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This paper explores the benefit of added noise in increasing the computational complexity of digital recurrent
neural networks (RNNs). The physically accepted model of the universe imposes rational number, stochastic
limits on all calculations. An analog RNN with those limits calculates at the super-Turing complexity level
BPP/log*. In this paper, we demonstrate how noise aids digital RNNs in attaining super-Turing operation
similar to analog RNNs. We investigate moving limited-precision systems from not being chaotic at small
amounts of noise, through consistency with chaos, to overwhelming it at large amounts of noise. A Kolmogorov-
complexity-based proof shows that an infinite computational class hierarchy exists between P, the Turing class,
and BPP/log*. The hierarchy offers a possibility that the noise-enhanced digital RNNs could operate at a
super-Turing level less complex than BPP/log*. As the uniform noise increases, the digital RNNs develop
positive Lyapunov exponents intimating that chaos is mimicked. The exponents maximize to the accepted values
for the logistic and Hénon maps when the noise equals eight times the least significant bit of the noisy recurrent
signals for the logistic digital RNN and four times the Hénon digital RNN.

DOI: 10.1103/PhysRevResearch.3.013120

I. INTRODUCTION

Noise improves deep learning and is recognized as an
important contributor to neural networks (NNs) in artifi-
cial intelligence and neuroscience [1–3]. Redd et al. [4]
demonstrated how stochastic resonance (SR) is the under-
lying principle of analog recurrent neural networks (RNNs)
attaining super-Turing machine capability. The noise benefit
experienced in deep learning systems is essentially a type of
stochastic resonance where a small amount of noise improves
the performance of a nonlinear system while too much noise
harms the performance [5]. In general, an SR benefiting sys-
tem is observed when the output signal from a system provides
a better representation of the input signal (or of some useful
aspect of it) than it would in the complete absence of noise
[3]. There is a vast literature on the benefits of noise injection
in neural networks [6–10]. The classic theory of stochastic
resonance has two components, noise and periodic forcing
functions [11]. However, some practical uses of SR rely only
on the noise and not the periodic forcing, such as in increas-
ing precision of analog-to-digital converters or subthreshold
signal detection. This paper explores the benefit of this SR
noise from a different perspective: computational complexity
class. The overall hypothesis is that noise aids digital RNNs in
moving closer to attaining super-Turing machine complexity.

*Corresponding author: emmettredd@missouristate.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

At various levels of correspondence, artificial neural net-
works implement operations analogous to biological neural
networks [12,13]. Since digital computers are inspired by
Turing’s computational model [14], many artificial neural
network implementations do not seek a more powerful com-
putational model than a universal Turing machine (TM)
which computes the complexity class P. This paper will de-
scribe noise-enhanced digital RNNs seeking to approach a
more powerful computational complexity model. Previous
effort [4,15,16] has indicated computation results consistent
with super-Turing complexity. Super-Turing computational
models describe classes of machines that are stronger than
digital/deterministic TMs. Siegelmann discovered that a ra-
tional stochastic RNN computes the BPP/log* complexity
class [17–19]. Younger et al. [15,16] demonstrated the im-
plementation of optical analog RNN hardware for computing
beyond the Turing limit. In [4], the focus was on concepts
of analog signals which differ significantly from the digital
techniques currently used to develop NNs. The main thrust
was that the SR contained in artificial intelligence and neu-
roscience is inherent in the proof of super-Turing BPP/log*
networks and likely contributed to the hardware mimicking
chaos. This hints that the use of artificial neural networks
following the super-Turing BPP/log* computation model is
a path forward to better alignment with biological neural
network operation.

This paper demonstrates how noise aids digital RNNs in
attaining super-Turing operation in the realm of the BPP/log*
computation class, similar to analog RNNs. We investigate
moving limited-precision systems (digital RNNs) from not
being chaotic at small amounts of noise, through consistency
with chaos, to overwhelming it at large amounts of noise. We
also extend a hierarchy theorem to quantify the computational
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power of stochastic digital RNNs, which we hypothesize
might be super-Turing and lies between P and BPP/log*.
The noise source and its quality may impact the super-Turing
properties of noise-enhanced digital RNNs. The empirical
analyses investigate both pseudonoise and true-random noise
in the digital RNN calculations to determine if there are any
resulting differences.

The significant contributions of this paper are as follows.
(1) We demonstrate that the BPP/log* computation com-

plexity proof [17–19] is not only a mathematical idealization
but also fits into accepted physical SR theory [11,20].

(2) We extend and apply theorems from Balcázar et al.
concerning an infinite hierarchy between P and P/poly [21]
to show an infinite hierarchy exists between P and BPP/log*.

(3) We investigate how different noise magnitudes opti-
mize chaos mimicking calculations in digital RNNs. Mim-
icking chaos infers noise-enhanced digital RNNs achieve
super-Turing operation.

