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ABSTRACT 

In recent years, reinforcement learning algorithms, a subset of machine learning that focuses on 

solving problems through trial-and-error learning, have been used in the field of multi-agent 

systems to help the agents with interactions and cooperation on a variety of tasks. Given the 

enormous success of reinforcement learning in single-agent systems like Chess, Shogi, and Go, it 

is natural for the next step to be the expansion into multi-agent systems. However, controlling 

multiple agents simultaneously is extremely challenging, as the complexity increases 

tremendously with the number of agents in the system. Existing approaches in this regard use a 

wide range of centralized, decentralized, semi-centralized, and even hybrid centralized-

decentralized state representation methodologies. In this thesis, I propose a novel semi-

centralized deep reinforcement learning algorithm, MAIDRL, for multi-agent interaction in 

mixed cooperative and competitive multi-agent environments. Specifically, I design a robust 

DenseNet-style actor-critic structured deep neural network for controlling multiple agents based 

upon the combination of local observations and abstracted global information to compete with 

opponent agents. I extract common knowledge through influence maps considering both enemy 

and friendly agents for fine-grained unit positioning and decision-making in combat. Compared 

to the centralized method, my design promotes a thorough understanding of the potential 

influence that a unit has without the need for a complete view of the global state. In addition, this 

design enables multi-agent understanding of a subset of the global information relative to 

common goals, unlike fully decentralized methods. The proposed method has been evaluated on 

StarCraft Multi-Agent Challenge scenarios in a real-time strategy game, StarCraft II, and the 

results show that, statistically, the agents controlled by MAIDRL perform better than or as 

competitive as those controlled by centralized and decentralized methods. 
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INTRODUCTION 

 

Artificial Intelligence (AI) has made enormous progress in many aspects of our world in 

recent decades. The rapid evolution in AI has enabled the high performance of a variety of tasks 

including robotics, autonomous driving, and game playing. Particularly in game playing, AI has 

reached human-level performance or even outperformed the best human experts [1]-[5]. 

However, the majority of the achievements of AI have been in single-agent circumstances, where 

collaboration and competition among agents are unnecessary [2], [4], [6], [7]. Meanwhile, there 

are a large number of applications that involve interaction between multiple agents that are 

naturally modeled as cooperative or competitive multi-agent systems (MAS). For example, 

coordination of self-driving vehicles, multi-robot control, and multiplayer games all operate in a 

multi-agent domain. Among many AI techniques, reinforcement learning (RL) has been 

considered one of the most promising methods in the past several years [8]. In this thesis, I am 

interested in investigating how to expand RL effectively to learn interactions among agents in 

MAS. 

The recent development of deep neural networks (DNN) combined with improved 

computational capability has led to considerable progress in RL, with many RL methods being 

expanded into deep RL (DRL). One traditional RL method that has experienced significant 

success is Q-Learning. A major limitation of Q-Learning is the inherent need to build a table of 

mappings from state-action pairs to calculated action values [9]. This poses a significant 

scalability issue in that, as the complexity of the state space grows, the number of possible state-

action pairs grows exponentially, leading to the requirement of exponentially larger amounts of 

memory. The introduction of DNNs into this method spawned a new learning method called 
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Deep Q-Networks (DQN), which effectively resolved the curse of dimensionality with respect to 

memory consumption by instead using a DNN as a function approximator to approximate the 

expected action value function [6], [7].  

Another contributor to the rapid growth of DRL in both single-agent and multi-agent RL 

(MARL) scenarios has been the development of widely available simulation environments such 

as the Arcade Learning Environment (ALE) introduced by Bellemare et al. in [10], which uses 

various Atari games as a platform for learning, Malmo by Johnson et al. in [11], which similarly 

uses Minecraft as a platform, the StarCraft II Learning Environment (SC2LE) by Vinyals et al. in 

[12], and the StarCraft Multi-Agent Challenge (SMAC) by Samvelyan et al. in [13], each of 

whom are deployed in StarCraft II (SC2) environments. A sample of screenshots from the ALE 

can be seen in Figure 1, where the games Pitfall!, Space Invaders, Freeway, and SeaQuest are 

shown from left to right. Video games, particularly those with research-oriented tools and 

environments like those aforementioned, allow researchers to perform hundreds or even 

thousands of experiments in parallel. This is particularly valuable as RL is generally a learn 

through experience methodology. Unfortunately, solving MAS problems with traditional RL is 

non-trivial. Extending RL to enable cooperation and competition among agents is critical to 

building artificially intelligent systems in multi-agent environments. 

 

 
Figure 1. Sample Game Screenshots from the Arcade Learning Environment [10]. 

 



3 

 

There are many challenges in scaling up RL into MAS. One of the primary challenges of 

MARL is that the traditional RL techniques like Q-Learning and policy gradient do not 

generalize well to MAS. This is evident when considering the state of the MAS from the 

perspective of an individual agent. The actions of this agent can be perceived to have non-

stationary impacts in the environment as a direct result of the actions of other agents. This leads 

to significant stability issues, as well as the limitation of applicable stability enhancing 

techniques such as experience replay. Furthermore, MAS themselves introduce additional layers 

of complexities. For example, in cooperative MAS, agents must be able to act as a coordinated 

unit which requires an understanding of the agents with whom they are cooperating. This 

challenge in particular has been the focus of much research. A common starting point is to utilize 

complete state information to train agents. This technique, commonly referred to as centralized 

learning, provides each agent with perfect environmental information regarding both the agent's 

local observations and the state observations on a global scale. 

Many MAS, however, try to avoid the use of such perfect information as it may not be 

available during execution. Such work has led to decentralized learning, which only provides an 

agent with its local observations. This decentralized method, while more widely applicable in 

practice due to the lack of dependence upon global information, generally struggles to 

understand global objectives, leading to lackluster performance in many cases. This has been 

improved somewhat by the introduction of the hybrid centralized learning, decentralized 

execution as presented by Foerster et al. and Lowe et al. in [14], [15]. In response to the 

aforementioned challenges, there has been much work regarding an intermediate technique 

called semi-centralized learning [8]. Semi-centralized learning can be applied in various ways, 

but it largely revolves around the representation or provision of global information in an 
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imperfect way that is more generalizable to scenarios where perfect information may be 

otherwise unavailable. An example of a semi-centralized MARL technique is the Semi-

Centralized Deep Deterministic Policy Gradient (SCDDPG), which creates a 2-level hierarchical 

structure of AC networks, one of which is provided only with local agent observations while the 

other is provided with global observations, and both of which are then used to provide varying 

levels of information granularity to the agents [8]. How to use global information with macro-

level control has been arguably solved in the context of SC2 by Vinyals et al. with AlphaStar in 

[3] and Wang et al. with StarCraft Commander in [5], however, the question of how to use global 

information for fine-grained decision making is still open. 

My response to the above question is the novel definition and application of Agent 

Influence Maps (AIM), aggregated into a global Multi-Agent Influence Map (MAIM), which is 

used in addition to local agent observations for fine-grained decision-making. By abstracting a 

subset of the perfect global information into an incomplete but descriptive representation, I 

demonstrate a significant improvement over centralized, decentralized, and hybridized methods. 

I evaluate the applicability of MAIMs by defining a simple artificial Neural Network (NN) that 

contains only a single hidden layer and comparing the results of MAIM state representation to 

centralized and decentralized alternatives, with no additional changes. This use of semi-

centralized MAIM state representation is defined as a new learning paradigm that I coin as 

Multi-Agent Influence Reinforcement Learning (MAIRL), which is a preliminary contribution of 

my work. This novel MAIRL method is then applied with a DenseNet-style model architecture 

to improve the robustness and capability of the system. The DenseNet-style model architecture 

was chosen because it has been shown to handle the exploding and vanishing gradient problems 

of DNNs in a more memory-efficient manner than the comparable ResNet structure [16], [17]. 
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The specifics of my DenseNet-style architecture implementation can be found in the Simple 

versus Dense A2C section on page 34. To my knowledge, the application of DenseNet-style 

architectures has only ever been done in the context of Convolutional Neural Networks (CNNs) 

in image classification [16], [18], [19] optical flow prediction [20], or even in keyword 

identification [21], but my work currently benefits from this architecture using simple Dense 

layers, making this application somewhat novel as well. I define this combined use of MAIRL 

and DenseNet-style model architectures as the logical extension of the aforementioned learning 

paradigm, which I present as Multi-Agent Influence Dense Reinforcement Learning (MAIDRL), 

and it is the primary contribution of my work. MAIRL and MAIDRL are evaluated on StarCraft 

Multi-Agent Challenge (SMAC)  [22] scenarios in a real-time strategy game, SC2. The results 

show that, statistically, the agents controlled by MAIDRL perform better than or as well as those 

controlled by centralized and decentralized methods in SMAC scenarios of varying complexity. 

The remainder of this thesis is organized as follows: the Background section introduces 

various concepts regarding machine learning, with emphasis on RL, while the Related Work 

section introduces some of the relevant RL techniques that have been shown to perform well in 

RL and MARL scenarios. The Simulation Environment section provides a detailed description of 

the environment that was used in my experimentation, and the Methodology section provides 

detailed information regarding said experimentation. The Results and Discussion section 

subsequently presents the results from my experimentation, as well as the observed behaviors 

that were learned by the various considered methodologies, and the Conclusion And Future 

Work section draws the conclusions and suggests future works. 
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BACKGROUND 

 

Machine learning (ML) is a subset of AI and is defined to be the use of computational 

methods to better predict future information based upon historical data [23]. The primary 

components of ML methods can be categorized into any one of three broad categories, with 

many advanced ML methods using some combination of the three: supervised learning (SL), 

unsupervised learning (UL) and reinforcement learning (RL) [24], each of whom are discussed in 

the following subsections. 

