Myosin V-Mediated Cargo Traffic toward the Trans-Golgi Network and Myosin V Implications in Snc1 Exocytosis

Vy Ngoc Khanh Nguyen
Missouri State University, Vy202@live.missouristate.edu

As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar's work has been judged to have academic value by the student's thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees.

Follow this and additional works at: https://bearworks.missouristate.edu/theses
Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Cell Biology Commons

Recommended Citation
https://bearworks.missouristate.edu/theses/3508

This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution.
For more information, please contact BearWorks@library.missouristate.edu.
MYOSIN V-MEDIATED CARGO TRAFFIC TOWARD THE TRANS-GOLGI NETWORK AND MYOSIN V IMPLICATIONS IN SNC1 EXOCYTOSIS

A Master’s Thesis
Presented to
The Graduate College of
Missouri State University

In Partial Fulfillment
Of the Requirements for the Degree
Master of Natural and Applied Science, Biology

By
Vy Ngoc Khanh Nguyen
May 2020
Copyright 2020 by Vy Ngoc Khanh Nguyen
MYOSIN V-MEDIATED CARGO TRAFFIC TOWARD THE TRANS-GOLGI NETWORK AND MYOSIN V IMPLICATIONS IN SNC1 EXOCYTOSIS

Biology

Missouri State University, May 2020

Master of Natural and Applied Science

Vy Ngoc Khanh Nguyen

ABSTRACT

Retrieval of cargo proteins from the endosome towards the trans-Golgi network (TGN) is a crucial intracellular process for cellular homeostasis. Its dysfunction is associated with pathogenesis of Alzheimer and Parkinson's diseases. Myosin family proteins are cellular motors walking along actin filaments by utilizing the chemical energy from ATP hydrolysis, known to involve in pleiotropic cellular trafficking pathways. However, the question of whether myosins play a role in the trafficking of Snc1 and Vps10 has not been addressed yet. The present study assesses the potential roles of all five yeast myosins in the recycling of two membrane cargo, Snc1 and Vps10. It appears that, of the five yeast myosins, only Myo2 is required for Sync1 sorting and trafficking and that the Myo1 and 2 are important for Vsp10 retrieval from the endosome. Multiple myo2 mutants harboring a point mutation in the actin binding or the cargo binding tail domain were shown to have abnormal Vps10-GFP and GFP-Snc1 distribution phenotypes, suggesting a severe defect in their sorting and trafficking at the endosome. Furthermore, Vps10-GFP patches in all tested myo2 mutants were found to be near stationary with quantitative live cell imaging. Finally, I found that actin cables in the myo2 mutant cells were considerably disrupted, which may aggravate the trafficking of Vps10 from the endosome. Together, my results provide novel insights into the function of Myo-family proteins in the recycling traffic of Vps10 and Snc1 destined for the TGN.

KEYWORDS: ATPase; actin filaments; intracellular trafficking; Myosin; Snc1; time-lapse images; Vps10
MYOSIN V-MEDIATED CARGO TRAFFIC TOWARD THE TRANS-GOLGI NETWORK AND MYOSIN V IMPLICATIONS IN SNC1 EXOCYTOSIS

By
Vy Ngoc Khanh Nguyen

A Master’s Thesis
Submitted to the Graduate College
Of Missouri State University
In Partial Fulfillment of the Requirements
Master of Natural and Applied Science, Biology

May 2020

Approved:

Kyoungtae Kim, Ph.D., Thesis Committee Chair
Laszlo Kovacs, Ph.D., Committee Member
Ryan Udan, Ph.D., Committee Member
Julie Masterson, Ph.D., Dean of the Graduate College

In the interest of academic freedom and the principle of free speech, approval of this thesis indicates the format is acceptable and meets the academic criteria for the discipline as determined by the faculty that constitute the thesis committee. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees.
ACKNOWLEDGEMENTS

First of all, I wish to express my sincere gratitude to my principal investigator and committee chair Dr. Kyoungtae Kim for his motivation, enthusiasm, guidance and unwavering support throughout my research work to complete the project successfully. I also would like to thank the rest of my thesis committee member: Dr. Laszlo Kovacs and Dr. Ryan Udan for their valuable time and insightful comments throughout my time here at Missouri State University. Additionally, I would like to thank my colleagues and friends Jared Smother, Paul Ballhorn, Anh Ly, Sravya Kottapalli, Julia Villarreal, Cullen Horstmann and Deborah Ehie for their unconditional support, which made my time at Missouri State University more positive and enjoyable. Last but not least, I would like to acknowledge the Biology Department and the Graduate College for their financial support.

I dedicate this thesis to my parents.
TABLE OF CONTENTS

Introduction
The effect of recycling pathway on human neurodegenerative disorders
Yeast as a model organism for membrane trafficking
Intracellular trafficking components

Page 1

Page 1

Page 2

Page 3

Materials and Methods
Yeast strains and plasmids
Cell growth and reagents
Plasmid shuffling
Cell imaging and confocal microscopy
Vps10 patch tracking
Actin filament staining
Statistical analysis

Page 6

Page 6

Page 7

Page 7

Page 8

Page 8

Page 9

Page 10

Results
The role of myosin family in the recycling traffic toward the TGNs
The role of myosin family in the traffic from the Late Endosome to TGNs
Cargo-binding domains of myosin 2 functions in traffic of Vps10-GFP
Myosin 2 functions in Vps10-GFP motility
Myosin 2 mutants display severe disruption of actin cables and cortical actin patches

Page 12

Page 14

Page 15

Page 15

Page 17

Page 17

Discussion
Myo1 in the traffic of Vps10 toward TGNs
Myo2 functions in Vps10 retrograde pathway
Vps10-GFP motility affected by myo2 mutations

Page 19

Page 19

Page 20

Page 22

References

Page 24
LIST OF TABLES

Table 1. Yeast strains used in this study Page 31
Table 2. Plasmid used in this study Page 34
Table 3. Identified defective functions in different mutant myo2 strains Page 35
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The effects of myosin knock-out and temperature sensitive mutants on Snc1 polarization</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>The effects of myosin knock-out and temperature sensitive mutants on Vps10</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>The effects of mutations and truncations in Myo2 on Vps10 distribution pattern</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Time-lapse microscopy of wild-type and myo2 mutant cells expressing Vps10-GFP</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Mean squared displacement (MSD) of Vps10-GFP patches in wild-type and myo2 mutant cells</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>The effects of Myo2 mutations and truncations on polarization of actin filaments</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>Diagram summarizing the potential consequence of Vps10 in the presence of functional Myo2 (top) and mutant myo2 (bottom)</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>The effects of myo2 mutants on GFP-Snc1 and GFP-Snc1(pm) localization</td>
<td>42</td>
</tr>
</tbody>
</table>
INTRODUCTION

