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Cave passages that are found at similar elevations are grouped together and called levels.The current understanding is that passages
within a level are speleogenetically linked to a common static baselevel or stratigraphic control. Cave levels have provided an
interpretive framework for deciphering cave development, landscape evolution, and climatic changes. Cosmogenic dating has been
successfully used to interpret levels in Mammoth Cave and the Cumberland Plateau; however, this technique is expensive and
there are limited funding resources available. Geographic information systems may be used as preliminary procedures to identify
cave levels and constrain the timing of level development. A GIS method is applied to the Carter Cave system in northeastern
Kentucky. Cave entrance elevations along stream valleys were found by extracting elevation values from a 10×10mdigital elevation
model. Using a histogram generated from the frequency of cave elevations and a natural breaks classifier, four cave levels were
identified in the Carter Cave system. This work improves the understanding of the Carter Cave system evolution and contributes
toa methodology that can be used to ascertain an erosion history of karst systems.

1. Introduction

In fluviokarst, dissolution creates a systemvertically and hori-
zontally connecting surface and subsurface flow paths. Pas-
sage development is dependent on the elevation of base flow,
stratigraphy, the diversion of water in the unsaturated zone to
lower levels, discharge variations, and variations in chemistry
[1]. Long periods of static base level with active dissolution
allow for large passages to develop in discrete levels, graded to
the regional hydrologic network. When river incision occurs
as a result of regional base level lowering, groundwater flow is
diverted to lower elevations [1–3]. Subsequently, dissolution
and passage enlargement is limited or stopped in the aban-
doned upper levels as karst development becomes focused
at the new base level. Alternating sequences of base level
incision and aggradation results in a complex overprinting
of level development with transitional passage morphologies
and deposition or removal of broadly distributed sediment
packages [4].Deciphering the history of speleogenesis in such
systems, including the delineation of cave levels, provides

insight into the history of past base level changes and the
associated glacio-eustatic or tectonic processes.

Passages that are created by static base level and correlate
with other passages at similar elevations are grouped together
and considered a layer or level. These cave levels are under-
stood to be significant landforms left in the rock record that
can help to decipher the timing of cave system development
(e.g., [4, 5]). As described above, multilevel caves form by
episodic lowering of the local base level in response to
regional discharge changes. Deciphering where the flow has
changed from predominantly horizontal flow to vertical flow
is considered to define the cave level boundary [1].

Approximately 5 million ha (55%) of Kentucky is under-
lain by karstic limestone [6]. One high-density karst area
is Carter County in northeastern Kentucky where a quarter
of the area is associated with karst landform development
[7]. The Carter Cave system is a highly developed karst sys-
tem with multiple caves and passageways throughout the
limestone of the area (Figure 1). Located roughly 290 km east-
northeast of the Mammoth Cave system, the Carter Caves
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Figure 1: Location of Carter Caves State Resort Park (CCSRP).

area is centered primarily within Carter Cave State Resort
Park (CCSRP).

CCSRP consists of approximately 106 km2 of deeply
incised valleys, characteristic of the Cumberland Plateau.
Within CCSRP, Cave Branch and Horn Hollow Creek are the
main surface tributaries. Flow in Cave Branch is perennial.
HornHollowCreek runs throughHornHollowValley, which
is intensely karstified and primarily drained by subsurface
flow [8]. While a surface stream channel is present within the
valley, upstream Bowel Spring the surface flow is ephemeral
and only observed during high-precipitation events when
subsurface flow paths become inundated and overflowing.
Between Bowel Spring and Horn Hollow Cave, Horn Hollow
Creek flows along the surface. Upon exiting Horn Hollow
Cave, flow is diverted through the subsurface. The waters
exit the subsurface at H

2
O Cave and flow into Cave Branch.

Waters of Cave Branch eventually flow into Tygarts Creek, the
local control of base level, near the southern boundary of the
park. After receiving the waters from Cave Branch, Tygarts
Creek flows north into the Ohio River.

CCSRP has over 130 documented caves and over 18 km
of mapped passageways. There are both phreatic and vadose
caves within CCSRP [9]. In relatively flat-lying rocks, mea-
sured dips of rocks are 2∘ at CCSRP [7], and phreatic caves
form primarily along bedding planes. Vadose passages form
along vertical structures, such as bedrock joints. As a result
of the low regional dip and bedding plane control, the caves
within CCSRP are horizontal [7]. Caves are present within

the Mississippian-aged Newman Formation, and the St.
Genevieve is the major cave forming unit.

