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ABSTRACT

Essential to the study of space curves in Differential Geometry is the Frenet frame.
In this thesis we generate the Frenet equations for the second, third, and fourth
dimensions using the Gram-Schmidt process, which allows us to present the form of
the Frenet equatins for n-dimensions. We highlight several key properties that arise
from the Frenet equations, expound on the class of curves with constant curvature
ratios, as well as characterize spherical curves up to the fourth dimension. Methods for
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1. INTRODUCTION

Fundamentally, classical Differential Geometry of curves is the study of the

local properties of curves. To be specific, the local properties determine the behavior

of a curve in the neighborhood of a point. We can think of a curve as a path marking

out the trail that an object makes as it travels about in space. The key structure of the

curve that we want to consider is its shape. Questions of the following nature might

arise: is the curve under consideration straight or bending; is its bending smooth or

sharp; and does the curve protrude into higher dimensions?

Essential to the study of space curves are the Frenet equations, which in the

three-dimensional case use curvature and torsion to express the derivatives of the

three vector fields {T,N,B} composing the Frenet frame in terms of the vector fields

themselves. We can find an analogue for higher dimensions, in which we simply call

each n-dimensional bend in the curve the curvature for each respective dimension

under consideration. In the present paper, we will prove the Frenet equations up to

the fourth dimension and demonstrate the form for n-dimensions.

There are a handful of perspectives from which a space curve can be studied.

Imagine the trail a bicyclist might leave behind him on a muddy road. We can call

that path a curve in two-dimensions. More colloquially, a curve can be thought of as

the trip that is taken by a moving particle. The most common ways to parameterize

such a trip would be either as a function of time or of distance traveled. For our

purposes, it is convenient to study curves through the lens of arclength. And since

we are only concerned about analyzing the shape of the space curve, we can forgo

having to consider the speed of the particle as it completes its path. For simplicity,

we can happily force the particle to move along its path at unit-speed.

While initially we might envision a curve similar to the markings we make

with a pen on a flat sheet of paper, such a plane is not the only surface where curves
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reside. Particles can move about and form curves on essentially any surface. In fact,

if our bicyclist in our illustration rode a significant distance, the resulting curve from

the trail formed in the mud would be more relatable to a spherical curve, since our

planet is spherical in shape. Curves on varying surfaces can be characterized and

their resulting behaviors studied.
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2. THE FRENET EQUATIONS

A curve with linearly independent (n − 1) derivatives in any n-dimensional

space, α(t) = (α1(t), α2(t), . . . , αn(t)), determines the position of a particle at any

moment. We say the curve is regular if the derivative of the curve α′(t) 6= 0. This

derivative is the tangent vector to the curve at the point α(t) and determines the

velocity of the particle traveling along the curve. However, since we are interested

in the geometry of the curve rather than the applications to Physics, we want to

analyze the curve in terms of distance rather than time (see [1], [2], and [4]). So, we

reparameterize the coordinates of the curve α(t) in terms of arclength s(t) by

s(t) =

∫ t

t0

‖α′(u)‖du.

Note that by the Fundamental Theorem of Calculus it follows that

ds

dt
=

∥

∥

∥

∥

dα

dt

∥

∥

∥

∥

> 0.

Since α(s) is a regular curve and it’s derivative is strictly positive, then s(t) has a

unique inverse. So, we can always parameterize the curve by arclength. Henceforth,

every curve discussed will be paremeterized by arclength, where the values of s are

contained in the interval I. To denote continuity up to the kth derivative, we use the

notation Ck.

DEFINITION 2.1: Let α : I → R
n be a curve parameterized by arclength s ∈ I,

such that α ∈ Cn(I). Define the unit tangent vector as

T(s) =
dα

ds
=

dα
dt
ds
dt

.

The Frenet equations define the Frenet frame and provide information about
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the local behavior of the curve α(s) in a neighborhood of a point on the curve. It

forms the orthonormal basis for a set of vector fields. The Frenet equations describe

the derivatives of these orthogonal vector fields as the rate of change of these vector

fields in terms of the vector fields themselves. We can build the Frenet frame for

n-dimensions.

2.1 Two Dimensions

Let α ∈ C2(I) be a curve parameterized by arclength. Then α′ = T is the

unit tangent vector, and T ·T = 1. Differentiation gives

dT

ds
·T = 0. (2.1)

Two vectors are orthogonal to each other when their dot product is zero.

Excluding the case that dT
ds

= 0, equation (2.1) says the derivative of the tangent

vector is orthogonal to the tangent vector itself, so we can uniquely write

dT

ds
= κN, (2.2)

where κ =
∥

∥

dT
ds

∥

∥ ≥ 0 and N is orthogonal to T. The unit vector N is called the

principal unit normal. The constant, κ, is called the curvature. Curvature measures

the failure of a curve to be a straight line, providing a measure of bending of the

curve.

THEOREM 2.2: Let α : I → R
2 be a curve parameterized by arclength, such that

α ∈ C2(I). The Frenet equations are

dT

ds
= κN,

dN

ds
= −κT.

