT, named KV-1 and VT-1, were identical to the inset of 

BAC81D11.  

Gene Content of the BAC81D11 insert. The coding sequences (CDS) of three structural 

genes were predicted in the 69,750 nucleotide-long BAC 81D11 insert using the FGENESH gene 

finding software (Figure 9). In addition to CDS predictions, this analysis provided the exact 

coordinates of the of the transcription start site and intron-exon boundaries, as well as the mRNA 

and the amino acid sequences of the predicted proteins. Coordinates and mRNA information of 

each predicted gene are listed in Table 4. The hypothetical genes predicted encode a TCP-like 

transcription factor (TCP TF), a cinnamoyl CoA reductase-1(CCR-1) like protein and a 

recognition of Peronospora parasitica 13 (RPP13)-like disease resistance protein. In addition, a 
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retrotransposon region with a reverse transcriptase gene was also predicted in the 81D11 BAC 

insert (Figure 9). 

Predicted Gene Sequence Analysis. Orthologous genes for all the hypothetical CDS 

were identified and are listed in Table 5, and superfamily and domain information of the 

hypothetical protein sequences are shown in Table 6. The Gene Ontology information of all the 

proteins are listed in Table 7. The predicted CDS, protein domain and Gene Ontology 

information are all in agreement with the FGENSH prediction that the BAC81D11 insert 

contains genes for a transcription factor, a CCR-1 like enzyme, and an NBS-LRR protein. 

Comparison of the amino acid sequence of the TCP transcription factor gene with the reference 

genome PN040024 showed that the BAC81D11 and the reference genome sequence of this gene 

are identical (Table 8). Further comparison with the KV-1 and VT-1 haplotype amino acid 

sequences revealed that the 81D11, VT-1, KV-1 sequences are 100% identical, but the 

transcription factor gene differs at six SNPs in the TS-1 haplotype (Figure 10). The polypeptide 

chain analysis of the TS-1 and 81D11 revealed that among the six SNPs, three are missense 

mutations and the remaining three are silent mutations (Figure 11). 

The CCR-1 gene is not present at the corresponding location in the reference genome 

sequence. Paralogous sequences of this hypothetical protein share sequence homology with 

multiple sites on chromosome 13 and other chromosomes in the reference genome sequence. The 

RPP13 gene itself is not present in the 81D11 coordinate of the reference genome, or present 

only as a substantially diverged variant. The longest alignment present at the reference genome is 

1,871 nucleotides long (14.3% of the gene sequence) which is present at chromosome 13 at the 

REN1 region. 
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Table 4 Hypothetical coding regions and their coordinates in BAC81D11. 

  Coordinates   

Hypothetical Genes 

Name 

pBAC81D11 Reference Genome mRNA 

Transcription Factor 16061- 16451 16877245-16877637 393 nt 

CCR-1 Like-Protein 36323 - 49409 16900536-16911637 1,665 nt 

Disease Resistant 

Protein 

52019 - 65134 16989175- 16991697 3,123 nt 

Retrotransposon Region 66186-69584 16918443-16921852 1854 nt 

 

Table 5 Ortholog information of genes of BAC81D11. 

Gene Name NCBI Accession 

Number of Nearest 

Ortholog 

Ortholog Species 

Transcription Factor-

Gene#1 

XM_021793362.1 Hevea brasiliensis 

CCR-1 Like -Protein-

Gene#2 

XM_018984607.1 Juglans regia 

Disease Resistant Protein-

Gene#3 

XM_010927512.1 Elaeis guineensis 

Retrotransposon pol gene XM_024171691.1 Morus notabilis 
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Table 6 Hypothetical proteins encoded by genes of BAC81D11. 

Predicted 

Protein 

Amino 

Acid 

Sequence 

length 

Domains Domain 

Coordinates in 

Amino acid 

Sequence 

Domain 

Interpro 

ID 

Superfamily 

Transcription 
Factor 

130 TCP 68 - 128 IPR017887 None 

CCR Like 

Protein 

554 NAD 

dependent 

Epimerase/ 

Dehydratase 

58 - 297 IPR001509 NAD(P) – binding 

Superfamily (2) 

Disease 

Resistant 
Protein 

1040 NB-ARC, Rx, 

N-terminal 

367 – 405, 431 – 551 

& 560 - 606 

IPR041118, 

IPR002182 

P-loop containing 

nucleotide 
triphosphate 

superfamily, Leucine 

rich repeat 

Superfamily (2) 

Pol polyprotein 

of LTR 

retrotransposon 

617 Reverse 

transcriptase, 

RNA-

dependent 

DNA 

polymerase 

479 - 549 IPR013103 Ribonuclease H 

 

Table 7 Gene ontology information for genes of BAC81D11. 