The outline of the paper is as follows. We discuss the de-
tails of SR and super-Turing complexity in Sec. II. In Sec. III,
we describe an infinite hierarchy of computational complexity
classes, to provide a theoretical context for the experimental
results, given in Sec. IV, and conclude in Sec. V.

II. STOCHASTIC RESONANCE AND SUPER-TURING
COMPLEXITY

This section reviews the preliminaries of SR and its con-
nection with super-Turing concepts to provide a context for
the analysis of the computational complexity of RNNs. The
complexity classes considered in this paper are described as
follows. P denotes the class of functions that compute in
time comparable to a polynomial of the input size. Turing
machines calculate at this complexity level. P/poly is the class
of functions that compute in polynomial time augmented by
some additional reference data (called an “advice string” or
an “oracle”) of size polynomially related to the input length.
Strictly between these two is the class at the heart of our
paper, BPP/log*, which computes in bounded probabilistic
polynomial time with an advice string of length on the order
of the logarithm of the size of the input.

Siegelmann [19] describes multiple variants of analog
RNNs that yield different mathematical complexity classes.
This paper specifically discusses the analog RNN variant
which computes at the BPP/log* complexity class. It has
neurons constrained to rational inputs and outputs that are
both stochastic. It is super-Turing and has a finite number
of physical computations. We postulate that the super-Turing
computational complexity class (BPP/log*) matches the
physical reality of analog RNNs. This section describes the
concept of stochasticity and demonstrates how it is integrated
in the super-Turing complexity proof, and subsequently how
it matches with the physical model of SR.

A. Stochastic resonance background

Stochastic resonance is a physical phenomenon first de-
scribed to explain the transitions between ice ages and
interglacials [22]. It has been applied to or used in many sys-
tems including analog-to-digital converters (ADCs), neuron

operation, and visual perception [20]. SR is a well-understood
phenomenon that increases precision and resolution anywhere
there is a threshold. The SR theory shows that the magnitude
of input noise can result in optimizing the signal-to-noise ratio
of an SR benefiting system [20]. SR consists of a bistable
system with two inputs: a coherent signal and random noise.
Using only random noise, for example, consider this simple
SR-benefiting system: a model designed to increase the res-
olution of ADCs. This model assumes adjacent ADC levels
which are the two stable states, {0,1}, with a signal, a ∈ [0, 1].
Given that there exists a transition level at t = 1

2 , if a � t (or,
otherwise a < t) then multiple measurements of a will read
1 (0). However, if the signal has uniform noise such that its
average value is still a, then multiple measurements of it will
read 1 for about (a) portion of the measurements and zero for
about (1 − a) portion of them. Averaging those measurements
will give a higher-precision approximation to the actual value
of a. The precision will increase as the log2 of the number of
measurements. Although each system has an optimum noise
level, there is no limit to the logarithmic precision or resolu-
tion increase. Note that this SR model, with only the noise
component, illustrates the power of stochasticity.

McNamara and Wisenfeld [11] developed a generalized
model to explain the theoretical and experimental behavior of
SR, including both the noise and periodic forcing components.
They introduce a double-well system that is bistable and has
a quartic potential of

U (x, t ) = −a

2
x2 + b

4
x4 − εx cos (ωst ) (1)

where ε and ωs are the amplitude and frequency of a modu-
lating signal that aids the system transition between the two
wells [our Eq. (1) is Eq. (5.1) in [11]]. It models the output’s
signal-to-noise ratio as a function of the rate at which noise
induces hopping between the two states. Harmer et al. [20]
illustrate this potential over one cycle of the modulating signal
in Fig. 1.

This generalized SR model uses a rate equation approach.
A first-order differential equation [Eq. (2)] relates the change
in probability of a particle being in one of the two states to
the rate at which particles flow in and out of the state. The SR
dynamical equation from [20] is

dx

dt
= −dU (x)

dx
+ A sin(ωst ) +

√
Dξ (t ) (2)

where A is the −ε of Eq. (1), ξ (t ) is the noise, and D is a noise
magnitude parameter. The phase change in the periodic signal
is of no consequence.

This physical SR theory is important as it is the bridge
in understanding the connection between super-Turing com-
plexity classes and RNNs. The next section briefly describes
the mathematical super-Turing theory so we can subsequently
show how it invokes a process congruent with SR.