Proof. The first Frenet equation is equation (2.2).
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Since N ·T = 0, differentiation gives

dN

ds
·T+

dT

ds
·N = 0.

Substituting equation (2.2), we obtain

dN

ds
·T+ κN ·N = 0.

Since N is a unit vector, N ·N = 1. Thus, the equation above simplifies to

dN

ds
·T = −κ. (2.3)

Since N ·N = 1, differentiation gives

dN

ds
·N = 0. (2.4)

Then dN
ds

is orthogonal to N, while N is orthogonal to T. So, we can write dN
ds

as a

linear combination of these orthogonal vectors, such that

dN

ds
=

(

dN

ds
·T
)

T−
(

dN

ds
·N
)

N. (2.5)

Substituting equations (2.3) and (2.4), gives us

dN

ds
= −κT. (2.6)

Thus, completing the proof of the Frenet equations for the second dimension.
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2.2 Three Dimensions

The Frenet frame considered at a point on a curve in Euclidean R
3-space is

formed by three associated orthogonal unit vector fields, {T,N,B}, which form a

basis for these vector fields along the curve. We call the third vector, B the binormal

vector, which is orthogonal to both the tangent and normal vectors.

The third dimension introduces a second curvature, called torsion, commonly

denoted as τ . Torsion measures the failure of a curve to lie in a two-dimensional plane.

In other words, torsion is the scalar measure of the extension of a curve protruding

from the two-dimensional plane. We will make use of this curvature in our proof of

the Frenet equations for three-dimensions.

THEOREM 2.3: Let α : I → R
3 be a curve parametrized by arclength, such that

α ∈ C3(I). There is a unique unit vector B = B(s) orthogonal to T and N, such

that the Frenet equations are

dT

ds
= κN,

dN

ds
= −κT+ τB,

dB

ds
= −τN.

Proof. We have that T, N and κ are defined in precisely the same manner as in two

dimensions as given by equation (2.2).

Since N ·N = 1, differentiation gives

dN

ds
·N = 0. (2.7)

Thus, N and dN
ds

are orthogonal.

Consider the vector

u =
dN

ds
−
(

dN

ds
·T
)

T−
(

dN

ds
·N
)

N.
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Note
(

dN
ds

·T
)

T is the projection of the vector dN
ds

onto T, and
(

dN
ds

·N
)

N is the

projection of the vector dN
ds

onto N.

We show that u is orthogonal to T and N by verifying that u ·T = 0 and u ·N = 0.

Consider

u ·T =
dN

ds
·T−

(

dN

ds
·T
)

T ·T−
(

dN

ds
·N
)

N ·T.

From the relationships of the vectors T and N, we verify the equation simplifies to

u ·T =
dN

ds
·T− dN

ds
·T = 0.

Consider

u ·N =
dN

ds
·N−

(

dN

ds
·T
)

T ·N−
(

dN

ds
·N
)

N ·N.

Again from the relationships of the vectors T and N, we verify the equation simplifies

to

u ·N =
dN

ds
·N− dN

ds
·N = 0.

Since u is orthogonal to both T and N, we define u as a scalar multiple of B. By

equation (2.7),

u = τB =
dN

ds
−
(

dN

ds
·T
)

T, (2.8)

where |τ | =
∥

∥

dN
ds

−
(

dN
ds

·T
)

T
∥

∥. We require det[TNB] > 0; called positive orienta-

tion, which holds if and only if B = T×N.

Since N ·T = 0, differentiation gives

dN

ds
·T = −dT

ds
·N = −κN ·N.

Thus,

dN

ds
·T = −κ. (2.9)
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Hence, substituting equation (2.9) into equation (2.8), gives

dN

ds
= −κT+ τB. (2.10)

Since N ·B = 0, differentiation gives

dN

ds
·B = −dB

ds
·N.

By equation (2.10),

(−κT+ τB) ·B = −N · dB
ds

.

This implies

τ = −N · dB
ds

.

Hence

dB

ds
= −τN. (2.11)

Thus, completing the proof of the Frenet equations for the third dimension.

2.3 Four Dimensions

Let α ∈ C4(I) be a unit-speed curve in R
4. To build the Frenet 4-frame,

consider four vectors orthogonal to one another, {T,N,B,D}. The fourth dimension

also introduces a third curvature, we will denote σ (see [7]). We will make use of this

curvature in our proof of the Frenet equations for four-dimensions.

We have that T, N and κ are defined in precisely the same manner as in two

dimensions as given by equation (2.2). As was shown for three dimensions, the vector

orthogonal to T and N can be written as

dN

ds
−
(

dN

ds
·T
)

T.
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Hence we let τ =
∥

∥

dN
ds

−
(

dN
ds

·T
)

T
∥

∥ ≥ 0, and we write

τB =
dN

ds
−
(

dN

ds
·T
)

T,

where B is a unique unit vector. Note τ induces a second curvature function and

defines

dN

ds
= −κT+ τB, (2.12)

similar to the three dimensional Frenet equation given by (2.10).

Since, B ·B = 1, differentiation gives

dB

ds
·B = 0. (2.13)

Thus, dB
ds

and B are orthogonal. The vector orthogonal to T, N, and B is written

dB

ds
−
(

dB

ds
·T
)

T−
(

dB

ds
·N
)

N−
(

dB

ds
·B
)

B.

