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ABSTRACT 

Bacterial co-infections with influenza A virus (IAV) are extremely serious and life-threatening. 

However, there exists limited understanding about the importance of fungal infections with IAV. 

Clinical case reports indicate that fungal co-infections do occur and suggest the IAV pandemic of 

2009 had a propensity to predispose patients to secondary fungal infections more than previous 

IAV strains. IAV-fungal co-infections are marked by high mortality rates of 47 to 61% in 

previously healthy individuals between the ages of 20 and 60. Yet, the variables involved in this 

co-infection remain undetermined. I achieved effective recapitulation of this co-infection using a 

C57Bl/6 murine (mouse) model which resulted in similar morbidity and mortality rates seen in 

humans. Here, I proposed that an exacerbated immune response during infection with IAV and 

the opportunistic saprophytic ubiquitous fungal pathogen, Aspergillus fumigatus, induces the 

development of more severe pneumonia. I explored the possible mechanisms regulating 

inflammation at the cellular level. To do this, a cellular model was designed using primary 

mouse bone marrow derived macrophages (BMDMs) infected first with IAV and later co-

infected with A. fumigatus. Our in vitro data indicated that IAV and fungal co-infections 

synergistically enhanced immune cell signaling and pro-inflammatory cytokine production 

through the caspase-1 containing inflammasome. Through various immunological techniques, I 

established that, during co-infection, AIM2 mediated maturation of caspase-1 facilitates the 

observed increase in production of pro-inflammatory cytokines. Interestingly, enhanced caspase-

1 maturation is not due to increased NLRP3 inflammasome priming. NLRP3 expression actually 

diminishes over the course of infection, which could be explained through increased proteasomal 

degradation of NLRP3 through dysregulated DAPK1 signaling. 
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INTRODUCTION 

 

Over the last century, the field of immunology, through great strides, has made 

meaningful contributions to science through prolonging and improving the quality of life. As our 

repertoire of knowledge about the immune system continues to evolve, interestingly, so does the 

causative agents of infectious diseases we must combat daily. Immunologists, as detectives, have 

plenty of clues left to investigate. As new pathogens emerge, old pathogens mutate and/or evolve 

and continue to infect the human population. Host-pathogen interactions are a large portion of 

understanding how populations succumb to disease. Some interactions are multivariate. Some 

diseases occur with multiple pathogens infecting the same host, a phenomenon known as co-

infections. A co-infection is simply two pathogens successfully infecting the host in sequential 

order, and the order of infection is often essential. These interactions are the premise of the 

research to be elaborated further in this thesis. 

Much like a thrilling mystery novel, there exists a constant struggle between the 

protagonist (the host) and the antagonist (the pathogen). The pathogen is consistently developing 

mischievous methods to invade or evade the host. Our story begins with a recent example in 

human history of a host-pathogen battle, the influenza A pandemic of 2009. Medical 

professionals and immunologists were puzzled by this pandemic, in particular, by an explicit 

population of young, previously healthy individuals who became ill and died –a population not 

noticeably plagued by pandemic strains in recorded history [1]. The primary pathogen was 

influenza A virus (IAV). IAV has claimed many lives throughout the last century [2]. IAV, after 

infecting the host, initiates a robust immune response, which results in taxing of the body’s 

resources. Interestingly, IAV usually does not possess the virulence to kill someone on its own, 
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but the depletion of the hosts ability to clear this primary pathogen allows a secondary or 

opportunistic pathogen, such as a fungus, Aspergillus fumigatus for example, to occupy the host 

[3]. Together, these two pathogens are the culprits of a devastating disease with mortality rates 

ranging from 47 to 61% in these co-infected (but initially immunocompetent) individuals [4].  

While IAV-bacterial co-infections are well defined, our understanding of co-infections 

with fungus as the major co-infecting agent is severely lacking. Interestingly, this co-infection 

still leaves medical professionals baffled by the lack of treatments to successfully prevent such 

high mortality rates over the last decade. Therefore, growing awareness of these co-infections 

arises from their occurrence, especially in recent years [5].  

For scientists, the goal is to make a contribution to ‘solve’ this mystery or understand 

how these two antagonists successfully destroy the protagonist together in this increasingly 

prevalent viral-fungal co-infection. The development of the disease is likely associated with the 

specific immune responses to IAV and A. fumigatus. It must be noted that the response of the 

immune system to each of these pathogens is quite different. To generally understand this co-

infection, one must first obtain a foundational understanding of these causative agents involved 

and their unique immune responses separately. Improved understanding of the pathogens 

themselves, and the immune responses they elicit, will facilitate new research into improving the 

effectiveness of available treatments.  

 

Influenza A virus 

Influenza A virus (IAV), a common, but significant human respiratory pathogen, has 

affected us all in one way or another. Ranging from mild illness to life threatening infections, 

most of us have suffered from the seasonal flu.  
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History. IAV remains responsible for the killing of millions of people. The most 

notorious IAV pandemic was the devastating 1918-1919 H1N1 ‘Spanish Flu’ pandemic, and 

IAV still remains a global threat to human health yearly via seasonal pandemics [6].  Despite 

development of an ever-changing vaccine in response to mutating IAV existing for the last 70 

years, seasonal and pandemic influenza infections remain prevalent. Other influenza pandemics 

have occurred but were less severe. Specifically, the most recent flu pandemic, the 2009 H1N1 

‘Swine Flu’, surfaced in the United States (USA) and Mexico [7]. The Swine Flu emerged in 

April and by June, the World Health Organization (WHO) classified this specific strain as a 

pandemic virus [8].  

Characteristics. Belonging to the Orthomyxoviridae family, IAV is one of three genera 

of influenza viruses infectious to humans, influenza A, B and C [9]. IAV is an enveloped virus.  

The envelope is a lipid membrane surrounding the virion derived from the host cell plasma 

membrane [10]. The IAV genome consists of eight separate segments of negative-sense single-

stranded RNA (entire genetic material). Two important glycoprotein antigens project from the 

virion’s surface: haemagglutinin, HA (of which there are 18 versions, H1 – H18) and 

neuraminidase, NA (with versions N1 –N11) [11]. The 18 variants of HA and 11 variants of NA 

glycoproteins contribute to further subdividing IAV [12]. IAV strains are referred to by the 

associated nomenclature through the HA and NA specific to the virus – H1N1 [13-15]. IAV has 

additional proteins including the nucleoprotein (NP), responsible for aiding in viral replication, 

and an internal coat of matrix proteins (M1 and M2), which function as mediators for exporting 

of viral ribonucleoproteins from the host cell nucleus and virus assembly and exit [16-18]. The 

remaining segments of the RNA genome of IAV encode for molecular machinery proteins 

known generally as polymerases. These polymerase complex proteins, polymerase basic proteins 
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(PB1/2) and polymerase acidic protein (PA) together are the subunits that form a trimeric viral 

RNA-dependent RNA polymerase [19-22]. Genome replication and mRNA transcription from 

the RNA viral genome by these RNA polymerases occurs within the nucleus of infected host 

cells [23]. Lastly, NS1 (nonstructural protein) and PB1-F2 (part of the viral RNA polymerase) 

are important in viral virulence through blocking antiviral immune responses (interferons) within 

the host cell [24-27]. 

Gene Re-assortment. The 2009 strain of IAV was unique. The genes involved were not 

previously identified together in any of the common reservoirs of influenza before –human, 

avian and other mammals, like swine. Therefore, this pandemic (H1N1) 2009 virus consisted of 

multiple re-assorted genes from diverse organism origins [28]. This pandemic (H1N1) 2009 

virus is currently the only IAV strain with an animal reservoir that can sufficiently transmit 

infection to humans. The ability to transmit from an animal reservoir to humans has been 

associated with pandemic viruses reported throughout history and is one major reason why it is 

studied [29]. Recall the segmented genome of IAV mentioned previously. This segmented 

genome structure facilitates the exchange of genes between different strains of influenza that 

have infected the same host cell (antigenic shift). Such genetic re-assortment poses a significant 

risk of zoonotic infection through host switching [30]. Importantly, this pandemic (H1N1) 2009 

virus underwent genetic translocation from three different IAV strains and expedited the 

generation of a novel pandemic strain of IAV in 2009 [31]. The genome of IAV H1N1 2009 was 

composed of one genetic segment from human IAV H3N2, two segments of avian IAV H1N1 

and the remaining five segments originating from swine IAV H1N1 [32]. Thus, the addition of 

swine as a confirmed mixing vessel for influenza viruses contributes to increased host range and 

virulence of IAV in mammals [33-35].  
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Transmission. The 2009 H1N1 strain of IAV was also different from most seasonal 

IAVs, because it affected mainly teens, young adults and adults instead of the common 

propensity of most IAVs to affect the very young or elderly [36]. This pattern of infectivity was 

likely due to previous IAV (H1N1) strains circulating amongst the human population for decades 

prior to this specific exposure with the 2009 pandemic strain [37]. Transmission of IAV occurs 

normally through inhalation of virus-laden air-droplets, contact with contaminated objects, also 

called fomites, and by direct contact with infected individuals [38]. Post inhalation of aerosols, 

IAV, an obligate intracellular parasite, targets the pseudostratified columnar epithelial cells of 

the trachea and bronchial tree [39].  

Viral Factors Implicating Infection Severity. Previous exhaustive research of IAV co-

infections with bacterial pathogens, especially with Streptococcus pneumoniae, have highlighted 

the severity of a primary viral infection to be associated with the specifics of HA and NA surface 

antigen types randomly resulting from viral re-assortment [40-42]. Due to the specificity of HA 

binding to α2,6-sialylated glycans (cellular glycoprotein receptors) present on the cellular 

membrane of unique respiratory epithelia previously mentioned and the host protease activity 

does impact the site and development of the strain of IAV infection depending on the strain [43-

44]. HA experiences a conformational change once the low pH within an endosome permits the 

successful penetration of the virion into the host cell. Highly pathogenic strains of IAV are 

cleaved inside host cells. NA must be complementary to and share the same receptor affinity of 

HA [45-46]. This NA affinity promotes ease of release of newly formed virion progeny through 

hydrolyzing the sialic acid to facilitate virion detachment from the host cell [47-48]. IAV can 

also produce a viral cytotoxin, PB1-F2. This cytotoxin actually has been linked to increasing 

inflammation and therefore host cell damage and actually the adherence of co/secondary 
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bacterial infecting agents, such as the mentioned S. pneumoniae [49-52]. Alarmingly, the 

predicted superinfections reported were of different types during the 2009-2010 flu season in 

comparison to the 1918 H1N1 pandemic due to the use of antibiotics, supportive measures 

(ventilators) and vaccinations for S. pneumoniae. Therefore, the predicted reduction in S. 

pneumoniae co-infection were correct, a decrease to 30% [53], but there was a shift to co-

infection with S. aureus and A. fumigatus. The direct link of HA, NA and PB1-F2 and their 

involvement of co/secondary fungal infections with IAV have yet to be studied in detail. 

Pathogenesis. An infection with IAV causes a broad range of signs and symptoms in 

infected individuals. Commonly, the signs or symptoms of a positive IAV infection includes 

runny nose, congestion, muscle and headaches, dizziness, fatigue or malaise and fever [54]. The 

pathogenesis of IAV can be quite mild to severe. Interestingly, 2009 H1N1 is reported to be 

characterized also by the observed increased replication and pathological changes in the lungs of 

nonhuman primates and ex vivo human lung tissues [55]. Such observations could contribute to 

explaining the ability of this strain of IAV to cause severe viral pneumonitis in humans [56]. 

2009 H1N1 was predicted as a high-virulence virus like 1918 H1N1 and H5N1. High-virulence 

viruses such as these tend to infect pneumocytes and intra-alveolar macrophages [57-59]. Among 

the extensive list of co-infecting bacterial and other viral pathogens after IAV infection occurs, 

the 2009 pandemic strain of IAV is believed to have the propensity to predispose patients to 

opportunistic pathogens such as fungi like Aspergillus fumigatus [60].  

 

Aspergillus fumigatus (A. fumigatus) 

A. fumigatus is a ubiquitous, airborne saprophytic fungus. Its airborne spores are highly 

prevalent, and it is essential in the recycling of environmental carbon and nitrogen within the 
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earth’s soil by the decomposition organic debris [61].  Due to the ability of the innate immune 

systems of healthy individuals to eliminate the inhaled conidia spores and prevent infection with 

A. fumigatus, this fungus was considered an opportunistic weak pathogen until recently [62]. A. 

fumigatus is now considered to be there causal agent of the most common mold infection 

worldwide [63-64]!  

General Biology. A. fumigatus is ubiquitous, not only because of its prevalent and easily 

dispersed spores, but also due to several factors such a cell wall structure and the physiology of 

the vegetative biofilm generated through metabolism and responses to stress. The fungus can 

grow and survive at a wide range of temperatures (~12C to 37C+) and pH (3.7 to 6.7) [65]. 