 

Supervised Learning  

SL is an incredibly powerful methodology and is defined as the process of identifying 

some function 𝑓 that maps some set of inputs 𝑋 to a corresponding set of target outputs 𝑌, such 

that a minimum amount of cost or risk is accrued [23]. The cost or risk is often problem-

dependent, and it determines the efficacy of the resulting feature mapping. As the amount of 

available labeled data grows, so too does the power of SL, because the data, as well as the 

learned function mapping inputs to outputs, grows more representative of the complete 

distribution of all possible input-output pairs, which in turn leads to better generalizability to 

pairs that have not been encountered before. SL can also be supplementary to RL by being used 

as a warm-start solution to provide insights more quickly and efficiently to RL agents via 

supervised means. This method is referred to as behavioral cloning, or imitation learning [25]. 

SL is the most commonly used methodology in classification, regression, and ranking problems 

[23], but it has a major limitation: data dependency. SL, while preferrable if possible, is only 

possible when labeled data is readily available, and there are many cases when it is not. 
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Unsupervised Learning  

When there exists some feature set of inputs, but no known corresponding labeled output 

set, UL is used in lieu of SL. UL is the process of using an unlabeled set of feature data to draw 

conclusions about the entire feature space, and is most often used in clustering, which is the UL 

equivalent of categorization [23]. Clustering is the attempt to identify commonalities amongst 

subsets of the inputs such that the inputs within a cluster are logically similar to those within the 

same cluster, while also remaining distinct and separable from those in other clusters. Due to the 

uncertainty of the determined clusters relative to the true categories, however, it is challenging to 

truly define the efficacy of UL methods, though some metrics such as the Silhouette score [26] 

have been defined to provide some insight to the quality of the determined clusters. Like SL, 

however, UL still maintains dependency upon the availability of feature data, albeit without the 

dependence upon the corresponding labels. As such, UL is only viable in scenarios where this 

feature data is available. 

 

Reinforcement Learning  

RL, unlike SL and UL, is wholly non-reliant upon the availability of data. Rather, RL is a 

goal-directed learning methodology that learns through interaction in an environment, instead of 

pre-existing data [9]. This definition then shifts the dependency from data availability to 

interactability in an environment, which can be considered as the process of generating the data 

or experience that is then used to make insights about future interactions. An important 

distinction between RL and other types of ML is that RL learns through interaction evaluation 

based upon the results of the interaction, rather than by considering a “correct” action [9]. This 

process is similar to the way in which we might consider living creatures learn in reality. For 
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example, when a child is first learning how to walk, they might stumble and fall hundreds of 

times simply exploring what they can do with the tools at their disposal in the environment 

around them, rather than learning from what is necessarily correct. Given enough time though, a 

child eventually identifies patterns in their actions that ultimately lead to the ability to walk. 

Admittedly, there numerous other factors at play in this example, such as the child potentially 

observing intelligent behavior from other individuals in the environment, but the core concept 

remains. 

 

Foundations of Reinforcement Learning  

As my work is in the field of RL, I will now introduce various components and 

methodologies of traditional RL in detail. Figure 2 provides a high-level overview of the agent-

environment interactions in RL. To contextualize this figure with the preceding example, one 

would consider the child to be the agent in the environment, which would be the world around 

said child. The state then is simply the observed condition of the world around the child at a 

given time step, and the action taken by the child is simply how the child interacted with the 

world given the state of the environment at the given time step. Finally, the reward could be 

considered to be distance traveled via bipedal means.  

 

 
Figure 2. The Agent-Environment Interaction in RL [9]. 
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Formally, the learner or decision-maker is called the agent, while everything outside the 

agent is referred to as the environment. Scenarios such as these are most commonly modeled to 

Markov Decision Processes (MDP) [9], [27], [28]. MDPs are non-deterministic search problems 

where the outcome of an action at a state is independent from preceding states and results in 

some numerical reward 𝑟 and new state 𝑠′ and can be represented as a 4-tuple (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛,

𝑟𝑒𝑤𝑎𝑟𝑑, 𝑠𝑡𝑎𝑡𝑒′), or, more concisely, (𝑠, 𝑎, 𝑟, 𝑠′) [28]. For every given state 𝑠, the agent acts 

according to a policy 𝜋 which is a mapping from state to probabilities of selecting each possible 

action, denoted as 𝜋(𝑎|𝑠). RL methods define how this policy is updated based upon the agent’s 

experience, and the goal overall is simply to maximize the expected return over some number of 

steps [9]. The utility or expected value of a state is defined to be sum of the discounted reward 

for each time step as shown in Equation 1, where 𝛾 is the discount rate which fulfills the 

condition 0 ≤ 𝛾 ≤ 1, 𝑅 is the reward received in the time steps following the current time step 𝑡, 

𝑘 is the number of time steps into the future being considered, and 𝑇 is the terminal time step. 

Simply put, the discount rate determines the current value of future rewards, where the value of 

the future reward is only 𝛾𝑘−1 times what it would be immediately worth [9]. This process 

occurs at each time step until the MDP reaches a problem-specific terminal state, and the 

sequence of transitions from the initial state to the terminal state is referred to as an episode.  

 

  

𝐺𝑡 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

𝑇−𝑡−1

𝑘=0

 

(1) 

 

The large majority of RL methodologies depend upon value functions, defined to be 

functions of states or state-action pairs, to determine the expected utility or potential usefulness 

of being in a state or taking an action in a given state. These functions are defined using the 
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agent’s policy, as well as the discounted reward calculation 𝐺𝑡 shown in Equation 1. Equation 2 

and Equation 3 show the state value and action value functions for policy 𝜋, respectively [9]. I 

note that the state value function is often referred to as the 𝑉 value function, whereas the action 

value function is similarly referred to as the 𝑄 value function. 

 

  𝑉𝜋(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠] (2) 

  𝑄𝜋(𝑠, 𝑎) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3) 

 

The 𝑄 and 𝑉 value functions may be approximated through agent experience. In the case 

of Monte-Carlo methods, an agent may keep an average received reward for each action in each 

visited state, which would result in 𝑄 converging to the true action-value for each action as the 

number of times that a state is visited approaches infinity. Similarly, 𝑉 converges to the true 

state-value under the same conditions, without considering individual actions. Equation 4 

provides a simple example of an every-visit Monte-Carlo state value function update, where 𝛼 is 

the step-size parameter, often referred to in modern ML methods as the learning rate. As the 

number of states grows large though, 𝑄 and 𝑉 are more efficiently defined as parameterized 

functions, where the parameters are tuned to reflect the actual values more closely in each case. 

The inherent exponential increase in the number of possible states relative to the number of state 

variables is referred to as the “curse of dimensionality” [29], and it is a problem that is solved to 

a large degree with the parameterized variants of the 𝑄 and 𝑉 value functions. The introduction 

of parameterized 𝑄 and 𝑉 value functions also brings to bear the introduction of a means of more 

efficiently guiding the parameters to the optimal state: experience replay. Experience replay is 

simply a methodology that stores the experiences that an agent obtains while interacting in the 
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environment in a data structure that is often called a replay memory. The experiences stored 

therein are then revisited periodically to improve the long-term stability of the agent and reduce 

the likelihood of an agent needing to revisit previously explored experiences in real-time. This 

helps prevent what is often referred to as catastrophic forgetting, which is the result of 

parameters being tuned in a way that is poorly representative of the experiences gained in earlier 

episodes due to the prevalence of potentially contrary more recent experiences [30]. 

 

 𝑉(𝑆𝑡) = 𝑉(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)] (4) 

 

Some RL methodologies use a fourth component in addition to the states, actions, and 

rewards. This additional component is called the model of the environment, and it allows for 

inferences to be made regarding the ways in which the environment is expected to behave. In 

most model-based RL methodologies, the model comprises of an explicit transition and reward 

function, denoted as 𝑇(𝑠, 𝑎, 𝑠′) and 𝑅(𝑠, 𝑎, 𝑠′), respectively. The transition function 𝑇 is logically 

equivalent to the probability of the state 𝑠′ occurring, given the state-action pair (𝑠, 𝑎) [28]. 

Methodologies such as these are generally referred to as dynamic programming (DP) 

methodologies, and they are unique from many other approaches in that they bootstrap their 

updates. That is, the updates to the value functions are determined in part by the current 

approximations of the value function in a future time step. This update process is shown in 

Equation 5 by using the Bellman equation [27] for 𝑉 as an update rule, and it is called iterative 

policy evaluation [9]. In iterative policy evaluation, the value of a given state 𝑆𝑡 is determined by 

the largest expected value at the state 𝑆𝑡+1, assuming that the optimal action is taken. Simply put, 

DP methods simulate the entire episode using the environmental model and specified reward 
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discount rate to identify the best course of action to take. Model-based methods like DP are not 

as widely used as their model-free counterparts, however, because of their dependence upon a 

perfect model of the environment, as well as their tremendous computational expense as the 

complexity of the environment grows large. 

 

  𝑉(𝑆𝑡) = 𝑚𝑎𝑥
𝑎

𝐸[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5) 

 

One of the most powerful and novel foundational methodologies available in RL is 

temporal-difference (TD) learning, which combines the ideas of learning from raw experience as 

in Monte-Carlo methods and updating estimates in part on other estimates as in DP methods [9]. 