Prior to the onset of the Pleistocene glaciations, landscape
denudation and evolution were occurring at a relatively slow
rate, and base level was much more static than it has been
since the onset of glaciation [4]. This period of stability
provided sufficient means to develop some of the very large
upper-level trunk conduits foundwithinMammothCave [4],
the Cumberland Plateau [5], and in CCSRP [7, 9].

Before glaciation, northeastern Kentucky was part of the
headwaters branch of the Teays River, which flowed from
North Carolina north through the CCSRP region and on
toward West Central Ohio [10, 11]. Although the area lies
south of the Pleistocene glacial maximum, north flowing
rivers were frequently dammed and diverted by ice sheets
[4, 12]. During periods of stream impoundment, sediments
accumulated in the valleys. A. S. Engel and S. A. Engel
[7] proposed that the sediments in upper-level caves at
CCSRP (e.g., Saltpetre Cave) are preserved remnants of these
deposits. As the Ohio River drainage reorganized during the
later portion of the Pleistocene,much of the southerly portion
of the old Teays drainage in eastern Kentucky and West
Virginia was captured [11–14].When the glacially impounded
valleys are drained or when the Ohio River is incised, base
level changes occurred. Periods sustained and stable base
level would result in karst development graded along or just
below the water table [1]. Granger et al. [4] and Anthony and
Granger [5] have demonstrated that these base level changes
have been recorded in a consistentmanner in bothMammoth
Cave System and the caves of the Cumberland Plateau.

While published reports on the karst of CCSRP are
limited, a number of researchers have investigated the area.
Geographic locations of cave entrances were assembled in an
unpublished database by the Wittenberg University Speleo-
logical Society. Dogwiler and Wicks [15] assessed the sed-
iment entrainment dynamics and frequency within the Cave
Branch and Horn Hollow karst systems. Woodside [16]
surveyed and analyzed the surface features to determine
if they formed as a result of surface processes or cave
collapse and provided insight into the speleogenesis of Horn
Hollow Valley and the connectivity of caves. Peterson et al.
[9] proposed a preliminary delineation of four cave levels
in CCSRP based on Geographic Information System (GIS)
analysis using a 30m digital elevation model (DEM). Jacoby
et al. [17] presented an analysis of erosion susceptibility for the
area that indicated the areas with high sensitivity to erosion
do not correlate with areas with a high density of caves.

The goal of this study is to refine the model of cave level
delineation proposed by Peterson et al. [9]. This work seeks
to improve upon the methods of Peterson et al. [9] by using a
10mDEMrather than a 30mDEM.The smaller grid size pro-
vides better sampling and improves the elevation delineations
[18, 19]. Deng et al. [20] discuss the relationship between
terrain analysis and scale across landscapes and conclude that
resolution affects point-specific and topographic attributes.
We hypothesize that by increasing the DEM resolution, more
accurate and lower error cave level elevations and distance
measurements between cave openings and streams will be
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found. We expect these results to better define the range of
level elevations than the current research provides.

2. Site Description

A. S. Engel and S. A. Engel [7] and Ochsenbein [21] provide
detailed descriptions of the stratigraphy and topography of
CCSRP. Below we highlight important aspects. The bedrock
formations within CCSRP are similar to those at Mammoth
Cave although the unit thicknesses are thinner in the CCSRP
area.The primary cave forming unit is theMississippian-aged
Newman Formation, which is comprised of, from oldest to
youngest, the St. Louis Limestone, the St. Genevieve Lime-
stone, and the Upper Member of the Newman Formation.
The entire formation is approximately 60m thick. Joints are
prominent in the Upper Member of the Newman Formation
and St. Genevieve limestones, providing recharge sites for
aggressive waters that drive dissolution of the carbonate rock
[7, 8]. As a result of the low regional dip, 2∘, the caves of
the area are horizontal. Some caves are multileveled caves,
with levels offset by at least 5m [22, 23]. Detailed cave maps
of selected caves have been published by Pfeffer et al. [23],
Hobbs and Pender [22], and A. S. Engel and S. A. Engel
[7]. The Pennsylvanian-aged Pennington Formation, a 100m
thick sandstone, overlies the Newman Formation, with the
contact occurring uniformly at 273m. The Mississippian-
aged Borden Formation underlies the Newman Formation
and can be found outside of the park and along the bed of
Tygarts Creek. The Borden Formation is a shale and restricts
the downcutting in the area.