Note (dB
ds

·T)T is the projection of vector dB
ds

onto T, and (dB
ds

·N)N is the projection

of dB
ds

onto N, and (dB
ds

·B)B is the projection of dB
ds

onto B.

By equation (2.13), we define the vector orthogonal to T, N, and B as

σD =
dB

ds
−
(

dB

ds
·T
)

T−
(

dB

ds
·N
)

N, (2.14)

where σ can be positive or negative. We require det[TN BD] > 0; called positive

orientation.

Since B ·T = 0 differentiation gives

dB

ds
·T = −B · dT

ds
= −κB ·N.
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Thus,

dB

ds
·T = 0. (2.15)

Since B ·N = 0, differentiating gives

dB

ds
= −B · dN

ds
= −B · (−κT+ τB).

Thus,

dB

ds
= −τ (2.16)

Hence, substituting equations (2.15) and (2.16) into equation (2.14), we have

dB

ds
= −τN+ σD. (2.17)

Since every vector can be written as a linear combination of orthogonal vectors, we

can write

dD

ds
=

(

dD

ds
·T
)

T+

(

dD

ds
·N
)

N+

(

dD

ds
·B
)

B+

(

dD

ds
·D
)

D. (2.18)

Since D ·D = 1, differentiation gives

dD

ds
·D = 0. (2.19)

Since D ·T = 0, differentiation gives

dD

ds
·T = 0. (2.20)

Since D ·N = 0, differentiation gives

dD

ds
·N+

dN

ds
·D = 0.

10



By equation (2.12),

dD

ds
·N+ (−κT+ τB) ·D = 0.

Hence

dD

ds
·N = 0. (2.21)

Since D ·B = 0, differentiation gives

dD

ds
·B+

dB

ds
·D = 0.

By equation (2.17),

dD

ds
·B+ (−τN+ σD) ·D = 0.

Hence

dD

ds
·B = −σ. (2.22)

Hence, substituting equations (2.19), (2.20), (2.21), and (2.22) back into equation

(2.18), we have

dD

ds
= −σB.

Thus, constructing the Frenet equations for the fourth dimension.

THEOREM 2.4: Let α : I → R
4 be a curve parameterized by arclength, such that

α ∈ C4(I). The Frenet equations are

dT

ds
= κN,

dN

ds
= −κT+ τB,

dB

ds
= −τN+ σD,

dD

ds
= −σB.

2.4 n-Dimensions

Notice for the third and fourth dimensions, we applied the Gram-Schmidt pro-

cess to generate the Frenet equations. To generalize the Frenet equations analogously

for n-dimensions, we simply iterate the same strategy. For the curve α : I → R
n,
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parameterized by arclength, such that α ∈ Cn(I), the Frenet n-frame is a collection

of orthogonal vectors {e1, . . . , en}, such that det[e1 . . . en] > 0. Then there are cur-

vature functions κ1, . . . , κn−1, such that κ1, . . . , κn−2 > 0. The Frenet equations are

given in matrix form by

































e1
′

e2
′

...

...

en−1
′

en
′

































=

































0 κ1 0 0 . . . 0

−κ1 0 κ2 0
. . .

...

0 −κ2 0
. . . . . .

...

0 0
. . . . . . . . . 0

...
. . . . . . . . . 0 κn−1

0 . . . . . . 0 −κn−1 0

































































e1

e2

...

...

en−1

en

































.

2.5 Resulting Properties

The Frenet frame describes the structure of a curve depending on the dimen-

sion of the Euclidean subspace within which it is embedded. The Frenet equations

for the third and fourth dimensions insist on the following properties, respectively.

PROPOSITION 1: Given a curve β ∈ C3(I), the graph of the curve, {β}, is a

planar curve if and only if τ = 0.

Proof. Suppose {β} is a planar curve. Then for every value of s, there exists a constant

position vector, p, and a constant normal vector q, such that (β(s)−p) ·q = 0. The

derivative is β′(s) · q+ (β(s)− p) · q′ = 0, hence

β′(s) · q = 0.

Taking the derivative again, we have β′(s) ·q′ + β′′(s) ·q = 0. By the same reasoning

above,

β′′(s) · q = 0.
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Thus,

β′(s) · q = β′′(s) · q = 0 (2.23)

Now β′(s) = T. So, β′′(s) = dT
ds

= κN, by Theorem 2.3. Equation (2.23) translates

to

T · q = N · q = 0. (2.24)

Since B is orthogonal to both T and N, without loss of generality we may assume

q = B. By Theorem 2.3, the derivative of B is

dB

ds
= −τN = 0.

Since κ > 0, by assumption, and N 6= 0, it follows that τ = 0.

For the converse, consider β ∈ C3(I) to be some curve. Assume τ = 0. By Theorem

2.3,

dB

ds
= −τN = 0. (2.25)

Thus, B is a constant vector.

We claim that β lies in the plane orthogonal to B, passing through β(0). Define

f(s) = (β(s)− β(0)) ·B.