The effect of recycling pathway on human neurodegenerative disorders

The retrieval of certain cargo proteins from endosomes toward the trans-Golgi network is one of the crucial vesicular trafficking pathways for maintaining cell homeostasis. A diverse group of cellular molecules such as sorting receptors, newly synthesized enzymes, and transporters as well as bacterial toxins have been determined to follow the endosome-to-TGN pathway via distinct biological machineries, including small G proteins, SNAREs, tethering factors, and scaffold molecules (Chia and Gleeson, 2011). In recent years, overwhelming evidence has provided that the deficiency in protein recycling is implicated in two major human neurodegenerative disorders, Parkinson’s disease and Alzheimer’s disease (Fecto et al., 2014). Alzheimer’s disease is widely believed to be driven by the accumulation of intracellular tau-containing neurofibrillary tangles and the β-amyloid peptide (Aβ) within the brain (O'Brien and Wong, 2011). Aβ peptides are generated from sequential cleavages of β-amyloid precursor protein (APP) by β- and γ-secretase enzyme activities (Chow et al., 2010). While it has remained unclear whether Aβ is produced at endosomes or the trans-Golgi network (TGN), APP is known to shuttle between the endosome and the TGN, and particularly, the recycling of APP to the TGN is mediated by retromer-dependent machinery, VPS35 (Choy et al., 2012). Dysregulation or dysfunction of retromer complex may impact on retrieving APP, which results in Aβ overproduction or accumulation at the endosome (Cataldo et al., 2000). Recycling deficiency has also been recognized as one of main reasons that cause Parkinson's disease, the world’s second most common neurodegenerative disease after Alzheimer's disease (Lebouvier et al., 2009). The pathological hallmark of Parkinson's disease is identified by the misfolding and aggregation of α-
Synuclein (aSyn) in the endosome which leads to neuron degeneration (Goncalves and Outeiro, 2017). α-Synuclein has been reported to have a physical interaction with retromer proteins, Vps26, Vps29, and Snx1, and the mutation of Vps35 has led to the elevated levels of α-synuclein-mediated toxicity (Chung et al., 2017; Sowada et al., 2016). Taken together, the error in protein recycling is a critical reason that causes such the diseases. Molecular mechanisms that allow to return a broad range of membrane proteins to proper organelles are likely complicated, and therefore, a better understanding of these mechanisms will shed a light into the development of rational therapies for neurodegenerative diseases. On that purpose, the present study is designed to discover novel functions of myosin that may play a role in the endosome-to-TGN pathway.

Yeast as a model organism for membrane trafficking

The budding yeast *Saccharomyces cerevisiae* is recognized as one of the best studied models for elucidating the retrograde/recycling pathway due to a clear understanding of its genome, ease of culture, and equivalence to mammalian systems in terms of intracellular trafficking (Feyder et al., 2015). In the budding yeast, newly synthesized proteins are transported to the Golgi apparatus where these cargoes are sorted and transported to the plasma membrane (PM), the external medium via the exocytosis, or the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway) (Feyder et al., 2015). Plasma membrane proteins can be internalized through endocytosis into endosomes where they are sorted between those targeted for degradation into the vacuole and those redirected to the Golgi (recycling pathway) (Feyder et al., 2015).
Intracellular trafficking components

Myosins are a large family of motor proteins that interact with actin and use the energy driven by ATP hydrolysis to function for a spectrum of biological processes including intracellular trafficking, muscle contraction, and cell motility (Ryan and Nebenfuhr, 2018). Regardless of their types, the head domain of all myosins bind to filamentous actin and ATP, and the coiled-coil tail domain is able to interact with a variety of cargo molecules (Buss and Kendrick-Jones, 2011). Saccharomyces cerevisiae, the budding yeast, expresses 5 myosins, Myo1, Myo2, Myo3, Myo4, and Myo5 (Brown, 1997). Myo1 is a type II myosin that plays a pivotal role in cytokinesis (Lister et al., 2006; Lord et al., 2005), for which it appears that the C-terminal tail region of Myo1 exerts more important roles than the N-terminal motor domain (Lister et al., 2006; Santiago et al., 2016). Budding yeast Myo2 and Myo4 are class-V myosins, which serve as motors that function as vehicles that transport intracellular cargoes via actin filament-dependent motility (Pollard and Lord, 2014). Similar to mammalian myosin V, Myo2 in S. cerevisiae is responsible for delivering a wide spectrum of organelles and secretory membranes to the daughter cell (Bretscher, 2003). Particularly, myosin V has been shown to play a role in transporting secretory vesicles along actin cables toward the site of exocytosis by physically interacting with a Rab GTPase, Sec4 (Jin et al., 2011). The other type V myosin in the budding yeast is Myo4, a well-known motor protein that transports ASH1 mRNA to the growing bud (Jansen et al., 1996). Further investigations showed that at least two more proteins, including She2 and She3, work together to facilitate the transport of ASH1 mRNA (Bohl et al., 2000; Long et al., 2000). Finally, the budding yeast contains two class I myosins, Myo3 and Myo5, both of which are implicated in facilitating earlier steps of the receptor mediated endocytic pathway.
(Galletta et al., 2008; Lewellyn et al., 2015) by serving as an actin nucleation-promoting factor (NPF) (Kaksonen et al., 2005).

Many intracellular trafficking pathways depend on actin filament-based myosin motility. However, specific types of myosin motors implicated in the retrograde traffic from the endosome to the trans-Golgi network (TGN) have not been characterized yet. One of the most effective strategies to assess the significance of a protein factor implicated in the retrograde traffic would involve a quantitative measurement of defects in delivery of cargoes destined for the TGN in cells lacking the protein factor or in cells expressing a mutated version of the factor. Two well-known cargoes for the traffic pathway are Snc1 and Vps10. The former is a v-SNARE, which is synthesized in endoplasmic reticulum (ER) and is targeted to the plasma membrane. Recycling of Snc1 is a complex process that involves endocytosis, retrograde trafficking from the early endosome to the TGN, and secretion back to the plasma membrane, primarily in the daughter membrane when the retrograde or recycling traffic is functional (TerBush et al., 1996; Woodman et al., 2018). Snc1 is known to highly concentrate at the plasma membrane of daughter cells that serves as an indicator for proper retrograde regulation (Lewis et al., 2000). Regarding the other significant cargo, Vps10 normally binds to the carboxypeptidase Y receptor (CPY) and shuttles between the late endosome and the TGN (Marcusson et al., 1994). At the endosome, Vps10 dissociates with CPY and then is returned back to the TGN, thereby serving as a reporter for the retrograde traffic (Cooper and Stevens, 1996). I hypothesized that the dysregulation of myosins would likely result in defects in the recycling of Snc1 and Vps10. The present study sought to identify specific types of myosins implicated in the retrograde traffic by examining proper recycling of GFP-Snc1 and Vps10-GFP toward the TGN. My results here show that Myo2 is the key player on this traffic and that both the N-terminal actin binding domain and the C-terminal
tail domain are required for optimal traffic of Snc1 and Vps10. Further, we show that Vps10 exhibits a stationary motion by a substitution of specific residues of Myo2. Additionally, actin cables are disrupted as small fragments, and actin patches are depolarized in myo2 mutant cells.
MATERIALS AND METHODS

Yeast strains and plasmids

All yeast mutant strains and plasmids used for this study are listed in Table 1 and Table 2, respectively. *MATα ura3 his2 leu2-3,112 trp1-1 ade1 MYO1Δ::URA3* (KKY1909) strain was a gift from Dr. Rong Li (John Hopkins School of Medicine) (Tolliday et al., 2003). *MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0* (KKY 0002), *MATα leu2Δ0 met15Δ0 ura3Δ0 MYO3Δ::KanMX* (KKY 1963) and *MATα leu2Δ0 met15Δ0 ura3Δ0 MYO5Δ::KanMX* (KKY 1964) strains were purchased from Invitrogen. *MATα his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 MYO4Δ::KanMX* (KKY 1935) strain was obtained from Euroscarf. *MATα his3 leu2 trp1 bar1 myo3Δ::HIS3 myo5Δ::TRP1 [myo5-1 URA3]* (KKY 1924) strain was given as a gift by Dr. Spudich from Sandford University (Goodson et al., 1996). *MATα ade2-101 his3Δ200 leu2-3,112 lys2-801 ura3-52 myo2-16::HIS3* (KKY 1923) and *MATα ade2-101 his3Δ200 leu2-3,112 lys2-801 ura3-52 myo2-66::HIS3* (KKY 1922) strains were donated by Dr. Bretscher from Cornell University (Schott et al., 1999). PTP11-GFP-SNC1(pm) URA3 CEN (KKD 0062) and P_{PTPI1}-GFP-SNC1 LEU2 CEN (KKD 0064) plasmids were contributed by Dr. Tanaka from Hokkaido University (Furuta et al., 2007). pAD54-HA VPS10-GFP (KKD 0333) plasmid was received as a gift from Dr. Gerst from Weizmann Institute of Science (Kama et al., 2007). pRS413-*myo2*-1114-1519 HIS3 CEN (KKD 0369), pRS413-*myo2*-1-1345 HIS3 CEN (KKD 0368), pRS413-*myo2*-2-G1248D HIS3 CEN (KKD 0365), pRS413-*myo2*-D1297N HIS3 CEN (KKD 0363), pRS413-*myo2*-N1304D HIS3 CEN (KKD 0371), pRS413-*myo2*-Y1415R HIS3 CEN (KKD 0364), and pRS413-*myo2*-K1444A HIS3 CEN (KKD 0372) plasmids were the gift from Dr. Lois Weisman (Michigan University Life Science Institute) (Catlett and Weisman, 1998; Eves et al., 2012; Ishikawa et al., 2003; Pashkova et al., 2005b; Pashkova et al., 2006).
Cell growth and reagents

