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1. Introduction

Riemann’s Rearrangement Theorem says that if an infinite series of real numbers is conditionally
convergent, then its terms can be rearranged in in such a way that the resulting series converges to any
real sum [3]. It is well known that the alternating harmonic series converges to log 2, that is,
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1
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+
1
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−
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+ · · · = log 2.

As the prototypical conditionally convergent series, rearrangements of the alternating harmonic series
have been studied extensively [1]. However, Riemann’s Rearrangement Theorem is non-constructive;
there is no general method to find the sum of a re-arrangement. It was shown in [8] that assigning plus
or minus signs randomly produces sums that converge almost surely.

In this article, we consider a generalized version of the alternating harmonic series, one with the
assignment of plus or minus signs, as follows. For each positive integer k, we consider the series
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We will find the infinite sum, S k, of the infinite series in two different formats and examine the
interesting relationship between this sum and the harmonic number,

Hk = 1 +
1
2

+
1
3

+ · · · +
1
k

=

k∑
n=1

1
n
,

which appears often throughout mathematics [2].

Definition 1.1. We take H0 = 0 and define the terms of S k by

an(k) = Hnk − H(n−1)k,

for each positive integer n and k. Thus,

S k =

∞∑
n=1

(−1)n+1an(k).

Clearly, for a fixed k, an(k) > 0 and decreases to 0 as n increases. Hence, by the alternating series test,
S k is convergent for all positive integers k.

2. Sum of generalized alternating harmonic series

Our first summation formula is given in integral form, as follows.

Theorem 2.1. If k is a positive integer, then

S k =

k−1∑
m=0

∫ 1

0

xm

1 + xk dx. (2.1)

Proof. Since ∫ 1

0

1
1 + x

dx = log 2,

Equation (2.1) holds for k = 1. For k ≥ 2, we first note that the harmonic number has an integral
expression [7] as

Hn = 1 +
1
2

+ · · · +
1
n

=

∫ 1

0
dx +

∫ 1

0
xdx + · · · +

∫ 1

0
xn−1dx

=

∫ 1

0
(1 + x + · · · + xn−1)dx =

∫ 1

0

1 − xn

1 − x
dx.

Hence when k ≥ 2,

an(k) = Hnk − H(n−1)k =

∫ 1

0

1 − xnk

1 − x
dx −

∫ 1

0

1 − x(n−1)k

1 − x
dx
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=

∫ 1

0

x(n−1)k − xnk

1 − x
dx =

∫ 1

0
x(n−1)k 1 − xk

1 − x
dx. (2.2)

It follows that for k ≥ 2,

S k =

∞∑
n=1

(−1)n+1an(k) =

∞∑
n=1

(−1)n−1
∫ 1

0
x(n−1)k 1 − xk

1 − x
dx

=

∫ 1

0

1 − xk

1 − x

∞∑
n=1

(
−xk

)n−1
dx =

∫ 1

0

1 − xk

1 − x
1

1 + xk dx

=

∫ 1

0

1 + x + · · · + xk−1

1 + xk dx =

k−1∑
m=0

∫ 1

0

xm

1 + xk dx,

proving the theorem. �

As an application of Theorem 2.1, we have

Example 2.2.

S 2 =

∫ 1

0

1 + x
1 + x2 dx = arctan x

∣∣∣∣1
0

+
1
2

log(1 + x2)
∣∣∣∣1
0

=
π

4
+

1
2

log 2.

Our second summation formula is given in terms of trigonometric functions, as follows.

Corollary 2.3. If If k is a positive integer, then

S k =
π

2k

k−1∑
m=1

csc
mπ
k

+
1
k

log 2.