The conidia spores are easily airborne upon starvation of the fungus. These asexual spores detach 

from specialized hyphal head structures, or conidiophores, to eventually become airborne and 

spread through wind currents after disturbance [66]. Conidiophores produce the conidia and aid 

in the spore’s transmission asexually. It was believed, until 2009, that A. fumigatus was 

reproducing exclusively asexually. But, conditions for sexual replication are explicit and non-

physiological due to the ascosphores (sexual cycle structure) remaining dormant until they 

successfully germinate above 65C [67]. The hyphae of A. fumigatus are responsible for the 

formation of fungal colony growth, or mycelium formation, after germination begins under 

optimal temperature, pH and humidity [68]. The colony eventually forms a biofilm, the 

vegetative form of this filamentous fungi that is made of an extracellular matrix of hyphae 

composed of embedded septated multinucleated cells [69]. It must be noted here that forms of 

the cell wall of the fungus differ between the multiple stages (conidial, mycelial/hyphal, biofilm) 

of A. fumigatus [70-71].  
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The cell wall composition of A. fumigatus continuously adapts over the life cycle of the 

fungus as the cell cycles progress and the environment of the fungus is altered [72]. 

Understanding why and how these fungal cell wall configurations exist remains a major 

challenge.  However, the organizational structure of the inner cell wall is thoroughly 

characterized. Generally, the inner portion of the cell wall is composed of cross-linked branches 

of -1,3-glucan/-1,4-glucan, galactomannan, galactosaminogalactan (GAG) and chitin –

constituting the insoluble, alkali skeleton [73-74]. Beginning with the conidial stage, the dense 

layer around the conidia contains -1,3-glucan, melanin and RodA hydrophobin [75]. The 

hyphal cell wall, succeeding germination, changes and the melanin and rodlet layer are shed to 

allow hyphal growth to proceed [76]. It must be noted that depending upon the environmental 

conditions A. fumigatus is experiencing, the hyphae may continue to contain melanin despite the 

shedding of that specific layer [77]. Previous research has highlighted that the gene required for 

the biosynthesis of melanin, PKSP, was upregulated within the lung environment of 

immunocompromised mice [78-79]. Therefore, melanin still remains a significant area of study 

for understanding the virulence of A. fumigatus and the resulting fungal diseases which lead to 

aspergillosis. It is known that the extracellular matrix composed of GAG, galactomannan, -1,3-

glucans and melanin facilitate the promotion of A. fumigatus infections [80]. 

For the metabolism of A. fumigatus to be effective, this fungus has adapted to a variety of 

nutritional requirements found in biological materials, also contributing to its ubiquity. The 

ability of the fungus to adapt to the vast variety of nutritional sources is associated with its wide 

range of protease and enzyme production. These proteases and enzymes allow not easily 

accessible nutrients to become obtainable. These proteases and enzymes facilitate the acquisition 

of essential cations from the host tissue such as iron and zinc [81]. Previous research highlighted 
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that the acquisition of nitrogen and carbon is crucial for initiating the early stages of infection 

[82]. Mutating the transcription factors that regulate these protease and enzyme genes (cross-

pathway control protein A (CpcA), AreA and CreA) resulted in reduced virulence observed in 

murine in vivo experiments [83]. A. fumigatus is actually an obligate aerobe, meaning that the 

fungus must have oxygen to survive [84-85]. However, A. fumigatus has developed a mechanism 

of strain/stress fitness under low oxygen conditions – contributing to virulence of the fungus. It 

was reported that A. fumigatus actually induces a gene that correlates to the production of sterol, 

SRBA (sterol regulatory element-binding protein gene). This gene initiates the biosynthesis of 

ergosterol. Low sterol levels are confirmed in fungi like A. fumigatus when in a hypoxic 

environment. Hypoxia actually facilitates proteolytic cleavage through Sre1 due to a loss of acyl-

CoA. The regulatory links between hypoxia adaptation, iron homeostasis and ergosterol 

biosynthesis remains with the fungal electron transport chain within the mitochondria and 

alcohol dehydrogenase [86-87, 289-290]. This, therefore, allows A. fumigatus to thrive in many, 

including the lungs of humans. 

Transmission. A. fumigatus fungus profusely conidiates because of the thousands of 

conidia produced by the conidial head. Dissemination of the conidia is not complicated; it is 

simply done through disturbances usually caused by strong air currents in the environment. Due 

to their small size and buoyancy, the conidia, once in the air, remain there. Therefore, it would 

make sense that at least hundreds to thousands of asexual spores are inhaled per person per day 

[88]. Airborne conidia, with their microscopic sizes of 2 –3 microns, can be inhaled deep into the 

lungs where they reach and settle into the alveoli [89]. The lung tissues, although not a normal 

niche for A. fumigatus, provides an environment rich in organic compounds and essential metals 

for the fungus to feed upon. A. fumigatus is normally no danger to healthy ‘immunocompetent’ 
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individuals due to the armory of defenses the innate immune system provides us. In 

immunocompetent individuals, resident alveolar macrophages, muco-ciliary action of the lung 

epithelial cells and nutritional immunity are just a few key mechanisms in host defense [90-92]. 

However, proteases and destructive enzymes permit the broad biological specificity of this 

fungus to achieve nourishment from within the human host. The explicit known proteases that A. 

fumigatus uses to enable growth include serine metalloproteinases, and aspartic proteases [93-

95]. Not surprisingly, much more research is needed to understand which pivotal proteases and 

enzymes destroy the human host for A. fumigatus’ survival.  

Aspergillus fumigatus remains one of the most challenging and poorly understood 

pathogens that can infect humans. The complexity of this nomad pathogen accelerates the urgent 

need to grasp its interaction with the host immune response.  

 

Relevant Immune System 

Maintaining homeostasis of the host is the vital role of the immune system, through the 

orchestration of cells, tissues and organs working together to protect and defend against the 

invasion of foreign agents. Intriguingly, all living things have an immune system of some kind. 

Humans, in particular, have complex immune systems, configured normally with sections of the 

innate and adaptive immune systems.  

Overview of Innate Immunity. During the first critical hours and days after exposure to 

an invader, the innate immune system acting as the ‘first line of defense’, is responsible for 

initiating a biological response to harmful stimuli –known as inflammation.  

Inflammation. The primary purpose of inflammation is the communication and migration 

of immune cells to the exact site where the trauma occurred. Without this response, the 
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infections, wounds and damage to tissue that the body experiences would not be able to heal 

efficiently. There exist five symptoms that are commonly known for acute inflammation, these 

include: redness, heat, swelling, pain and loss of function. So, what causes these five symptoms? 

The immune cells responding to a specific trauma release various chemical messages, known 

generally as inflammatory mediators [96-98]. These mediators include hormones: bradykinin and 

histamine. These two hormones cause a physiological reaction around the site of trauma known 

as vasodilation, therefore increasing blood flow to reach the injured tissue. Two of the five 

symptoms, redness and heat, are explained through this increase in blood flow due to the release 

of these mediators. The increased blood flow and vascular permeability in the injured area 

facilitates immune cell entry into the affected tissue. This process, scientifically known as 

diapedesis, is the movement of immune cells into tissue by passing through leaky blood vessel 

walls. Blood vessel leakiness and diapedesis are responsible for the swelling and pain 

experienced. Due to the pain, loss of function of the injured area results, causing the host to 

protect the affected portion of the body [99-106].  

Innate Immune Cells. Commonly known as white blood cells or leukocytes, immune cells 

come in all shapes, sizes and functions. These differentiated leukocytes originate from 

hematopoietic stem cells [107-108]. There are subsections of leukocytes known as granulocytes, 

antigen presenting cells and lymphocytes. Here, I will mainly focus on cells involved with the 

innate immune system –specifically antigen presenting cells (APCs) and granulocytes. APCs 

include macrophages and dendritic cells, which coordinate their arrival at specific sites of trauma 

[109-110]. These phagocytes have the general role of the detection of foreign invaders or their 

particles –including carbohydrates, proteins and lipids –and literally presenting or ‘showing’ 

chopped up pieces of pathogens (antigens) to activate a lymphocyte (adaptive immune cells such 
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as T and B cells) [111-112]. How can these innate immune cells, specifically phagocytes, know 

that what they are presenting is a cause of danger to the host? The answer to this question lies in 

a host of proteins capable of detecting pathogen components not found in the human body. 

Pathogen Associated Molecules. Foreign molecular components of a microorganism can 

come in all shapes and sizes and are usually referred to as pathogen associated molecular 

patterns, or PAMPs. PAMPs are molecules found in the pathogen, but not in the host, like cell 

wall components or specific pathogen proteins [113-116].  

PAMPs of IAV. The pathogenic particles that trigger innate immunity in response to IAV 

include the following: host DNA released in response to death of neighboring cell by IAV, 

ssRNA and dsRNA from the virus, the virus M2 protein, viral PB1-F2 protein and the associated 

damage to the cell in response to viral replication all serve to activate the immune response [117-

119].  

PAMPs of Aspergillus fumigatus. Research in A. fumigatus virulence is currently a topic 

of interest due to its complexity described above. Several well-defined PAMPs of A. fumigatus 

include the carbohydrates present within the cell wall, specifically -1,3-glucan, mannose-

containing structures such as galactomannan, and chitins [120-122].  

Pathogen Detectors. Interestingly, there exist specific immune receptors called pattern 

recognition receptors (PRRs) present in or on the host epithelial and immune cells that can 

distinguish foreign molecular markers or PAMPs and host cell damage associated molecular 

patterns (DAMPs), like extracellular ATP release. The specificity of PAMPs and DAMPs and 

their activation of exclusive PRRs remains dependent upon the pathogen causing the infection. In 

other words, IAV will activate a specific subset of PRRs that are different than the PRRs 

activated by A. fumigatus. There are a variety of PRRs such as Toll-like rectors (TLRs), retinoic 
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acid-inducible gene-I (RIG-I)-like receptors (RLRs), nucleotide oligomerization domain (NOD)-

like receptors (NLRs), C-type lectin receptors (CLRs) and absent-in-melanoma 2 (AIM2)-like 

receptors. Once these PRRs are activated by PAMPs and/or DAMPs, cellular signaling cascades 

within these cells result in phagocytosis, transcription of immune genes, activation of 

multiprotein complexes known as inflammasomes and the production of immune signaling 

molecules or cytokines [123-127].  

PRRs and IAV. During IAV infection and genome replication, the 5’ triphosphate (PPP) 

of uncapped-RNA is bound by a specific cytoplasmic sensor, RIG-I of the RLR family. 5’ 

triphosphate containing RNA is not usually present in the cytoplasm of human cells. Human 

mRNA possesses a 5-methyguanidine cap added during maturation, while tRNA and rRNA only 

have 5’ monophosphates. Thus, viral RNA with a 5’ triphosphate indicates to the cell that 

something is amiss. Deficiency in RIG-I is linked to an impaired antiviral response. Activated 

RIG-I interacts with a downstream adaptor protein, the mitochondrial antiviral-signaling protein 

(MAVS) [128-131]. Prior research has linked diminished levels of interferon production to a 

deficiency in MAVS causing increased difficulty fighting viral infections within Mavs 

knockdown mice [132]. TLRs are also utilized to recognize IAV, specifically TLR3, TLR7 and 

TLR8. These receptors of viral RNA reside in the endosome where they can sense any RNA that 

does not escape the endosome during viral infection. Activation of TLR3, 7, and 8 subsequently 

signals the adaptor proteins TIR-domain-containing adapter-inducing interferon-β (TRIF) and 

myeloid differentiation primary response gene 88 (MYD88) [133-136]. Whether it is the RIG-I – 

MAVS or the TLR – TRIF/MYD88 pathway, detection of viral RNA induces the production of 

pro-inflammatory cytokines and type I interferons [137]. 
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PRRs and Aspergillus fumigatus. Of the PRR families, previous research has proved that 

A. fumigatus can activate CLRs, TLRs and various NLRs [138]. The best-characterized PRR 

activated via A. fumigatus is the CLR dectin-1 through the recognition of -1,3-glucan moieties 

present on germinating or swollen conidia. Another CLR, dectin-2, can recognize the -mannans 

such as galactomannan. The recently discovered -mannans, constituents of the outer layer of 

the fungal cell wall, are responsible for masking -glucans. There remains the possibility that 

once the conidia are inhaled by the host, the detection of conidia by dectin-2 precedes dectin-1 

[139]. TLRs 2 and 4, located on the extracellular surface of the host cell, were shown in several 

studies to be key recognition PRRs of the host against A. fumigatus. However, their functions 

currently have not been fully elucidated due to conflicting reports. Presumably, TLR 2 detects 

chitin and TLR 4 detects -glucans. After Dectin-1 binds to fungal -1,3-glucans, adaptor 

proteins, like caspase recruitment domain protein 9 (CARD9), and kinases, like spleen tyrosine 

kinase (Syk), ultimately result in the activation of similar signaling pathways that were discussed 

for TLRs, namely MYD88. For sake of simplicity, the cascade of activation and signaling 

initiates the transcription of pro-inflammatory genes, like cytokines, and genes required for 

cytokine maturation. [140-141]. 