B. Super-Turing complexity proof

It has been shown that rational stochastic networks exhibit
a super-Turing complexity, as modeled by probabilistic TMs
that use binary coins with real probabilities [19]. These TMs
compute the class BPP/log*, bounded-error probabilistic
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FIG. 1. The double-well potential tilting back and forth over one
cycle of the modulating signal where Ts = 2π/ωs. This is adapted
from Fig. 4 in [20].

polynomial-time, augmented with logarithmic prefix advice.
Here, prefix logarithmic advice means an additional string of
length log n given to the TM to help it process any input of
length n or less. To provide some context for this paper, the
following summarizes the theoretical proof of the complexity
of rational stochastic networks. The underlying concept is that
analog RNNs with rational neurons and stochasticity are able
to implement a computational model that is stronger than one
without stochasticity. However, stochasticity does not increase
the computational power of analog RNNs with integer or real
neurons. The proofs use a Markovian model, which allows for
real-valued, evolving, and neighbor-dependent malfunction
probabilities.

In a probabilistic TM, real probabilities and rational prob-
abilities with log prefix advice are equivalent. Let BPR(T )
denote the class of languages recognized by a probabilistic
bounded error TM that uses real probabilities and computes in
time T, i.e., a real numbered probabilistic TM. BPQ(T )/ log *
denotes the class for TMs based on rational probabilities along
with a logarithmic prefix advice. Lemma 1 [17–19] states that
these two classes are subsets of each other to a polynomial
degree.

Lemma 1. The classes BPR(T ) and BPQ(T )/ log * are poly-
nomially related.

This lemma demonstrates that for stochastic networks
“logarithmic precision suffices” for the real probabilities;
i.e., for up to the qth step of the computation, only the
first O(log q) bits in the probabilities of the neurons influ-
ence the result. We sketch the proof of Lemma 1 below,
but the interested reader can find details in [17–19]. The
claim will follow by demonstrating these two inclusions: (i)
BPR(T ) ⊆ BPQ[O(T log T )]/ log * and (ii) BPQ(T )/ log * ⊆
BPR[O(T 2)].

To establish (i), the idea is to show that given any probabil-
ity of error ε > 0, one can model the behavior of any machine
in BPR(T ) by a machine in BPQ[O(T log T )], with error no
more than ε. In this setting, the latter machine has rational
neurons instead of real neurons of the first machine, but more
time to make its decision, as well as an advice string that is as
long as a constant multiple of the logarithm of the input.

This shows that a machine using rational probability (here
a fair coin with probability of 1

2 ) and a logarithmically long
advice string can simulate a machine having real probabilities.
Note that SR is not involved in this simulation, since the sim-
ulating machine’s probability is rational and could be found
in a finite time. The power of SR ultimately shines in proving
the second inclusion.

To prove (ii), observe that given any error probability
ε > 0, a machine M ∈ BPQ(T )/ log * can be simulated by a
machine M′ ∈ BPR[O(T 2)]. This is essentially the converse
of (i), but with some different runtime bounds for the ma-
chines in question. The main idea here is that, by flipping
an unfair coin, M′ can generate the logarithmic advice string
used by M. The trick is to encode the advice string in a prob-
ability represented by binary number p ∈ [ 1

4 , 1
2 ]. The range

of probability is a technical artifact of the proof. From the
z = O(T 2) coin flips, the estimation of the probability is p̃,
which is “01” followed by the advice string. This estimation is
a logarithmically long string and can be found to an arbitrarily
high precision by

p̃ = #1

z
=

∑z
i=1 fi

z
, (3)

where #1 is the number of ones found in the z flips and fi is the
value of the ith flip. This is the typical way that measurement
systems take advantage of SR, i.e., taking the average of z
analog-to-digital conversions. At the end of this process, by
flipping the unfair coin no more than z = O(T 2) times, p̃ is
an approximate value of p, up to some acceptable error. The
initial “01” is removed from the binary representation of p̃,
and the remaining binary string is used as advice. There is
more to the proof and to ensuring that the error bounds line up
correctly. The features highlighted here demonstrate the use
of SR to relate the models with real and rational neurons.

This proof that rational stochastic networks compute the
super-Turing BPP/log* complexity class depends on flipping
an unfair coin. The number of flips are finite and produce
an estimate of the real probability which is a logarithmically
long advice string. Note that the estimated advice can only
equal the uncomputable real probability in the infinite limit.
Nonetheless, the finite estimated advice is physically possible
and the rational, stochastic neuron analog RNN can compute
at a super-Turing complexity of BPP/log*. The next section
will show that this unfair coin can be physically modeled as a
SR process by mapping it into a double-well system. Hence,
the BPP/log* complexity class can serve as a mathematical
basis for understanding the relevance of SR to physical super-
Turing computation.