Wild-type yeast cells (KKY 0002) were grown in YPD liquid medium (1% bacto yeast extracts, 2% bacto peptone, and 2% glucose). A variety of \textit{myo2} mutant strains were grown in appropriate media, including -URA (lacking Uracil), -LEU (lacking Leucine), -HIS (lacking Histidine), 5-FOA-His (5-fluoroorotic acid and lacking Histidine), -HIS-LEU (lacking both Histidine and Leucine), and -HIS-URA (lacking both Histidine and Uracil).

All plasmids received from the sources above (Table 2) were isolated by following QIAprep® Spin Miniprep Kit protocol (Qiagen). Then, the extracted DNA products were quantitated by using Thermo Scientific™ NanoDrop™ instrument. Approximately 50-100 ng of isolated plasmids was used for one step transformation described below.

Plasmid shuffling

To replace pRS416-MYO2-URA plasmid with pRS413 plasmids carrying a \textit{myo2} mutant gene in the genetic background of \textit{myo2}Δ, a plasmid shuffle experiment was performed. First, using the one step transformation (Chen et al., 1992), pRS413-\textit{myo2} mutant plasmids (pRS413-\textit{myo2}-1114-1519 HIS3 CEN, pRS413-\textit{myo2}-1-1345 HIS3 CEN, pRS413-\textit{myo2}-2-G1248D HIS3 CEN, pRS413-\textit{myo2}-D1297N HIS3 CEN, pRS413-\textit{myo2}-N1304D HIS3 CEN, pRS413-\textit{myo2}-Y1415R HIS3 CEN, and pRS413-\textit{myo2}-K1444A HIS3 CEN) were introduced to KKY1943 strain harboring pRS416-MYO2-URA (}
Table 1) in -HIS medium, which resulted in partial removal of pRS416-MYO2-URA. To eliminate cells harboring both pRS413-*myo2* mutant plasmids and pRS416-MYO2-URA and keep cells only carrying pRS413-*myo2* mutant plasmids, the positive colonies from the -HIS medium were plated on 5-FOA medium lacking Histidine (5-FOA-HIS). As a result, we created the following 7 strains (KKY 1973, KKY 1974, KKY 1975, KKY 1969, KKY 1972, KKY 1970, and KKY 1971). Among these strains, KKY 1975 is a temperature sensitive mutant (*myo2-2*) expressing *myo2-2*^{G1248D}. The positive colonies from the plate were selected for next round of one step transformation to introduce either (pKT1490 [pRS315 GFP-SNC1] or pAD54-HA VPS10-GFP) (Furuta et al., 2007; Kama et al., 2007). As a result, we created a number of myosin 2 mutant strains expressing either GFP-Snc1 or Vps10-GFP (see Table 1). To measure defects in GFP-Snc1 and Vps10-GFP trafficking, all strains except the temperature sensitive mutant strain were incubated in a shaker at 30°C prior to fluorescence imaging. For KKY1975 strain, the growth condition was 24°C initially, and then the temperature was shifted to 37°C for an hour prior to fluorescence imaging.

Cell imaging and confocal microscopy

Confocal fluorescent images were taken using a spinning confocal fluorescence microscope equipped with a Yokogawa CSUX1 spinning disk head mounted on an inverted microscope (Olympus IX-81) with a ×100 oil immersion PlanApo objective lens and an ImagEM camera. The exposure time to record GFP-Snc1 and Vps10-GFP fluorescence was set at 100 ms, and camera intensification was 200. The excitation wavelength used for these fluorophores was 488 nm for the GFP channel generated by 3i laser box (Intelligent Imaging Innovations). To visualize GFP-Snc1-pm mutant expressed from P_{TPI1}-GFP-SNC1(pm) plasmid (Table 2), a Leica
TCS SPE-II RGBV confocal imaging system with 63X objective lens was used. We chose 488 nm excitation wavelength of the system to excite the GFP for 800 ms.

Vps10 patch tracking

Time-lapse imaging experiments were conducted by using yeast cells expressing Vps10-GFP with the spinning confocal microscopy system. The exposure time for detecting and recording Vps10-GFP was set to 50 ms. All time-lapse videos were recorded in one minute for total 120 frames (2 frames/second). Only small-budded cells containing Vps10-GFP dots were chosen for further analysis. A regions of interest (ROI) with an applicable cell was cropped and exported to ImageJ (v1.52a) to trace Vps10-GFP motility over time. For this, the “manual tracking” function under “tracking” icon of ImageJ was used to trace x and y coordinates for each individual Vps10-GFP dot over 30 sec. These values were transferred to an Excel sheet in order to determine mean squared displacement (MSD) for each Vps10-GFP dot (0.026µm/pixel). At least 20 Vps10-GFP dots per each strain were chosen to obtain the MSD value for every time point. Finally, all MSD data points were plotted over time (15 sec).

Actin filament staining

Yeast cells including wild type and *myo2* mutant cells were grown in selective media in a 30°C incubator for 48 hours until they reached an OD between 0.5-0.8. The yeast cells that reached this OD range were then treated with 37% formaldehyde stock to a final concentration of 4%. The cells incubated with the formaldehyde for ten minutes in order to fix the cells. Then, the cells were put into a centrifuge and washed with 1XPBS, and this process was repeated multiple times. The cells were then treated with 3.3 µM of Rhodamine-phalloidin and incubated for an hour staining the actin filaments. After the incubation, cells were washed with 1X PBS and ran
through a centrifuge in order to get rid of the excess dye. The cells were then visualized with the spinning confocal microscope.

These cells were put into categories such as polarized, nonpolarized, and whether actin filament cables are present or not. Small budded yeast cells were chosen to be analyzed. All polarized cells are denoted by stain cortical actin patches being stained and heavily present in the daughter cell. Non-polarized cells do not have stained actin patches in the daughter cell or contain actin patches that are spread out randomly in the cytoplasm. If filamentous actin cables are present in a cell, then they are seen as glowing long red fibers within the cell. The cables visualized were then denoted as fragmented or not. In particular, myo2 mutant cells displayed fragmented cables that are only present in the mother cell and are sporadically placed. Cables that are not fragmented will connect from the bottom of the daughter cell to the mother cell. Fifty cells were analyzed for the wild type and for each mutant strain during the experiment, and the experiment was repeated three times.

Statistical Analysis

In small budded cells at late G1 stage carrying P_{PHI}-GFP-Snc1 LEU2 CEN (KKD 0064) plasmid, GFP-Snc1 was localized to the plasma membrane of a growing bud, while cells in other phases of cell cycle did not display this polarized pattern of GFP-Snc1 and were called non-polarized cells. GFP-Snc1 in these non-polarized cells was distributed evenly throughout the plasma membrane or found in the cytoplasm much more abundantly than cells at late G1 stage.

In wild-type yeast cells expressing pAD54-HA VPS10-GFP (KKD 0333) plasmid, Vps10-GFP localizes to cytoplasmic puncta, whereas in cells displaying defects in cargo sorting at the endosome Vps10-GFP was mislocalized to the vacuole rim to form a ring-like structure or
Vps10-GFP carrying puncta were abnormally enlarged. Cells exhibiting both defective phenotypes were also classified into the category of “abnormal”.