Transcriptional Activation. The discussed adaptor proteins for PRR signaling involved in 

both IAV and A. fumigatus infections – MYD88, TRIF, MAVS and CARD9 - all mediate the 

downstream activation of one common family of transcription factors known as nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-B). PRRs and adaptor proteins regulate 

this family of five transcription factors. However, antigen receptors like PRRs are not the only 

means by which the NF-B pathway is activated. Oxidative stress and the production and 
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sensing of cytokines by neighboring cells facilitate its activation too. NF-B proteins have the 

ability to form distinct transcriptionally active homo- and heterodimeric complexes [142-143].  

NF-B signaling. The most recognized dimer of the NF-B family is RelA (p65)/p50. 

The p65/p50 dimer in most unstimulated cells remains within the cytosol inactivated by a family 

of inhibitors known as IB proteins (//). When PRRs and adaptor proteins interact, like RIG-

I – MAVS, this triggers a kinase cascade leading to activation of the p65/p50 dimer via 

phosphorylation of the serine residues of IB by the IB kinase (IKK) complex. Phosphorylation 

of IB results in polyubiquitination at two lysine residues, 21 and 22 (Lys21/Lys22) [144-148]. 

Ubiquitination is a type of post-translational modification where ubiquitin proteins are used as a 

‘tag’ to mark the specific protein for degradation via the proteasome complex [149-152]. 

Polyubiquitination of IBs are recognized by the multi-subunit 26S proteasome, where they are 

unfolded and degraded into small peptides to be recycled. This 26S proteasome degradation 

process releases NF-B dimers, which translocate into the nucleus. These NF-B dimers bind to 

promoters of inflammatory or immune-related genes through B motif interactions. NF-B is a 

crucial mediator of pro-inflammatory gene induction. If the activation of downstream adaptor 

proteins and PRRs ceases, so will the transcription of pro-inflammatory associated gene 

expression [153-157]. Negative feed-back loops operate as check-points to excessive 

inflammation and the diseased states that could result from excessive inflammatory conditions 

[158-160].  

Interferon Production. Interferons are important antiviral cytokines produced by innate 

immune cells to communicate the presence of a viral infection and initiate cellular responses to 

block virus replication [161]. To accomplish this, MAVS activates downstream antiviral 

signaling pathways through interferon regulator factors (IRFs), which are crucial for the 
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expression of type I interferons (specifically IFN-α and IFN-β) [162-164]. Endosomal TLR also 

induce the transcription of type I interferons through this method. Specifically, TLR receptor 

signaling and their activated adaptors results in IRF3 and IRF7 activation. IRF3 and 7 are 

transcription factors that induce expression of type I IFNs [165-166]. Once the interferons are 

made, they are released from the cell and bind in both paracrine and autocrine fashion to the 

IFN-α receptor (IFNAR) [167]. This canonical signaling pathway of type I IFNs activates the 

receptor-associated protein tyrosine kinases Janus kinase I (JAK1) and tyrosine kinase 2 (Tyk2). 

These two receptor-associated proteins facilitate the phosphorylation mediated activation of 

STAT1 and STAT2 (signal transducer and activator of transcription 1 and 2). STAT1 and 

STAT2 dimerize together and rapidly translocate to the nucleus. Once inside the nucleus, they 

bind with IFN-regulatory factor 9 (IRF9) to form a complex known as IFN-stimulated gene 

factor 3 (ISGF3) [168-170]. ISGF3 is a transcription factor complex that induces specific 

antiviral gene expression, like Mx1, that inhibits IAV RNA replication [171].  

Cytokines. Immune signaling molecules called cytokines are cellular biochemicals 

released and sensed by cells to permit cells to communicate with each other [172]. Because of 

the significance of NF-B within this investigation, I will use it as the primary example of a 

family of transcription factors that regulates the production of cytokines. NF-B induces 

transcription of proinflammatory pyrogenic cytokines namely interleukin-6 (IL-6), tumor 

necrosis factor- (TNF-) and interleukin-1-beta (IL-1β) [173-174]. IL-1β is also a mediator in 

the regulation and production of TNF-and IL-6. IL-1β has attracted considerable scientific 

attention in many diseased states due to its manifestation of innate immunity through 

inflammation. Usually, this cytokine functions in host defense, but when it is uncontrolled, its 
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continued expression is detrimental to survival. Activation of specific inflammasomes aids in the 

processing and secretion of IL-1β [175-176].  

Inflammasome Activation. Of the variety of inflammasomes, here only the two closely 

related to our study will be discussed, the NLR Family Pyrin Domain Containing 3 (NLRP3) and 

Absent in melanoma 2 (AIM2) inflammasomes. Simply put, inflammasomes are caspase-

activating molecular machines.  

The NLRP3 inflammasome. Anatomically, the best characterized inflammasome, NLRP3, 

once activated, is constructed of the following protein: NLRP3 binds to an adaptor protein 

known as ASC (apoptosis-associated speck-like protein containing a CARD), which in turn 

binds pro-caspase-1 [177-179]. Caspase-1 is a protease. The integration of pro-caspase-1 allows 

the multiprotein complex to cleave itself, and cleaved caspase-1 is fully functional with the 

ability to cleave cytokines such as inactive pro-IL-1β into mature functional IL-1β, thereby 

inducing inflammation [180-181]. Active caspase-1 also cleaves and activates Gasdermin D, 

which is a membrane pore forming protein, causing a version of cell death known as pyroptosis. 

The NLRP3 inflammasome requires a two-step activation process. First, PAMPs activate TLRs 

resulting in increased expression of NLRP3 and pro-IL-1β. Second, DAMPs or PAMPs, such as 

potassium efflux, lysosomal-damage, uric acid, silica, aluminum, whole pathogens, 

mitochondrial damage, cholesterol crystals and amyloid-β induce a conformational change 

and/or post-translational modifications of NLRP3, which results in its activation and binding to 

ASC [182-184]. A non-canonical method of activation is also perpetuated through the binding of 

LPS in the cytoplasm of cells to another caspase, caspase-11. Active caspase-11 then facilitates 

the activation of the NLRP3 inflammasome complex. Both the canonical and non-canonical 
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methods of activation lead to inflammasome complex assembly and activation of caspase-1 with 

cell death and inflammation as the final consequences [185-188].  

The AIM2 inflammasome. The AIM2 inflammasome is a cytoplasmic sensor of double-

stranded DNA molecules of self and foreign (pathogens) origin [189-191]. AIM2 has two 

domains that structurally define it: one HIN domain and one pyrin domain (PYD). The HIN 

domain of this specific ALR recognizes dsDNA. The HIN domain can have several distinct sub-

classes: HIN-A, HIN-B and HIN-C [192-195]. Of these sub-classes, previous research has 

proposed that they may differ in function due to minor differences in structure, therefore they 

may bind DNA at different affinities. AIM2 also forms an inflammasome capable of activating 

IL-1β and inducing pyroptosis through the cleavage of caspase-1 [196-197].  

Caspase-1. Caspase-1 is one of the many inflammatory cysteine-aspartic proteases 

characterized in mammals (specifically mice and humans). Caspases begin as inactive zymogens 

(pro-caspases) that can be activated through cleavage following activation by a suitable stimulus 

[198-199]. This activation is based not only on proximity to other caspase molecules, but also 

affected by post-translational modifications. The inflammatory caspases, like caspase-1, are 

termed ‘inflammatory’ because they activate substrates like pro-IL-1β and cause cell death in a 

manner that releases cytosolic contents that potentiate inflammation [200-202].  

As already revealed, biologically active IL-1β is a pleiotropic cytokine that influences 

multiple cell types to enable inflammation. Without inflammasomes activating IL-1β, the 

intensity of inflammatory responses would diminish. Therefore, excessive or inappropriate 

inflammatory responses could be controlled or remediated by inhibiting the inflammasome 

[203].   
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Pathogen Immune Evasion. The evolutionary arms race between pathogen and host is 

an enduring battle. Due to the selective pressure imposed by the immune system, pathogens such 

as IAV and A. fumigatus constantly evolve and have established an assortment of techniques to 

evade the immune system.  

Influenza A virus. IAV, although very small and simple, contains a collection of elegant 

mechanisms to evade the immune system; it is a master tactician. Beginning with NS1 protein 

expression, IAV can inhibit the cascade needed in the initial production of type I IFN production, 

thereby acting as an effective suppressor of host antiviral immunity [204]. By doing this, IAV 

sets itself up for mass replication events, therefore spreading the virus throughout the current 

host and impairing the quality of the upcoming adaptive immune response. NS1 inhibits RIG-I-

mediated signaling through halting ubiquitination, therefore preventing the production of type I 

IFNs [205-206]. PB1-F2 has been shown to boost mitochondrial ROS and calcium efflux 

through the inhibition of MAVS [207-209]. PB2 and PA together cap-snatch. Cap-snatching is 

the process that IAV does to ‘steal’ the cap off host mRNA by cleavage of the 5’-methyl 

guanidine cap of host mRNA and transferring it to viral mRNA. This stolen host cap is then used 

as a primer to begin transcription of viral mRNAs and to make the viral mRNA undetectable by 

RIG-I [210].  

IAV and phagocytosis impairment. IAV infection primes the hosts airways for 

co/secondary infections [211-213]. With understood bacterial co-infections, such as with S. 

pneumoniae, the respiratory impairments are well characterized [215-216]. These published data 

have shown that influenza infections result in increased and prolonged bacterial growth and a 

reduced ability of macrophages to effectively clear bacteria due to reduced phagocytic activity 

[217-219]. This reduction in the ability of macrophages to effectively phagocytize pathogens 
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during IAV infections is quite common –proven now even in fungal infections! Oliveira et al. 

determined that IAV at the peak of infection, around day 3 in their established murine model, 

causes an impairment of phagocytosis of yeast-like fungus, Cryptococcus gattii. This host-

vulnerability factor is also demonstrated previously in cases of bacterial co-infections too [220-

223]. Phagocytosis must occur rapidly in order to halt dying cells from exposing damage 

associated molecular patterns, or DAMPs and prevent excessive inflammation [224-225]. 

Macrophage activity during IAV infection is suppressed through inhibitory receptors like 

CD200, disruption of normal ciliary clearance in the lung and by decreasing concentrations of T 

cell-derived interferon (IFN-) through type 1 interferon production (IFN-/) [226-227]. 

Perhaps not only bacterial clearance is affected by this. Perhaps fungal pathogens could take 

advantage of these diminished phagocytic responses as well? This hypothesis is supported by 

research into heritable genetic defects that demonstrate deadly fungal infections are mediated by 

macrophage activation defects, along with intact T-cell activation therefore leading to reduced 

macrophage fungicidal activity [228-230].  

Aspergillus fumigatus. Usually, the innate immune system eliminates A. fumigatus 

through the coordination action of alveolar macrophages, neutrophils and NK cells. These cells 

help to kill conidia in the lungs. In addition, the pseudostratified columnar epithelium integrated 

with goblet (mucus producing) and ciliated cells creates a mucus barrier that is constantly being 

swept up and out of the airways to prevent colonization of the lungs [231-232]. However, if there 

is significant impairment of the immune system through corticosteroid use, AIDS, 

immunosuppressive medication, genetic abnormalities or, as I hypothesize, acute IAV infections, 

A. fumigatus can effectively infiltrate and infect the host. A. fumigatus can be shielded so that the 

fungus can evade the immune system. For example, the surface of A. fumigatus conidia consists 
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of coats of melanin and hydrophobin to literally act as a shield to protect PAMPs from 

recognition by PRRs. Melanin not only envelopes the conidial cell wall to protect the conidia 

from oxidative stress and desiccation, but it also aids in preventing phagocytes from engulfing 

and killing A. fumigatus conidia through inhibition of a specific form of phagocytosis termed 

LAP [239-242]. When conidia germinate, they shed the surface layers of melanin and 

hydrophobin and expose PAMPs such as -1,3-glucans. Other fungal proteins, including GAG, 

gliotoxin and fumagillin (toxins), have evolved to poison host cells and prompt apoptosis. GAG 

also specifically inhibits a mechanism employed by neutrophils called neutrophil extracellular 

traps or NETs and it can inhibit IL-1α/β signaling [233-238]. 