Proof. By Theorem 2.1,

S k =

k−1∑
m=0

∫ 1

0

xm

1 + xk dx =

k−2∑
m=0

∫ 1

0

xm

1 + xk dx +

∫ 1

0

xk−1

1 + xk dx

=

k−1∑
m=1

∫ 1

0

xm−1

1 + xk dx +
1
k

log 2

=
1
2

 k−1∑
m=1

∫ 1

0

xm−1

1 + xk dx +

k−1∑
m=1

∫ 1

0

xm−1

1 + xk dx

 +
1
k

log 2

=
1
2

 k−1∑
m=1

∫ 1

0

xm−1

1 + xk dx +

k−1∑
m′=1

∫ 1

0

xk−m′−1

1 + xk dx

 +
1
k

log 2 (2.3)
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=
1
2

k−1∑
m=1

∫ 1

0

xm−1 + xk−m−1

1 + xk dx +
1
k

log 2, (2.4)

where in Eq (2.3), for the second summation in the parenthesis, we changed the index from m to
m′ = k − m. We simplify Eq (2.4) using the following well known result, see page 323 of [5].

For k > m > 0,
∫ 1

0

xm−1 + xk−m−1

1 + xk dx =
π

k
csc

mπ
k
.

This yields the desired result,

S k =
π

2k

k−1∑
m=1

csc
mπ
k

+
1
k

log 2,

and this proves the Theorem. �

Example 2.4.

S 3 =
π

6

2∑
m=1

csc
mπ
3

+
1
3

log 2 =
2π
√

3
9

+
1
3

log 2.

3. The relationship between S k and Hk

We now set about finding the relationship between S k and Hk. Since on [0, 1], 1 ≤ 1 + xk ≤ 2 for
all integer k ≥ 1, we have that,

k−1∑
m=0

∫ 1

0

xm

2
dx ≤

k−1∑
m=0

∫ 1

0

xm

1 + xk dx ≤
k−1∑
m=0

∫ 1

0
xmdx.

Hence by Theorem 2.1, we have

1
2

Hk ≤ S k ≤ Hk, for all k ≥ 1.

We will now calculate and simplify the difference between Hk and S k. Notice that

Hk − S k = a1(k) −
∞∑

n=1

(−1)n+1an(k) = −

∞∑
n=2

(−1)n+1an(k) =

∞∑
n=1

(−1)n+1an+1(k).

We make the following definition.

Definition 3.1. Let

Dk = Hk − S k =

∞∑
n=1

(−1)n+1an+1(k).

Note that for each integer k ≥ 1, Dk is a convergent alternating series, which easily follows from the
properties of an(k). More interestingly, Dk itself forms a convergent sequence, as given in the following.
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Theorem 3.2.
lim
k→∞

Dk = lim
k→∞

(Hk − S k) = log
π

2
.

Proof. Let ε be an arbitrarily fixed positive real number. By the Wallis product formula [6], we have

∞∏
n=1

(2n)2

(2n − 1)(2n + 1)
=
π

2
.

Since the natural logarithm is a continuous function, there exist a positive integer N1 such that when
l ≥ N1, ∣∣∣∣∣∣∣log

l∏
n=1

(2n)2

(2n − 1)(2n + 1)
− log

π

2

∣∣∣∣∣∣∣ < ε

3
. (3.1)

Let m be any positive integer and let k ≥ 1. By (2.2), we have∣∣∣∣∣∣∣
∞∑

n=m

(−1)n+1an+1(k)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∞∑

n=m

(−1)n+1
∫ 1

0
xnk 1 − xk

1 − x
dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣−
∞∑

n=m

∫ 1

0
(−xk)n 1 − xk

1 − x
dx

∣∣∣∣∣∣∣
≤

∫ 1

0

1 − xk

1 − x

∣∣∣∣∣∣∣
∞∑

n=m

(−xk)n

∣∣∣∣∣∣∣ dx ≤
∫ 1

0

1 − xk

1 − x
xmk

1 + xk dx

=

∫ 1

0
(1 + x + · · · + xk−1)

xmk

1 + xk dx ≤
∫ 1

0
kxmkdx =

k
mk + 1

<
1
m
.