The derivative is

df

ds
= β′(s) ·B+ β(s) · dB

ds
.

By equation (2.25),

df

ds
= T ·B = 0.

This implies that f(s) has the same constant value for all s. Clearly, f(0) = (β(0)−

β(0)) ·B = 0. So, f(s) is identically zero, such that for all s, (β(s)− β(0)) ·B = 0.

Thus, the curve β(s) is a planar curve, which lies in the plane orthogonal to B.

13



PROPOSITION 2: Given a curve β(s) ∈ C4, the graph of the curve {β}, is a

three-dimensional curve if and only if σ = 0.

Proof. Suppose {β} lies in a three-dimensional subspace. Then there exists a constant

position vector, p and a constant normal vector q, such that (β(s)− p) · q = 0.

When we take two derivatives, we have the same result as in equation (2.24),

T · q = N · q = 0.

Taking the derivative a third time, we have

N · q′ +
dN

ds
· q = 0.

By Theorem 2.4 and the fact that q is a constant vector,

dN

ds
· q = (−κT+ τB) · q = −κT · q+ τB · q = 0.

Since T · q = 0, the equation above simplifies to

B · q = 0.

Since D is orthogonal to T, N, and B, without loss of generality we may assume

q = D. Since D is a constant, its derivative is zero. By Theorem 2.4, the derivative

of D is

dD

ds
= −σB = 0.

Since κ > 0 and τ 6= 0, it follows that σ = 0.

For the converse, consider β ∈ C4(I) to be some curve. Assume σ = 0. By Theorem

2.4,

dD

ds
= −σB = 0. (2.26)

14



Thus, D is a constant vector. We show that β(s) lies in the hyperplane orthogonal

to D, passing through β(0). Define

f(s) = (β(s)− β(0)) ·D.

The derivative is

df

ds
= β′(s) ·D+ β(s) · dD

ds
.

By equation (2.26),

df

ds
= T ·D = 0.

This implies that f(s) has the same constant value for all s. Clearly, f(0) = (β(0)−

β(0)) ·D = 0. So, f(s) is identically zero, such that for all s, (β(0)− β(0)) ·D = 0.

Thus, the curve {β} lies entirely in the third dimension, which lies in the hyperplane

orthogonal to D.
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3. FUNDAMENTAL THEOREM OF CURVES

The Fundamental Theorem of Curves involves determining the existence and

uniqueness of a curve whose curvature is given by functions of its arclength. As is

suggested by its title, the Fundamental Theorem of Curves is key to the theory of

curves in Differential Geometry. It characterizes the curve under consideration with

respect to the curve’s position in space (see [6]).

We begin with given curvatures. We want to show that we can derive a Frenet

frame and a Frenet curve, from those given curvatures. In order to carry out the proof

of the Fundamental Theorem of Curve Theory, we need to make use of the Existence

and Uniqueness Theorem for a system of Ordinary Differential Equations (see [5]).

EXISTENCE AND UNIQUENESS THEOREM FOR LINEAR SYSTEMS:

If the entries of the square matrix A(t) are continuous on an open interval I containing

t0, then the initial value problem x′ = A(t)x, where x(t0) = x0, has one and only one

solution x(t) on the interval I.

THE FUNDAMENTAL THEOREM OF CURVES: Given functions

λ1(s), λ2(s), . . . , λn−1(s), such that λ1(s), λ2(s), . . . , λn−2(s) > 0, then there exists a

curve α : I → R
n parameterized by arclength, where λi = κi ∈ Cn−1−i. Moreover,

two oriented curves in Euclidean R
n space, having the same curvature functions, are

congruent under an orientation preserving rigid motion.
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Proof. The given curvatures can be arranged in the following matrix form:

K =

































0 κ1 0 0 . . . 0

−κ1 0 κ2 0
. . .

...

0 −κ2 0
. . . . . .

...

0 0
. . . . . . . . . 0

...
. . . . . . . . . 0 κn−1

0 . . . . . . 0 −κn−1 0

































Let F (s) = (e1(s) . . . en(s))
T, where the ei’s are unknown vector-valued func-

tions to be determined. Assume F (s0) = I. For the given matrix-valued function K,

the Frenet frame for n-dimensions is equivalent to the matrix equation

F ′ = KF. (3.27)

Since this is a system of linear first-order differential equations, by the Existence and

Uniqueness Theorem for Linear Systems, there exists a unique solution F (s).

Multiplying equation (3.27) through by the transpose matrix, we have

(FF T )′ = F ′F T + F (F T )′.

Hence

(FF T )′ = F ′F T + F (F ′)T . (3.28)

Substituting equation (3.27) into equation (3.28),

(FF T )′ = KFF T + F (KF )T .
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Invoking the property from Linear Algebra that (AB)T = BTAT , we have

(FF T )′ = KFF T + FF TKT . (3.29)

This can be viewed as a differential equation for the unknown function FF T .

Since F (s0)(F (s0))
T = I, then by the Existence and Uniqueness Theorem for Linear

Systems, the constant function F (s)(F (s))T = I satisfies equation (3.28) for all s,

since K is skew-symmetric. Therefore, by the Existence and Uniqueness Theorem for

Linear Systems, FF T = I, on the entire interval. So, F (s) is an orthogonal matrix.