Thirty small budded cells were used to determine the extent of polarization of GFP-Snc1 and the distribution pattern of Vps10-GFP in a triplicate manner (3 repeats of 30 small budded cells). Microsoft® Office Excel was utilized to determine the mean and standard deviation. Pairwise comparisons between means of different groups were performed using a Student’s t test (two tails, two-sample unequal variance). The significant level of the results were reported as p-values. $0.05 < p \leq 0.1$, $0.01 < p \leq 0.05$ and $p \leq 0.01$ are represented with one (*), two (**) and three (***) asterisks, respectively.
RESULTS

The role of myosin family in the recycling traffic toward the TGNs

Myosin family proteins are implicated in membrane trafficking pathways (McIntosh and Ostap, 2016; Musch et al., 1997; Trybus, 2008). However, myosin’s roles in trafficking of a diverse range of cargo transport between organelles remain poorly understood. Although a plethora of gene products have been investigated to study the traffic route of Snc1 and Vps10 in yeast cells, myosin’s potential functions in trafficking of these cargo have yet to be investigated. The v-SNARE Snc1, a well-documented early endosome marker, is synthesized at the ER, shipped to the Golgi, and to the plasma membrane, particularly, to the region of active growth, namely the growing bud. Subsequently, Snc1 is endocytosed and retrieved to the Golgi prior to a return to the plasma membrane (Gerst et al., 1992; Hettema et al., 2003; Ma et al., 2017; Valdez-Taubas and Pelham, 2003). In particular, Snx4 is involved in sorting Snc1 for proper retrieval to the late Golgi as loss of Snx4 causes Snc1 mistargeting to the vacuole (Hettema et al., 2003; Ma et al., 2017). The assessment of distribution defect(s) of GFP-fused Snc1 (hereafter, GFP-Snc1) in cells lacking a functional gene product helps deduce normal function of the gene in the Snc1 trafficking. To this end, I set out to test which myosins were implicated in Snc1 traffic pathways by utilization of GFP-Snc1 expressing cells, including myo1Δ, myo3Δ, myo4Δ, myo5Δ, and myo3Δmyo5Δ. MYO2 is essential for cell viability, and therefore, I used two myo2 temperature sensitive mutant strains, myo2-16 and myo2-66, for the same purpose. myo2-16 and myo2-66 harbor a mutation in COOH-terminal tail domain and a mutation in the NH2-terminal motor domain, respectively. These mutants are known to have an adverse effect on the targeting of Sec4p, a Rab GTPase component of late secretory vesicles, to the developing buds (Lillie and Brown, 1994; Schott et al., 1999; Walch-Solimena et al., 1997). All mutant strains with a single
myosin knock-out (KO), except for the *myo2Δ* mutant strains displayed polarized GFP-Snc1 at the growing bud, a similar phenotype to that of WT cells. The extent of GFP-Snc1 polarization for WT cells was 82.6 ± 11.3%, and for strains of *myo1Δ, myo3Δ, myo4Δ,* and *myo5Δ* the polarization levels were 94.5 ± 5.0%, 94.4 ± 9.6%, 88.9 ± 4.7%, and 93.3 ± 6.5%, respectively.

In contrast, in all *myo3Δmyo5Δ* cells, GFP-Snc1 was evenly distributed to the plasma membrane, and failed to show internal puncta indicative of a lack of endosomes (Figure 1, A&B). Thus, *myo3Δmyo5Δ* cells resulted in defective endocytosis. This result is in agreement with the previous study by Sun et al., 2006 which revealed the role of Myo3 and Myo5 in endocytosis.

GFP-Snc1 localization patterns in both *myo2Δ* mutants at 24°C were similar to that of WT cells, whereas levels of GFP-Snc1 polarization in these mutants were dramatically reduced after 1-hour incubation at 37°C (Figure 1, C&D). In addition to the depolarized distribution pattern of GFP-Snc1, I observed an increased number of cytoplasmic GFP-Snc1 puncta (data not shown), suggesting the possibility that *myo2* plays an important role in the retrograde trafficking of Snc1 toward the Golgi. In addition, I measured the degree of GFP-Snc1 recycling defects with the following 4 *myo2* mutant strains: a truncated Myo2 mutant lacking C-terminal half (*myo2Δ1-1345*), and three Myo2 tail mutant strains carrying a point mutation in each (*myo2ΔD1297N, myo2ΔN1304D, and myo2ΔY1415R*). As shown in supplementary (Supplementary Figure 1, A&B), I observed severe defects of GFP-Snc1 distribution in these strains, comparable to those seen in *myo2-16* strain at the permissive temperature (Figure 1, C&D). Interestingly, I observed a partial polarization of GFP-Snc1 near the end of the bud in *myo2Δ1-1345* and *myo2ΔD1297N* strains, as seen in the figure. However, I put those cells into the category of depolarized cells due to a strong GFP fluorescence in the mother’s membrane. To exclude the possibility that the observed distribution defects of GFP-Snc1 are due to defects in secretory pathway from the TGN to the plasma...
membrane, I introduced GFP-Snc1(pm), a Snc1 mutant that is targeted to the plasma membrane but not endocytosed (Takeda et al., 2014). As a result, I found that this GFP-Snc1 mutant was properly secreted to the plasma membrane both in WT and two myo2 mutant strain (myo2^{D1297N} and myo2^{K1444A}) (Supplementary Figure 1, C), suggesting no secretory defects in these myo2 mutant strains. Therefore, both accumulation of GFP-Snc1 cytoplasmic dots and uniformly strained Snc1 at the plasma membrane in myo2 mutant strains might be mainly due to either slow endocytosis or defects in the Golgi-bound traffic pathway.

The role of myosin family in the traffic from the Late Endosome to TGNs

Vps10 (vacuolar protein sorting 10), a type I membrane protein, functions in the sorting of carboxypeptidase Y (CPY), a soluble vacuolar hydrolase to yeast lysosome-like vacuole (Cooper and Stevens, 1996). It was demonstrated that CPY from the TGN transits the late endosomal/prevacuolar compartment (PVC) prior to reaching the vacuole, and this traffic is referred to as the CPY pathway. Immature CPY binds to Vps10 at the late Golgi, and the resulting complexes are delivered to the PVC where CPY dissociates from Vps10. Vps10 then recycles back to the Golgi for additional rounds of sorting (Conibear and Stevens, 1998), and therefore, Vps10 serves an intracellular marker for studying retrograde traffic, especially, from the late endosome to the TGN. According to a previous study, Vps10-GFP is detected as punctate patterns corresponding to Golgi and/or endosome compartments in wild type cells (Burda et al., 2002). However, cells lacking genes that support for Vps10-GFP traffic toward the TGN displayed Vps10-GFP to the rim of the vacuole, forming bright ring-like structures (Arlt et al., 2015). I assessed distribution defects of Vps10-GFP in cells lacking a myosin gene to reveal normal function of each myosin gene in the Vps10 trafficking. Five myosin knock-out strains
and two temperature sensitive myosin 2 mutant strains expressing Vps10-GFP were constructed for this purpose. Cells containing multiple cytoplasmic puncta are determined as normal cells. Cells showing accumulative fluorescence dots or ring-like structures are considered as abnormal cells. WT, all single myosin KO, and a double myosin KO cells except myo1Δ showed cytoplasmic Vps10-GFP puncta, an indication of normal phenotypes of Vps10-GFP distribution. The mean percentage of WT, myo3Δ, myo4Δ, myo5Δ, and myo3Δmyo5Δ cells that showed normal Vps10-GFP distribution pattern was 88.1 ± 2.0%, 66.1 ± 4.5%, 77.9 ± 10.9%, 80.8 ± 3.1%, and 71.8 ± 16.1%, respectively (Figure 2, B). Unexpectedly, myo1Δ cells showed a significant defect phenotype by having all Vps10-GFP found in an internal organelle (Figure 2, A&B). The vast majority of myo2-16 cells (84.1 ± 10.5%) at 24°C showed normal Vps10-GFP distribution phenotypes, when compared with WT cells (88.1 ± 2.0%). At the non-permissive temperature, most of the mutant cells demonstrated slightly larger puncta, as well as one or more ring-like structures containing Vps10-GFP (Figure 2, C). For myo2-66 cells, the Vps10-GFP ring-like structure was obvious even at 24°C, and the defect was significantly aggravated at 37°C (Figure 2, C&D). Together, these results indicate that both Myo1 and Myo2 are implicated in Vps10 trafficking, in particular an early stage of the endosome-to-Golgi pathway.