TD methods have the advantage over DP methods in that they are not dependent upon perfect 

understanding of the environment, and they have the advantage over Monte-Carlo methods in 

that they are able to update in an online manner without the need to wait for the full completion 

of an episode. Equation 6 demonstrates the state value function update method used in a simple 

single-step TD method, known as TD(0) [9]. In short, the most significant difference between the 

TD update method and the Monte-Carlo update method in Equation 4 is that the targets are 

𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) and 𝐺𝑡, respectively. 

 

 𝑉(𝑆𝑡) = 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)] (6) 

 

One of the challenges present in RL that is not present in other forms of ML is the need 

for a balance between exploration and exploitation. That is, RL agents must use the experiences 

that they have gained in their interactions within the environment to maximize the reward 
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received, but in order to exploit in this way they must first discover the actions that yield 

desirable rewards through exploration. There are two significant algorithms that are used in this 

regard: 𝜀-greedy and softmax. These algorithms are often referred to as behavior policies 

because they are distinct from the agent target policy 𝜋, but they are used to define the way in 

which an agent behaves [9]. These behavioral policies may be used in both on- and off-policy 

RL algorithms. I note here that the difference between on- and off-policy algorithms is that on-

policy algorithms update the action values by considering the action value of the next state given 

by the current policy, while off-policy algorithms update using a greedy approach to the 

considered action in the next state. In 𝜀-greedy, the variable 𝜀, which represents the probability 

of taking a uniformly selected random action in the environment, is initialized to a value between 

0 and 1 and is then decayed over time to some specified minimum value. As is suggested by the 

“greedy” portion of the name, when the agent does not take a random action, it instead takes 

what is currently defined to be the optimal action as determined by the policy. The softmax 

behavioral policy, however, is more exploitative in nature in that it takes a random action where 

the likelihood of an action being taken is the proportion of the action value relative to the sum of 

the values of all other valid actions, though this still allows for exploration. 

 

Traditional Reinforcement Learning Algorithms 

With an understanding of the foundation of RL, it is now possible to introduce and 

discuss some of the most iconic traditional RL algorithms: Q-Learning [31], Sarsa [32],  and 

Policy Gradients [33]. Each of these algorithms have been instrumental in the advancement of 

RL and are the inspiration or foundation of many currently state-of-the-art RL algorithms [14], 

[6], [4]. I note though that each of these algorithms in isolation scale poorly to MAS, due to the 
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inherent assumption of action value stationarity, which is the assumption that an action taken in 

the environment will yield a stationary reward. 

Q-Learning. Q-Learning was introduced in 1989 by Watkins and Dayan, and is 

considered to be one of the most important breakthroughs in RL [31], [9]. Q-Learning is an off-

policy TD control algorithm that effectively removed the explicit reliance upon the policy in the 

training process. The policy still determines the way in which the state-action pairs are visited, 

but the analysis and proof of convergence process is made significantly simpler without the 

explicit consideration of the policy itself. All that is required for convergence is the continued 

updates of the state-action pairs. Equation 7 shows the action value function update logic, and I 

note that it is remarkably similar to that of the original TD learning state value function update 

logic [9]. 

 

 𝑄(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] (7) 

 

Sarsa. Sarsa, short for State, Action, Reward, State, Action [32], [9], is a slightly 

modified version of Q-Learning. Sarsa is also one of few RL methodologies that use a 5-tuple in 

lieu of a 4-tuple, as it also considers the action in time step 𝑡 + 1. Simply put, Sarsa is the on-

policy equivalent of Q-Learning, which can be seen in Equation 8. Note that the only difference 

in the update logic is the target. Where Q-Learning uses the greedy action determined by  

𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) in action selection, Sarsa chooses an action based upon the current policy. 

 

 𝑄(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)] (8) 

 



15 

 

Policy Gradients. Unlike Q-Learning and Sarsa, policy gradient methods are strictly 

associated with the parameterized state and action value functions, though I note again that both 

Q-Learning and Sarsa are capable of being implemented with such parameterization, with 

variants like DQN [6], [7] and deep Sarsa [34]. I note here that policy gradients as they are 

known today are improvements made upon the general REINFORCE category of RL algorithms 

introduced in [35]. The appeal of policy gradients is that they provide an inherent 

generalizability that was not offered in either Q-Learning or Sarsa. Both Q-Learning and Sarsa 

are tabular, meaning that they store state and/or action values given some state-action pair in a 

table, and then update the values for the respective pair in each visit. This is undesirable, as it is 

more challenging to make intelligent decisions on states that have not been visited before. As 

such, researchers explored the concept of state and action function approximators in the form of 

parameterized state and action value functions, which promotes generalizability. Often, policy 

gradient methods such as these simply treat the weights of a NN as the parameters being tuned 

by the parameterized state and action value functions. The gradient of the achieved rewards 

relative to these parameters is then calculated such that the changes made to the parameters result 

in the most rapid improvement in a policy’s performance. With respect to the core logic of policy 

gradient methods, the only major change in the underlying traditional RL method is the way in 

which the policies are updated. Unlike the very simple update rules shown in Equation 7 and 

Equation 8, Equation 9 shows the more complicated calculation for the gradient of the 

parameters 𝜃 where 𝜌 is a specified reward assignment calculation and 𝑑 is the stationary 

distribution of states under the policy 𝜋, which is assumed to be independent of the initial state of 

all policies [33].  
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 𝜕𝜌

𝜕𝜃
= ∑ 𝑑𝜋(𝑠)

𝑠

∑
𝜕𝜋(𝑠, 𝑎, 𝜃)

𝜕𝜃
𝑎

𝑄𝜋(𝑠, 𝑎, 𝜃) 
(9) 

   

Extending Traditional Reinforcement Learning 

Given the aforementioned foundations of RL, as well as the core algorithms that have 

been built upon them, it is important to consider how the boundaries of RL have been expanded 

by my predecessors in the RL research community, such as the expansion of Q-Learning into the 

deep learning space with DQN. The following chapter fulfils this role, as it considers the novel 

ways in which these foundational algorithms have been expanded upon in both single- and multi-

agent systems. 
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RELATED WORK 

 

Extensive studies have been performed on applying different variants of RL algorithms to 

controlling agents in both single-agent systems and cooperative and competitive MAS. The DQN 

method that improved upon Q-Learning has been further improved in recent years, with 

improvements such as stabilized memory replay with prioritized replay memory sampling which 

more efficiently tunes the network parameters by retraining on state-action pairs that are deemed 

valuable to the overall performance of the agent as shown by Schaul et al. in [36]. Concurrently, 

Nair et al. used parallel learning with a distributed network and replay memory to spread the 

burden of learning across multiple instances of a simulation, effectively increasing the rate at 

which agents learn [37]. Policy over-estimation reduction was introduced by Van Hasselt, Guez, 

and Silver with double DQN which strove to create more intelligent value estimations by 

decomposing the action selection into action selection and action evaluation [38], while dueling 

DQNs were introduced by Wang et al. to improve state value estimation via creative use of 

network architectures to allow for simultaneous updates of both state and action value function 

parameters [39]. Policy gradients, on the other hand, have been improved with higher sampling 

efficiency techniques introduced by Dong et al. in [40], leading to a decrease in training times by 

combining the benefits of model-free and model-based RL with a Gaussian process that creates a 

system model capable of generating supplementary off-policy samples to enrich the on-policy 

experience pool. 

Konda et al. introduced the Actor-Critic (AC) algorithm that combines value-based and 

policy-based learning methods by utilizing the best features of both Q-Learning and policy 

gradients [41]. In this algorithm, the actor network is used to estimate the best action(s) to take 
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by approximating the action value function, whereas the critic network is used to approximate 

the state value function. Figure 3 shows this architecture graphically and illustrates that the critic 

is trained using TD and linear approximation and is then used to provide an approximate gradient 

to the actor during training. This method is often referred to as Stochastic Actor-Critic (SAC), as 

the policy is represented as a parametric probability distribution, where the parameters refer to 

the network weights [41]. 

 

 
Figure 3. The Actor-Critic Architecture shown in [9]. 

 

This method has been adopted and improved widely in the DRL community, with 

numerous variants such as deep deterministic policy gradient (DDPG), which applied target 

network to expand the AC learning process into deterministic methodologies by utilizing a 

distinct stochastic behavior policy to approximate a true deterministic policy [42]. This is an 

important success in the field of RL, as a deterministic policy gradient was previously considered 

to be non-existent, at least without the use of the transition probability distribution, which is not 

considered in model-free algorithms such as AC [43]. DDPG and its variants have been shown to 
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yield considerable success in real-time strategy scenarios such as StarCraft [44]. Xie and Zhong 

expanded the DDPG algorithm into semi-centralized DDPG (SCDDPG) which utilized two-level 

AC structures to process local observations and global information to help the agents with 

interactions and cooperation in StarCraft combat [8]. Lowe et al. utilized DDPG in MARL 

scenarios and introduced Multi-Agent DDPG (MADDPG) [15] which showed promising results 

by developing cooperation and competition amongst agents via inter-agent policy approximation 

in the Grounded Communication environment [45]. 

In addition to the deterministic AC variants, Mnih et al. built upon SAC and proposed 

Advantage Actor-Critic (A2C), which improves the learning curve of SAC by considering the 

advantage of taking an action over another simply by considering the difference in the estimated 

reward calculated by the critic and the actual reward received at any given timestep [46]. In the 

same work, Mnih et al. also introduce Asynchronous Advantage Actor-Critic (A3C), which 

builds upon the benefits of A2C by running multiple instances of the simulation in parallel and 

then averaging the network weights across all instances to reduce the overall training time and 

increase the learning efficiency. Both of these variants have shown significant improvements 

over the standard SAC and many other traditional RL methods [46]. The AC family of 

algorithms has also been combined with Monte-Carlo Tree Search by Silver et al. showing 

remarkable success in AlphaGo [2], which was able to defeat 18-time Go world champion Lee 

Sedol, 4 games to 1, a feat which was previously believed to be at least a decade away [47]. 