3. Methods

GISwas used to find and visualize the location of levels within
CCSRP. Data sets used in the software include cave entrance
locations, DEM-derived elevations, and stream networks.
Cave entrance latitude and longitude values were compiled
from geospatial positioning system (GPS) measurements
and a 1/3 arc second (approximately 10m) DEM. The cave
entrance data were provided by the Wittenberg University
Speleological Society (Horton Hobbs, personal communica-
tion), and theDEMwas obtained from theUSGeological Sur-
veys Seamless website (http://seamless.usgs.gov/). The DEM
was used to elicit the elevations of cave openings and to
determine the stream network in the region. Typical hori-
zontal accuracy associated with these DEMs according to the
National Standard for Spatial Data Accuracy is approximately
13.906m, and the vertical accuracy is approximately 0.363m
[24].

The DEM and cave opening datasets were used in the
GIS to locate the cave level elevations by extracting elevation
values from the DEM for each cave point. A histogram was
created displaying the frequency of cave entrances and exits
at each elevation. Levels were defined from a combination of
natural breaks statistical classifier in the GIS (TwoStep Clus-
ter analysis using PASWStatistics 18) and visual inspection of
the histogram.

To determine the horizontal distance (Euclidean dis-
tance) between cave entrances and the adjacent surface
stream path, a stream network was derived using the hydrol-
ogy tools in the GIS. A vector stream network layer at a scale
of 1 : 24,000 was available from the Kentucky Geological Soci-
ety, but it did not provide enough detail for this study. When
creating the stream network a threshold of accumulation, or
total number of cells that flow into a given area, has to be
determined. During field work, the locations from heads of
streams were recorded with a GPS unit and later viewed in
the GIS. Using the recorded locations, a threshold value of 70
cells was determined tomost accurately represent the CCSRP
stream network. Euclidean (straight-line) distance between
cave entrances and streams was then calculated and output
in the form of a raster grid with each cell at the location of
a cave containing the distance in metre to the nearest stream
segment.

4. Results and Discussion

In their investigation of the levels at CCSRP, Peterson et al. [9]
conducted an error analysis comparing 43 field-measured ele-
vations for karst features and surveyed benchmarks, derived
from both a Kestrel electronic altimeter and a GPS unit, to
elevations derived from a 30m DEM. Elevations obtained
from the 30mDEMwere slightly higher than thosemeasured
in the field, with a mean error of −0.48m and a 95% con-
fidence interval (CI) of 1.25m. Based on the associated error,
they concluded that DEMs provided an efficient way of
obtaining elevation values for cave openings. Using the 10m
DEM, the accuracy of modeled elevations was improved,
decreasing themean error to−0.28mwith a 95%CI of 1.03m.
Statistically, there is no difference in the mean error obtained
from using the 30m DEM as compared to those obtained
using the 10m DEM [𝑡(84) = 0.75, 𝑃 = 0.46]. However, the
10m DEM error is lower than the vertical error of 0.36m
for the 10m DEM. The lower error associated with the 10m
DEM suggests that the use of the higher resolution DEM is
an improvement over the 30m DEM.

A source of error for both the Peterson et al. [9] and
this work is the placement of caves at elevations that would
indicate that the cave was hosted in sandstone. The contact
between the Upper Member of the Newman Limestone
and the overlying Pennington Formation was found at
274m. Comparing the contact elevation to that of cave
elevations determined from the 10m DEM indicated that
six cave entrances were contained within the sandstone
unit (Figure 2). Although the cave entrances are all within
limestone, there were cases where sandstone was located
directly above the entrances.The resolution of the 10mDEM
makes it appear as if some caves were in sandstone. These
caves were kept in the data, but we understood them to be
associated with the uppermost cave level (see shaded area in
Figure 2).