Since F (s0) = I, then detF (s) = 1, preserving orientation.

The matrix F (s) determines a unique vector-valued function e1(s). For given initial

conditions α(s0) = c, a unique curve α(s) with α(s)′ = e1(s) is defined

α(s) = c+

∫ s

s0

e1(t)dt.

Because e1
′ = κ1e2 6= 0, the vector e2 corresponds to the second vector of the Frenet

n-frame for the curve α(s). Analogously, for all the other ei vectors.

Thus, F (s) represents the Frenet n-frame for α(s) at each point.

The given curvature functions λi coincide with the Frenet curvatures of the curve

α(s). In particular, α(s) is called a Frenet curve which follows from the fact that

α′ = e1, α
′′ = κ1e2, and so on for every i = 1, . . . , n− 1.

Now suppose β(s) is any other curve with curvatures λ1(s), . . . , λn−1(s). Let A =

(e1(0) . . . en(0))
T be an orthogonal matrix with detA = 1. The curves Aα(s) and

β(s) both satisfy the Frenet equations and equal A when s = s0. By the Existence

and Uniqueness Theorem, β(s) = Aα(s).
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4. CURVES WITH CONSTANT CURVATURE RATIOS

Definition 1: A curve α : I → R
n is said to have constant curvature ratios if all

the quotients κi+1

κi

are constant.

In fact, generalized helices in R
3 are characterized by the fact that τ

κ
is con-

stant. This is a result cited as Lancret’s Theorem (see [3]), and it follows that curves

with constant curvature ratios (i.e. ccr-curves) are a subset of generalized helices.

This is only true, however, for odd-n. Instead of working through a rigorous proof,

we will investigate two explicit examples of helices: one in the third dimension and

the other in the fourth dimension, in order to demonstrate ccr-curves.

4.1 Circular Helix in R
3

Define a circular helix parameterized by time in the third dimension as

α(t) = (a cos t, a sin t, bt), where a > 0 We want a unit-speed parameterization of this

helix in terms of its arclength, because we would rather analyze the curve from the

perspective of distance, rather than time. So, using the formula for arclength:

s(t) =

∫ t

0

||α′(t)||dt.

By the Fundamental Theorem of Calculus,

ds

dt
= ||α′(t)||. (4.30)

Since

||α′(t)|| =
√

(x′(t))2 + (y′(t))2 + (z′(t))2.
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and x′(t) = −a sin t, y′(t) = a cos t, and z′(t) = b, we have

||α′(t)|| =
√

(−a sin t)2 + (a cos t)2 + b2 =
√

a2(sin2 t+ cos2 t) + b2 =
√
a2 + b2.

Let c =
√
a2 + b2. Then

s =

∫ t

0

c dt = ct.

Hence, the unit-speed parametrized helix is defined as

β(s) =

(

a cos
(s

c

)

, a sin
(s

c

)

,
bs

c

)

.

Since we are in the third-dimension, our curve is defined by curvature κ and torsion

τ , which arise from Theorem 2.3. According to Definition 1, we verify that the ratio

of curvatures τ
κ
is constant for the circular helix.

First, we find κ. By Theorem 2.3,

T′(s) =
dT

ds
=

1

c2

(

−a cos
(s

c

)

,−a sin
(s

c

)

, 0
)

= κN.

Since a > 0, by definiton

κ = ||T′(s)|| =
√

1

(c2)2

(

a2 cos2
(s

c

)

+ a2 sin2

(s

c

))

.

By Trigonometric identities,

κ =

√

a2

(c2)2
=

a

c2
. (4.31)

This implies κ is constant.

By definition,

N =
T′(t)

||T′(t)|| =
1

c2
(−a cos

(

s
c

)

,−a sin
(

s
c

)

, 0)
a
c2

.
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Hence

N =
(

− cos
(s

c

)

,− sin
(s

c

)

, 0
)

(4.32)

Now we find τ . Since B = T×N,

B =

(

1

c

(

−a sin
(s

c

)

, a cos
(s

c

)

, b
)

)

×
(

− cos
(s

c

)

,− sin
(s

c

)

, 0
)

.

Performing the cross product, combining like terms, and utilizing Trigonometric iden-

tities, we have

B =
1

c

(

b sin
(s

c

)

,−b cos
(s

c

)

, a
)

. (4.33)

By Theorem 2.3, dB
ds

= −τN. Hence

τ = −N · dB
ds

. (4.34)

So, find B′.

B′ =
dB

ds
=

1

c2

(

b cos
(s

c

)

, b sin
(s

c

)

, 0
)

. (4.35)

Plugging equations (4.32) and (4.35) into equation (4.34), we solve for τ :

τ =
1

c2

(

b cos
(s

c

)

, b sin
(s

c

)

, 0
)

·
(

cos
(s

c

)

, sin
(s

c

)

, 0
)

.

So,

τ =
1

c2

[

b cos2
(s

c

)

+ b sin2

(s

c

)]

.