Cargo-binding domains of myosin 2 functions in traffic of Vps10-GFP

Yeast Myosin 2, a type V myosin motor, is composed of two heavy chains. Each heavy chain is subdivided into four distinct functional domains. The N-terminal motor domain (residues 1 – 1,087) interacts with actin filaments, and this domain is followed by a neck region that has six binding sites (IQ motifs) for calmodulin, the α-helical coiled-coil region that contributes to the dimerization of the heavy chains, and the C-terminal globular tail domain that
(residues 1,087 – 1,574) binds cargo (Weisman, 2006). Myosin V motors are able to associate with and transport diverse intracellular cargo, such as secretory vesicles, the vacuole/lysosome, late Golgi elements, peroxisomes, and mitochondria, to distinct destinations in the cell via cargo-specific receptors (Catlett et al., 2000; Catlett and Weisman, 1998; Fagarasanu et al., 2009; Schott et al., 1999; Valiathan and Weisman, 2008). Notably, the distinctive functions of the globular tail in vacuole-specific binding and secretory vesicle-specific binding properties are correlated with two structural subdomains, namely subdomain I (residues 1,087-1,345) and subdomain II (residues 1,346-1,574), respectively (Catlett and Weisman, 1998; Pashkova et al., 2005b; Schott et al., 1999). The functional assessment of various myo2 point mutations that affect the interaction with the vacuole-specific adaptor protein Vac17 revealed that myo2D1297N, myo2N1304D, and myo2-2G1248D (residues on subdomain I) induce defects in vacuole inheritance (Catlett and Weisman, 1998; Eves et al., 2012) (Table 3). In particular, the first two residues, Myo2D1297 and Myo2N1304, are on the surface of the subdomain I and implicated in binding to Vac17 directly, while Myo2G1248 is buried within the subdomain I, locating apart from the two Vac17 binding residues of Myo2 (Eves et al., 2012; Pashkova et al., 2005a; Pashkova et al., 2006) (Table 3). Similarly, two myosin 2 mutants, myo2K1444A and myo2Y1415R (residues on subdomain II) cause a failure to translocate secretory vesicles (Donovan and Bretscher, 2012; Eves et al., 2012; Pashkova et al., 2005a; Santiago-Tirado et al., 2011; Weisman, 2006) (Table 3).

To further investigate which domains/residues of Myo2 are required for Vps10-GFP traffic, the same experimental approach shown in the prior section was utilized. All point mutations and truncations in myosin 2 resulted in severe defects in the traffic of Vps10-GFP, manifesting frequent appearance of ring-like structures containing Vps10-GFP. The mean
percentage of normal Vps10-GFP distribution in those myosin 2 mutant strains was drastically lower than that of WT cells (Figure 3, B). Specially, the temperature-sensitive point mutant, \textit{myo2-2}^{G1248D} caused Vps10-GFP localization defects at both permissive and restrictive temperatures. Taken together, these results indicate that myosin 2 tail domain is required for the retrograde trafficking of Vps10.

Myosin 2 functions in Vps10-GFP motility

I examined the effect of myosin 2 mutants, including two truncated (\textit{myo2}^{1-1345} and \textit{myo2}^{1114-1519}) and four-point mutants (\textit{myo2}^{D1297N}, \textit{myo2}^{N1304D}, \textit{myo2-2}^{G1248D}, and \textit{myo2}^{Y1415R}), on Vps10-GFP motility by imaging and tracking Vps10-GFP patches. Vps10-GFP patches in WT cells displayed dynamic motility over time. For example, a Vps10-GFP patch in a WT cell moved away quickly from the origin of detection (Figure 4) and disappeared from the plane of focus. However, the vast majority of Vps10-GFP patches in \textit{myo2}^{Y1415R} cells were stationary at the same location over the full-duration of time-lapse movie (Figure 4). To define the motile behavior of Vps10-GFP patches in WT and \textit{myo2} mutant cells, I produced MSD (Mean Squared Displacement, \(\mu m^2 \)) plots with the function of time. Twenty Vps10-GFP patches per each strain were analyzed, and then the MSD curves at each time point for 15 sec are plotted. The averaged Vps10-GFP motility curve from wild type cells indicated an exponential increase in moving distance for approximately 10 sec, suggesting a direct motion of these patches, whereas patches in all six \textit{myo2} mutant strains appeared to be quite stationary with their corresponding MSD lines nearly parallel to the X-axis (Figure 5). These results show that functional Myo2 is required for Vps10-GFP motility.

Myosin 2 mutants display severe disruption of actin cables and cortical actin patches
Actin cables have been known as the cytoskeleton track for polarized trafficking of Myo2. In light of finding a traffic delay of Vps10 in all tested myosin mutant strains, I hypothesized that the actin cables and cortical actin patches are disrupted in my myosin mutant strains. To this end, actin filaments were stained with Rhodamine-phalloidin in order to visualize them under the confocal microscope. Wild type cells expressing functional Myo2 showed intact actin cables that were parallel to the long axis of yeast cell (Figure 6, A). myo2 mutant strains such as myo21-1345, myo21114-1519, and myo2Y1415R showed neither actin cables nor fragmented cables. Numerous actin patches were observed instead in those strains. Likewise, the majority of myo22G1248D, myo2N1304D, and myo2K1444A strains were observed to have several actin patches without intact or fragmented actin cables. However, these strains rarely contained short, fragmented actin cables (Figure 6). Further, fragmented actin cables found in these myo2 mutant cells were observed to be in disarray within the cell. According to my measurement on the extent of actin patch polarization, wild type Myo2 cells were shown to have an average of 65.36 ± 12.1% of cells that displayed actin patches polarized to the growing bud, whereas the extent of actin patch polarization in all mutant strains was drastically lower: myo21-1345, myo21114-1519, myo22G1248D, myo2N1304D, myo2Y1415R and myo2K1444A strains showed 32.7 ± 15.1%, 28.8 ± 9.6%, 32.1 ± 9.3%, 17 ± 21.39%, 25.8 ± 5.9%, 16.53 ± 7.9% of their cells displaying polarization of actin patches (Figure 6, B).
DISCUSSION

The roles of *S. cerevisiae* Myo2 in vacuole inheritance and secretory pathway have been extensively investigated. However, addressing the question of whether this motor protein contributes to the retrieval of cargo proteins toward the TGN requires more scientific evidence. The present study is the set of experiments to examine the implications of all 5 yeast myosin motors in the recycling of Snc1 and Vps10 proteins. My findings may shed a new light on unknown functions of the myosin family in retrograde pathway toward the TGN.