A. fumigatus, Autophagy and DAPK1. Autophagy is an elaborate cellular self-eating 

process essentially conserved to allow the degradation and recycling of really anything the cell 

wants to dispose of. Simply, both forms of autophagy –canonical and non-canonical- result in 

formation of a double-membrane structure containing the sequestered cytoplasmic material (also 

called the autophagosome) [243-245]. Ultimately, fusion of the autophagosome with a lysosome 

is permitted by Rab and SNARE proteins. Rab proteins, specifically Rab7, interact with tethering 

factors, and Q-SNARE STX17. Together, they allow the fusion events of the autophagosome 

with lysosomes, resulting in the autophagolysosome [246-250]. The canonical pathway of 

autophagy involves four steps: initiation (mediated by the ULK1 complexes), nucleation 

(BECLIN1-PtdIns3KC3-ATG14L complexes), elongation and closure (ATG12-ATG5 and LC3-

PE conjugation systems) [251-252]. In regard to infections with A. fumigatus, I will focus on 

LC3-associated phagocytosis (lapidated microtubule-associated protein 1 light chain 3(LC3)-

associated phagocytosis or LAP). This specialized form of autophagy links PRR signaling with 

phagosome development, inflammation and host defenses [253-254]. Observed as 
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mechanistically distinct in comparison to canonical autophagy, LAP is regulated by the protein 

Rubicon, which actually inhibits canonical autophagy. This inhibition of canonical autophagy is 

due to the formation of the Atg14L-containing Beclin-1/VPS34Class III PI3K complex. Rubicon 

activates LAP through association with a unique UVRAG-containing Beclini-1/VPS34Class III 

PI3K complex on the phagosome [255-256]. Fundamental requirements of LAPosome formation 

occur through PI3P (phosphoinositol-3-phosphate –a lipid) and reactive oxygen species (ROS) 

production. Rubicon facilitates the process of LAPosome formation by activation of class III 

PI3K and stabilization of NADPH-complex formation through the connection of the p22phox 

subunit, which is required for ROS production. LAP recently has surfaced as an integral anti-

inflammatory pathway and contributes to host defense against extracellular pathogens, including 

A. fumigatus through recognition of -glucans through Dectin-1 [256-259]. Therefore, 

experiencing a defect in LAP would cause phagocytes to experience impeded killing 

mechanisms and increased susceptibility for A. fumigatus infections. In an effort to determine the 

molecular mechanisms responsible for anti-inflammatory responses upon activation of LAP, 

researchers identified IFN- mediated expression of death-associated protein kinase 1 (DAPK1) 

signaling as a promising role in the control of A. fumigatus infections [260-261]. DAPK1, a 

calmodulin-regulated serine-threonine kinase, is also a Janus molecule that is regulated by 

JAK/STAT-independent IFN- signaling. It seems that DAPK1 associates with A. fumigatus 

LAPosomes and then induces proteasomal degradation of NLRP3 via ubiquitination of NLRP3 

by FBXL2. When NLRP3 is degraded, the immune response is muted, and overt inflammation is 

avoided. This flourishing area of research holds much promise in the application of fungal 

immunology [262-263].  
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IAV and A. fumigatus Co-infections 

Co-infections, by common definition, occur when two or more pathogens simultaneously 

infect a host [264]. Co-infections begin with a primary pathogen, here it is IAV. IAV 

successfully infiltrates the host and distracts or depletes the host’s array of immune defenses. 

This is optimal for an opportunistic pathogen, such as A. fumigatus, to infect the same host. Co-

infections with IAV and A. fumigatus are becoming more prevalent, or at least more recognized. 

It is believed that, in general, an inappropriate immune response through excessive inflammation 

from a cytokine storm results in the rising rates of morbidity and mortality seen with IAV and A. 

fumigatus co-infections [265].  

Clinical case reports. Since the 2009 H1N1 Pandemic, there has been an increasing 

awareness about influenza-associated-aspergillosis (IAA) and the propensity that IAV has to 

predispose patients to secondary fungal infections more than previous IAV strains. There exists 

limited understanding about the consequences of fungal infections with IAV. Patients who 

experience severe influenza A are increasingly susceptible to more severe pneumonia [266-272]. 

Dr. Mitsuru Toda and her team from the US Centers for Disease Control and Prevention (CDC) 

Mycotic Diseases Branch recently shared results of a study they presented at ID Week 2018 

analyzing cases of invasive aspergillosis as a risk factor for patients with current influenza. What 

they found was prominent –greater than one-third of patients documented with IAV-Aspergillus 

co-infections lacked immunosuppressive conditions, like AIDS, that are typically associated with 

invasive aspergillosis [273]. This indicates that previously healthy people are developing 

invasive aspergillosis after even mild infections with influenza. Before Dr. Toda’s findings that 

more than one-third of the 57 cases in the USA did not have a documented immunosuppressive 

condition, published clinical case reports were sporadic. The sporadic nature of individual case 
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reports made it difficult to determine the significance of IAA, especially among previously 

immunocompetent hosts. Of the documented 57 cases in the literature, 92.9% of the cases were 

associated with IAV. Of those, 82.33% were due to the H1N1 subtype. It must be noted here that 

since 2010, the majority of cases of IAA were due to H1N1 [273]. 

To further extend the awareness, van der Veerdonk and colleagues observed similar 

trends in the UK. An analysis of 68 IAA cases reported in the literature before 2005 

demonstrated the mortality rate was 47%. IAA in critically ill patients with influenza during the 

flu season in the Netherlands from December 2015 to April 2016 reported IAA cases had a 

significantly higher rate of up to 61%, and this was despite antiviral and antifungal therapies. 

This mortality rate among affected patients without traditional risk factors of invasive 

aspergillosis was not lower compared to patients with known low, intermediate, or high risk for 

an invasive fungal disease state. It seems that the use of corticosteroids might not be as strong as 

a predisposing factor contributing to IAA illness as alleged previously [274-276]. Another 

extraordinary observation in these documented IAA infections in immunocompetent individuals 

is that their age ranged from roughly 20 to 80 years old. This also eliminates another 

preconceived predisposing factor –age—which is associated with lower immune function in the 

very young and very old [277].  

The reasons for the intense rise in the number of recently published cases of IAA is 

currently unclear. Hypotheses from the scientific community on this topic range from the 

evolution of more virulent IAV strains (exemplified by 2009 H1N1 pandemic strain), the 

observed severity of damage to respiratory mucosa reported possibly allowing for increased 

fungal invasion, and generally greater reporting over time. Exposure to A. fumigatus at a critical 



25 

time of both reduced mucosal and systemic immune defenses could also lead to the observed 

diseased state [278], but it is not clear why exposure to A. fumigatus has increased. 

 

Problem Statements and Hypotheses 

In order to understand IAA, the virus, fungus and host must be examined. Similarly, any 

model to study IAA must include all players. Previously, research has focused on each pathogen 

and the host response separately. Collaboration with medical mycologists, virologists and 

immunologists could aid in the exploration of crucial immune pathways utilized by viral and 

fungal pathogens to successfully invade tissue and evade the host’s immune system. My 

scientific study here will bring increased awareness of IAA as an early complication of IAV 

infections through the knowledge provided through investigating a novel model of IAV-A. 

fumigatus co-infection. As a result, hopefully, more awareness, prompt diagnoses and initiation 

of suitable treatments can be implemented in future seasonal flu outbreaks.  

I discovered through preliminary experiments that co-infections of macrophages with 

IAV and A. fumigatus results in an immense increase in the production of pro-inflammatory 

cytokines (IL-1β, TNF-, IL-6) and active caspase-1-p20 in comparison to IAV and A. fumigatus 

alone.  

Problem Statements. There are two major roadblocks to furthering our understanding of 

IAA: a lack of an animal model for in vivo studies, and a lack of understanding of the immune 

response and how this and other factors may contribute to IAA. The objective of my research 

was to determine the cause of the increase in pro-inflammatory cytokine levels during an IAV 

and A. fumigatus co-infection and to effectively recapitulate this co-infection within a murine 

model. Previously, researchers were able to generate a different model IAV-fungal co-infection 
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with Cryptococcus neoformans and C. gattii. Their investigation showed that acute IAV 

infection predisposes mice to C. neoformans and C. gattii infections, with the highest morbidity 

and mortality rates occurring if mice were co-infected with the fungus on day 3 after IAV [220].  

Based on our preliminary research and the IAV- C. neoformans/gattii mouse model, I 

narrowed down our research to two testable and answerable questions:  

 In vivo 

o What variables are required for development of a co-infection model in 

mice? Specifically, what doses of IAV and A. fumigatus and how many 

days apart should the infections be to induce the highest morbidity and 

mortality of mice? 

 In vitro  

o Why is there an enhanced activation of caspase-1-p20 and cytokines 

during IAV-A. fumigatus co-infections and does this cause the high 

morbidity and mortality in humans? 

Hypotheses. Through the establishment of working in vitro and in vivo models, I propose 

the following two hypotheses to explain the preliminary observations of enhanced pro-

inflammatory cytokine production, caspase-1 activation and high morbidity and mortality rates 

seen in humans with IAA: 

 In vivo 

o If IAV predisposes humans or mice to A. fumigatus infection, then 

infecting mice with IAV should allow for infection with A. fumigatus (it 

does not normally infect mice even at very high doses), and IAV infection 
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coupled with A. fumigatus infection should result in more severe disease 

than either infection alone.  

 In vitro 

o If caspase-1 activation is increased during co-infection compared to single 

infection with IAV or A. fumigatus, then factors regulating activation of 

AIM2 and NLRP3 must be enhanced, including AIM2 and NLRP3 gene 

expression and activation signals like ROS.  
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MATERIALS AND METHODS 

 

In order to carefully elucidate immune signaling as a whole during infections, the use of 

models to simulate infections in humans within a model organism or cell line is preferable. IAV 

and A. fumigatus co-infections were recapitulated in both in vitro and in vivo models in this 

research. Figure 1, a visual representation of the complexity of IAV and A. fumgiatus co-

infections and where the science led me during my thesis project. 

 

Overall Experimental Designs 

The experiments in mice and cell culture were performed with a mouse adapted strain of 

IAV – influenza A/PR/8/34 H1N1 virus and Type 293 A. fumigatus (ATCC MYA-4609). Mice 

were infected with various concentrations of IAV and A. fumigatus alone or co-infected with 

both pathogens on various days and monitored for symptoms of morbidity (weight loss) and their 

mortality. Cell cultures of mouse-derived macrophages were also infected with IAV and A. 

fumigatus alone or co-infected with both pathogens. Cell culture samples were collected to check 

cytokine and associated protein and gene production through activation. Specifically, analyzation 

of the signaling proteins with the predicted pathogen recognition receptor pathways that could be 

involved. Lastly, data normalization and statistical analysis of these forms of data were 

completed using Microsoft Excel and GraphPad Prism Version 7.0. 

 

Animal Welfare 

 All mice used in these experiments were of the pathogen-free mice (Mus musculus) 

C57Bl/6 genetic background including knockouts of Nlrp3-/- and Aim2-/- originated from The 
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Jackson Laboratory and bread in-house within Missouri State’s vivarium.  All breeding, 

experimentation, and data collection were performed in accordance to the Institutional Animal 

Care and Use Committee (IACUC) –specific accepted protocols utilized for living mouse and 

cell culture experiments were February 17, 2016; approval #16.015 with continuation on 

February 19, 2019 (Appendix A) and July 26, 2018; approval #2018-07 (Appendix B), the 

AVMA Guidelines on Euthanasia, NIH regulation (Guide for the Care and Use of Laboratory 

Animals), and the U.S. Animal Welfare Act of 1966 (Appendix A).  

 

Preparation of fungal and viral stocks 

 Viral and fungal infectious agents utilized received prior approval for this product was 

obtained from the Institutional Biosafety Committee (IBC) on (October 23rd, 2015) (Appendix 

B). Both pathogens were grown and used within the laboratory.  

 Preparing an A. fumigatus stock. A. fumigatus used in this study was a laboratory 

pathogenic species, gifted from Dr. Thirumala-Devi Kannetganti, St. Jude Children’s Research 

Hospital. Sabouraud Dextrose Agar (better known as ‘SabDex’ or SDA) was made per 

manufacture (ThermoFisher Scentific, catalog #CM0041R) recommendations. The agar was 

poured into T175 cm2 tissue culture flasks (ThermoFisher Scientific) and cooled cap-off inside a 

sterilized certified biosafety cabinet. Five-hundred L of A. fumigatus conidia in glycerol stock 

(Af293, ATCC MYA-4609) was pipetted into the flasks with cooled agar and incubated at 

37C/5% CO2 for approximately 7 to 14 days or until the fungus was thick and black in color. 

The live asexual spores of A. fumigatus were harvested within a certified sterilized biosafety 

cabinet by pouring approximately 10 mL of sterile 1X Phosphate Buffered Saline (PBS) 

(prepared from 10X ThermoFisher Scientifc PBS, pH 7.4, RNase-free, catalog#AM9625) to each 
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tissue culture flask filled with thick black fungus. The flasks were re-capped and shaken 

vigorously to suspend spores in the PBS. The PBS-spore mixtures from both flasks were pooled 

together into one 50 mL centrifuge tube. Tween 80 was supplemented to the falcon tube with the 

PBS and spores at a total concentration of 0.1% v/v of Tween 80 (Sigma-Aldrich, CAS#9005-

65-6) The Tween 80 was used to reduce surface tension between spores and water to aid in the 

precipitation of spores out of the PBS-spore mixture. The spore mixture was centrifuged at 2000 

rpm for 10 minutes. The supernatant (PBS) was decanted as bio-hazard waste and 5 mL of 50% 

glycerol (Sigma-Aldrich, CAS#56-81-5) in Brain Heart Infusion (BHI) broth (prepared 

according to the manufacture, Sigma-Aldrich, CAS#53286) was added to the concentrated A. 

fumigatus spores. Next, the fungal stock was aliquoted in low temperature cryovials at 500 L 

and frozen at -80C.  