C. Stochastic resonance and unfair coin flips

Lemma 1 estimates the logarithmic advice through a pro-
cess based on flipping an unfair coin. The idealized unfair coin
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FIG. 2. Illustration of the two-dimensional unfair coin model
used to develop the potential-energy function U (x). The coin’s mass
is separated from the center of the coin by θ ∈ (−π/2, π/2). The
corresponding unfair probability ranges from 1 to 0. The x coordi-
nate is chosen so when the coin falls to the right (left) we have x = 1
(x = 0).

can be modeled as a mass that has unity weight at an angle θ

away from the coin’s axis (see Fig. 2). The model results in
a double-well potential U (x) for use in Eq. (2) (see Sec. II A)
to demonstrate the SR phenomenon. The potential U (x) is a
periodic function with each cycle of length 2. It is described
over one cycle as follows:

U (x) =

⎧⎪⎪⎨
⎪⎪⎩

sin(arccos(2x + 1) − θ )/2, − 1
2 � x < 0

sin(arccos(2x − 1) + θ )/2, 0 � x < 1

sin(arccos(3 − 2x) + θ )/2, 1 � x < 3
2

. (4)

The probability of the unfair coin is p = [1 − sin(θ )]/2.
The second condition denotes when the left end of the coin
in Fig. 2 is the fixed rotation point at x = 1/2. The first and
third conditions are when the upper end of the coin becomes
a fixed rotation point at x = −1/2 and 1.5, respectively (i.e.,
the coin flipping up after the coin falls to horizontal on the left
or right).

To physically model the flipping of the unfair coin as an SR
process, we derive a numerical solution of the SR dynamical
equation Eq. (2) using U (x) [Eq. (4)] for two coin probability
values (p = 1/4 and 1/2). Recall that the super-Turing com-
plexity proof of the prior section (see Sec. II B) assumes coin
probabilities 1/4 � p � 1/2. Hence, we illustrate the coin flip
potentials here for the probability limits, though the model
presented extends to all discrete values within the range. As
can be observed from the optimized solution (Fig. 3), it does
reflect a bistable potential that yields the classic SR picture of
bouncing between the two levels.

The numerical simulation of Eq. (2) is obtained by utilizing
the following parameter values: dt = 10−3, ωs = 2π/10, and
ξ (t ) is a vector of 1 × 106 elements chosen from {−1, 1},
given by MATLAB’s rand function. Note that in [20], A was
set so the particle remains in one well and D adjusted while
measuring the signal-to-noise level. Here, the values of the
tuning parameters A and D are optimized specifically for each
given coin probability value (Fig. 4). The large slopes near
the minima of the potential cause stability issues with the
numerical simulation. Therefore, the absolute value of the
slope is limited to a maximum of 2.

Figure 4 illustrates the solutions obtained for coin prob-
abilities of 1/4 and 1/2 and verifies that unfair coin models
exhibit stochastic resonance, i.e., two stable states with quick,
random transitions between them. However, these solutions
are more akin to putting a coin in a box that is continuously
tilted and shaken and are not how coin flips occur. Rather, we
stop tilting and shaking the box and then observe the results of
a coin flip. This is simulated by randomly selecting a sampling
point in the solution and recording in which potential well the
point resides, i.e., where the coin will settle in the double wells
when the tilting and shaking stop. The SR calculations shown
in Fig. 4 were sampled 262 144 (218) times. The left (right)
SR calculation, is optimized (using MATLAB fminsearch) to
have a probability of 1/4 (1/2), and has a sampled probability,
p̃, of 0.2503 (0.4990). A different random selection could
give a slightly different result as one would expect from the
statistical process of flipping a coin. Stripping off the “01” of p̃
gives the logarithmic advice from this sampled probability as
hexadecimal 0x0055 (0xfeed). These sampled probabilities
are calculated using Eq. (3), which is the source of the prefix
logarithmic advice in Lemma 1. Hence, this demonstrates that

FIG. 3. Potentials for two coins. Shown are the points of the potentials U (x) in Eq. (4) accessed during the stochastic resonance calculations
shown in Fig. 4. The left is for a coin with p = 1/4, and the right is for a coin with p = 1/2. The different well depths for the left potential
result from whether the angular offset mass is below or above the coin’s center as it goes to horizontal.
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FIG. 4. Stochastic resonance for two coin potentials, showing the horizontal position, x, of the coin center from solving Eq. (2) [20] for
106 steps. Each step has the x dot plotted along the vertical dimension. The values of A and D were optimized with the MATLAB fminsearch

function so the proportion of points between the red dotted lines on either side of 1 equaled the probability of the coin. The red dotted lines are
at the maxima of the corresponding potentials in Fig. 3. Solutions optimized for p = 1/4 are on the left and those for p = 1/2 are on the right.

SR indeed provides the prefix logarithmic advice essential for
the super-Turing complexity class.

III. DIGITAL RNNs AND SUPER-TURING
COMPLEXITY CLASSES

Digital computers are modeled on the Turing machine
and share this characteristic with the super-Turing model,
as discussed above; they compute using rational numbers.
However, they eschew noise by their basic design and even
have error-correcting hardware and software to make sure that
noise-induced bit flips are corrected. In this section, guided
by the super-Turing model (Sec. II), we lay out the theoretical
foundation for adding stochasticity to rational, deterministic,
digital RNNs operating at the Turing complexity level so they
may exceed the Turing computation limit.