By Trigonometric identities, hence

τ =
b

c2
. (4.36)

This implies that τ is also constant.
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Explicitly determining the ratio of τ and κ by equations (4.31) and (4.36), hence

τ

κ
=

b

c2
a

c2

=
b

a
.

This ratio we know is constant. Thus, the circular helix in R
3 is a ccr-curve.

4.2 Cylindrical Helix in R
4

Now for an even-dimensional example: a cylindrical helix in R
4. Define a

cylindrical helix as a curve for which there exists a fixed unit vector u such that T ·u

is constant along the curve. We will attempt to show that the ratio of curvatures

of the cylindrical helix are constant, in order to prove that the cylindrical helix is a

ccr-curve. This example will demonstrate how we cannot simply assume the behavior

of a curve in higher dimensions based on the characteristics we know of a curve in

lower dimensions.

By the definition of dot product, T·u = ‖T‖‖u‖ cos θ. Of course θ is constant,

being the angle between T and u, and since these are unit vectors,

T · u = cos θ (4.37)

is constant.

The derivative is

dT

ds
· u+T · du

ds
= 0.

By Theorem 2.4, and using the fact that the derivative of the unit vector u is zero,

κN · u = 0.
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Since κ > 0, hence

N · u = 0. (4.38)

Write the vector u as a linear combination of orthogonal vectors, such that

u = (u ·T)T+ (u ·N)N+ (u ·B)B+ (u ·D)D. (4.39)

Denote ξ = u ·B and γ = u ·D. Substituting equations (4.37), (4.38), ξ, and γ into

equation (4.39), we have

u = (cos θ)T+ ξB+ γD. (4.40)

Since u is a unit vector, ||u|| = 1 =
√

cos2 θ + ξ2 + γ2. Squaring both sides, we have

||u||2 = 1 = cos2 θ + ξ2 + γ2. By Trigonometric identities,

sin2 θ = ξ2 + γ2. (4.41)

Define φ, such that ξ = sin θ cosφ and γ = sin θ sinφ. Substituting back into equation

(4.41) and using Trigonometric identities gives

sin2 θ cos2 φ+ sin2 θ sin2 φ = sin2 θ.

Thus, equation (4.40) becomes

u = (cos θ)T+ (sin θ cosφ)B+ (sin θ sinφ)D.
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Differentiate u with the intent to find the curvature ratio.

u′ = 0 + (cos θ)
dT

ds
+ (sin θ cosφ)

dB

ds
− dφ

ds
(sin θ sinφ)B

+ (sin θ sinφ)
dD

ds
+

dφ

ds
(sin θ cosφ)D. (4.42)

By the Theorem 2.4,

u′ = (cos θ)(κN) + (sin θ cosφ)(−τN+ σD)

− dφ

ds
(sin θ sinφ)B+ (sin θ sinφ)(σB) +

dφ

ds
(sin θ cosφ)D. (4.43)

Since u is a constant vector, u′ = 0. Combining like terms,

0 = (κ cos θ − τ sin θ cosφ)N− (sin θ sinφ)

(

dφ

ds
+ σ

)

B+ (sin θ cosφ)

(

dφ

ds
+ σ

)

D.

When the sum of orthogonal vectors is zero, each component of the sum is zero:

κ cos θ − τ sin θ cosφ = 0 (4.44)

sin θ sinφ

(

dφ

ds
+ σ

)

= 0 (4.45)

sin θ cosφ

(

dφ

ds
+ σ

)

= 0 (4.46)

From equation (4.44), solve for τ
κ
, such that

τ

κ
=

cos θ

sin θ cosφ
= cot θ secφ. (4.47)
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Consider equations (4.45) and (4.46). If sin θ = 0, then θ = 0 or θ = π.

In the case that θ = 0, then T · u = 1, by equation (4.37). Thus, T = u.

In the case that θ = π, then T · u = −1, by equation (4.37). Thus, T = −u.

In either case, T is a straight line in the direction of the unit vector u. This is not

an interesting event, since curvature is not present.

The other alternatives for satisfying equations (4.45) and (4.46) are

sinφ = 0, cosφ = 0, or
dφ

ds
+ σ = 0.

The only interesting case is

dφ

ds
= −σ.

Since, σ 6= 0, φ is not constant.

From equation (4.47), cot θ is constant since it is composed of the constants sin θ and

cos θ. But secφ is not constant, since φ is not constant.

Therefore, τ
κ
is not a constant curvature ratio for the four-dimensional cylindrical

helix curve. Thus, the cylindrical helix is not a ccr-curve.
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5. CHARACTERIZATION OF SPHERICAL CURVES

Consider a sphere with a center, denoted c. The sphere has a radius R. The

space curve α(s) traces a path over the surface of the sphere. What are the defining

properties of this curve? Let’s do some exploration!

5.1 Curves on 2-Spheres

THEOREM 5.1: Let α : I → R
3 be a unit-speed curve parameterized by arclength,

such that α ∈ C3(I). Then α(s) lies on a sphere of radius R if and only if

R2 =
1

κ2
+

[

1

τ

(

1

κ

)

′
]2

.