 Determining Fungal Stock Concentration via CFUs. Approximately 25 mL of SDA was 

poured per plate into 10 petri dishes to eventually determine colony forming units (CFUs) of the 

spore stock through a CFU assay. The agar was kept at room temperature until solidified into a 

sterilized biosafety cabinet. Ten-fold fungal serial dilutions of the stock were performed with 900 

L of PBS and 100 L of fungal stock prepared previously. Then, 100 L of each dilution, from 

10-1 to 10-7, were dispensed onto each plate as one-drop on each SDA plate (1 plate per dilution), 

liquid was spread and plate incubated upside down at 37 C/5% CO2 for 24 to 48 hours or longer 

–until there were visible fungal colonies to count. Once colonies were determined ready by 

inspection, they were counted visually. The dilution with colonies within a range of 30-300 was 

selected to perform a back-dilution calculation to obtain the CFU/mL. 

Preparing viral stocks. To prepare viral stocks, two methods were utilized to grow and 

purify the stock – these include growth of the IAV strain A/Puerto Rico/08/1934 (H1N1) 
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(hereafter referred to as ‘PR8’) via chicken eggs and MDCK cells. Following growth and 

aliquoting of the PR8, the concentration of the virus was determined through plaque forming 

units (PFUs) generated from a viral plaque assay technique, which will also be explained below.  

 Growing an IAV Stock in Chicken Eggs. Fertilized chicken eggs were provided by a 

local chicken breeder. The eggs were incubated in a humidified 37.5C incubator and flipped 

twice a day for 10 to 12 days (or until the candled eggs showed a viable chick: dark shadow 

within the egg with blood vessels, movement, and an intact air sac). Viable eggs were infected 

inside a sterilized certified biosafety cabinet. Eggs were first decontaminated by spraying 70% 

ethanol on the exterior of the egg shell. Then, a hole was made about 1cm above the air sac line 

with a sterile 18-gauge needle. Next, using a 1 mL insulin syringe and a 1inch 22-gauge needle, 

100L of virus solution diluted to 104 PFU, was injected into each egg at a 45-degree angle 

through the previously made hole. Super glue was used to patch the hole and the developing eggs 

were stored again in a humidified incubator at 37.5C and flipped twice a day for 72 hours.  

 After 72 hours, the eggs were pulled from the incubator and visualized with a flashlight 

to check viability of the developing chick embryo. If the chick inside the egg was still alive, 

indicated by movement of the chick, the eggs were placed inside a 4C refrigerator for at least 1 

hour to stop the heart and blood flow of the developing chick. After 1 hour, the eggs were placed 

inside a sterilized certified biosafety cabinet and sanitized with 70% ethanol to prevent any 

contamination from the shell to the fluid within the egg containing the influenza A virus. Using 

sanitized forceps, the shell of the eggs was chipped away over the air sac. The allantoic 

membrane was pealed aside and the clear allantoic fluid was pipetted into sterile 50 mL 

centrifuge tubes. These tubes were kept on ice and spun down at 4,000 x g for 10 minutes at 4C 

to pellet unwanted debris. The clear supernatant from the tubes was transferred into new 50 mL 
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tubes and kept on ice. The clarified allantoic fluid (supernatant) containing the influenza A virus 

was then aliquoted and stored at -80˚C for further use. The debris-pellet and eggs were disposed 

in a BSL-2 waste container. 

 Growing an IAV Stock in MDCK Cells and Purification via Ultracentrifugation. 

Alternative methods of virus stock preparation were utilized in hopes of increasing stock 

concentrations and making a larger amount of a stock. Madin-Darby Canine Kidney (MDCK) 

cells (a gift from Dr. Paul Thomas, St. Jude Children’s Research Hospital) were grown until 

confluent (about 3 days) within a T175 tissue culture flask. The MDCK cells were washed twice 

with PBS and infected with PR8 at a concentration of 2.5 x 106 PFU diluted in 5 mL of 1X 

plaque assay media per T175 flask. These PR8 infected flasks were incubated at 37 C/5% CO2 

for one hour with intermittent shaking every 10 minutes. After the 1-hour incubation, the PR8-

containing 1X plaque media was removed from the infected flasks and an additional 20 mL of 

1X plaque media was pipetted into each flask. To allow the virions of PR8 to mature, 20 L of 

TPCK trypsin was aliquoted into each infected flask. The infected flasks were stored again at 

37C/5% CO2 for approximately 72 hours or until 85% of the cells were dead. The virus-laden 

1X plaque media was transferred from the infected flask to 50 mL centrifuge tubes and vortexed 

for 5 minutes to detach any virions from cells and put them into the media. These now vortexed 

tubes were centrifuged at 2,000x g for 10 minutes to pellet out the MDCK cells. Ultra-centrifuge 

tubes were preloaded with 3 mL of 5% sucrose in MHN buffer (Table 1). The virus-laden media 

was gently overlaid atop the sucrose buffer.  Tubes were ultra-centrifuged in a JS-24 rotor at 4C 

at 23,000 rpm for 1 hour. Tubes were places on ice in the biosafety cabinet and all but 

approximately 3 mL of supernatant was removed from each tube, leaving the virus pellet. The 

remaining 3 mL of media from each tube was pooled together into one ultra-centrifuge tube and 
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ultra-centrifuged again at the same conditions previously described. Once ultra-centrifugation 

was completed a second time, all but 3 mL of supernatant was again carefully removed. The 

remaining 3 mL of media and the virus pellet were transferred to and vortexed in a 15 mL 

centrifuge tube for 10 minutes to resuspend the virus pellet into solution. The virus stock was 

aliquoted at approximately 30 L for each 1.5 mL tube and stored at -80C until use.  

 Determining Viral Stock Concentration via Plaque Assay. In order to obtain the 

approximate number of infectious virions in a sample, the plaque assay technique was utilized. 

Approximately 48 hours before beginning the plaque assay for IAV, MDCK cells were seeded in 

12-well culture plates at 3 x 105 cells/well within 1 mL of 1X DMEM +10% FBS + 1% 

Pen/Strep. On the day of the plaque assay, ten-fold dilutions of the viral stocks (grown in eggs or 

concentrated by ultracentrifugation) were prepared in 1X plaque assay medium (See Table 2). 

Next, MDCK cells were washed twice with about 1 mL of 1X PBS per well each time. Then, 

100 L/well of the virus dilutions were added to duplicate wells within the 12-well plates. These 

plates were incubated at 37C/5% CO2 for 1 hour with intermittent shaking every 10 minutes (to 

spread the media containing the diluted virions across the cells and to prevent the cells from 

drying). During the last 20 minutes of plate incubation (40 minutes into the hour incubation 

period), the agarose overlay was prepared: 2% SeaPlaque low melting point agarose (Bio 

Whittaker, catalog #50100) in diH2O was microwaved, cooled to a temperature around 37 to 

42C and was mixed together with pre-warmed (37 to 42C) 2X plaque assay medium (Table 3) 

at a 1:1 ratio. TPCK-trypsin was added to the overlay mixture at a final concentration of 1.0 

g/mL. Following the 1-hour incubation, the infection medium was aspirated from each well and 

2 mL of the warm agar/plaque medium overlay was added to each well. The agar was allowed to 

harden completely within the biosafety cabinet with lids ajar on the plates (to prevent unwanted 
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condensation) before flipping the infected plates over and incubating them at 37C/5% CO2 for 

72 hours. After 3 days, the agar plugs were scooped out of the wells and plates stained with 1% 

crystal violet in methanol. The stain was incubated at room temperature within the biosafety 

cabinet for around 30 seconds to 1 minute and was removed. The wells were then rinsed twice 

with water. After drying upside on paper towels, the plaques were read by counting clearings 

visually observed in the wells.  

 

In vivo Infection Schemes 

 In order to understand the causes and contributing factors associated with human case-

study-based morbidity and mortality, I sought to develop a moue model using the C57Bl/6J 

mouse strain. To effectively do this, an in vivo method was created from previous work with 

another misunderstood viral-fungal co-infection, IAV and C. neoformans and C. gatii [220]. At 

least eight-week old mice were anesthetized on day 0 by intraperitoneal injection with 80 mg/kg 

Ketamine and 8 mg/kg Xylazine diluted in 1X PBS. Mice were infected with approximately 250 

to 300 PFU of PR8 intranasally in a volume of 30 L of 1X PBS. Mice were mock infected, 

single infected with PR8 or A. fumigatus or co-infected depending on their assigned groups on 

days 3, 5 and 7 with 10,000 to 10,000,000 CFU of A. fumigatus intranasally in a volume of 30 

L of 1X PBS (220). At all-time points, mice were monitored at least once daily for weight loss 

and food/water availability. Mice were euthanized when they achieved 30% or greater weight 

loss and/or became moribund (Fig 2A). 

 

Differentiating Bone Marrow Derived Macrophages 
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 To effectively understand, characterize and simulate this viral-fungal co-infection in cell 

culture, bone marrow derived macrophages were utilized. L-929 cell conditioned media – which 

contains the growth factor M-CSF (macrophage-colony stimulating factor) – was made by 

incubating L929 cells in DMEM (Dulbecco’s Modified Eagle Medium), 10% FBS (Fetal Bovine 

Serum) and Penicillin/Streptomycin for 10 days, and then 0.45 µm filtering the medium. Bone 

marrow was collected from the femur and tibia of WT, Nlrp3-/- and Aim2-/- mice and 

differentiated for 5 days in tissue culture dishes (150mm x 25mm) in the presence of bone 

marrow differentiation media (BMDM –recipe in Table 4) media containing L-929 cell 

conditioned medium. On day 5, now differentiated macrophages from bone marrow 

hematopoietic stems cells were removed by scraping, counted using a hemocytometer, and 

seeded into 12-well plates at a concentration of 1 x 106 cells/well within 1 mL of BMDM 

medium. These macrophages were incubated overnight to allow cells to adhere to the plastic 

wells. The next day, the macrophages were used for in vitro cell infection experiments (Fig 3A).  

 

In vitro Infection Schemes 

 Macrophages in 12-well plates were washed twice with 1 mL of 1X PBS per well and 

200 L of Roswell Park Memorial Institute-1640 (RPMI-1640) medium (Corning, catalog #10-

040e) added to each well. To add the correct volume of pathogen stock to a designated number 

of cells (Equation 2), multiplicity of infection (MOI –Equation 1) was calculated. Macrophages 

were either mock infected, single infected with either pathogen, or co-infected with both 

pathogens 3 hours apart. Mock infected macrophages were treated the same as macrophages 

single or co-infected, but without a pathogen. Single infected macrophages were treated with 10 

MOI of PR8 at 0 hour or 1 MOI of A. fumigatus at 3 hours into infection followed by incubation. 
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Co-infected macrophages were treated with 10 MOI of PR8 at 0 hour and 1 MOI of A. fumigatus 

at 3 hours into infection followed by an hour incubation. During periods of incubation, the plates 

were stored at 37C/5% CO2 and the plates were intermittently shaken every 15 to 30 minutes to 

disperse the infectious media over the cells and to prevent the cells from drying. At 4 hours into 

infection, 200 L RPMI with 20% FBS was pipetted into all wells (Fig 3B) and plates returned 

to the incubator until their designated sample collection time-point. Samples were collected at 6-, 

12-, 18- or 24-hour time points by removing the supernatant for ELISA assays and lysing the 

cells with 1X RIPA buffer and 4X SDS loading dye (recipes in Table 5 and Table 6, 

respectively). The supernatant samples were kept at -20C and cell lysates were kept at -80C 

until their analysis.  

 Enzyme-linked Immunosorbent Assay (ELISA). Cell culture supernatants for the 

cytokines IL-1β, TNF- and IL-6 were examined via ELISA. Mouse Ready-SET-Go ELISA kits 

(eBioscience; catalog #s 88-7013, 88-7324, 88-7064, respectively) were used according to the 

manufacturer’s instructions except that all antibodies and streptavidin-HRP were diluted to 1:500 

instead of 1:250. The standard curve was prepared by two-fold dilutions ranging from 1000 

pg/mL to 31.25 pg/mL (Fig 4). Upon completion of the assay, plates were immediately read at 

450 nm using a BioTek ELx808 microplate reader. 