Gene 

Name 

Accession 

Number 

Molecular Function Cellular 

Location 

Biological Process 

Transcription 

Factor 

AT1G58100 Regulation of transcription Nucleus RNA polymerase II 

proximal promotor 

sequence-specific DNA 

binding, Transcription 

regulatory region DNA 

binding. 

CCR-1 Like 

Protein 

AT1G5950.1 Catalytic activity, Cinnamoyl 

CoA reductase activity, 

Coenzyme binding, 
Oxidoreductase activity, 

Oxidoreductase activity acting 

on the CH-OH group of 

donors, NAD and NADP as 

acceptor. 

Cytoplasm, 

Cytosol 

Lignin biosynthetic process, 

oxidation-reduction process, 

Circadiam rhythm, Response 

to cold 

RPP 13 Like 

Protein 

AT1G58602.1 ADP binding, ATP binding Guard cell Defense Response 
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Figure 8 Alignment of a 304-nucleotide fragment of 81D11 with the corresponding haplotypes 

from ‘Thompson Seedless’ (TS-1 and TS-2). SNPs and indels are marked in red boxes.  

 

Figure 9 Map of the BAC81D11 insert showing the position of predicted genes and the 

retrotransposon fragment.  
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Figure 10 Alignment of transcription factor gene of BAC81D11, and TS-1, VT-1 and KV-1 

haplotypes. SNPs are numbered and marked in red boxes.  

 

 
Figure 11 Alignment of the transcription factor amino acid sequence of TS-1 and 81D11. Amino 

acid substitutions and silent mutations are highlighted with and green boxes, respectively. 
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Discussion  

BAC 81D11 is a heretofore unsequenced BAC clone from the REN1 region of the 

resistance haplotype of the V. vinifera variety KV. In this work, I haplotyped this clone by taking 

advantage of its richness in polymorphism. A 1,180-nucleotide fragment containing a 

transcription factor gene was subcloned from BAC81D11, two haplotypes from KV (KV-1 and 

KV-2) and two haplotypes from its susceptible parent TS (TS-1 and TS-2) were sequenced, and 

the sequence data were aligned to one-another. Although the sequencing of the entire 1,180-

nucleotide fragment was unsuccessful in one of these subclones, a 304 nucleotide-long sequence 

could be successfully sequenced and was available in all of these haplotypes. I found that the 

nucleotide sequence of the BAC81D11 clone was different from either haplotype of the 

susceptible parent TS, which meant that the BAC81D11 haplotype must have been passed down 

from the disease-resistant parent VT.  This conclusion is further supported by my results that the 

Sanger-sequenced haplotype of the 2.8 kb fragment from both KV and VT, named KV-1 and 

VT-1, respectively, were identical to the corresponding fragment in BAC81D11. Taken together, 

these data provide conclusive evidence that the insert in BAC81D11 is a fragment of the 

resistance haplotype of KV. Even though the 3040-nucleotide region is short, I have confidence 

in these data because this stretch of BAC81D11 DNA differs from its TS-1 counterpart in 3 

SNPs and from its TS-2 counterpart in seven SNPs plus an indel (Figure 8). Furthermore, I 

examined the raw sequence reads by directly comparing the chromatogram of the haplotype to 

one-another in all possible combinations. The direct examination of chromatogram data excluded 

the possibility of mistaking sequencing errors for polymorphisms. The sequence divergence in 

this short stretch of non-coding DNA vividly demonstrates the high-level of heterozygosity of V. 

vinifera and other Vitis species (Myles et al. 2009). 
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The REN1 region had been mapped by positional cloning and its representative BAC 

clones identified by a combined genetic and physical mapping approach (Coleman 2016).  

Among the REN1 BAC clones is BAC81D11, which had been tentatively mapped to the left side 

of the first gap in the physical map.  Because of its tentative position, BAC 81D11 could provide 

important novel information in its gene content and potentially filling one of the gaps in the 

REN1 physical map. Therefore, I sequenced this BAC clone using ONT hardware and software 

and predicting gene content using FGENESH and Genscan. Both programs identified three 

putative genes, namely a TCP-like transcription factor, a cinnamoyl-CoA reductase-like protein, 

and a RPP13-like protein, plus identified sequences characteristic of an LTR retrotransposon 

containing a partial sequence of a pol polyprotein gene.  