Collectively, the elevations of the cave openings are nor-
mally distributed (Shapiro-Wilk Test (𝑊(142) = 0.98, 𝑃 =
0.27) (Figure 2). A higher frequency of openings exists
between the elevations of 228 and 270m, but there are no
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Figure 2: Histogram and cumulative frequency curve displaying
cave elevation distribution in CCSRP. The shaded area repre-
sents caves with elevations above the limestone/sandstone contact
(>274m).

caves with openings at elevations of 240m and 254m. Using
those elevation gaps, groups of cave elevation openings were
formed by natural breaks at the following elevations: 228m,
240m, and 254m.This classification was confirmed through
a TwoStep Cluster Analysis that created four clusters centered
at elevations of 222m, 234m, 247m, and 264m, which
defined Levels 1, 2, 3, and 4, respectively.

The higher resolution 10m DEM produced a different
range of elevations for the levels and a higher distribution of
caves in the upper levels than the 30mDEMused by Peterson
et al. [9]. While the elevation of levels found from the 10m
DEMwas consistently lower than that delineated from a 30m
DEM, the reevaluation of the elevations classified more caves
in the upper two levels and decreased the number in the
lower two levels (Table 1). This appears to be a direct result of
more accurate elevation assignments associated with the 10m
DEM (Table 1). The error analysis described earlier showed
that the current study had a mean error that was 0.20m
less than that reported by Peterson et al. [9]. A higher DEM
resolution and less error than the 30m study explain why the
cave level elevations found in the two studies are different.
Although 30m and 10m DEMs are often generated from
the same data source, the smaller cell size of the 10m DEM
allows for more sampling and less generalizing of elevation
values. Only a few studies compare the accuracy of 10m and
30m DEMs, and much of the research performed utilized
slope classification and soil surveys. Hammer et al. [18] and
Zhang et al. [19] both concluded that there is a measurable
difference between DEMs with different spatial resolutions,
and althoughminimal, the 10mDEM is an improvement over
the 30m DEM. Our results confirm their findings.

A relationship between cave elevation and frequency of
openings is suggested from the data (Table 1 and Figure 3).
More caves are located in the level(s) at the highest elevations
and the number of caves decreases as elevation decreases.
Level 4 contains the most caves followed in order by Level
3, Level 2, and Level 1. The greatest number of caves were
found within the St. Genevieve; however, there are caves

found in all limestone units. Caves of Level 4 reside within
the Upper Member of the Newman Formation and within
the upper portion of the St. Genevieve. Caves of Levels 3
and 2 are within the St. Genevieve. Caves of Level 1 formed
within the St. Louis; however, the upper boundary of Level
1 may overlap within the St. Genevieve. Level development
and formation host boundaries were estimated based on
formation thicknesses [21], cave descriptions [7, 22, 23], and
field observations.

The landscape of the region surrounding the CCSRP sys-
tem includes deeply incised valleys that grade to gentle pla-
teaus at higher elevations. Cave openings within the Carter
Caves system are primarily located within the valley walls.
Very few cave openings are found on the plateaus because
the caves entrances occur where valley wall erosion has trun-
cated passages. Additionally, the contact between the Upper
Member of the Newman Formation and the overlying sand-
stone unit is very consistent at an elevation of 273m as a
consequence of the minimal regional dip of the units. The
plateaus are capped by siliciclastic rocks (Figure 3), which
inhibit cave development. Levels 1–3 are contained within the
steep valley walls while Level 4 resides at the top of the valleys
where the gradient becomesmore gentle and the valley width
widens.

At first glance, the Euclidean distances between the cave
openings and the streams do not appear to have a relationship
with level designation (Table 2 and Figure 4). The average
and median Euclidean distances tend to increase with each
successive cave level (Table 2).The exception is Level 1, where
average distance is greater than those for Levels 2 and 3.
However, Level 1 has the most cave openings 0m from a
stream.The average Euclidean distance is the greatest in Level
4, supporting the hypothesis that the distance will be greatest
for caves associated with the oldest level. The ranges for the
distance between caves and streams for all levels begin at 0m.
The maximum distance range for the top most levels is 139m
whereas the maximum distances for lower levels are within
about 20m of each other, ranging between 81 and 64m. A
further look at these values indicates that they reflect the
valley wall morphology and the hill-slope erosion processes.
The lower levels contain steeper valleys and have evidence of
cave collapse.