 SDS-PAGE and Immunoblotting. Intracellular protein expression and activation in cell 

lysate samples was determined via Sodium Dodecyl Sulfate - Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) and Immunoblotting. On day 1, the cell lysate samples with 4X 

SDS loading dye added were thawed and boiled at 95C for approximately 20 minutes. Samples 

were loaded into 12% polyacrylamide gels and electrophoresed at 100V for two hours in 1X 

Tris/Glycine/SDS (running) buffer (recipes for buffers in Table 7, 8 and 9). After gel 



37 

electrophoresis, the gels were electrophoretically transferred onto polyvinylidene difluoride 

(PVDF) membranes (GE Health Life Sciences, catalog #10600023) at 40V for 50 minutes (Table 

10). After the transfer run was complete, PVDF membranes were blocked in blocking buffer (5% 

milk in 1X TBST) on a shaker at room temperature for 1-hour. Blocking buffer was discarded 

and replaced with protein-specific primary antibodies diluted in 5% milk in 1X TBST (recipe 

from Table 8 and 11). Membranes in antibody solution were incubated on a shaker at 4C 

overnight. Day 2: The diluted primary antibody was removed and saved, and the membranes 

were washed 3 times with approximately 10 mL of 1X TBST for 10 to 20 minutes shaking per 

wash at room temperature. After the last wash was discarded, the membranes were incubated in 

primary antibody-specific secondary HRP conjugated antibodies diluted in 5% milk + TBST 

(Table 12). Membranes were incubated at room temperature for around 45 minutes with gentle 

shaking. After the secondary antibody was removed and saved, the membranes were washed 4 

times with 10 mL of 1X TBST at room temperature with vigorous shaking for approximately 10 

to 20 minutes for each wash. After the last wash was discarded, fresh 1X TBST was added to 

each membrane and membranes were transferred to a clean container where they were treated for 

one minute with 1 mL of substrate per membrane (Super Signal West Femto Maximum 

Sensitivity Substrate; ThermoFisher Scientific, catalog #34096). Separated protein bands were 

visualized using the Azure Biosystems C300 digital imaging system. 

 Mitochondrial Damage via Flow Cytometry.  To determine possible causation of the 

enhanced activation of caspase-1-p20, macrophages were stained with fluorescent dyes designed 

to detect mitochondrial damage through reactive oxygen species production originating from the 

mitochondria (MitoSOX; ThermoFisher, catalog #M36008). Macrophages were mock, single or 

co-infected as described above in the ‘In vitro Infection Schemes’ section. At 18- or 24-hours but 
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30 minutes before collecting the samples, 25 L of MitoSOX diluted in RPMI was pipetted into 

each well (at a final concentration of 2.5 nM MitoSOX). Each flow cytometry experiment had at 

least one control well left unstained. The samples in the plates were left in the biosafety cabinet 

to incubate in the dark at room temperature for approximately 30 minutes. After the 30-minute 

incubation, the media of each sample was replaced with 1 mL of warmed (37C) PBS. 

Macrophages were scraped off the plates with a 200 L pipette tip (turned upside-down). The 

macrophages, now lifted into the PBS, were transferred into a 1.5 mL centrifuge tube and 

analyzed on the Attune NxT Flow Cytometer using the BL3 channel for MitoSOX. Per sample, 

10,000 events were analyzed for fluorescence intensity and percent positivity for the dye. 

 RNA Isolation. Gene expression of hypothesized genes that could play key roles in the 

production of inflammatory cytokines were examined against β-Actin as the control: Aim2 and 

Dapk1. Macrophages were prepared and infected as previously described. At 6-, 12- and 24-

hours after infection, the supernatant was removed (kept for ELISA) and 500 L of TRIZOL 

(Invitrogen, catalog #AM97381) was added to each well and incubated for 5 minutes at room 

temperature to extract the total mRNA from the samples. TRIZOL lysed cell samples (0.5 mL) 

were transferred to labeled 1.5 mL centrifuge tubes and 100 L of chloroform was added to each 

sample. Tubes were shaken vigorously by hand for about 15 seconds and incubated at room 

temperature for 3 minutes. Tubes were centrifuged at 12,000 x g for 15 minutes at 4C. The clear 

aqueous phase (top layer) was carefully pipetted off and transferred to new labeled tubes. Next, 

the addition of isopropanol (250 L) was used to precipitate out the nucleic acids. The samples 

were shaken by hand and incubated at room temperature for 10 minutes before centrifugation at 

12,000 x g for 10 minutes at 4C. All of the supernatant was removed but approximately 5 L. 

This was done to avoid discarding the RNA pellet. The sample RNA pellets were washed with 
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75% ethanol (500 L) to remove excess salt content from the pellet. Tubes were vortexed briefly 

for 5 seconds and centrifuged at 7,500 x g for 5 minutes at 4C. The ethanol was removed and 

dried cap-open within a vacuum centrifuge. Once the pellet was almost completely dried, 20 L 

of nuclease-free water was pipetted into each tube to reconstitute the RNA pellet back into 

solution. The concentrations of the RNA samples were measured using an Implen 

Nanophotometer. All samples were normalized to 200 ng/L by adding additional nuclease-free 

water to each sample (Equation 3).  

 cDNA Synthesis and qRT-PCR. Due to the instability of RNA, this nucleic acid must 

be reverse transcribed into complementary DNA (cDNA) to be used. The High Capacity cDNA 

Reverse Transcriptase Kit (ThermoFisher Scientific, catalog #436881) was used to reverse-

transcribe mRNA into cDNA according to the manufacturer’s instructions using 1 µg total RNA 

(Table 1). cDNA samples were diluted 1:5 (80 L of nuclease-free water to the 20 L of 

amplicon solution). 5 L of the diluted cDNA samples and 2-fold standard curve samples were 

analyzed via quantitative real-time PCR (qRT-PCR) utilizing the DyNAmo HS SYBR Green 

qPCR Kits (ThermoFisher Scientific, catalog #F.410L) according to the manufacturer’s 

directions (see Table 13 for cDNA Master Mix recipe). Primers (forward and reverse) for β-

Actin, Aim2, and Dapk1 were used to test gene expression (A15612T) (see Table 14). The 

instrument used for data acquisition was a STRATAGENE-Mx3005P PCR machine. 

 

Statistical Analysis 

 For in vitro experiments with cytokine production or ROS production a one-way 

ANOVA with Tukey’s post hoc analysis was performed using GraphPad Prism 7 software 

(GraphPad Prism 7 Software, San Diego, CA, USA). For in vitro gene expression experiments 
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during certain collection time-points, a two-way ANOVA with Tukey’s post hoc analysis was 

performed using GraphPad Prism 7 software. For weight loss during in vivo experiments, a two-

way ANOVA with Tukey’s post hoc analysis was performed using GraphPad Prism 7 software. 

For survival during in vivo experiments, survival analysis was performed using the Kaplan-Meier 

Survival Plot with LogRank Test using GraphPad Prism 7 software. Any visual representations 

within figures representing immune signaling or cellular mechanisms were completed with the 

latest version of the academic membership of BioRender.com. 
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RESULTS 

 

 Although there are numerous case reports of humans contracting IAV-A. fumigatus co-

infections, there is no animal model to study the causes and contributing factors involved. For an 

animal model to be relevant, it should demonstrate similar morbidity and mortality rates 

observed in humans. As with any disease, effectively providing an in vivo model holds promise 

for understanding the causes of the disease as well as developing future treatments or vaccines. 

 

Increased Morbidity and Mortality 

 I initially infected mice intranasally with a low dose of IAV (300 PFU), which causes no 

death and only minor weight loss, and then intranasally co-infected the same mice on different 

days after the IAV infection with 107 CFU of A. fumigatus (Fig 2A). Control groups present in 

this experiment that were singly infected with IAV on day 0 (but mock co-infected on day 3) and 

singly infected with A. fumigatus on day 3 (but mock infected on day 0), showed little or no 

weight loss and almost no mortality (Fig 2B-C). However, mice coinfected on day 3 after IAV 

infection almost all died by day 10. Interestingly, mice coinfected on day 5 or day 7 after IAV 

had much less mortality (Fig 2B-C). After solidifying the ideal co-infection day as day 3, a 

separate experiment was done to determine the lethal dose of A. fumigatus needed to really cause 

severe illness during co-infection. Mice were infected with 300 PFU of PR8 intranasally on day 

0. Then, mice were infected or co-infected on day 3 with a fungal dose ranging from 104 to 107 

of A. fumigatus CFUs. All mice were monitored for weight loss and survival until day 14 after 

the initial flu infection. I observed that 104 CFU of A. fumigatus was just as efficient as 107 CFU 

at causing similar mortality during co-infection (Fig 2D-E). It should be noted that mice infected 
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with A. fumigatus alone, without prior IAV infection, scarcely lost any weight even at an 

infectious dose of 107 CFU (Fig 2D-E). A. fumigatus alone actually had significant increases in 

weight loss on various days compared to IAV (Fig 2D). This confirms previous reports that even 

a high dose of 107 A. fumigatus spores alone does not pose a threat to immunocompetent mice 

and humans [285]. Instead, the initial infection of mice with IAV must affect the immune 

response to fungal pathogens and render the mice more susceptible to the co-infection. 

 

Surge in pro-inflammatory cytokine production and caspase-1 activation during co-

infection 

 In addition to developing the mouse model for studying the factors involved in co-

infection in vivo, I also examined the immune signaling pathways involved during co-infection in 

mouse bone marrow derived macrophages (Fig 3A-C). I examined the cytokines produced by 

macrophages either mock, single or co-infected for 24 hours and found a complex ‘cytokine 

storm’ exists. Specifically, there was a dramatic increase in the level of IL-1β, IL-6 and TNF- 

during co-infection of IAV and A. fumigatus compared to mock or single infected samples (Fig 

5A-5C). In addition, IL-1β must be cleaved by caspase-1 to become active, I performed western 

blots of macrophage cell lysates either mock, single, or coinfected and found that caspase-1 

activation is dramatically elevated during co-infection. (Fig 5D). 

 Inflammasome priming stages and the overproduction of IL-1β. IL-1β is produced as 

an inactive precursor which must be cleaved to become fully active. The observed enhanced IL-

1β production during co-infection could, therefore, result due to increased expression of pro-IL-

1β or enhanced activation of IL-1β by caspase-1 within the inflammasome (Fig 6A). Previously, 

bacterial co-infections with IAV and S. pneumoniae showed similar heightened cytokine 
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production compared to preliminary observations of IAV and A. fumigatus co-infections [281-

282]. During IAV-bacterial co-infection, increased IL-1β production was associated with 

enhanced production of pro-IL-1β (283-284). Interestingly, this is exactly the opposite seen with 

co-infections with IAV and A. fumigatus. Pro-IL-1β expression was not different between IAV 

infected and IAV-fungal coinfected macrophages (Fig 6B).  

 Also, there was no increase in the activation of the transcription factor NF-B that 

controls pro-IL-1β gene expression (Fig 6B), as was seen with IAV-bacterial co-infection [283-

284]. NF-B also controls the gene expression of the inflammasome activator NLRP3 [287]. In 

agreement, there was no difference in NLRP3 in IAV or coinfected cells (Fig 7A). Thus, I 

concluded that increased expression of pro-IL-1β and NLRP3 is not responsible for enhanced 

caspase-1 activation and overproduction of IL-1β. 

 

Exploring viable agonists contributing to enhanced NLRP3 or AIM2 mediated caspase-1 

activation  

 As the first, or priming step, of NLRP3 inflammasome activation was not affected by co-

infection, I examined other possibilities. The second step in activation of the inflammasomes is 

usually provided by PRRs sensing a diverse group of agonists that can trigger the specific 

activation of the inflammasome in question. For example, NLRP3 can recognize ROS produced 

by cell damage from both IAV and A. fumigatus, and AIM2 detects DNA in the cytoplasm [278]. 

I hypothesized that if there were two pathogens, then there could be twice as much ROS or other 

cell damage. Alternatively, the co-infection could affect AIM2 sensing of fungal DNA. Either of 

these could result in increased inflammasome activation and more cytokine production.  
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 Negating ROS as a source of direct inflammasome activation through cytoplasmic 

sensing. To determine if the production of ROS facilitates the activation of NLRP3, upstream of 

caspase-1 activation during co-infection, macrophages were infected as before, and 

mitochondrial ROS was examined 18 hours into infection via flow cytometry. Based on median 

fluorescence intensity (MFI), or the median level of fluorescence detected within macrophages 

that have experienced mitochondrial damage, co-infected samples do not provide evidence that 

ROS is a primary factor in the observed over activation of caspase-1. In comparison to untreated 

samples, IAV singly infected samples produced the highest amount of ROS along with the 

observed highest percentage of ROS afflicted macrophages (Fig 7B-G). The amount of ROS 

production and percentage of ROS afflicted macrophages for the A. fumigatus singly infected 

and co-infection samples were not significant different from mock infected controls (Fig 7B-G). 