Characterization of the TCP like transcription factor. This transcription factor (TF) 

gene product is best studied in Arabidopsis thaliana. The TF gene is named TCP TF gene family 

after its founding members TEOSINTE BRANCHED1 (TB1), CYCLOIDEA (CYC), 

PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR1 (PCF1) and PCF2 (Li 2015). The 

polypeptide chain of the TF gene has 130 amino acids. The predicted TF gene is classified into 

Class I TCP-like TF because of the presence of Arg-16, Cys-21, and Ala-22 in its polypeptide 

sequence (Aggarwal et al., 2010, Li 2015). Class 1 TCP TFs have a conserved cysteine residue at 

the 20th position in the 60 amino acid-long TCP domain, which differentiates the Class I from the 

Class II TCP domain where no Cys-20 is present. Also, the Cys-20 is followed by an alanine 

residue and an arginine residue at the 15th position in all the class 1 TCP domains of the TF 

polypeptide chains (Li 2015). The cloned TF gene has 61 amino acids present in the TCP 

domain. Therefore, one position downstream for all these conserved TCP class I amino acids in 

the predicted gene will be due to the extra one amino acid present in the TCP domain, and 
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therefore, it can be classified as class I TCP TF. The TCP domain is responsible for the DNA-

binding property of this TF protein family and the Cys-20 residue plays an important role in its 

regulation. Interaction of this cystein residue with oxidants inhibits DNA-binding activity, and 

this inhibition can be reversed by the presence of reductants (Viola et al. 2011).   

Members of the TCP TF protein family have been implicated in ETI and other plant 

developmental function and therefore it is of interest for this study. A single mutation in three 

TCP TF paralogs TCP13, TCP14 and TCP19 in Arabidopsis leads to considerably higher 

susceptibility to infection to two different avirulent Hyaloperonospora arabidopsidis isolates 

(Mukhtar et al. 2011). On the other hand, the same study found that a mutation which abolished  

TCP15 expression exhibits enhanced disease resistance to a virulent H. arabidopsidis isolate. 

Therefore, it was concluded that TCPs can act as negative regulators of ETI also.  An indirect but 

noteworthy piece of evidence for the involvement of TCP in ETI is that several of the TCPs 

interact with the SUPPRESSOR OF Rps4- RLD1 (SRFR1) at the nucleus (Kim et al. 2014). 

SRFR1 is a suppressor of ETI. It is also evident that several TCP paralogs in A. thaliana cause 

the expression of genes that antagonistically act on SRFR1, thereby balancing the immune 

response in Arabidopsis (Mukhtar et al. 2009). Kim et al. (2014) performed yeast two-hybrid 

assays to identify whether TCP TFs are involved in interaction with SRFR1 to block their 

immunity inhibition. Six TCP TF paralogs have been shown to interact with SRFR1 (Kim et al. 

2014). 

The coding sequence of the TF gene in the REN1 region is 390 nucleotides long and it 

contains a single exon.  As in other plant species, the predicted polypeptide chain is 130 amino 

acids long and contains a 60 amino acid-long TCP domain. The TCP coding sequence of 

BAC81D11 is 100% identical to the VT-1, and KV-1 haplotypes, but different from the TS-1 
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haplotype of TS. Among the six SNPs between 81D11 and TS-1 TF genes, three of the SNPs are 

missense mutations and the remaining three are silent mutations. All three silent mutations fall in 

arginine codons. The three missense mutations in the polypeptide chain are A28T, G87A and 

R126K). Among the three missense mutations, A28T and R126K are of approximately the same 

size and have the same hydropathy profile. The G87A amino acid substitution causes the greatest 

change in size and hydropathy. Two of the three missense mutations and all three silent 

mutations are in the DNA-binding TCP domain of the TF polypeptide chain (Table 9). 

Nonetheless, it is difficult to consider that any of these polymorphisms may influence disease 

resistance in KV, because the powdery mildew susceptible PN40024 genome has the exact same 

TCP allele. 

Characterization of the Predicted CCR- 1 like protein. Along with cinnamyl alcohol 

dehydrogenase (CAD), cinnamoyl-CoA reductase enzymes function in the conversion of 

cinnamoyl-CoA esters to monolignols. Cinnamoyl-CoA ester is the precursor of monolignol, 

which is the monomer of lignin (Boerjal et al. 2003). Lignin acts as a physical barrier to almost 

all pathogens (Moeshbacher et al. 1990), and lignin-like phenolic compounds are deposited and 

concentrated at the site of pathogen attack (Reimers et al. 1991, Lange et al. 1995, Campbell et 

al. 1992, Anterola at al. 2002). Lignin is also deposited in the vascular tissues to provide strength 

to the cell wall (Boerjal et al. 2003), but this developmental lignin has been shown to be different 

from defense lignin in its monomeric constitution (Lange et al. 1995). 