A. Deterministic vs stochastic computations
in recurrent neural networks

Table I summarizes the computational power of ana-
log RNNs that have various restrictions applied to them
[19]. It also points out the physically possible computational
classes. The stochastic-signal, rational-RNN computation
class, BPP/log*, is the only super-Turing class in the table
that has computations allowed by the physical universe in a
finite time.

TABLE I. Complexity classes of recurrent neural networks. This
table was adapted from Table 9.1 in [19]. See first paragraph of
Sec. II for complexity class descriptions.

Weights/signals Deterministic Stochastic Notes

Integer (Z) Regular Regular Physical
Rational (Q) P BPP/log* Physical
Real (R) P/poly P/poly Nonphysicala

aQuantum field theory quantizes the free electromagnetic field [23]
and that does not allow weights or signals to have real numbered
values.

Biological and computer-calculated artificial neural net-
works physically compute under the same restrictions as those
leading to the BPP/log* super-Turing computation class.

Consider a RNN R composed of a matrix of input weights
Wx, a parametric state transition model S , a set of output
weights Wy, and an output bias by. The network R operates
on an input sequence x to produce an output sequence y.
Deterministic computation (second column of Table I) implies
no noise and complete predictability for x. Thus, at each
time step, xt maps deterministically to each yt . Stochastic
computation (third column of Table I) implies that the R, with
a certain probability, unreliably computes yt from a given xt .
This means y is indeterminate in that it involves a level of
randomness.

The rows in Table I depict the varying levels of restric-
tions imposed on the analog RNNs by limiting the synaptic
weights W . At the most restrictive level of W , when the
weights are only integers, we observe that stochasticity does
not increase its computational power over deterministic com-
putation. Though these networks have calculations consistent
with our physical understanding of the known universe, they
are less powerful than TMs. They are simply automatons.
The case where W can also contain rational numbers results
in deterministic computations having TM computation power
(P) while stochastic computation computes at a super-Turing
computation power, BPP/log*. This super-Turing complexity
class has physically feasible calculations. In the final and
least restrictive case, when W includes irrational numbers (so
that any real number is possible), deterministic and stochastic
computation have the same computational power. In addi-
tion, since real numbered neuron weights are not possible
due to charges and fields being quantized [23], this highest
complexity class, i.e., P/poly (a super-Turing class), is not
accessible.

The digital RNNs that will be investigated in our experi-
ments (Sec. IV) have only one injected-noise neuron whereas
the analog RNN may have several stochastic neurons. Both
RNNs have deterministic neurons. The difference between the
P and BPP/log* complexity levels in Table I is movement
from deterministic to stochastic signals, as simulated in the
experiments by adding various magnitudes of uniform random
numbers to the recurrent signals. The postulate is that digital
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RNNs seem to attain, with the aid of SR noise, a super-Turing
level of operation on a complexity hierarchy similar to that
between P and P/poly in [21]. Somewhere in such a hierarchy,
a transition from Turing to super-Turing complexity must
occur. Recognizing that the noise added in our digital RNNs
is different from the stochasticity of [19], the hierarchy offers
a possibility that the noise-enhanced digital RNNs could op-
erate at a super-Turing level less complex than BPP/log*.

B. Infinite hierarchy of computational complexity classes
between P and BPP/log*

This section proves that an infinite hierarchy of computa-
tional classes exists between P and BPP/log* (a super-Turing
class). One of the classes in the hierarchy could quantify
the computational power of noise-enabled digital RNNs. The
existence of these computational classes is demonstrated with
Kolmogorov complexity (KC), which measures the algorith-
mic information content of an object [24]. It has been shown
that the computational power [21] of RNNs depends on the
complexity of the neurons in the network. In contrast, this
proof shows that rational stochastic networks are more com-
putationally complex than deterministic ones.

Let x be a finite binary string. The Kolmogorov complex-
ity of x is the length of the shortest computer program (in
binary) that generates x. This definition assumes unlimited
computational resources such as time and space. Note that KC
does not completely characterize computational complexity
but it can be used to discriminate between computational
complexity classes. KC has been shown to be a much more
reliable and robust basis for constructing the complexity mea-
sure for compound objects such as NNs [25]. In the context
of RNNs, a resource-bounded version of KC is utilized as it
constrains the amount of information and the time used by the
algorithm.

Balcázar et al. [21] demonstrated the existence of an
infinite hierarchy of computational classes between P (the
complexity class of TMs) and P/poly (the complexity class
of networks with real number neurons). We follow their con-
struction to show there exists an infinite hierarchy between
P and BPP/log* (complexity class of rational stochastic net-
works). The heart of their argument, which we state below, is a
result of partial orderings of function classes. These partial or-
derings emerge since the KC of the neurons of the NN relates
to a structural notion: the amount of advice for nonuniform
classes.