Interestingly, there are many reports of A. fumigatus inducing ROS production in host cells [286-

287]. Other reports show that melanin, within the A. fumigatus cell wall, can actually function as 

a physiological redox buffer through binding metal ions and free electrons. Either way, an 

overproduction of ROS does not occur in the co-infection samples in our experiments and 

suggests that other mechanisms for enhanced caspase-1 activation must be at play (Fig 8).  

 

Intracellular pathogen-mediated antagonistic signals contribute to the ‘perfect storm’ 

  Upon further research of the possible mechanisms for NLRP3 mediated inflammasome 

activation, several reports of a specific kinase, DAPK1, surfaced [262, 279-280]. DAPK1 

actually drives the FBXL-2-dependent proteasomal degradation of NLRP3 during A. fumigatus 

infections (see Fig 9C). This was a promising primary lead into understanding exactly how the 

two pathogens are interacting with each other and the macrophages. 
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 IAV-mediated suppression of DAPK1 gene expression promotes NLRP3 activation. 

To examine the role of DAPK1, qRT-PCR for gene expression of DAPK1 was performed on 

IAV, A. fumigatus and co-infected samples. In agreement with previous reports, A. fumigatus 

only infected macrophages showed an 8-fold increase in DAPK1 expression compared to the 

base-line in uninfected macrophages (Fig 9B). IAV, on the other hand, suppressed the expression 

of DAPK1 by four-fold compared to the uninfected macrophages (Fig 9B). Surprisingly, 

coinfected macrophages at 6h after infection also has suppressed DAPK1 expression, but this did 

increase by 24h (Fig 9B). This suggests that IAV suppresses DAPK1 expression early during co-

infection, which may prevent the proteasomal degradation of NLRP3 (Fig 9A) and allow for a 

more potent NLRP3 mediated inflammasome response during co-infection, even if NLRP3 is not 

more highly expressed by NF-κB (Fig 7A).  

 Co-infecting pathogens synergistically induce AIM2 expression. The infection of 

macrophages with A. fumigatus can also activate the AIM2 inflammasome [278]. I examined 

AIM2 gene expression using qRT-PCR and found that IAV infection alone results in highly 

induced AIM2 gene expression (Fig 10A). However, fungal infection did not greatly induce 

AIM2 expression (Fig 10A). Finally, coinfected macrophages did show high AIM2 expression, 

especially at earlier time points (Fig 10A). Thus, infection with IAV appears to induce AIM2 

gene expression, and, although AIM2 cannot detect IAV directly, because it is an RNA virus, the 

elevated AIM2 expression caused by IAV may then cause more inflammasome activation once 

the fungal co-infection occurs through the proposed pathway in Figure 10B.  

 Preliminary in vitro knockout experiments reiterate that NLRP3 and AIM2 

inflammasomes are both involved. Finally, to verify the role of AIM2 and NLRP3 during co-

infection, I infected macrophages from mice that are genetically deficient in Aim2 and Nlrp3. I 
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infected these macrophages as previously and performed ELISAs. I found that the dramatic 

increase in IL-1β and other cytokines during co-infection was muted in both the Nlrp3-/- and 

Aim2-/- macrophages (Fig 11A-F). I also observed less caspase-1 activation in Nlrp3-/- and 

Aim2-/- macrophages (Fig 11G). Overall, these data provide preliminary but essential insight into 

the inner-workings of IAV and A. fumigatus co-infections at the animal and molecular level and 

will help pave the way for future research. As IAV and A. fumigatus co-infections continue to 

gain attention, these integral cell-signaling pathways (shown in Fig 12) will promote thinking 

and discourse into how these co-infections can be prevented, diagnosed and treated. 
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DISCUSSION 

 

 

 

 In the last decade, the importance of IAV predisposing patients to opportunistic 

pathogens has become a critical area of research, mainly due to the implications for increasing 

prevention and improving the prognosis of these co-infections. Interestingly, recent research 

shows that people currently infected with IAV are confirmed to have susceptibility to 

opportunistic pathogens of fungal origin, in particular C. neoformans and C. gattii [220]. 

However, before beginning this experimental investigation of IAV and A. fumigatus, only 

clinical case reports provided information about these co-infections. Extensive research has led 

to advanced understanding regarding how to prevent and treat IAV-bacterial co-infections [284]. 

However, similar knowledge is severely lacking in IAV and A. fumigatus co-infections. Not only 

are immunocompromised individuals at risk to developing this devastating condition, but so are 

healthy people without previous serious illnesses prior to becoming infected with IAV (H1N1). 

Relevant research to IAV or A. fumigatus infections alone were used as preliminary clues to 

piece together the mystery of this co-infection [271-277].  However, it was discovered that these 

pathogens attack the host differently and there is plenty of work left to do. 

 My goal for this project, through developing an in vivo and in vitro model, was to 

interrogate how the pathogens attack the host, resulting in the observed robust immune response. 

My in vivo data clearly indicates that co-infecting with a low dose of IAV (250 to 300 PFU) on 

day 0 and 104 to 107 CFUs on day 3 results in high morbidity (% weight loss) and the highest 

observed mortality (% survivorship). Therefore, my in vivo hypothesis was supported. In 

addition, my in vitro data insightfully indicates that when co-infecting WT murine macrophages 

with IAV at hour 0 and A. fumigatus at hour 3, there is enhanced inflammation. However, this is 
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not from heightened activation of NF-B and pro-IL-1β gene transcriptional priming nor was 

higher ROS as a result of mitochondrial damage directly activating the NLRP3 inflammasome. 

Instead, my in vitro WT murine macrophage data demonstrated a vigorous production of pro-

inflammatory cytokines (IL-1β, IL-6 and TNF-) and heightened caspase-1 activation through 

an upregulated transcriptional activation of AIM2 and down regulated DAPK1. It must be noted 

that DAPK1 expression facilitates the proteasomal degradation and/or recycling of NLRP3. 

Thus, less DAPK1 could mean there is no way to shut off or eliminate NLRP3 activation, 

resulting in more caspase-1 activation. In addition, the increased expression of AIM2 could 

result in increased detection of fungal DNA in coinfected macrophages and enhanced caspase-1 

activation. In all, my data indicate that PAMPs from the pathogens and the host signaling 

pathways are a balancing-act between the activation of DAPK1, NLRP3 and AIM2.  

 As previously mentioned, NLRP3 and AIM2 are inflammasomes that function as 

cytoplasmic sensors of damage or ‘stuff’ in the case of NLRP3 and dsDNA in the case of AIM2. 

I thought that through damage elicited by IAV attacking macrophages, ROS production would 

occur. There are other research and review reports mentioning that A. fumigatus also induces 

ROS production in immune cells too [279, 287-288]. These previous reports led me to predict 

that the heightened activation of caspase-1-p20 and downstream inflammatory cytokine 

production was due more mitochondrial damage and released ROS induced by both pathogens 

combined. This, in turn, led me to formally hypothesize that the damage and the recognition of 

the fungal DNA would activate the AIM2 inflammasome along with the NLRP3 inflammasome. 

Thus, both inflammasomes would be working ‘over-time’ to try to eliminate the pathogens. This 

excessive inflammasome activation would result in an over-production of downstream mediators 

of cytokine production and release. Although I did observe more AIM2 expression, I did not 



49 

observe more ROS. Instead, I now propose that DAPK1 may actually mediate NLRP3 function 

through the proteasomal degradation of NLRP3.  

 IFNs and damage to infected macrophages could contribute to the activation of the 

NLRP3 inflammasome over the course of infections. When IAV infects the macrophages, 

interferons can be produced (IFN-α/β and also some reports of IFN-) and signal in an autocrine 

manner through interferon receptors like IFNAR. Transcription factors STAT1/STAT2 lead to 

the downstream expression of DAPK1. DAPK1 can then inhibits the function of the NLRP3 

inflammasome via E3 ligase mediated polyubiquitination and subsequently the protein-complex 

will be chopped up and recycled in the proteasome [262]. This would prevent excessive 

inflammation during infection [280]. However, IFN production by the host cells will block 

further virus replication. Thus, the NS1 protein is used by IAV to block further IFN production. 

Consequently, DAPK1 expression is reduced or even suppressed during IAV infection. The 

opposite is observed for A. fumigatus. In A. fumigatus singly infected samples, the production of 

IFNs induces the expression of DAPK1, as previously seen in related research [262, 280]. 

Intriguingly, during co-infection, IAV appears to override A. fumigatus, resulting in less DAPK1 

during co-infection, likely due to IAV NS1 protein initially halting IFN production. Although 

DAPK1 suppression during co-infection could result in more NLRP3 activation, this avenue of 

research needs further exploration for complete validation.  

AIM2 recognizes fungal DNA and activates the corresponding inflammasome. IAV also 

induces AIM2 expression but cannot directly activate AIM2. Instead, IAV infection can result in 

necrotic cell death and dsDNA release from host cells that then activates AIM2. During co-

infection, the increased AIM2 expression could result in more inflammasome activation due to 

enhanced AIM2 recognition of fungal DNA and host cell DNA from dead cells. Overall, the 



50 

increased activation of NLRP3 and AIM2 simultaneously during co-infection could result in 

increased inflammasome activation which is facilitating caspase-1 activation and release of 

cleaved IL-1β. The use of genetic knockouts for Aim2 and Nlrp3 support that these 

inflammasomes together facilitate the production of mature IL-1β, because either knockout 

resulted in lower levels of pro-inflammatory cytokines during co-infection (Fig 11A – 11F). 

Therefore, during co-infection, the signals expressed between the pathogens and the host are not 

properly regulated, explaining the rapid and inappropriate immune response observed. These 

data caused me to accept part of my initial in vitro hypothesis that NLRP3 and AIM2 

inflammasomes are activated together. However, these data caused me to reject the other part of 

this hypothesis due to the production of ROS or how the inflammasomes were becoming 

activated.  

After developing the in vivo mouse model and studying the pathways for enhanced 

caspase-1 activation and release of pro-inflammatory cytokines, many questions still remain, and 

even more questions have surfaced. To begin with, what DAMPs are contributing to the 

activation stage of the NLRP3 and AIM2 inflammasomes. It does not appear to be mitochondrial 

ROS. My prediction is either a potassium efflux from within the cell’s cytoplasm or ROS from 

ER damage is/are the DAMP(s) that is/are the direct stimuli leading to NLRP3 activation. 

Experiments are currently in the works for confirming this. Another current planned experiment 

is to determine which IFN, especially if IFN-actually is produced by macrophages through 

transcriptional gene regulation via qRT-PCR of singly infected and co-infected samples. This 

would bridge further understanding DAPK1’s and IFN-’s roles during this co-infection. Also, 

how does IAV inhibit DAPK1 and what would happen to immune signaling during co-infection 

in a Dapk1 knockout mouse? In the in vivo model, I wanted to really understand why co-
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infecting mice on day 3 with A. fumigatus produces the observed high morbidity and mortality 

rates. Previous research of other IAV co-infections highlight that the infective viral titers are 

highest during this time-point during IAV infection with H1N1 [220]. The ultimate unanswered 

question is why do mice and humans die from this co-infection? Is it due to increased 

inflammation, as seen in our macrophages, or are the pathogens growing out of control? I need to 

reexamine how low of a dose of spores can be given to elicit the same morbidity and mortality 

rates (can I go lower than 104 CFU?). Also, the dissemination of the pathogens in the body and 

organ pathologies should be considered. There are previous data within several clinical case 

reports that also identify that some patients who succumbed to this co-infection were previously 

on corticosteroids [266, 268]. What formula, strength and duration of corticosteroids and how 

does this effect the immune system during these co-infections? Could administering a common 

antiviral prevent or delay the co-infection if caught early enough? Could a possible explanation 

to decreased ROS production in co-infection samples in comparison to singly infected samples 

be due to reduced macrophage fungicidal activity through possible IFN- exposure/production?  

To sum up, a ‘perfect storm’ results from IAV and A. fumigatus co-infections, leading to 

the observed high morbidity and mortality seen in clinical case reports, and this was 

recapitulated in my in vivo mouse model (Fig 13). The ‘perfect storm’ may be caused by 

increased activation of inflammasomes, specifically AIM2 and NLRP3. This affects the 

downstream protease caspase-1 and cytokines IL-1β, IL-6 and TNF- expression. DAPK1 would 

normally decrease NLRP3 inflammasome activation, but during co-infection, IAV inhibits 

DAPK1, which results in higher NLRP3 activation. IAV also induces AIM2, which further 

induces AIM2 inflammasome activation. Hopefully, in the case of these IAV and A. fumigatus 
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co-infections, our research will grow the awareness and need to help the people who experience 

these robust immune responses annually during seasonal IAV pandemics. 
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Table 1. MHN Buffer Recipe.  

 

Ingredients Amount 

 

1 M MgSO4 

 

 

24.65 g 

50 mM HEPES 

 

11.915 g 

150 mM NaCl 

 

0.876 g 

Double distilled H2O Fill to 100 mL 

 

 

Table 2. 1X Plaque Assay Medium Recipe.  