Cinnamoyl CoA reductase 1-like protein is best studied in Oryza sativa in which 

Cinnamoyl-CoA Reductase 1 (OsCCR1) has been shown to play a role in defense against 

pathogens (Kawasaki et al. 2005). There is strong evidence from previous studies that OsCCR1 

functions in the biosynthesis of lignin. The expression of the OsCCR1 gene is activated by the 
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OsRac1 protein, which is a GTPase and is involved in the production of reactive oxygen species 

(ROS).  Lignin is synthesized from monolignols at the cell wall by peroxidase and H2O2 (Boerjal 

et al. 2003).  H2O2 may enhance polymerization of monolignol and monolignols themselves have 

antimicrobial properties (Keen et al. 1979). 

Characterization of the Predicted RPP13-Like Protein. The RPP13 gene is best 

studied in A. thaliana. RPP13 in Arabidopsis encodes a coiled-coil-type nucleotide-binding site 

and leucine rich repeat (CC-NBS-LRR) domain R gene (Liu et al. 2018). RPP13 confers 

resistance against the biotrophic-oomycete Pernospora parasitica, which causes downy mildew 

disease in several plant species. The putative RPP13 protein from BAC81D11 was predicted to 

contain a coiled-coil and a nucleotide-binding site domain, but it was not predicted to have a 

leucine-rich repeat (LRR) domain. Nonetheless, certain elements of LRR domains are 

recognizable by direct observation, and the overall predicted structure the RPP13-like gene in 

BAC81D11 is recognized as an LRR protein by various databases (Table 9). Therefore, the 

RPP13-like gene from 81D11 can be considered as a CC-NBS-LRR protein (Ade et al. 2007).                                            
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SUMMARY 

This work focused on the molecular characterization of the REN1 locus of the Central 

Asian Vitis vinifera variety ‘Kishmish Vatkana’. The REN1 locus of this grape confers resistance 

to the economically important pathogen powdery mildew (Erysiphe necator). A DNA fragment, 

cloned as an insert of a bacterial artificial chromosome (BAC), was sequenced using the third-

generation sequencing technique of Oxford Nanopore Technology (ONT). For this, a modified 

version of the ONT library preparation method was developed, which was based on linearizing 

the BAC clone with a restriction enzyme that cut the entire plasmid at a single site. Comparative 

analysis of the sequence data from the modified and the original ONT methods demonstrated that 

the modified protocol yielded substantially more data, deeper sequence coverage, higher read 

quality and greater read length than the original protocol. The resulting reads were then 

assembled into a single 69,750 nucleotide-long contig, which extended the sequence information 

of the REN1 region by 46,890 nucleotides. The newly generated DNA sequence revealed that the 

BAC insert contained three complete open reading frames encoding functional proteins of a 

TCP-type transcription factor, a CCR-1 enzyme, and a CC-NBS-LRR-type resistance gene, all of 

which could potentially contribute to the resistance phenotype of ‘Kishmish Vatkana’. An 

approximately 2.7 kb fragment from within the locus was cloned in two haplotypes of the 

susceptible parent of ‘Kishmish Vatkana’, both of which differed from the BAC sequence at 

several single nucleotide polymorphisms, providing conclusive evidence that the insert in the 

BAC clone represents the resistance haplotype.   

          A major limitation of these data is that they do not provide conclusive evidence about the 

contribution of the genes to powdery mildew resistance. Further limitations are that the 

BAC81D11 insert sequence generated by ONT method is less than 100% accurate and the gaps 
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between the previously assembled contigs remain to be unfilled. Nonetheless, this thesis opens 

opportunities for hypothesis-driven experiments. The evidence that the BAC81D11 insert is of 

the resistance haplotype and the exact demarcation of the coding sequences enable other 

researchers to clone these genes, transfer them to powdery mildew-susceptible plants, and test 

the resistance of the resulting transgenic plants. Furthermore, this research contributes to the 

methodology of third-generation DNA sequencing in that it presents an advanced ONT library 

preparation protocol which can be used by other researchers sequencing BAC libraries.  
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