In order to state their result (Theorem 7.1 in [21]), we
record some definitions. Let F and G be nonempty function
classes. We say that F ≺ G if there is some nondecreasing
s(n) ∈ G, computable in time polynomial in n, so that the
following hold:

(i) s(n) = o(n).
(ii) For any r ∈ F , and any polynomial p, we have that

r[p(n)] = o[s(n)].
Note that by definition, any such function class F will be

sublinear.
We adopt the following notation for resource-bounded KC:

K[F , P], where F denotes the length of advice information
needed, and P , the running time. If there is no bound on the
running time, it is simply written K[F].

Given some ordered list of programs, a tally set T can
be thought of as a subset of these programs. We denote the
characteristic sequence χT as a binary string, the ith bit of
which is a 1 if the ith program can be accepted, and a zero if
not. Finally, P (TF ) denotes the family of all tally sets T with
the property that χT ∈ K[F , poly], i.e., the class of all sets
decidable in polynomial time with a polynomially long advice
string. This class coincides with the P/poly computational
class of deterministic and stochastic RNNs with real neurons
(Table I). With these definitions in tow, we state the partial
ordering theorem of Balcázar et al. [21].

Theorem 1 (Theorem 7.1 in [21]). Let F and G be nonempty
function classes, such that F ≺ G. Then, P (TF ) is properly
included in P (TG ).

Note that in Theorem 1, there is nothing special about
P classes. According to [21], “similar separation results can
be proved for other well-behaved families of run-time func-
tions.” Given any natural number m, we define log(m) as log
composed with itself m times. We can easily see that for any
natural number m, we have that log(m+1) ≺ log(m) . Following
their proof of Theorem 1 but applying the argument to classes
of the form BPP/log(m)* yields the following variant of the
theorem.

Theorem 2. Given a natural number m, we have that
BPP/ log(m+1) * � BPP/ log(m) *.

The following lemma allows us to relate classes of the form
BPP/ log(m)* to the computational complexity class of TMs.

Lemma 2. For any natural number m, we have that P �

BPP/ log(m)*.
To see this, we again adapt the argument in the proof

of Theorem 1 with F being the class of constant functions,
denoted O(1) and G = log(m). This gives us that BPP/O(1)*
is properly included in BPP/ log(m)*. But BPP/O(1)* is the
class of BPP with constant length prefix advice, but any con-
stant length advice (with or without a prefix constraint) can be
coded into any program. Therefore, we have that BPP/O(1)*
coincides with the class BPP. It is known that P⊆ BPP (al-
though it is not known if this inclusion is proper, what is
known will suffice for this argument). Combining these facts,
we get the following chain of set inclusions, which completes
the proof of the lemma:

P ⊆ BPP = BPP/O(1)∗ � BPP/ log(m) *.

The combination of Theorem 2 and Lemma 2 proves the
following claim.

Theorem 3. There is an infinite hierarchy of computational
complexity classes strictly between P and BPP/ log(m)*.

Given that there are such computational complexity classes
exhibiting super-Turing computational power, but not attain-
ing the full scope of a stochastic neural net with rational
neurons and real probabilities (BPP/log*), we propose that
noise-enabled digital RNNs have power falling somewhere
in between these two extremes. Thus, noise-enabled digital
RNNs may have super-Turing computational power, while not
yet reaching the full power of BPP/log*.
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IV. NOISE CONTRIBUTIONS TO SUPER-TURING
COMPUTATION

This section empirically explores the relative magnitude
of noise, which is SR without the periodic forcing compo-
nent, that aids the movement of digital RNNs from Turing
to super-Turing complexity. SR was critical to proving that
rational, stochastic RNNs were super-Turing (Sec. II). As
shown in [26], various magnitudes of noise can optimize
the signal-to-noise ratio provided by SR. Since digital RNNs
already operate using rational numbers, determining whether
they can be made super-Turing can be empirically evaluated
simply by adding noise. The experiments are motivated by
previous work on analog RNNs [16] in which an OpticARNN
was demonstrated to be consistent with mimicking chaos and
super-Turing operation. However, it may have fallen short of
being a fully BPP/log* analog RNN since its noise compo-
nents had an unknown relationship to the sparsely discrete
stochasticity of the computational complexity proof [19]. This
could place it somewhere in the hierarchy given by Theorem
3, strictly between P and BPP/log*. These inconsistencies
with the BPP/log* assumptions and realization of the impor-
tance of noise prompted this paper’s investigation of whether
pseudorandom or true-random number generators could be
used in digital RNNs to cause them to mimic chaos.