 

Ingredients Amount 

 

2X MEM medium 

 

 

10.00 mL 

Molecular grade H2O 10.00 mL 

 

 

Table 3. 2X Plaque Assay Medium.  

 

Ingredients Amount 

 

Molecular grade H2O 

 

 

31.00 mL 

10X MEM 

 

10.00 mL 

100X Glutamine 

 

1.00 mL 

7.5% Bovine Serum Albumin (BSA) 4.00 mL 

  

Penicillin/Streptomycin (10,000 U/mL) 1.00 mL 

 

Sodium Bicarbonate 3.00 mL  
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Table 4. Bone Marrow Differentiating Medium Recipe.  

 

Ingredients Amount 

 

DMEM 

 

 

300.00 mL 

L-929 Medium 

 

150.00 mL 

Heat Inactivated FBS 

 

50.00 mL 

Penicillin/Streptomycin (10,000 U/mL) 5.00 mL 

  

Non-Essential Amino Acids (NEAA) 5.00 mL 

 

 

Table 5. 1X RIPA Lysis Buffer Recipe. 

 

Ingredients Final Concentration 

 

NaCl 

 

150 mM 

 

EDTA, pH 8.0 5 mM 

 

Tris, pH 8.0 

 

50 mM 

 

NP-40 (IGEPAL CA-630) 

 

1.00 % 

 

Sodium Deoxycholate 

 

0.50 % 

  
SDS 0.10% 

  

Distilled Water N/A 

  

100X Halt Protease Phosphatase Inhibitor 

Cocktail (Thermo Scientific #78442) 

 

1X 
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Table 6. 4X SDS Loading Dye Recipe.  

 

Ingredients Final Concentration 

 

Tris-Cl, pH 6.8 

 

200 mM 

 

SDS 8.00% (w/v) 

 

Bromophenol Blue 

 

0.40 % (w/v) 

 

Glycerol 

 

40.00 % 

  

-Mercaptoethanol 400 mM 

 

 

Table 7. 10X Tris Buffered Saline (TBS).  

 

Ingredients Amount 

 

Tris Base 

 

Sodium Chloride 

 

 

24.50 g 

 

87.65 g 

diH2O Fill to 1,000 mL 

 

 

Table 8. 1X Tris Buffered Saline Tween 20 (TBST).  

 

Ingredients Amount 

 

10X TBS (made previously) 

 

100.00 mL 

 

diH2O Fill to 1,000 mL 

 

Tween 20 

 

0.50 mL 

 

 

 

 

 

 

 

 

 

 



83 

Table 9. 1X Tris/Glycine/SDS (Running) Buffer.  

 

Ingredients Amount 

 

10X Tris/Glycine/SDS (made previously) 

 

100.00 mL 

 

diH2O Fill to 1,000 mL 

 

 

Table 10. 1X Tris/Glycine (Transfer) Buffer.  

 

Ingredients Amount 

 

diH2O 

 

900.00 mL 

 

10X Tris/Glycine (made previously) 100.00 mL 

 

Methanol 

 

200.00 mL 

 

 

Table 11. Western Blot Primary Antibodies.  

 

1 Ab Catalog # Manufacturer 

 

Anti-caspase-1 (p20) (mouse) 

 

 

AG-20B-0042-C100 

 

Adipogene 

 

Anti-β-Actin (rabbit)  

 

-Tubulin (rabbit) 

 

D6A8 

 

TU-02 

Cell Signaling 

Technologies 

 

Santa Cruz 

Biotechnology 

   

Pro-IL-1β (rabbit) D3H1Z Cell Signaling 

Technologies 

 

(Total) IB- (rabbit) 9242 Cell Signaling 

Technologies 

 

(Phosphorylated) IB-, Ser32 

(rabbit) 

14D4 Cell Signaling 

Technologies 

 

NLRP3 (rabbit) 

 

D4D8T 

 

Cell Signaling 

Technologies 

 

Caspase-8 (mouse) 

 

1C12 

 

Cell Signaling 

Technologies 
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Table 12. Western Blot Secondary Antibodies.  

 

2 Ab Catalog # Manufacturer 

 

Anti-rabbit HRP  

 

 

111-035-144 

Jackson Immuno 

Research Laboratories 

 

Anti-mouse HRP HAF007 R&D Systems 

 

 

 

Table 13. cDNA PCR Master Mix Recipe.  

 

Ingredients Amount (Kit w/o Inhibitor) 

 

10X RT Buffer 

 

2.00 L 

 

25X dNTP Mix (100mM) 0.8 L 

 

10X RT Random Primers 

 

2.00 L 

 

Multiscribe Reverse Transcriptase 

 

1.00 L 

 

Nuclease-free H2O 

 

9.2 L 

 

 

Table 14. Quantitative Real Time-PCR Primer Sequences.  

 

Specific Gene Forward Primer Reverse Primer 

 

-Actin 

 

 

5’ GGC TGT ATT CCC 

CTC CAT CG 3’ 

 

5’ CCA GTT GTT AAC 

AAT CGG ATG A 3’ 

 

Aim2 

 

 

Dapk1 

5’ GAT TCA AAG TGC 

AGG TGC GG 3’ 

 

5’ CCT GGG TCT TGA 

GGC AGA TA 3’ 

5’ TCT GAG GCT TAG 

CTT GAG GAC 3’ 

 

5’ TCG CTA ATG TTT 

CTT GCT TGG 3’ 
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Equation 1. Multiplicity of Infection for Influenza A virus (IAV) and Aspergillus fumigatus. The 

desired MOI of IAV to infect macrophages was 10 per macrophage. The desired MOI of A. 

fumigatus to infect macrophages was 1 per macrophage. 

 

1 𝑜𝑟 10 𝑀𝑂𝐼 =  
# 𝑜𝑓 𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛𝑠

# 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠
 

 

Equation 2. General solving for pathogens stock volume to add. The volume of pathogen stock to 

add depends upon the number of cells present per will multiplied by the desired (previously 

calculated) MOI and divided by the known concentration of the pathogen stock solution. 

 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛 𝑠𝑡𝑜𝑐𝑘 𝑡𝑜 𝑎𝑑𝑑 =  
# 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑤𝑒𝑙𝑙 𝑥 𝑀𝑂𝐼

[ ] 𝑜𝑓 𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛 𝑠𝑡𝑜𝑐𝑘
 

 

 

Equation 3. Normalizing RNA concentrations. RNA concentrations were measured using a 

nanodrop and normalized using the following general calculation. 

 

(𝐶1)(𝑉1) = (𝐶2)(𝑉2 − 19𝐿) 
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Figure 1. Proposed IAV and A. fumigatus immune signaling pathways. 1) Priming stage via NF-

B activation. 2) Autocrine IFN production. 3) Damaged associated molecular patterns 

(DAMPs) inflammasome sensing and activation. 4) LC3-associated phagocytosis (LAP) 

activation. ? = undetermined involvement. Visual created in BioRender.com. 
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Figure 2. In vivo infection scheme, morbidity and mortality of infected WT mice. A) Outline of 

in vivo infection scheme created via BioRender.com. B) Weight loss in WT mice that were 

singly or co-infected on various days. C) Mortality in mice that were singly or co-infected on 

various days. D) Weight loss in WT mice infected with IAV alone, A. fumigatus at 107 CFU 

alone, or IAV co-infected with various CFU dosages of A. fumigatus on day 3. E) Mortality in 

mice infected with IAV alone, A. fumigatus at 107 alone, or IAV co-infected with various CFU 



88 

doses of A. fumigatus on day 3. B-E) Data were combined from 2 to 3 experiments, total n is 

indicated. Two-way ANOVA using Tukey’s post hoc analysis was utilized for statistical 

comparison for weight loss and Kaplan-Meier Survival Plot with LogRank Test was utilized for 

survival data. p values: <0.05 (*), <0.01 (**), <0.001 (***).  
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Figure 3. In vitro infection scheme. A) Process for generating macrophages from murine bone 

marrow for in vitro infections. B) In vitro infection schemes. C) Sample analysis workflow. All 

visuals created in BioRender.com. 
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Figure 4. Generating an ELISA standard curve. Graphical representation via BioRender.com of 

the process of generating an ELISA standard curve via serial dilution. 
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Figure 2. Co-infection with IAV and A. fumigatus results in overproduction of pro-inflammatory 

cytokines through enhanced caspase-1 activation. A-C) ELISAs were completed on supernatant 

from in vitro samples collected with one of the previously stated infection schemes. Data present 

2-3 independent experiments using n=2 per experiment. One-way ANOVA using Tukey’s post 

hoc analysis was utilized for statistical comparison. ns: not significant, p-values: <0.05 (*), <0.01 

(**), <0.001 (***). D) Protein levels of pro-caspase-1 and active caspase-1-p20 were measured 

using western blot analysis from differentiated macrophages infected as indicated for 24-hours. 
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Figure 3. Overproduction of IL-1β is NF-B and pro-IL-1β expression independent. A) Focused 

NF-B activation pathways that could prime inflammasome activation created in 

BioRender.com. B) Protein levels of pro-IL-1β, total IB- and phosphorylated IB- were 

measured using western blot analysis from samples collected at 6-, 12-, or 24-hours after the 

indicated infections. β-Actin was used as a control.  
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Figure 4. Negating ROS as a source of direct inflammasome activation. A) NLRP3 and -Actin 

protein expression using western blot analysis. B-G) ROS median fluorescence intensity (MFI) 

and percentage of ROS afflicted cells were analyzed by flow cytometry. One-way ANOVA 

using Dunnett’s multiple comparisons test. ns: not significant, p values: <0.05 (*), <0.01 (**), 

<0.001 (***). 
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Figure 5. Negating viable agonists contributing to the culmination of caspase-1 activation 

through inflammasome complex assembly. Recall the complete proposed signaling pathways 

that could be involved in the enhanced expression of activated caspase-1 and overproduction of 

pro-inflammatory cytokines (Figure 1). Here, updated pathways via BioRender.com show that 

NF-B dependent immune signaling does not contribute to the inflammasome activation seen at 

24-hours in co-infection samples. The production of DAMPs through mtROS as a NLRP3 

inflammasome activator has also been negated here. 
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Figure 9. Expression of DAPK1 during IAV + A. fumigatus co-infections. A) Visual explaining 

DAPK1 and NLRP3 interaction. B) mRNA from macrophage samples at 6-, 12-, or 24-h.p.i. 

examined for DAPK1 gene expression by qRT-PCR. DAPK1 mRNA was normalized relative to 

-Actin. One-way ANOVA using Tukey’s post hoc analysis was used for statistical comparison. 

p values: <0.05 (*), <0.01 (**), <0.001 (***). C) Visual proposed involvement of DAPK1’s role 

during this co-infection created via BioRender.com. 
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Figure 10. Co-infecting pathogenic agents synergistically induce AIM2 inflammasome 

activation. mRNA from differentiated macrophage samples collected at 6-, 12-, or 24-h.p.i. with 

the indicated pathogens examined for AIM2 gene expression by qRT-PCR. AIM2 mRNA was 

normalized relative to -Actin. One-way ANOVA using Tukey’s post hoc analysis used for 

statistical comparison. p values: <0.05 (*), <0.01 (**), <0.001 (***).  B) Visual of proposed 

involvement of AIM2 during this co-infection created via BioRender.com. 
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Figure 11. Preliminary in vitro experiments reiterate that NLRP3 and AIM2 inflammasomes 

independently reach similar objectives. A-F) Differentiated Nlrp3-/- and Aim2-/- knockout 

macrophage supernatants were collected from one of the previously stated infection schemes and 

analyzed via ELISA for IL-1β, IL-6 and TNF- cytokines. IL-1β, IL-6 and TNF-cytokine 

concentrations were not significantly increased during co-infection compared to uninfected or 

singly infected samples. Data presented 2-3 independent experiments using n=2 per experiment. 

One-way ANOVA using Tukey’s post hoc analysis was utilized for statistical comparison. ns: 

not significant, p-values: <0.05 (*), <0.01 (**), <0.001 (***). G) Protein levels of pro-caspase-1 

and active caspase-1-p20 were measured using western blot analysis from differentiated 

macrophages of the indicated genotype infected for 24-hours. Tubulin was used as a control.  
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Figure 12. Possible molecular signaling mechanisms left to explore. Visual representation via 

BioRender,com of the possible molecular mechanisms to examine in the future based on 

previous research. 
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Figure 13. IAV and A. fumigatus co-infection and the pivotal role of activated caspase-1. 

Understanding of the molecular mechanisms of IAV and A. fumigatus co-infections were 

severely lacking prior to this thesis research. Through development of both in vivo and in vitro 

models, a foundational understanding of the inappropriate immune signaling involved. This 

inappropriate immune signaling can begin to effectively explain the resulting high percentages of 

morbidity and mortality reported with these co-infections. Hopefully this research will begin to 

increase the attention and lead to innovative treatments soon. Visual created in BioRender.com. 
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