The relationship between streams and cave openings
cannot be explained solely by surface processes. When there
were events of rapid entrenchment, water was redirected
through surface lows, rock fractures, and existing phreatic
passageways [16]. These actions led to cave collapse in some
areas. The valley geomorphology is the result of base level
lowering, stratigraphy, and insufficient time for valley widen-
ing. The lack of wide, gradually sloping valleys can also be
explained by a short-lived constant base level during level
formation [25] and the high propensity for erosion within
the valleys rather than the valley slopes [17]. With increasing
elevation, there is more likelihood that erosional processes
have stepped the valley wall back further from the active
stream channel. The range of Euclidean distance values for
the higher cave levels is the result of variation in valley cross-
sectional morphology from steep-sided and canyon-like to
more gently sloping profiles.
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Table 1: Distributions of caves and cave elevation in relation to their corresponding level for the 30m DEM and the 10m DEM results.

30m DEM [9] 10m DEM

Level elevation
range (m)

Percentage of caves
in level (%)

Level elevation
range (m)

Percentage of caves
in level (%)

Number of caves Cave elevation
Average (m) Median (m)

Level 4 268–298 16 255–274 36 52 266 264
Level 3 249–266 31 240–253 30 44 247 247
Level 2 235–247 30 228–240 25 37 234 234
Level 1 215–234 23 214–228 9 13 222 223

Level 1
Level 2
Level 3

Level 4

Caves

Park boundary
Siliciclastic

Stream network

(Km)
0 0.25 0.5 1
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S

Figure 3: Spatial distribution of cave openings within the levels.
Level 4 is the highest in elevation as well as the oldest in age. Siliclas-
tic rocks include the Lee and Carter Caves Sandstone present above
the limestones and the Borden Formation below the limestones.

Table 2: Distribution of distance between caves and streams in
relation to their corresponding level. Level 4 is inferred to be the
oldest levels, while Level 1 is inferred to be the youngest level.

Distance
from stream
range (m)

Average
stream

distance (m)

Stream
median (m)

Standard
deviation

Level 4 0–139 36 29 31
Level 3 0–78 18 10 18
Level 2 0–81 17 14 17
Level 1 0–64 20 20 19
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Figure 4: Relationship between levels and the distance between cave
and streams. The ends of the boxes represent the 25th and 75th
percentiles with the solid line at the median and the dashed line at
the mean; the error bars depict the 10th and 90th percentiles and the
points represent outliers. Mean increases with age level. Numerical
values can be found in Table 2.

5. Conclusions

Overall, the use of the GIS has proven successful in delineat-
ing the cave levels in a given area. The use of a 10m DEM
improved the accuracy of the results in comparison with
the earlier study that employed 30m DEMs. The number of
cave levels is equivocal and can be reasonably interpreted
as four. These findings correlate with past cave level studies
performed in other karst systems in the region. Each of these
studies reported a confident interpretation of four levels but
suggested that a fifth level could be present.

Using the distance between cave openings and streams
did not provide us with information about how many levels
are present within CCSRP or where the levels are located.The
distances provided insight into valley geomorphology and
how the levels were exposed through river incision.

Future work could build on the interpretive framework
presented here as a basis for determining the timing of cave
level development through geochronologic methods. A limi-
tation of the methodology employed in this study is the res-
olution of the available DEMs. As Lidar data becomes avail-
able, resolution will become less of a limitation. Cave levels
separated by narrow bands of elevation that are smaller than
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the overall resolution of the terrain data will not be resolved.
Likewise, this method requires caves to be daylighted at
multiple elevations in order to use the DEM to identify cave
elevations. However if passage elevations were known, then
the use of a histogram would still be applicable to deter-
mine level elevations. Furthermore, without absolute dating
techniques, this method does not elucidate where cave levels
are overprinted on one another by successive base levels that
return to a similar elevation. The latter issue can be largely
resolved by careful observation of cave passage morphology
and detailed analysis of the associated landscapemorphology.
This method was successful at CCSRP because the sediment
units are relatively flat lying. Applying this method to an area
with steeply dipping beds would be more difficult because
geometry would have to be considered when interpreting the
histogram. Levels would no longer be horizontal, and thus the
natural break elevations would not be uniform throughout
the site. In addition, this method alsomust be applied to karst
areas with a thorough cave dataset in order to have enough
samples for analysis. In the final analysis,DEM-based analysis
of karst development has proven to be a cost-effective and
straightforwardmeans of delineating the vertical evolution of
karst systems.
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