The only known method of indicating super-Turing oper-
ation is mimicking chaos. The main argument against Turing
machines (or anything with that computational power) being
able to mimic chaos results from the limited precision of
representing chaotic formula parameters [19,27]. However,
the floating-point calculations on many (TM-inspired) digital
computers make it very time consuming to observe their fail-
ure to mimic chaos. On the other hand, limiting the precision
of the floating-point calculation results that are recurred back
to the input(s) of RNNs implemented on digital computers
allows timely observation of their failure to mimic chaos.
The experiments here use neural networks developed and
trained in MATLAB’s Neural Network package. To make the
chaotically trained digital RNNs have reasonably short repeat
cycles, the experiments limit the precision of the floating-
point NN results that are recurred back to the inputs of the
digital RNNs. These experiments can then elucidate the effect
of adding noise in developing super-Turing operation.

Noise applied to chaotic systems has had diverse re-
sults. Noise in some systems induced chaos [28], while in
others it induced order [29]. Minimization of the largest
Lyapunov exponent was observed in coupled, heterogeneous
(disordered-length) pendulums for three types of disorder in
[30]. Positive Lyapunov exponents are used in [31] to indicate
that a system is acting chaotically. Lyapunov exponent values
[32] quantify the sensitive dependence on initial conditions
which is an inherent property of a chaotic system. Chaotic sys-
tems also lack repeat cycles. Repeat cycles can be observed in
the time series or by autocorrelation peaks in their transformed
time series. A time series must pass both Lyapunov expo-
nent and no-repeat-cycle (or no-autocorrelation-peaks) tests
to provide sufficient evidence for consistency with chaos. In
general, both methods often agree in indication of chaos as the
more positive the Lyapunov exponent, the smaller the auto-
correlation peaks. Since Lyapunov exponents are quantitative

while observations of the repeat cycles and autocorrelation
peaks are qualitative, the simulation results are reported using
the former. For varying magnitudes of noise, the Lyapunov
exponents are computed to determine consistency with chaos.

A. Empirical evaluation of noise-enhanced digital RNNs

To investigate whether noise added to digital RNNs would
simulate super-Turing operation, we utilize pseudorandom
and true-random number sequences as the simulated noise.
Both were chosen so the experiments had the possibility of
determining any difference between the different kinds of
random-number noise sequences. To generate experimental
statistics, each kind of noise had ten independent sequences.
The experimental time series of the logistic and Hénon net-
works are generated using Algorithm 1 for both sequences.
The feed-forward portions of the RNNs are trained with the
Levenberg-Marquart back propagation option of MATLAB’s
Neural Network package. The output neuron for each network
uses a linear activation function while the hidden-layer neu-
ron activation functions for the logistic and Hénon networks
are log-sigmoid and hyperbolic tangent sigmoid, respectively.
These feed-forward neural networks (FFNNs) are used in
Algorithm 1 to build the RNNs that have limited-precision,
noisy recurred signals. The ten independent sequences for
each noise type are uniform in the range [−1, 1]. To generate
the data for Figs. 5 and 6, these sequences are multiplied by
powers of 2 (see x axes of the figures). Algorithm 1 adds
this scaled noise to the output of the FFNN and limits the
precision of that sum before it is recurred back to the input,

Algorithm 1 Limited-Precision Time Series Generator for
Noise-Enhanced Digital RNN.
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FIG. 5. Largest Lyapunov exponent of a digital recurrent neural
network trained with a logistic map series for various noise levels.
The neural network had one input, seven hidden nodes, and one
output node. Each output of the calculated series was limited to
18 bits of precision before it was recurred back to the input. The
x coordinates are actually integers, but the plotted points and error
bars are offset by ±0.05 for the true random noise [33] (red ×) and
for the pseudorandom noise from MATLAB’s rand() function (blue
o), respectively. The dotted line (black) represents the accepted value
for the logistic map [32].

thereby completing the RNN. When the power of 2 is zero,
the uniform noise is distributed over [−LSB/2, LSB/2] of
the precision-limited recurred sum, where LSB denotes least-
significant bit.

Most of the results obtained for both noise-enhanced digi-
tal RNN experiments demonstrated consistency with chaos at
certain magnitudes of noise. Figures 5 and 6 show the results
of the computed values of Lyapunov exponents (mean and
standard deviations) for various noise levels for the logistic
and Hénon RNNs, respectively. As noted earlier in Sec. IV,
noise has diverse effects in different experiments. For the
logistic experiments, there were two noise sequences in the
true-random case (one in the pseudorandom case) that re-
turned positive Lyapunov exponents near the accepted value
for very low noise magnitudes. Inspecting those time series
revealed that they had a short run (about 7%) of a chaotic-
looking area embedded in a repeating time series. Although
the Lyapunov calculation found a positive exponent in the
series, the time-series diagrams had large portions with repeat
cycles. Since a prospective chaotic time series has to pass
both tests showing consistency with chaos, those three noise
sequences were removed from the results shown in Fig. 5.