Silver et al. then further built upon this success with AlphaZero, which learned only from self-

play in lieu of human play, and outperformed AlphaGo in a matter of days [4]. AC algorithms 

have also been explored in tandem with centralized learning, decentralized execution techniques 

by Foerster et al. in StarCraft [14]. My work differs from Foerster et al.'s work in that I focus 
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primarily on representing the global information in an abstracted way and using robust network 

architectures to improve performance as opposed to providing the critic with direct global feature 

input, though I do compare the results of MAIDRL to that of a centralized learning, 

decentralized execution method. Furthermore, one of the primary contributions of Foerster et 

al.’s work is their definition of a counterfactual multi-agent baseline that aims to improve upon 

the way in which A2C learns by computing agent-specific advantages that consider the 

advantage of taking an action over a given default action [14]. 

In the MARL spectrum specifically, algorithms such as the Bidirectionally Coordinated 

Network (BiCNet), introduced by Peng et al. and shown in Figure 4, have shown that using a 

vectorized extension of the AC family can perform well with arbitrary numbers of agents being 

considered [48]. This work is interesting in that they use a centralized Bi-directional Recurrent 

Neural Network (BRNN) [49] in their AC architecture, which is then used to represent 

communication between the agents in the environment. Schulman et al. improved the way in 

which DRL models learn with the introduction of Trust Region Policy Optimization (TRPO) 

[50] in 2015 and Proximal Policy Optimization (PPO) [51] in 2017, and both of these methods 

have been shown to effectively reduce the variance in the results output by DRL models. PPO 

was then used by Berner et al. to train an agent capable of defeating top human players in the 

popular Multiplayer Online Battle Arena (MOBA) game Dota 2 [1] and by Wang and Vinyals to 

achieve GrandMaster rank in SC2 with the StarCraft Commander (SCC) [5] and AlphaStar [3] 

models, respectively. The research around the use and improvement of PPO is distinct from my 

work as PPO's focus is on improving the way in which models learn by clipping the gradient, 

while my focus is on state representation. Sarsa has been expanded into MAS with Parameter-

Sharing Multi-Agent Gradient Descent Sarsa (PS-MAGDS) by Shao, Zhu, and Zhao in [52]. PS-
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MAGDS utilized a centralized state representation and updated the network weights using 

parameterized 𝑄 value functions in lieu of the traditional 𝑄 value functions shown in Equation 8. 

This work, while focused on solving a similar micromanagement problem to my own, is 

considerably different in terms of state representation, reward calculation, and training 

methodology. 

 

 
Figure 4. BiCNet Architecture Visualization [48]. 
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There has also been research into several other RL methods that are distinct from DRL 

but can be supplementary. For example, Bain and Sammut introduced Behavioral Cloning (BC), 

also called Imitation Learning, which is the process of using supervised learning to learn a policy 

based upon a dataset of state-action pairs from expert replays [25]. BC has been shown to 

improve the performance of DRL methods when used as a warm-start in various complex 

environments such as Minecraft [53], [54] and SC2 [3], [5]. Reward Shaping, introduced by Ng, 

Harada, and Russell, allows agents to achieve intermediate rewards for accomplishing 

incremental steps towards goals that may not be inherently clear at a high level [13]. This 

method of rewarding agents for intermediate actions is widely used to encourage more rapid 

understanding of the objectives by agents and has been shown to be effective in various 

scenarios [14], [1]. Though there have been some incredible successes, Reward Shaping can 

often result in agents over-optimizing policies based upon the shaped reward in lieu of the sparse 

reward. This prompted Huong and Ontañòn to introduce an alternative solution called Action 

Guidance that handles sparse rewards without losing the benefit of sample efficiency that comes 

with reward shaping by using a main agent, whose objective is to learn the sparse reward 

function with the assistance of some auxiliary agent that learns from the shaped reward [55]. 

Relational Reinforcement Learning (RRL), inspired by Muggleton and De Raedt [56] and 

defined by Zambaldi et al. [57], is an interesting and unique approach to RL that aims to 

represent states, actions, and policies using a relational language, which improves the 

generalizability of said features. This method may become more widely utilized as the desire for 

more generally intelligent agents rises in game AI, though it is not currently used as widely as 

the other supplementary methods mentioned here.  



23 

 

Heuristic search can also be used in RL, with algorithms such as Monte-Carlo Tree 

Search, shown in Figure 5, and Portfolio Greedy Search showing promising results in various 

scenarios such as Silver et al.'s work in Go [2], [4], Churchill et al. and Liu, Louis, and 

Nicolescu's analysis in SC2 [58], [59], [60], and Churchill and Buro's large-scale combat in SC2 

[61]. Sun et al. [62] and Pang et al. [63] demonstrate that a hierarchical structuring of simple 

tasks that make up a more complex task can yield positive results in highly complex 

environments by each defeating cheater-level built-in game AI in SC2. Skrynnik et al. [53] 

further demonstrate the capability of hierarchical structuring by earning the first-place position in 

the MineRL competition in 2020 [64]. A comparable, yet notably distinct, method was 

introduced by Lee et al., which described a modular architecture of models that allows for 

various subsets of the environmental complexities to be learned by dedicated models that convey 

their information to an overarching system has also shown promise in SC2 scenarios [65]. 

 

 
Figure 5. Outline of a Monte-Carlo Tree Search [66]. 
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Of all of the work that I am aware of, the work that is most similar to mine with respect 

to my interpretation of agent influence maps is the work done by Liu, Louis, and Nicolescu in 

2013 [59], [60]. In these works, Potential Fields (PF) and Influence Maps (IM) are defined using 

various unit parameters and are used to represent unit influence in the environment. A sample IM 

from their work is shown in Figure 6. Liu, Louis, and Nicolscu use PF to determine how the 

agents will navigate toward areas of interest that are identified by the IM. These works, however, 

focus on the use of genetic algorithms (GA) to determine the optimal IM and PF parameters to 

use, and the comparison of said GAs to heuristic search algorithms, whereas my work focuses 

solely on the use of DRL with a predefined IM definition based upon my own understanding of 

the environment. 

 

 
Figure 6. Sample Influence Map Representation from Liu, Louis, and Nicolescu’s Work [60].  
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SIMULATION ENVIRONMENT 

 

The StarCraft Multi-Agent Challenge (SMAC) [22] environment was used as the MARL 

simulation environment. SMAC is built upon the StarCraft II (SC2) Learning Environment [12], 

and provides a set of multi-agent micromanagement scenarios where the objective is to defeat 

your opponents with the given units. Micromanagement is defined in this context as fine-grained 

control of individual units, whereas the logical inverse is macromanagement, which is defined as 

the high-level strategic considerations, such as resource management and control of multiple 

units simultaneously [22]. This difference is an important distinction to make, as my work 

focuses solely on the micromanagement of individual units who share a common goal, rather 

than the macromanagement of the army as a whole. That is, my work treats each agent in the 

environment as a unique entity whose actions are not bound to the actions determined by a group 

command.   

Some sample SMAC scenarios can be seen in Figure 7, each of which are heterogeneous 

in nature. Scenarios such as those provided by SMAC can be represented with a Markov game, 

which is a multi-agent extension of Markov Decision Processes (MDPs) [48], [15], [14]. A 

Markov game with 𝑁 agents comprises a set of states 𝑆 that describe the properties of the agents 

and the environment, and a set of actions 𝐴1, 𝐴2, . . . , 𝐴𝑁 and observations 𝑂1, 𝑂2, . . . , 𝑂𝑁 for each 

of the 𝑁 agents. Each of the agents treat the surrounding units as a part of their local information 

and perform an action in the environment based upon its own observation. 𝑆 × 𝐴1 ×. . .× 𝐴𝑁 → 𝑆′ 

denotes the state transition from 𝑆 to 𝑆′ where each agent performs an action following a policy 

𝜋 in each environmental step. 
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Figure 7. Sample SMAC Scenarios [22]. 

 

There are two types of observation spaces in SMAC that I consider: local and global. The 

local observation space represents a fully decentralized perspective, where each agent has access 

to the information that it can observe in the local vicinity, while the global observation space is 

the fully centralized equivalent. The local observation is defined as the following attributes in the 

form of a one-dimensional vector for both allied and enemy units within sight range, which 

SMAC sets to 9: distance, relative 𝑥, relative 𝑦, health, and unit type. All aforementioned 

features are provided by the SMAC environment, where the distance is the Euclidean distance 

between the observing and the observed agents, the relative 𝑥 and 𝑦 are the directional difference 

with respect to the same pair of agents, and the health and unit type are of the observed agent. 

The global observation contains information regarding all units on the map with the relative 

positions to the center of the map along with all other features from the local observations, albeit 

from a global perspective. The global observation additionally contains the cooldown and 

previous action for each unit where the cooldown is representative of how long a unit must wait 

after attacking to be able to attack again. All features are normalized by their maximum values in 

both the local and global observation spaces. I do not simulate noise in the SMAC environment, 

and assume that the features provided are the true feature values. The actions that living units are 

allowed to take are a discretized subset of the full action set that is available in SC2. They are 
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move North, South, East, or West, attack an enemy by identifier, and stop. Units that have been 

defeated are limited to only the no-op action and are invisible to all surviving units. I note here 

that units are restricted on their attack action to agents that are within their shooting range, where 

each unit in SMAC has a shooting range set to 6 [22]. The SMAC definition of the sight and 

shooting range is shown in Figure 8, with the cyan and red circles representing sight and 

shooting, respectively. 