Proof. Begin with assuming the curve lies on a sphere in R
3-space. It follows that

‖α(s)− c‖ = R,

and hence

(α(s)− c) · (α(s)− c) = R2. (5.48)

By differentiating we obtain

(α(s)− c) · (α(s)− c)′ + (α(s)− c)′ · (α(s)− c) = 0. (5.49)

By definition, (α(s)− c)′ = T. Thus, equation (5.49) becomes

(α(s)− c) ·T+T · (α(s)− c) = 2T · (α(s)− c) = 0.

Hence

T · (α(s)− c) = 0. (5.50)
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The derivative is T · (α(s)− c)′ +T′ · (α(s)− c) = 0.

So,

T ·T+
dT

ds
· (α(s)− c) = 0.

By Theorem 2.3 and since T ·T = 1,

1 + κN · (α(s)− c) = 0.

Hence

N · (α(s)− c) = −1

κ
. (5.51)

The derivative is N · (α(s)− c)′ +N′ · (α(s)− c) = d
ds

(

− 1

κ

)

.

So,

N ·T+
dN

ds
· (α(s)− c) = −

(

1

κ

)

′

.

By Theorem 2.3 and since N ·T = 0,

(−κT+ τB) · (α(s)− c) = −
(

1

κ

)

′

.

Since T and (α(s)− c) are orthogonal, −κT · (α(s)− c) = 0. Hence

B · (α(s)− c) = −1

τ

(

1

κ

)

′

(5.52)

Since any vector can be expressed as a linear combination of orthogonal vectors, set

(α(s)− c) = aT+ bN+ cB.

Since a = (α(s) − c) · T, by equation (5.50), a = 0. Also, b = (α(s) − c) · N, and

by equation (5.51), b = −
(

1

κ

)

. Finally, c = (α(s) − c) · B, and by equation (5.52),

c = − 1

τ

(

1

κ

)

′

.
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Thus,

(α(s)− c) = −1

κ
N− 1

τ

(

1

κ

)

′

B (5.53)

Since N is orthogonal to B, take the magnitude of both sides of equation (5.53) and

apply the Pythagorean Theorem.

Hence

R2 =
1

κ2
+

[

1

τ

(

1

κ

)

′
]2

(5.54)

For the converse, assume equation (5.54) and let

γ(s) = α(s) +
1

κ
N+

1

τ

(

1

κ

)

′

B.

We want to show that γ(s) is a constant vector, implying that it is the center of the

sphere. The derivative of the equation above is

γ
′(s) = α

′(s) +

(

1

κ
N

)

′

+

(

1

τ

(

1

κ

)

′

B

)′

With expansion, we have

γ
′(s) = T+

(

1

κ
N′ +

(

1

κ

)

′

N

)

+

[

1

τ

(

1

κ

)

′

B′ +

(

1

τ

(

1

κ

)

′
)′

B

]

By Theorem 2.3,

γ
′(s) = T+

1

κ
(−κT+ τB) +

(

1

κ

)

′

N+
1

τ

(

1

κ

)

′

(−τN) +

(

1

τ

(

1

κ

)

′
)′

B.

With distribution, we have

γ
′(s) = T−T+

τ

κ
B+

(

1

κ

)

′

N−
(

1

κ

)

′

N+

(

1

τ

(

1

κ

)

′
)′

B.
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Hence

γ
′(s) =

τ

κ
B+

(

1

τ

(

1

κ

)

′
)′

B. (5.55)

To show that γ ′(s) = 0, we need to show that
(

1

τ

(

1

κ

)

′

)

′

= − τ
κ
.

Rewriting equation (5.54), we have

(

[

1

τ

(

1

κ

)

′
]2
)

′

=

(

R2 − 1

κ2

)

′

.

Thus,

2κ′

(

1

τ

(

1

κ

)

′
)(

1

τ

(

1

κ

)

′′

+

(

1

τ

)

′
(

1

κ

)

′
)

= 0 +
2κ′

κ3
. (5.56)

Note that

1

τ

(

1

κ

)

′′

+

(

1

τ

)

′
(

1

κ

)

′

=

[

1

τ

(

1

κ

)

′
]′

. (5.57)

The 2κ′ on either side of the equation (5.56) cancels. Substituting equation (5.57),

equation (5.56) becomes

1

τ

(

− 1

κ2

)[

1

τ

(

1

κ

)

′
]′

=
1

κ3
.

Hence
[

1

τ

(

1

κ

)

′
]

=
1

κ3
(−τκ2) = −τ

κ
. (5.58)

Substituting equation (5.58) back into equation (5.55), we obtain our desired result

that γ ′(s) = 0. Thus, γ(s) is a constant vector, say γ(s) = c, and the result follows.
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5.2 Curves on 3-Spheres

THEOREM 5.2: Let α : I → R
4 be a unit-speed curve parameterized by arclength,

such that α ∈ C4(I). Then α(s) lies on a sphere of radius R if and only if

R2 =

(

1

κ

)2

+

(

1

τ

(

1

κ

)

′
)2

+

[

1

σ

(

1

τ

(

1

κ

)

′
)′

+
τ

σ

(

1

κ

)

]2

.