From the results illustrated in Figs. 5 and 6, we can observe
that up to a point increasing the noise added to the recurrent
signals causes limited-precision digital simulations to better
mimic chaos. This is indicated by the calculated Lyapunov
exponents approaching the expected values for the logistic and
Hénon maps [32]. The added noise maximizes the Lyapunov
exponent and the full restoration of chaos when the noise is
eight times the size of the LSB of the logistic RNN, and four
times LSB for the Hénon RNN. These are in a range near
that of a theoretical optimum for removing quantization noise
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FIG. 6. Largest Lyapunov exponent of a digital recurrent neural
network trained with a Hénon map series for various noise levels.
The neural network had two inputs, 15 hidden nodes, and one output
node. Each output of the calculated series was limited to 11 bits of
precision before it was recurred back to one input while the previous
precision-limited output plus noise was saved for the other input. The
x coordinates are actually integers, but the plotted points and error
bars are offset by ±0.05 for the true random noise [33] (red ×) and
for the pseudorandom noise from MATLAB’s rand() function (blue
o), respectively. The dotted line (black) represents the accepted value
[32].

using a single LSB dither signal [34]. The figures also indicate
that there is no significant difference between pseudorandom
and true-random noise. This is not unexpected as no other tests
for randomness would show a difference between these types
of noise over the sequence lengths used in these experiments.

These precision-limited digital RNNs empirically ap-
proach some of the physical properties of the analog RNNs
that compute at the BPP/log* complexity level: stochastic
signals and rational neurons. The experiments had determin-
istic signals within the feed-forward portion of the network
while noise was injected into the recurrent signals via random
number sequences. They mimicked chaos in calculating mul-
tiple, but limited-length, time series with positive Lyapunov
exponents. The complexity class BPP/log* is an appropriate
super-Turing class to explore physical experiments, as its as-
sumption of rational synaptic neurons in the RNN matches
the quantized nature of the universe. The construction of the
logarithmic advice (Sec. II) is identical to the physical SR.
Noise, inherent in SR and stochastic signals in the RNN,
gives rise to the super-Turing complexity class, BPP/log*.
The RNN experiments demonstrate operation consistent with
mimicking chaos and, thereby, consistency with operating at
a super-Turing computation level. The BPP/log* proof flips
a coin n2 times and only indirectly depends on real probabil-
ities and is, therefore, not dependent on continuous signals.
Noise-enhanced digital simulations can be influenced by an
uncountably infinite space like BPP/log* can, even if they
do not completely reach that complexity level. The infinite
hierarchy between P and BPP/log* established in Sec. III B
provides a place for noise-enhanced digital RNNs to be super-
Turing.
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V. CONCLUSION

This paper demonstrates that a super-Turing mathemat-
ical computational complexity class (BPP/log*) matches
the physical reality of recurrent neural networks. Generally
accepted physical models of the universe supply rational
neurons through quantized charge and stochastic signals via
nonzero thermal fluctuations and interference from other sig-
nals. The random unfair coin flips in the super-Turing proof
provide an oracle to a probabilistic Turing machine operation
that leads to super-Turing computation. The oracle results
from a modeled unfair coin and exhibits physical stochastic
resonance. So, the rational, stochastic, analog RNN matches
physical reality and is a good model to follow in attempting to
achieve super-Turing computation.

It has been shown, both theoretically and in practice, that
the addition of stochastic resonance (usually in the form of
random noise) to various computation systems can be ben-
eficial, if done in a principled manner. We have simulated
an array of calculations done by machines with limited pre-
cision for computation yet augmented by random processes.
The simulations show measurably greater consistency with
chaotic computations than had they not been augmented by
stochastic resonance. The experiments of this paper may
be more limited than the rational, stochastic analog RNN

since the noise has different character than the stochastic
neuron disturbances. This paper shows that an infinite se-
ries of strictly increasing computational complexity classes
exists between Turing machine complexity and bounded er-
ror probabilistic Turing machine complexity having prefix
logarithmic advice. This provides theoretical support and
justification that the experiments could attain super-Turing
operation.

The empirical evaluations show that optimum noise levels
cause limited-precision digital RNNs to match the Lya-
punov exponents of their respective chaotic systems, provided
there are no repeat cycles in their series. These noise-added
digital RNNs mimicking chaos indicate super-Turing op-
eration. The optima occurred at a magnitude of uniform
noise about eight times LSB for the logistic time-series
trained digital RNN, and about four times LSB for Hénon.
This is comparable to the theoretical optimum noise level
to mitigate quantization noise in analog-to-digital conver-
sion. No difference was detected between noise provided
by pseudorandom and true-random number sequences, but
the shortness of the pseudorandom number sequences made
them indistinguishable from true-random ones. Future sim-
ulations will explore detectable pseudorandom numbers (as
opposed to true random) added to the digital RNN recurrent
signals.
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