 

 
Figure 8. The SMAC Sight and Shooting Range, shown by the Cyan and Red Circles [22]. 

 

The reward achieved in each episode is scaled to be between 0 and 20, inclusive, as 

defined in SMAC [22]. The reward is a shaped reward that awards points for damage dealt to the 

enemy, bonus points on a kill, and a substantial bonus for victory. Rewards are not received by 

individual agents, rather, the rewards are accumulated by the allied forces as a whole and are 

aggregated into a shared pool as shown in Equation 10. 

 

 
𝑅 = 20 ×

∑ (∑ (𝐷𝑛) × 10𝑘𝑁
𝑛=1 )𝑇

𝑡=1 + 200𝑤

𝑅𝑚𝑎𝑥
 

(10) 
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Equation 10 shows the reward calculation for a full episode of a game where 𝑡 is the 

current environmental step, 𝑇 is the terminal step, 𝑛 is the agent identifier of an agent, 𝑁 is the 

maximum number of agents, 𝐷𝑛 is the damage dealt to enemy units by agent 𝑛 in step 𝑡, 𝑘 is the 

number of enemies that have been defeated in step 𝑡, 𝑅𝑚𝑎𝑥 is the maximum possible reward 

amount, and 𝑤 is 1 on a win and 0 on a loss. The total reward of an episode is calculated when 

the terminal state has been reached, and I then calculate the discounted rewards with a decay rate 

of 0.9, normalize the discounted values, and use the resulting reward per environmental step to 

train my models. I note here that, by default, each unit in my experimentation has 45 health 

points, which are translated to rewards when an allied agent deals damage to enemy agents. 

SMAC provides scenarios that utilize units of each of the three races in StarCraft II. 

These races are Terran, Zerg, and Protoss. The Terran race is a human race that boasts emphasis 

on a balance between technological and biological units. The Zerg and Protoss races represent 

the extremes of biological and technological races, respectively, with the Zerg being an 

exclusively biological race with emphasis on evolution and metamorphosis, while the Protoss are 

very heavily technologically oriented, with minimal dependence upon biological units. My work 

focuses purely on the use of Marines, which are medium-ranged Terran infantry units. This focus 

on homogenous armies is largely due to the foundational nature of my work, and I note here that 

the introduction of heterogeneous armies is wholly supported by my methodologies, though this 

may require additional parameter tuning. 

The SMAC combat scenarios that were used in training and evaluation are 3𝑚, 8𝑚, 

25𝑚, and 8𝑚_𝑣𝑠_9𝑚, shown in Figure 9, Figure 10, Figure 11, and Figure 12, respectively. I 

used the 8𝑚 scenario in SMAC as the baseline experimental scenario where each team controls 

eight marines to fight against each other. This scenario serves as a good foundation for my 
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research, as it has neither very large nor very small numbers of units, and it is representative of a 

medium-scale MARL scenario, while the other selected scenarios demonstrate the 

generalizability of the evaluated methods. Each of these scenarios comprises only Marines, with 

the number of Marines per team given in the name of the scenario. Scenarios with a single 

number are symmetric and the rest are asymmetric in favor of the built-in SC2 game AI, whose 

difficulty is set to 7 in SMAC, which is equivalent to Elite in SC2, which in turn poses a 

significant challenge to players that are unaware of the AI that they are combating, due to its 

aggressive, but predictable with context, nature. The objective of the agents in each scenario is to 

defeat the built-in SC2 game AI by eliminating all the enemies without losing all the allied 

troops. This task, while conceptually simple, requires a detailed understanding of the behaviors 

and capabilities of the agents on each team. Cooperation amongst allied agents is critical to the 

success of the team as a whole. Allied agents must work together and focus their fire on enemies 

to efficiently reduce the amount of damage received while maintaining damage dealt over time 

by minimizing sustained casualties. 

 

 
Figure 9. SMAC's 3m Scenario, with 3 Marines on Each Team. 

 

 
Figure 10. SMAC's 8m Scenario with 8 Marines on Each Team. 

 

 
Figure 11. SMAC's 25m Scenario with 25 Marines on Each Team. 
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Figure 12. SMAC's 8m_vs_9m Scenario with 9 Marines Controlled by the Built-in SC2 Elite AI. 
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METHODOLOGY 

 

All of my experiments were performed using Python 3.7.3 with NumPy (NP) 1.19.5 [67] 

and Tensorflow (TF) 2.4.0 [68] as the framework used to create and train all of my NNs. I used 

SMAC 1.0.0 [22] as my MARL environment, with SC2 version 4.10. To ensure that my results 

could be reliably reproduced, I refrained from using GPU acceleration and constrained the 

models to CPUs, seeding all random generators with values ranging from 1-32, corresponding to 

the experiment number relative to the specific methodology used in said experiment. While this 

did result in a moderate increase in the experimental completion time, particularly of 

experiments with NNs of larger parameter counts, it was deemed a worthwhile cost to ensure 

experimental reproducibility.  

 

General Experimental Features 

Each explored MARL method was executed in 32 independent instances with 

corresponding random seeds for TF, NP, and SMAC. All experiments are executed for a duration 

of 3,000 episodes in their respective combat scenarios. My experiments promote early 

exploration followed by incrementally increasing exploitation with a hybrid ε-greedy, softmax 

approach called ε-soft that initializes ε to 1.0 and diminishes it to 0.0001 over the course of 

30,000 environmental steps. My implementation is considered ε-soft because when the greedy 

action would be taken in traditional ε-greedy, I instead select an action in accordance with the 

softmax behavioral policy which randomly selects an action, where the likelihood of selecting an 

action is the proportion of the action’s estimated value relative to the sum of the estimated values 

for all actions. I chose this particular methodology because it promotes continued intelligent 
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exploration of the state space, even when ε itself becomes arbitrarily small. The value of ε at 

environmental step 𝑡 can be calculated as shown in Equation 11 below, where 𝜀0 is 1.0, 𝜀𝑚𝑖𝑛 is 

0.0001, and 𝛾 is 30,000. Table 1 shows some sample ε values at various environmental steps, to 

better demonstrate the values at various points. 

 

 
𝜀𝑡 = 𝑚𝑎𝑥 (𝜀0 −

𝑡 × 𝜀0

𝛾
, 𝜀𝑚𝑖𝑛) 

(11) 

 

Table 1. Sample ε Values at Various Environmental Steps. 

Environmental Step (𝑡) Probability of Random Action (𝜀𝑡) 

0 1.0000 

1,000 0.9667 

5,000 0.8333 

10,000 0.6667 

25,000 0.1667 

30,000+ 0.0001 

 

In addition to ε-soft, I utilized A2C as the core learning algorithm in all of my 

experiments, with separate NNs for the actor and critic. The size of the inputs to the actor and 

critic varies between explored MARL methods and combat scenarios. The number of output 

neurons in the actors also depend upon the combat scenario, while the number of output neurons 

in the critics is always one. The activation function used in all layers except for the output layers 

is the Exponential Linear Unit (ELU) with 𝛼 = 1.0 [69]. The output layer of the actors used 

softmax, and the output layer of the critics used a simple linear activation. The actor and critic 

were compiled with losses categorical cross-entropy and mean squared error, respectively, and 

both use the adam optimizer with a learning rate of 0.00001 [70]. The use of batch normalization 
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and dropout layers was considered, though they were not used in the reported results due to a 

lack of sufficient improvement. Additionally, preliminary experimentation with Proximal Policy 

Optimization (PPO) [51] and experience replay both yielded a considerable decrease in overall 

performance compared to the standard A2C algorithm and are thus excluded from the final 

results.  

I note here that I used TF’s saved model format to save the actor and the critic so that 

they may be loaded back into memory and evaluated after the initial training process. The actor 

and critic are only saved when the running average reward achieved at the end of an episode is 

greater than the previous maximum, so the saved networks are representative of the best 

performers that were found for each combination of seed, method, and scenario. 

 

Advantage Actor Critic (A2C) 

In the A2C RL algorithm, there are two intuitive components: the actor and the critic. I 

utilized two separate NNs, one for each component, and each with the same hidden layer 

architecture. The hidden layer architecture used in my MAIRL and MAIDRL experiments are 

described in the Simple versus Dense A2C section. My A2C implementation represents a single 

controller that controls each agent individually, and the resulting shared parameters allow for 

more rapid and intelligent learning because the parameters are updated based upon the 

experiences of each agent.  

The critic can be viewed as a value-based, model-free approximation of the state value 

function shown in Equation 2, which represents the expected reward to be returned by a given 

state based upon the policy. Let 𝑉∗(𝑠) be the optimal state value function, i.e., the state value 

function that returns the maximum reward. The goal of the critic is to make 𝑉𝜋(𝑠; 𝜃𝑐) ≈ 𝑉∗(𝑠) 
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where 𝜃𝐶  represents the parameters of the critic. The critic parameters 𝜃𝐶  are updated using 

standard gradient ascent at the end of an episode, where the discounted reward values are used to 

perform a supervised update [46]. Because the critic is necessary to calculate the advantage to be 

used when training the actor, the critic update occurs after the advantage has been calculated.  

The actor can be viewed as a value-based, model-free approximation of action value 

function shown in Equation 3, which represents the expected reward for action 𝑎 given state 𝑠 

and following policy 𝜋(𝑎|𝑠). Let 𝑄∗(𝑠, 𝑎) be the optimal action value function, i.e., the action 

value function that returns the maximum reward. The goal of the actor is to make 𝑄𝜋(𝑠, 𝑎; 𝜃𝐴) ≈

𝑄∗(𝑠, 𝑎) where 𝜃𝐴 represents the parameters of the actor. I note that, in accordance with the A2C 

algorithm, 𝑄𝜋(𝑎𝑡, 𝑠𝑡; 𝜃𝐴) − 𝑉𝜋(𝑠𝑡; 𝜃𝐶) is the target network representative of the advantage of 

taking an action over another, and it is determined in part by both the action value estimation 

determined by the actor and the state value estimation determined by the critic. At the end of an 

episode, the parameters 𝜃𝐴 of the actor are updated in the direction determined by the gradient 

ascent in Equation 12 [46]. 