Proof. Begin with assuming the sphere lies in Euclidean R
4-space. We want to char-

acterize the spherical curve α(s) in terms of four-dimensional curvatures κ, τ , and

σ.

We start from equation (5.52). The derivative of (5.52) is

B · (α(s))− c)′ +
dB

ds
· (α(s)− c) =

[

−1

τ

(

1

κ

)

′
]′

.

By Theorem 2.4 and the fact that B ·T = 0,

−τN ·T+ σD · (α(s)− c) =

[

−1

τ

(

1

κ

)

′
]′

.

By equation (5.51),

−τ

(

−1

κ

)

+ σD · (α(s)− c) =

[

−1

τ

(

1

κ

)

′
]′

.

Hence

D · (α(s)− c) =
1

σ

[

−1

τ

(

1

κ

)

′
]′

− 1

σ

(τ

κ

)

. (5.59)

For the sake of simplicity, denote 1

κ
= ρ.

So, equation (5.59) becomes

D · (α(s)− c) =
1

σ

[

−ρ′

τ

]

′

− τρ

σ
. (5.60)
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Since every vector can be written as a linear combination of orthogonal vectors, write

(α(s)− c) = aT+ bN+ cB+ dD.

Since a = (α(s)− c) ·T = 0, by equation (5.50), a = 0. Since, b = (α(s)− c) ·N, by

equation (5.51), b = −ρ. Also, c = (α(s) − c) ·B, and by equation (5.52), c = −ρ′

τ
.

Finally, d = (α(s)− c) ·D, and by equation (5.60), d = 1

σ

[

−ρ′

τ

]

′

− τρ

σ
.

Thus,

(α(s)− c) = −ρN− ρ′

τ
B+

(

1

σ

[−ρ′

τ

]

′

− τρ

σ

)

D. (5.61)

Use the orthogonality of T,N, and B to obtain

R2 = ρ2 +

(

ρ′

τ

)2

+

(

1

σ

(

ρ′

τ

)

′

+
τρ

σ

)2

(5.62)

For the converse, assume equation (5.62) and let

γ(s) = α(s) + ρN+
ρ′

τ
B+

(

1

σ

[

ρ′

τ

]

′

+
τρ

σ

)

D.

We want to show that γ(s) is a constant vector, implying it is the center of the

3-sphere. The derivative of the equation above is

γ
′(s) = α

′(s) + (ρN)′ +

(

ρ′

τ
B

)

′

+

([

1

σ

(

ρ′

τ

)

′

+
τρ

σ

]

D

)′

.

With expansion, we have

γ
′(s) = T+ (ρN′) +

(

ρ′

τ
B′ +

(

ρ′

τ

)

′

B

)

+

(

[

1

σ

(

ρ′

τ

)

′

+
τρ

σ

]

D′ +

[

1

σ

(

ρ′

τ

)

′

+
τρ

σ

]′

D

)

. (5.63)
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By Theorem 2.4, the derivative simplifies to

γ
′(s) =

σρ′

τ
+

(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)′

. (5.64)

Now consider equation (5.62). The derivative is

0 = ρρ′ +
ρ′

τ

(

ρ′

τ

)

′

+

(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)′

.

Invoke a little trick to encourage simplification by strategically adding and subtracting

σρ′

τ
, such that

0 = ρρ′ +
ρ′

τ

(

ρ′

τ

)

′

+

(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)

(

−σρ′

τ
+

σρ′

τ
+

(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)′
)

.

By distribution,

0 = ρρ′ +
ρ′

τ

(

ρ′

τ

)

′

− σρ′

τ

(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)

+

(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)

(

σρ′

τ
+

(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)′
)

. (5.65)

This simplifies to

0 =

(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)

(

σρ′

τ
+

(

τρ

σ
+

1

σ

(

ρ′

τ

)

′
)′
)

. (5.66)

For the case that τρ

σ
+ 1

σ

(

ρ′

τ

)

′

6= 0, then

(

τρ

σ
+ 1

σ

(

ρ′

τ

)

′

)

′

= 0. By equation (5.64),

this implies that γ
′(s) = 0. Thus, γ(s) is a constant vector, say γ(s) = c, and the

result follows.

On the other hand, for the case that τρ

σ
+ 1

σ

(

ρ′

τ

)

′

= 0, then we are back in the
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three-dimensional case with the identity from equation (5.58):

(

ρ′

τ

)

′

= −τρ.

Substituting this identity into equation (5.63) would take us back to the three-

dimensional equation (5.55), in which case we have already shown that γ(s) = c

is a constant vector.
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6. CONCLUSION

The relevance of the Frenet frame in studying the characteristics and properties

of curves in space strongly apparent. While curves in Euclidean R
2-space and R

3-

space are intuitively visual, we generalized curves in higher-dimensions utilizing the

Frenet equations to understand space curves whose properties are not quite as obvious.

Indeed, even the Fundamental Theorem of Curves builds upon the Frenet equations.

And as we demonstrated, they are vital in analyzing curves with or without constant

curvature ratios and in characterizing spherical curves.
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