Myo1 in the traffic of Vps10 toward TGNs

The role of Myo1, a type II myosin family, in the budding yeast has been characterized for cytokinesis and cell division based on several studies in which the disruption of Myo1 resulted in strong cytokinesis defects as well as a delay in cell separation (Lister et al., 2006; Schmidt et al., 2002; Tolliday et al., 2003). Therefore, the mistargeting of Vps10-GFP to a vacuole-like internal organelle observed in the *myo1Δ* strain may provide hints on yet unidentified functions of Myo1 in Vps10 sorting and trafficking. Along with its well-known route of traffic between the late endosome and TGN, Vps10 also localizes to the vacuolar rim prior to its retrieval toward the TGN (Arlt et al., 2015; Suzuki and Emr, 2018). However, the GFP fluorescence in the *myo1Δ* cells are found to be in the lumen of the internal structure, indicating a severe sorting defect at the late endosome or/and the vacuolar rim. It is not clear whether this sorting defect is due to an indirect or direct effect of dysfunctional cytokinesis in the absence of Myo1. It is well known that Myo1 is targeted to the site of cytokinesis and dissociates from it upon completion of cytokinesis (Richman et al., 2002). Nevertheless, I cannot exclude the possibility that a minor fraction of cytoplasmic Myo1 whose concentration might be under
the detection limit via a microscopic method can be recruited to the endosome for the yet unidentified function of sorting Vps10. Given that the abnormal localization Vps10-GFP inside the vacuole is observed throughout the cell cycle (data not shown) in cells lacking Myo1, the above-mentioned possibility of Myo1 association with the endosome is likely. However with the abnormal targeting of Vps10-GFP in the myo1 mutant cell, it is evident that ESCRT—the sorting machinery responsible for loading receptor proteins into the intraluminal vesicle—may not function properly under the condition where cytokinesis is defective due to loss of Myo1. Further, the prolonged existence of Vps10-GFP fluorescence in the lumen of the organelle, which appears to be a vacuole, suggests an alteration of the internal environment into a less acidic condition in which hydrolysis-based protein degradation activities are not optimal. Interestingly, the GFP-Snc1 distribution pattern in myo1Δ cells were comparable to that of wild type cells, suggesting that Snc1 sorting and trafficking is independent of Myo1 function. Taken together, it is likely that Snc1 and Vps10 at the endosome are differently handled by their specific sorting machinery, and the potential function of Myo1 for assisting Vps10 sorting and trafficking is of great interest for an investigation.

Myo2 functions in Vps10 retrograde pathway

Retrieval of Vps10 to the Golgi is known to depend on the retromer complex, a group of proteins regulating the recycling of various cargo from the endosome to TGN (Vagnozzi and Pratico, 2019). Normally, Vps10-GFP is found as puncta in the cytoplasm, marking endosomes and the late Golgi, as shown previously (Chi et al., 2014; Piper et al., 1995). The dysfunction of retromer complex leads to a significant defect in Vps10 retrieval from endosomes and the vacuole, manifested by the presence of large cytoplasmic Vps10-GFP puncta and ring-like
structures carrying Vps10-GFP (Arlt et al., 2015; Burda et al., 2002). Based on my observations of the abnormal Vps10-GFP distribution pattern resembling that of retromer mutant cells, I put forth a model that depicts the potential consequence of the presence of functional Myo2 or a mutated myo2 variant (Figure 7). To my knowledge, the interaction between Myo2 and Vps10 has not been documented yet, but the myosin tail is known to bind to a diverse range of membranes by the aid of a membrane-specific adaptor or through the direct interaction between Myo2 tail and the cargo membrane (Jin et al., 2011; Winding and Gelfand, 2014; Yau et al., 2014). Therefore, I propose that Myo2 is able to interact with endosome or vacuole-derived vesicles, regardless of their interaction modes, and walk along the actin cable toward the Golgi, near which the positive end of actin cable may concentrate for efficient docking of transported membrane cargo to a cargo entry site (Figure 7, A). In wild type cells, a minor fraction of Vps10 receptors are sorted into intraluminal vesicles (ILVs) that are destined for degradation in the vacuole, whereas the vast majority of them are retrieved to the Golgi from the late endosome and the vacuole (Nickerson et al., 2010) (Figure 7). In light of finding that myo2 mutant cells exhibiting several large Vps10-GFP fluorescent dots and ring-like structures with Vps10-GFP (Figure 2, C and Figure 3, A), I came to the conclusion that earlier stages of Vps10 retrieval, such as its sorting and loading to correct membrane vehicles or vesicles, at the endosome and the vacuole are significantly disrupted (Figure 7, B). On the basis of my observation of enlarged Vps10-GFP puncta in myo2 mutant cells (Figures 2&3), I also proposed the possibility that the endosomal sorting complex retromer might not function properly in the absence of intact Myo2. This idea is consistent with the previous investigation that reported defective retromer functions in cells manifesting enlarged Vps10-GFP puncta in mutant fission yeast cells (Yanguas et al., 2019). It appears that there is a positive correlation between this abnormal Vps10-GFP
accumulation and the severity of actin cytoskeleton organization (Figures 2, 3, and 6), which provides hints of certain unknown functions of the acto-myosin system for organizing the proper structure of its interacting endosome. Yet, the questions of whether the enlarged Vps10-GFP puncta present late endosome itself is of interest to be explored. Furthermore, it is highly likely that myo2 truncated mutants, lacking either a portion of its tail or motor domain (Figures 3&6), would not bind their cargo membrane or the actin cable in an effective manner, respectively, resulting in a severe cargo traffic delay (Figure 7, B). Similar defective phenotypes of Vps10-GFP shown in the truncated myo2 mutant cells were also found in myo2 point mutants whose functions are related to vacuole inheritance or secretory vesicle traffic pathways. These results are the first evidence that highlights the key function of Myo2 in delivering Vps10 to TGN.

Vps10-GFP motility affected by myo2 mutations

Time-lapse fluorescence imaging techniques in conjunction with moving-patch analysis have provided significant insights into understanding the nature of motile vesicles, including endocytic and exocytic vesicles, defining if they undergo either a directed or a random motion inside the cell. Nevertheless, the characteristic motile behavior of Vps10-carrying vesicles has been overlooked. As such, to my knowledge, our group is the first one revealing that Vps10-GFP patches under normal conditions manifest a type of directed motion until they disappear from the focused field of view. Myo2 is proposed to function in directed transport of its cargo along the actin filament toward its positive end with the average moving velocity of 0.2-0.5 µm/s, by the use of fluorescence live imaging methods (Pierobon et al., 2009). Myo2 is also thought to be associated with secretory vesicles of GFP-Sec4 through direct interaction between Myo2 and Sec4, and the measured velocity of the cargo was approximately 1 µm/s (Jin et al., 2011; Schott et al., 2002). The discrepancy in moving speeds by myo2-mediated motility has been attributed
to the lack of full capability of direct single-molecule measurements (Kodera and Ando, 2014; Pierobon et al., 2009). The mean velocity of Vps10-GFP patches in my experiments was approximately 0.21 µm/s while they exhibited a directed motion, which is comparable to the range of above-mentioned Myo2 velocity. Just because Vps10-GFP moves in a similar speed of Myo2, that does not necessarily serve as the direct evidence that the cargo is delivered via Myo2 motor. Further investigations using higher spatial and temporal resolution microscopy will help characterize whether Myo2 indeed carries Vps10 to the final destination. On the contrary, the majority of Vps10 patches in mutant cells exhibited a stationary behavior, consistent with abnormal accumulation of Vps10-GFP as cytoplasmic puncta. It is possible that Vps10 molecules are trapped in the endosomes as well as at the vacuolar rim, or that Vps10-bearing vesicles ineffectively interacts with mutant myo2. However, it is not conclusive if the enlarged Vps10-GFP puncta are vesicles derived from the endosome or endosome itself.
REFERENCES