 

 ∇𝜃𝐴
𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡)(𝑄𝜋(𝑎𝑡, 𝑠𝑡; 𝜃𝐴) − 𝑉𝜋(𝑠𝑡; 𝜃𝐶)) (12) 

 

Simple versus Dense A2C 

Before considering the inclusion of the DenseNet-style model architecture, I explored the 

effectiveness of using a MAIM state representation with a NN that contained only a single 

hidden 1024-neuron layer. I used the 8𝑚 scenario in this experiment, noting that 8𝑚 was chosen 

as the baseline scenario due to its intermediate scale and difficulty. I improve this simple A2C by 

defining a DenseNet-style model architecture for both actor and critic [16]. 
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Figure 13 demonstrates an example of a DenseNet-style grouping of layers which is 

defined to be an arbitrary number of 𝑛 layers such that the output of every layer is input to each 

of the following layers in the group via concatenation. My network architectures contain two of 

such groups, each with five 128-neuron dense layers. The only additional layer in my DenseNet 

architecture is a 256-neuron dense layer that precedes the first DenseNet-style group of layers, 

immediately after the input layer. 

 

 
Figure 13. Example of a DenseNet-style grouping of 𝑛 128-neuron layers. 

 

Centralized versus Decentralized 

I apply A2C with centralized, decentralized, and hybrid centralized learning decentralized 

execution state representations to investigate how to effectively use global information for fine-

grained decision-making in multi-agent environments. First, I apply A2C in with centralized 

state representations where each agent utilizes local and global observations to train the actor and 

critic networks for learning interactions among agents. Second, I similarly considered fully 

decentralized state representations, where agents only observed their local observations. These 

two methods are further used as the baseline for comparison with other algorithms. Third, I 

explored the option of a global critic with a local actor (GCLA), where the critic received the 

global information while the actor received the local observations of each agent. This particular 
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method is unique from the other methods in that the critic is arguably centralized but not with 

respect to each agent, while the actor remains entirely decentralized. Finally, I explored the 

option of total critic and a local actor (TCLA), where the critic is centralized, while the actor is 

decentralized. This method was inspired by the use of centralized training with decentralized 

execution as in the case of MADDPG [15].  

 

Semi-centralized with Multi-Agent Influence Maps (MAIM) 

 

Algorithm 1: Create and Update Agent Influence Map. 

Result: Square agent influence matrix based on 𝐼0, 𝜆𝐼, 

and 𝑑𝐼, centered on the agent. 

if AIM not defined then 

 |   𝑁 = 2 × 𝑑𝐼 + 1 
 |   𝐴𝐼𝑀 = 𝑁 × 𝑁 matrix of 0’s 
end 

for 𝑐𝑒𝑙𝑙 ∈ 𝐴𝐼𝑀 do 

 |   if 𝑑𝑖𝑠𝑡(𝑐𝑒𝑙𝑙, 𝑐𝑒𝑛𝑡𝑒𝑟) ≤ 𝑑𝐼 then 

 |    |   𝐴𝐼𝑀[𝑐𝑒𝑙𝑙] = 𝜆𝐼 × 𝐼0 

 |   end 

end 
 

In addition to the centralized, decentralized, and hybridized experiments, I propose a 

novel method to abstract the global features in such a way that is representative of how a human 

might interpret them. I define an Agent Influence Map (AIM) that is determined by three values: 

the source influence 𝐼0, the influence decay rate 𝜆𝐼, and the range of influence 𝑑𝐼 for each unit in 

the environment. Algorithm 1 demonstrates the creation and update process of each AIM. Part of 

the appeal of this method is that it enables dynamic information representation with relative ease, 

simply by adjusting the values of 𝐼0, 𝜆𝐼, and 𝑑𝐼. For my experiments, I set 𝑑𝐼 equal to the range 

of the agent as defined by SC2, 𝐼0 equal to the current relative health of the agent as defined by 
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SMAC, and 𝜆𝐼 equal to the inverse of the distance from the agent, where a distance of 0 was 

assigned the value of 𝐼0. To allow for a distinction between allied units and enemy units, I set 𝐼0 

of the allied units to the negative of the relative health provided by SMAC. Figure 14 

demonstrates a sample 13 × 13 AIM in the form of a heatmap with the cell values shown to 

illustrate the rate at which agent influence decays. 

 

 

 
Figure 14. Sample AIM Heatmap with Cell Values. 

 

The AIM of each agent is aggregated into a Multi-Agent Influence Map (MAIM), where 

the AIM is simply added to the MAIM based upon the agents position in the environment. The 

AIM is positioned with the center over the agent position on the MAIM, and the overlapping 

cells are summed, ignoring any non-overlapping cells. The MAIM is a scaled representation of 

the units on the map in a SMAC scenario. For example, the 8𝑚 scenario has a map size of 

32 × 32 units, but the MAIM dimensions can be any positive integers, and my implementation 

will scale the AIM to fit the MAIM's dimension while also maintaining the scale of the agents 

influence on 8𝑚, which maintains the environmental map aspect ratio relative to unit ranges. I 
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explored MAIMs of size 16 × 16, 32 × 32, and 64 × 64, each with the same AIM parameters, 

and each MAIM is flattened prior to propagation through the NNs. 

Figure 15, Figure 16, and Figure 17 demonstrate three snapshots of MAIMs taken from a 

random agent versus the built-in SC2 AI at time steps 1, 6, and 17, respectively. Time step 1 was 

chosen to be displayed as it represents the first time step that the agents can take an action in the 

environment and it shows the uniform behavior of the built-in SC2 AI in contrast to the random 

AI. Time step 6 represents the first contact between the two armies, and time step 17 was 

arbitrarily chosen as it illustrates the change in the MAIM as units are defeated. Each of the 

figures show both the in-game state as well as the corresponding MAIM, with both the in-game 

state and corresponding MAIM cropped and scaled in the figures to allow for easier comparison, 

though I note that the MAIMs have not been adjusted horizontally and are representative of unit 

longitudinal positions. In both the in-game and MAIM representations, the built-in SC2 AI is 

represented by the red army, while the blue army is controlled by the random AI. The figures 

clearly show the built-in SC2 AI wholly overwhelms the random AI without losing a single 

agent. I note here that the built-in SC2 AI are scripted to move toward the spawn point of the 

blue army, so a conflict is almost guaranteed. This is reflected in the MAIM of each figure, as 

the blue influence region is shown to collectively move toward the red influence region’s initial 

spawn point. An interesting phenomenon that is worth mentioning in this MAIM representation 

of the states is that there is a consistent visible conflict wall between competing influences, 

shown as the white line compressing otherwise circular regions of influence. This conflict wall 

may also be considered to represent the degree to which an influence source is overwhelming 

another, as this wall appears closer to the source of regions that are currently at a disadvantage, 
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as is shown when comparing the relative position of the wall in Figure 15, Figure 16, and Figure 

17. 

 

 
Figure 15. Sample MAIM and In-Game at Time Step 1. 

 

 
Figure 16. Sample MAIM and In-Game at Time Step 6. 
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Figure 17. Sample MAIM and In-Game at Time Step 17. 
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RESULTS AND DISCUSSION 

 

I analyze the results of the MARL methods used with three primary metrics: the average 

of the running average episode reward which I define to be the average reward of the most recent 

50 episodes, the standard deviation of the running average episode reward, and the percentage of 

seeds that achieve a maximum running average reward with respect to various thresholds, all 

considering all 32 seeds. Henceforth, these metrics shall be referred to as overall performance, 

overall stability, and peak performance, respectively. I also perform more detailed evaluation 

regarding the peak performance per method across all seeds, considering the minimum, 

maximum, average, and standard deviation. That is, for each scenario and method, I consider the 

best performance of each seed, then find the minimum, maximum, average, and standard 

deviation with respect to the determined peak from each seed. The applicable tables contain the 

highest minimum, maximum, and average reward displayed in bold font, as well as the lowest 

standard deviation. I perform Welch’s unequal variance t-test [71] on the average rewards 

achieved across all 32 seeds and compare MAIDRL to both the centralized and the decentralized 

methods in each of the considered scenarios. Finally, I discuss the learned behaviors that are 

observed for each MARL method when the trained actor of the best performing seed per MARL 

method is deployed in each scenario in a headed environment without any additional training. 

 

Simple Architecture and MAIRL 

Table 2, Figure 18, Figure 19, and Figure 20 display the results achieved by the use of the 

simple network architecture in the 8𝑚 scenario. It is evident that MAIRL considerably increased 

the overall and peak performance of the agents, as well as maintained comparable overall 
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stability to the centralized method, though the decentralized method was found to yield lower 

standard deviation in terms of peak performance across all seeds as shown in Table 2. Table 2 

further shows that MAIRL wholly outperforms both the centralized and decentralized methods in 

terms of minimum, maximum, and average peak performance, with the 64 × 64 MAIRL variant 

achieving a 4.58 higher minimum, 5.03 higher maximum, and 6.18 higher average peak 

performance, all while maintaining a lower standard deviation than the centralized method. 