Hence, there exists a positive integer N2 such than when m ≥ N2,∣∣∣∣∣∣∣
∞∑

n=m

(−1)n+1an+1(k)

∣∣∣∣∣∣∣ < ε

3
, (3.2)

for each and every k ≥ 1.
Let N = max{N1,N2}. Recall the Euler-Mascheroni constant [4] is defined as

γ = lim
n→∞

(
Hn − log n

)
.

Since {Hn − log n} converges, it is a Cauchy sequence. We therefore may choose a positive integer K
such that when j,m ≥ K,∣∣∣∣∣(H j − Hm) − log

j
m

∣∣∣∣∣ = |(H j − log j) − (Hm − log m)| <
ε

6N
. (3.3)

For convenience, we denote

D2N(k) =

2N∑
n=1

(−1)n+1an+1(k) and T2N(k) =

∞∑
n=2N+1

(−1)n+1an+1(k).
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Clearly, Dk = D2N(k) + T2N(k) and by (3.2), for any k ≥ 1, there is

|T2N(k)| <
ε

3
. (3.4)

Also notice that, for any integer k ≥ 1, we have

D2N(k) =

2N∑
n=1

(−1)n+1an+1(k)

= a2(k) − a3(k) + a4(k) − a5(k) + · · · + a2N(k) − a2N+1(k)

=

N∑
n=1

[a2n(k) − a2n+1(k)]

=

N∑
n=1

[
(H2nk − H(2n−1)k) − (H(2n+1)k − H2nk)

]
. (3.5)

Let

WN = log
N∏

n=1

(2n)2

(2n − 1)(2n + 1)
.

Henceforth, let k ≥ K, where K is defined by Eq (3.3). Using the representation of D2N(k) in Eq (3.5),
we have∣∣∣D2N(k) −WN

∣∣∣
=

∣∣∣∣∣∣∣
N∑

n=1

[
(H2nk − H(2n−1)k) − (H(2n+1)k − H2nk)

]
− log

N∏
n=1

(2n)2

(2n + 1)(2n − 1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
N∑

n=1

{[
(H2nk − H(2n−1)k) − (H(2n+1)k − H2nk)

]
− log

(2n)2

(2n + 1)(2n − 1)

}∣∣∣∣∣∣∣
≤

N∑
n=1

∣∣∣∣∣∣[(H2nk − H(2n−1)k) − (H(2n+1)k − H2nk)
]
− log

(2n)2

(2n − 1)(2n + 1)

∣∣∣∣∣∣
=

N∑
n=1

∣∣∣∣∣∣
[
(H2nk − H(2n−1)k) − log

2n
2n − 1

]
−

[
(H(2n+1)k − H2nk) − log

2n + 1
2n

]∣∣∣∣∣∣
≤

N∑
n=1

{∣∣∣∣∣(H2nk − H(2n−1)k) − log
2nk

(2n − 1)k

∣∣∣∣∣ +

∣∣∣∣∣(H(2n+1)k − H2nk) − log
(2n + 1)k

2nk

∣∣∣∣∣}

≤ N
(
ε

6N
+

ε

6N

)
=
ε

3
, (3.6)

where “≤” in (3.6) follows from (3.3) because k ≥ K, which makes all of 2nk, (2n − 1)k, and (2n + 1)k
greater than K.
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Finally, for k ≥ K, we have∣∣∣∣∣Hk − S k − log
π

2

∣∣∣∣∣ =

∣∣∣∣∣Dk − log
π

2

∣∣∣∣∣
=

∣∣∣∣∣D2N(k) + T2N(k) −WN + WN − log
π

2

∣∣∣∣∣
≤

∣∣∣D2N(k) −WN

∣∣∣ + |T2N(k)| +
∣∣∣∣∣WN − log

π

2

∣∣∣∣∣
< ε,

where the last step follows from (3.1), (3.4), and (3.6). Therefore, by the arbitrariness of ε, we have

lim
k→∞

Dk = lim
k→∞

(Hk − S k) = log
π

2
,

and this completes the proof. �
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