<table>
<thead>
<tr>
<th>Strain</th>
<th>Source</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKY 0002</td>
<td>Invitrogen</td>
<td>MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0</td>
</tr>
<tr>
<td>KKY 1909</td>
<td>(Tolliday et al., 2003)</td>
<td>MATa ura3 his2 leu2-3,112 trp1-1 ade1 MYO1Δ::URA3</td>
</tr>
<tr>
<td>KKY 1963</td>
<td>Invitrogen</td>
<td>MATa leu2Δ0 met15Δ0 ura3Δ0 MYO3Δ::KanMX</td>
</tr>
<tr>
<td>KKY 1935</td>
<td>Euroscarf</td>
<td>MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 MYO4Δ::KanMX</td>
</tr>
<tr>
<td>KKY 1964</td>
<td>Invitrogen</td>
<td>MATa leu2Δ0 met15Δ0 ura3Δ0 MYO5Δ::KanMX</td>
</tr>
<tr>
<td>KKY 1924</td>
<td>(Goodson et al., 1996)</td>
<td>MATa his3 leu2 trp1 bar1 myo3Δ::HIS3 myo5Δ::TRP1 [myo5-1 URA3]</td>
</tr>
<tr>
<td>KKY 1943</td>
<td>(Catlett and Weisman, 1998)</td>
<td>MATa, ura3-52, leu2-3, his3-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, myo2Δ::TRP1, pRS416-MYO2</td>
</tr>
<tr>
<td>KKY 1942</td>
<td>(Catlett and Weisman, 1998)</td>
<td>MATa, ura3-52, leu2-3, his3-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, myo2Δ::TRP1, pRS413-MYO2</td>
</tr>
<tr>
<td>KKY 1926</td>
<td>(Catlett and Weisman, 1998)</td>
<td>MATa ade2-101 his3Δ200 leu2-3,112 lys2-801 ura3-52 MYO2::HIS3</td>
</tr>
<tr>
<td>KKY 1923</td>
<td>(Schott et al., 1999)</td>
<td>MATa ade2-101 his3Δ200 leu2-3,112 lys2-801 ura3-52 myo2-16::HIS3</td>
</tr>
<tr>
<td>KKY 1922</td>
<td>(Schott et al., 1999)</td>
<td>MATa ade2-101 his3Δ200 leu2-3,112 lys2-801 ura3-52 myo2-66::HIS3</td>
</tr>
<tr>
<td>KKY 1973</td>
<td>This study</td>
<td>MATa, ura3-52, leu2-3, his3-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, myo2Δ::TRP1 pRS413-myo2-1114-1519</td>
</tr>
<tr>
<td>KKY 1974</td>
<td>This study</td>
<td>MATa, ura3-52, leu2-3, his3-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, myo2Δ::TRP1 pRS413-myo2-1-1345</td>
</tr>
<tr>
<td>KKY 1975</td>
<td>This study</td>
<td>MATa, ura3-52, leu2-3, his3-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, myo2Δ::TRP1 pRS413-myo2-2-G1248D</td>
</tr>
<tr>
<td>KKY 1969</td>
<td>This study</td>
<td>MATa, ura3-52, leu2-3, his3-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, myo2Δ::TRP1 pRS413-myo2-D1279N</td>
</tr>
</tbody>
</table>

Table 1. Yeast strains used in this study.
<table>
<thead>
<tr>
<th>Strain</th>
<th>Source</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKY 1972</td>
<td>This study</td>
<td>MATa, ura3-52, leu2-3, his3Δ200, trp1Δ901, lys2-801, suc2-Δ9, myo2Δ::TRP1 pRS413-myo2-N1304D</td>
</tr>
<tr>
<td>KKY 1970</td>
<td>This study</td>
<td>MATa, ura3-52, leu2-3, his3Δ200, trp1Δ901, lys2-801, suc2-Δ9, myo2Δ::TRP1 pRS413-myo2-Y1415R</td>
</tr>
<tr>
<td>KKY 1971</td>
<td>This study</td>
<td>MATa, ura3-52, leu2-3, his3Δ200, trp1Δ901, lys2-801, suc2-Δ9, myo2Δ::TRP1 pRS413-myo2-K1444A</td>
</tr>
<tr>
<td>KKY 1525</td>
<td>This study</td>
<td>KKY 0002, GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1928</td>
<td>This study</td>
<td>KKY 1909, GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1978</td>
<td>This study</td>
<td>KKY 1963, GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1939</td>
<td>This study</td>
<td>KKY 1935, GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1946</td>
<td>This study</td>
<td>KKY 1964, GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1937</td>
<td>This study</td>
<td>KKY 1924, GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1932</td>
<td>This study</td>
<td>KKY 1923, GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1934</td>
<td>This study</td>
<td>KKY 1922, GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1951</td>
<td>This study</td>
<td>KKY 1974 x Myo2 (1-1345)-HIS x HA-GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1956</td>
<td>This study</td>
<td>KKY 1969 x Myo2 (D1297N)-HIS x HA-GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1957</td>
<td>This study</td>
<td>KKY 1972 x Myo2 (N1304D)-HIS x HA-GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1958</td>
<td>This study</td>
<td>KKY 1970 x Myo2 (Y1415R)-HIS x HA-GFP-Snc1</td>
</tr>
<tr>
<td>KKY 1981</td>
<td>This study</td>
<td>KKY 1969, GFP-Snc1-pm</td>
</tr>
<tr>
<td>KKY 1982</td>
<td>This study</td>
<td>KKY 1971, GFP-Snc1-pm</td>
</tr>
<tr>
<td>KKY 1886</td>
<td>This study</td>
<td>KKY 0002, Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1927</td>
<td>This study</td>
<td>KKY 1909, Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1945</td>
<td>This study</td>
<td>KKY 1963, Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1938</td>
<td>This study</td>
<td>KKY 1935, Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1980</td>
<td>This study</td>
<td>KKY 1964, Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1936</td>
<td>This study</td>
<td>KKY 1924, Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1931</td>
<td>This study</td>
<td>KKY 1923, Vps10-GFP</td>
</tr>
</tbody>
</table>

32
<table>
<thead>
<tr>
<th>Strain</th>
<th>Source</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKY 1933</td>
<td>This study</td>
<td>KKY 1922, Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1955</td>
<td>This study</td>
<td>KKY 1973 x Myo2 (1114-1519)-HIS x HA-Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1954</td>
<td>This study</td>
<td>KKY 1974 x Myo2 (1-1345)-HIS x HA- Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1977</td>
<td>This study</td>
<td>KKY 1975 x Myo2-2 (G1248D)-HIS x HA-Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1976</td>
<td>This study</td>
<td>KKY 1969 x Myo2 (D1297N)-HIS x HA-Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1952</td>
<td>This study</td>
<td>KKY 1972 x Myo2 (N1304D)-HIS x HA-Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1953</td>
<td>This study</td>
<td>KKY 1970 x Myo2 (Y1415R)-HIS x HA-Vps10-GFP</td>
</tr>
<tr>
<td>KKY 1978</td>
<td>This study</td>
<td>KKY 1971 x Myo2 (K1444A)-HIS x HA-Vps10-GFP</td>
</tr>
</tbody>
</table>
Table 2. Plasmid used in this study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKD 0062</td>
<td>(Takeda et al., 2014)</td>
<td>P_{TPI1}-GFP-SNC1(pm) URA3 CEN</td>
</tr>
<tr>
<td>KKD 0064</td>
<td>(Furuta et al., 2007)</td>
<td>P_{TPI1}-GFP-SNC1 LEU2 CEN</td>
</tr>
<tr>
<td>KKD 0333</td>
<td>(Kama et al., 2007)</td>
<td>$pAD54$-HA VPS10-GFP 2µ LEU2</td>
</tr>
<tr>
<td>KKD 0369</td>
<td>(Pashkova et al., 2005b)</td>
<td>$pRS413$-myo2-1114-1519 HIS3 CEN</td>
</tr>
<tr>
<td>KKD 0368</td>
<td>(Pashkova et al., 2005b)</td>
<td>$pRS413$-myo2-1-1345 HIS3 CEN</td>
</tr>
<tr>
<td>KKD 0365</td>
<td>(Catlett and Weisman, 1998)</td>
<td>$pRS413$-myo2-2-G1248D HIS3 CEN</td>
</tr>
<tr>
<td>KKD 0363</td>
<td>(Ishikawa et al., 2003)</td>
<td>$pRS413$-myo2-D1297N HIS3 CEN</td>
</tr>
<tr>
<td>KKD 0371</td>
<td>(Eves et al., 2012)</td>
<td>$pRS413$-myo2-N1304D HIS3 CEN</td>
</tr>
<tr>
<td>KKD 0364</td>
<td>(Pashkova et al., 2006)</td>
<td>$pRS413$-myo2-Y1415R HIS3 CEN</td>
</tr>
<tr>
<td>KKD 0372</td>
<td>(Pashkova et al., 2006)</td>
<td>$pRS413$-myo2-K1444A HIS3 CEN</td>
</tr>
</tbody>
</table>
Table 3. Identified defective functions in different mutant myo2 strains.