Figure 18 shows the overall performance of each method as well as the 90% confidence intervals 

based upon the standard deviations in Figure 19, and this illustrates that each of the MAIRL 

variants achieved an overall performance around or above 11, while the centralized and 

decentralized methods only achieved 8. MAIRL outperformed to such a degree that the upper 

bounds of the centralized and decentralized confidence intervals do not overlap with the lower of 

any of the MAIRL variants after episode 1300. The 64 × 64 MAIRL variant is shown in Figure 

20 to be the only method to achieve running average rewards greater than 19, with over 15% of 

all seeds doing so. MAIRL is shown to be superior to both the centralized and decentralized 

methods, and I note that the performance of the decentralized method relative to the centralized 

is surprising, as it was expected to perform more poorly rather than almost identically. 

 

Table 2. Peak Performance Across all Seeds with Simple Architecture with Best Result Per 

Scenario Bolded. 

Scenario Method Min Max Avg Std 

8𝑚 Centralized 5.31 14.55 9.95 2.79 

 Decentralized 5.72 14.21 9.73 2.15 

 64 × 641 10.30 19.58 16.13 2.64 

 32 × 321 8.16 18.81 15.19 2.73 

 16 × 161 6.44 18.05 12.73 3.39 

1MAIRL with given MAIM dimensions. 
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Figure 18. Overall Performance: Simple Architecture, 8𝑚.  

 

 
Figure 19. Overall Stability (SD): Simple Architecture, 8𝑚.  

 

 
Figure 20. % of Seeds with Peak Performance ≥ Thresholds: Simple Architecture, 8𝑚. 
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DenseNet Architecture and MAIDRL 

Due to the underwhelming performance of the centralized and decentralized methods 

relative to MAIRL with the simple network architecture, I considered ways to create more 

competitive baselines with which to form a basis of comparison for my proposed methods. I 

found that the introduction of a DenseNet-style model architecture considerably improved the 

performance of both the centralized and decentralized methods, while also demonstrating a 

notable improvement over the MAIRL early learning curve. Table 3, Figure 21, Figure 22, and 

Figure 23 present the peak performance across all seeds, overall performance across all seeds 

with 90% confidence intervals, standard deviation across all seeds, and percentage of seeds 

whose peak performance achieved various reward thresholds, respectively. In addition to the 

centralized, decentralized, and semi-centralized MAIDRL methods, they also contain the results 

of two hybridized methods, GCLA and TCLA. The following subsections present and analyze 

the results of each considered method with the DenseNet-style architecture. 

 

Table 3. Peak Performance Across all Seeds: DenseNet Architecture – Initial Results with Best 

Result Per Scenario Bolded. 

Scenario Method Min Max Avg Std 

8𝑚 Centralized 3.24 20.00 14.20 4.22 

 Decentralized 7.09 19.82 15.49 3.90 

 GCLA 2.87 15.31 5.99 3.15 

 TCLA 6.47 19.53 12.32 3.92 

 64 × 641 10.35 19.86 16.84 2.99 

 32 × 321 6.53 19.86 14.38 4.18 

 16 × 161 6.79 20.00 14.30 3.62 

1MAIDRL with given MAIM dimensions. 
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Figure 21. Overall Performance: DenseNet Architecture, 8𝑚. 

 

 
Figure 22. Overall Stability (SD): DenseNet Architecture, 8𝑚. 

 

 
Figure 23. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 8𝑚. 
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Centralized. Table 3 shows that the introduction of the DenseNet-style architecture 

raised the peak performance across seeds 5.45 points to a perfect maximum of 20, while 

simultaneously improving the average peak performance across seeds to 14.20, a 4.25-point 

improvement. Additionally, Table 3 shows that the centralized method with the DenseNet 

architecture can achieve a perfect running average score, however, this perfect running average 

does not appear frequently enough to bring the average across all seeds up to the level of the 

64 × 64 MAIDRL variant. Table 3 also shows that the baseline yields the highest standard 

deviation in terms of peak performance compared to the other methods, albeit by a very small 

margin in the case of the 32 × 32 MAIDRL variant. The centralized method is shown in Figure 

21 to perform respectably overall as a baseline, achieving a consistent running average 3 points 

higher than the simple network equivalent and balancing out around 11. Figure 22 shows that the 

overall standard deviation balances out around 5, which is notably somewhat higher than the 

simple network architecture equivalent, but consistent with the results of the other considered 

DenseNet methods. Figure 23 shows that this method maintains a high percentage of seeds that 

can achieve running averages that are close to the upper limit, with almost 16% of all seeds 

achieving a maximum running average greater than 19. The results of the DenseNet-style 

architecture with the centralized method suggest that the use of such a structure yields better 

results overall, with a moderate increase in standard deviation compared to the single-layer 

architecture, though I argue that the general improvements in the other metrics outweigh this 

detriment. As such, the centralized DenseNet architecture is considered a baseline for 

comparison for each of the considered methods, and said methods are applied in tandem with the 

same architecture. 
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Decentralized. The decentralized method with the DenseNet architecture once again 

exceeded expectations and performed nearly identically to the centralized method. Table 3 shows 

that, in terms of peak performance, the decentralized method actually outperformed the 

centralized method in every regard with the exception of the maximum peak performance, where 

it fell short by only 0.18. Figure 21 then illustrates that, in terms of overall performance, the 

decentralized method maintains a competitive level of performance with even the 64 × 64 

MAIDRL variant, being the only method to overcome the overall performance at any point after 

episode 1300, though I note that this only occurs after the 64 × 64 MAIDRL variant diminishes 

in performance. The overall stability is shown to be on par with each of the other considered 

methods as shown in Figure 22. The surprising performance of this method is further emphasized 

in Figure 23, where it is shown that over 20% of all seeds managed to achieve running average 

rewards greater than 19. This result is second only to the 64 × 64 MAIDRL variant, which it 

trails behind by just over 10%. The results of the decentralized method with the DenseNet 

architecture are consistent with that of the centralized method, and further support the use of said 

architecture in my experimentation. 

GCLA. The GCLA method is shown in Figure 21 and Figure 23 to perform considerably 

worse with regard to both overall and peak performance, only achieving an overall performance 

of 4 and with no seeds managing to exceed a peak performance of 16 at any point. To its credit, 

GCLA did demonstrate the lowest standard deviation when compared to the other MARL 

methods, staying close to 2-3 for the majority of the episodes, though this is most likely due to 

the generally lower scores. The maximum and average of the peak performance achieved in any 

seed was considerably lower than that of the compared methods, as shown in Table 3, only 

achieving 15.31 and 5.99, respectively. Because the actor learns from the advantage, which is 
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determined in part by the critic, the lack of understanding of the local state for each agent on the 

part of the critic unsurprisingly leads to a poor performance overall. This hypothesis is supported 

by the results of the TCLA method which performed much better than GCLA, with the only 

change being the provision of the local information in addition to the global. Due to the apparent 

inability of the GCLA method to perform on a competitive level, I do not consider it in any 

further experiments to reduce the level of noise present in the reported results. 

TCLA. The TCLA method, inspired by [15], is shown in Figure 21 to perform notably 

more poorly overall than the MAIDRL and centralized methods, peaking at a score around 8 at 

episode 1100, then steadily declining from there. TCLA performed somewhat comparably to the 

other methods with respect to the percentage of seeds at various thresholds, though it is 

consistently below all other curves for the majority of said thresholds, except for GCLA. Table 3 

further demonstrates the results shown in Figure 23. The maximum of the peak performance 

across all seeds is 19.53, which is only 0.29 lower than the next highest and is a 4.22 

improvement over the GCLA method, but the average of the maximum running average reward 

is only 12.32, which suggests that such a peak is less than common. The results show that, while 

TCLA can perform well in the 8𝑚 scenario, it fails to do so consistently. This too was somewhat 

surprising, given the results that were shown in [15]. While TCLA did demonstrate that it is 

capable of performing well, the overall performance was poor enough that it also is not 

considered in future results. 

MAIDRL. When a DenseNet-style model architecture was applied in tandem with 

MAIRL, I found that the improvements were marginally smaller than those of the centralized 

method but were statistically significant enough to warrant a fundamental addition to MAIRL, 

which in turn defines MAIDRL. My semi-centralized MAIDRL method produced varying levels 
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of results in the 8𝑚 scenario depending upon the size of the MAIM. The 16 × 16 and 32 × 32 

MAIM MAIDRL variants both performed very similarly to the centralized baseline on each of 

the three metrics that I consider, though they both fall just below the baseline in terms of peak 

performance greater than 19 as shown in Figure 23. The 64 × 64 MAIM significantly 

outperformed each of the other MARL methods that I tested, notably without a significant 

decrease in overall stability, with Figure 22 demonstrating a consistent standard deviation just 

below 4. Figure 21 demonstrates that the learning curve for the 64 × 64 MAIM grew to the 

highest point around 14 in a comparable amount of time as the other methods. While the steady 

decline thereafter is somewhat worrisome, I note that there is a distinct improvement with 

respect to the peak performance above a near-perfect threshold of 19, with a total of just over 

34%. Furthermore, Table 3 demonstrates that each MAIDRL variant outperformed the 

centralized and decentralized baselines in every regard when considering the peak performance 

across all seeds, except for the maximum, where the 16 × 16 MAIM variant matched the perfect 

score of the baseline, while the others fell short by 0.14 points. The results of the various 

MAIDRL variants in the 8𝑚 scenario indicates that my semi-centralized MAIDRL consistently 

performs at least as well or better than the centralized baseline per episode, while the peak 

performance across all seeds of the MAIDRL methods wholly outperform said baselines. 