<table>
<thead>
<tr>
<th>Mutant residues</th>
<th>Defective function</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-16 (M1212T)</td>
<td>Losing the ability in cargo binding, defecting in the distribution of a representative secretory vesicle, Sec4p</td>
<td>(Schott et al., 1999)</td>
</tr>
<tr>
<td>2-66 (E511K)</td>
<td>Losing the ability in movement along actin filament, defecting in the actin patch distribution</td>
<td>(Lillie and Brown, 1994; Schott et al., 1999)</td>
</tr>
<tr>
<td>1-1345 (truncation)</td>
<td>Losing function in actin binding and vacuole binding</td>
<td>(Pashkova et al., 2005b)</td>
</tr>
<tr>
<td>1114-1519 (truncation)</td>
<td>Losing function in vacuole binding</td>
<td>(Pashkova et al., 2005b)</td>
</tr>
<tr>
<td>1248 (G1248D)</td>
<td>Vacuole inheritance dysfunction</td>
<td>(Ishikawa et al., 2003)</td>
</tr>
<tr>
<td>1297 (D1297N)</td>
<td>Vacuole inheritance dysfunction</td>
<td>(Ishikawa et al., 2003)</td>
</tr>
<tr>
<td>1304 (N1304D)</td>
<td>Vacuole inheritance dysfunction</td>
<td>(Ishikawa et al., 2003)</td>
</tr>
<tr>
<td>1415 (Y1415R)</td>
<td>Vesicle-specific binding dysfunction</td>
<td>(Pashkova et al., 2006)</td>
</tr>
<tr>
<td>1444 (K1444A)</td>
<td>Vesicle-specific binding dysfunction</td>
<td>(Pashkova et al., 2006)</td>
</tr>
</tbody>
</table>
Figure 1. The effects of myosin knock-out and temperature sensitive mutants on Snc1 polarization. (A) GFP-Snc1 was exogenously expressed in WT, myo1Δ, myo3Δ, myo4Δ, myo5Δ and myo3Δmyo5Δ. Representative pictures of GFP-Snc1 in each strain are shown. (B, D) Percentage of budded cells showing polarized distribution. Levels of GFP-Snc1 polarization in the strains described above were quantified in triplicate manner (3 repeats of 30 small budded cells for each strains). 0.05<p≤0.1 is indicated with one asterisk and p≤0.01 is indicated with three asterisks. (C) Representative pictures of GFP-Snc1 pattern shown in WT, myo2-16, and myo2-66 are shown at permissive and restrictive temperature, 24°C and 37°C, respectively. WT, wild type. Bars, 3 µm.
Figure 2. The effects of myosin knock-out and temperature sensitive mutants on Vps10 distribution pattern. (A) Vps10-GFP was exogenously expressed in WT, myo1Δ, myo3Δ, myo4Δ, myo5Δ and myo3Δmyo5Δ. Representative pictures of Vps10-GFP in each strain are shown. (B) Percentage of budded cells showing abnormal Vps10-GFP distribution. Cells exhibiting enlarged cytoplasmic Vps10-GFP puncta or Vps10-GFP at the vacuolar ring are classified into the group of abnormal phenotypes. The strains described above were quantified in triplicate (3 repeats of 30 small budded cells for each strains). 0.05<p≤0.1 is indicated with one asterisk and p≤0.01 is indicated with three asterisks. (C) Representative pictures of Vps10-GFP pattern in WT, myo2-16, and myo2-66 are shown at permissive and restrictive temperature, 24°C and 37°C, respectively. (D) Percentage of budded cells showing abnormal Vps10-GFP distribution in WT, myo2-16, and myo2-66 strains. WT, wild type. Bars, 3 µm.
Figure 3. The effects of mutations and truncations in Myo2 on Vps10 distribution pattern. (A) Vps10-GFP was exogenously expressed in WT, myo2¹⁻¹³⁴⁵, myo2¹¹¹⁴⁻¹⁵¹⁹, myo2²G1248D, myo2^{D1297N}, myo2^{N1304D}, myo2^{Y1415R} and myo2^{K1444A}. A representative picture of Vps10-GFP for each strain is shown. (B) Percentage of budded cells showing abnormal Vps10-GFP distribution. As described in Figure 3 and in the “Methods” section, cells showing Vps10-GFP at the vacuolar ring and enlarged Vps10-GFP puncta are scored into abnormal phenotypes. The strains described above were quantified in triplicate (3 repeats of 30 small budded cells for each strains). p ≤ 0.01 is indicated with three asterisks. WT, wild type. Bar, 3 µm.
Figure 4. Time-lapse microscopy of wild-type and myo2 mutant cells expressing Vps10-GFP. Note the different time intervals between frames in each row. In both wild-type and mutant cells, the arrowhead indicates the starting position of a patch that moves, and the arrow follows the patch. Bar, 3 µm.

Figure 5. Mean squared displacement (MSD) of Vps10-GFP patches in wild-type and myo2 mutant cells. Vps10-GFP patches were tracked up to 15 seconds before they get invisible. MSD is plotted versus time. The curves are the average of MSD plots of 20 patches from one wild-type and six mutant strains. The experiments were triplicated. Vps10-GFP patches in wild-type cells showed a directed motion represented by a concave up line, whereas the patches were quite stationary in all mutant cells as indicated with lines parallel to the X-axis.
Figure 6. The effects of Myo2 mutations and truncations on polarization of actin filaments. (A) Imaging the polarized and depolarized actin patches in Wild type and myo2 mutant cells, respectively. (B) The percentage of cells showing polarized actin patches toward the bud. At least 50 small budded cells in a triplicate manner for each strain were analyzed to obtain the mean and the standard deviation shown in the graph. 0.05<p≤0.1 is indicated one asterisk, 0.01<p≤0.05 is indicated two asterisks. WT, wild type. Bar, 3 µm.
Figure 7. Diagram summarizing the potential consequence of Vps10 in the presence of functional Myo2 (top) and mutant myo2 (bottom). (Top) Myosin 2 moves along actin filament and delivers endosomal vesicle to TGNs. (Bottom) (1) Endosomal vesicles are inefficiently retrieved. (2) Myo2 tail domain mutation is unable to bind to the vesicle. (3) Myo2 mutants harboring a point mutation in its head bind the actin filament in an inefficient manner. (4) myo2 mutant lacking its N-terminal actin binding domain truncation is unable to associate with actin filament. (5) Myo2 head domain point mutation, resulting in a weak interaction with the cargo vesicle. (6) Disrupted actin cable that cripples the migration of myo2 mutant motors.
Supplementary Figure 1. The effects of myo2 mutants on GFP-Snc1 and GFP-Snc1(pm) localization. (A) GFP-Snc1 was exogenously expressed in WT, myo2-1345, myo2D1297N, myo2N1304D, myo2K1444A strains. Representative pictures of GFP‐Snc1 in each strain are shown. (B) Percentage of budded cells showing polarized distribution. (C) Localization of GFP-Snc1(pm) to the plasma membrane of wild type and two myo2 mutant strains. Bars, 3 µm.