 

Generalizability of MAIDRL 

To evaluate the generalizability of my approach, I further applied the DenseNet 

architecture and MAIDRL on three new SMAC scenarios: 3𝑚, 25𝑚, and 8𝑚_𝑣𝑠_9𝑚. Table 4 

contains the peak performance across all seeds for each of these scenarios, with the best 

minimum, maximum, average, and standard deviation with respect to each scenario being 
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highlighted in bold, as with Table 3. The following subsections detail the results per method per 

scenario, and I note that only the centralized, decentralized, and MAIDRL methods are 

considered in this expanded list of scenarios, as they each exhibited the most promise. 

 

Table 4. Peak Performance Across all Seeds: DenseNet Architecture – Extended Results with 

Best Result Per Scenario Bolded.  

Scenario Method Min Max Avg Std 

3𝑚 Centralized 4.00 18.79 14.41 4.19 

 Decentralized 1.64 11.88 9.25 1.98 

 64 × 641 3.74 18.83 11.48 5.04 

 32 × 321 5.89 18.80 14.86 4.10 

 16 × 161 12.42 18.76 16.61 1.87 

25𝑚 Centralized 8.18 13.27 10.81 1.35 

 Decentralized 8.25 13.37 11.12 1.62 

 64 × 641 7.20 12.73 10.08 1.50 

 32 × 321 5.34 13.53 9.82 1.77 

 16 × 161 7.97 13.20 10.26 1.25 

8𝑚_𝑣𝑠_9𝑚 Centralized 7.69 10.68 9.59 0.76 

 Decentralized 4.03 10.23 7.42 2.22 

 64 × 641 6.25 10.95 9.21 1.20 

 32 × 321 7.05 10.67 9.33 1.98 

 16 × 161 6.55 10.12 9.00 0.99 

1MAIDRL with given MAIM dimensions. 

 

𝟑𝒎. 3𝑚 is a very similar scenario to 8𝑚, but the unit count on each team is reduced to 

three. I chose this scenario to explore the applicability of MAIDRL in combat scenarios of 

varying complexity. In theory, 3𝑚 should be simpler to learn than 8𝑚, though the results shown 

in Table 4, Figure 24, Figure 25, and Figure 26 suggest that the disproportionate reward 
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associated with winning the scenario relative to the availability of incremental rewards may have 

led to poorer performance than expected overall. A consistent trend that was found amongst the 

baseline and each MAIDRL variant is that none of them seemed to accomplish a peak 

performance greater than 19. I hypothesize that this is due to the somewhat different score 

distribution in 3𝑚 as a result of the lower number of units on the field, noting again the reward 

calculation in Equation 10 and the fact that the reward achieved is an aggregate sum of damage 

dealt to enemies with a large bonus for winning. 

 

 
Figure 24. Overall Performance: DenseNet Architecture, 3𝑚. 

 

 
Figure 25. Overall Stability (SD): DenseNet Architecture, 3𝑚. 
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Figure 26. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 3𝑚. 

 

Centralized. The centralized baseline performed almost exactly as well in 3𝑚 as it did in 

8𝑚 with respect to the overall performance and stability, shown in Figure 24 and Figure 25, 

respectively. With a maximum overall performance around 11 and standard deviation leveling 

out near 6, the most concerning phenomenon that was recorded by the centralized baseline was 

the notable decrease in overall performance to 8 after reaching the initial maximum of 11. The 

percentage of seeds that achieved various peak performance thresholds also behaved similarly as 

in the 8𝑚 scenario, but with a notably more drastic decline at the highest threshold, decreasing 

from nearly 35% of seeds achieving peak performance above 18, to none above 19. Table 4 

further illustrates that the centralized method performed consistently between 3𝑚 and 8𝑚, with 

the most significant difference being in the maximum of the peak performance across all seeds, 

with a reduction of 1.21 compared to the recorded 8𝑚 value. 

Decentralized. The 3𝑚 scenario is the first scenario in which the decentralized method 

performed as poorly as I hypothesized it would throughout the duration of my experimentation. 

Table 4 shows an almost catastrophic failure of the decentralized method compared to both the 

results of this same method in the 8𝑚, as well as the other considered methods in the 3𝑚 
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scenario. Compared to its own 8𝑚 results, the decentralized method’s average peak performance 

across all seeds decreased by 6.23, from a respectable and competitive 15.49 down to a meager 

9.26, as shown in Table 3 and Table 4, respectively. This failure to compete is shown further in 

terms of overall and percentage of seeds achieving peak performance at various thresholds in 

Figure 24 and Figure 26, respectively, with the decentralized curves sagging far below the rest. 

In terms of overall stability, however, Figure 25 shows that the decentralized method maintained 

the lowest standard deviation of any of the other considered methods, though I note that this is 

most certainly due to the generally lower overall performance more than a significant show of 

improved stability. 

MAIDRL. The MAIDRL variants performed much differently on 3𝑚 when compared to 

8𝑚. In the 3𝑚 scenario, the 64 × 64 MAIM yielded the worst overall results, while it had 

previously shown to yield the best. Figure 25 shows that it maintained a standard deviation that 

was comparable to its own 8𝑚 performance, but the overall performance across seeds decreased 

considerably, as did the average peak performance per threshold, from 14 to 9 and 16.84 to 

11.48, which are demonstrated in Figure 24 and Table 4, respectively. The 32 × 32 MAIM 

performed nearly identically to the 8𝑚 scenario, maintaining an overall performance around 12, 

then decaying over time to around 10. The most notable difference occurred in the 16 × 16 

MAIM, which wholly outperformed the other variants, as well as the centralized method, 

achieving an overall performance of 14, with minimal decline thereafter. The lower bound of the 

90% confidence interval consistently remained higher than the upper bound of the next highest 

confidence interval after episode 2500. It further improved with respect to the standard deviation, 

leveling out at only 2. This is markedly better than the other MAIDRL variants, and better still 

compared to the otherwise competitive centralized method, particularly when considering that it 
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simultaneously achieved the highest overall performance. Table 4 shows that the 16 × 16 variant 

also dominated in regard to the peak performance across all seeds, though it is noteworthy that 

Figure 26 suggests that this variant actually struggled more in terms of the very high thresholds 

greater than 18, while it maintained a solid lead up to that point. Interestingly, Table 4 also 

shows that the 64 × 64 variant achieved the highest peak overall, though less consistently than 

the other tested methods, which is reflected in the average of the peak performance across all 

seeds. This variance in results between MAIM resolutions and scenarios suggests that there may 

be room for future exploration into the matter, though it has little effect on my claim that 

MAIDRL as a methodology is statistically superior to the centralized and decentralized 

baselines. 

𝟐𝟓𝒎. 25𝑚 represents one of the largest combat scenarios that SMAC offers, with 25 

marines on either team. As such, it is a considerably more challenging scenario to master. I 

chose the 25𝑚 scenario because it is representative of large-scale combat. While 3𝑚 and 8𝑚 

represent small- and medium-scale respectively, they are both significantly smaller and less 

complex than 25𝑚. The relative difficulty of 25𝑚 is illustrated throughout the results presented 

in Table 4, Figure 27, Figure 28, and Figure 29, though it is most clearly illustrated in Figure 29, 

where it is shown that none of the centralized, decentralized, nor the MAIDRL methods managed 

to achieve a peak performance greater than 14 in any of the 32 considered seeds. This is not 

particularly surprising, as the complexity of multi-agent scenarios increases considerably with 

more agents, though it does show that each method was at least able to make considerable 

progress toward solving this scenario. 
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Figure 27. Overall Performance: DenseNet Architecture, 25𝑚. 

 

 
Figure 28. Overall Stability (SD): DenseNet Architecture, 25𝑚. 

 

 
Figure 29. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 25𝑚. 
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Centralized. The centralized method again performed comparably to its performance in 

8𝑚, though with a definite decrease in the maximum overall performance as shown in Figure 27. 

The standard deviation shown in Figure 28 demonstrated a notable improvement over the 8𝑚 

and 3𝑚 scenarios, settling around 2 for the large majority of the episodes, though I note that this 

is most likely a direct result of the overall performance being consistently lower than the 

aforementioned scenarios. Interestingly, the centralized method does manage to set itself apart 

from my MAIDRL methods in Figure 29, where it maintained a consistently higher percentage 

of seeds capable of achieving the various considered reward thresholds.  

Decentralized. As was the case with the 8𝑚 scenario, the decentralized method was 

surprisingly competitive in 25𝑚, achieving both the highest minimum and average peak 

performance as shown in Table 4 and falling only 0.16 short of the highest maximum. Figure 27 

shows that the decentralized method manages to perform almost precisely like the centralized 

method, once again behaving contrary to my hypothesis regarding the expected performance. 

Furthermore, Figure 29 shows that the decentralized method actually outperforms the other 

considered methods in terms of percentage of seeds capable of achieving various reward 

thresholds, surpassing even the centralized method for thresholds between 11 and 14. 

MAIDRL. The 25𝑚 scenario is the first scenario that I tested whose results are not 

immediately apparent with respect to whether my semi-centralized MAIDRL method is as 

performant or better than the centralized and decentralized baselines. Figure 27 and Figure 28 

both seem to suggest that MAIDRL may be equivalent to said baselines, though Figure 29 shows 

that each MAIDRL variant fell below them in terms of peak performance. Table 4 shows that, 

when comparing the best performing seed of each method, MAIDRL variants still achieved the 
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highest maximum and lowest standard deviation values, though the decentralized baseline 

claimed the highest minimum and average. 

𝟖𝒎_𝒗𝒔_𝟗𝒎. The 8𝑚_𝑣𝑠_9𝑚 scenario was chosen because it presents an additional level 

of challenge to the 8𝑚 scenario. 8𝑚_𝑣𝑠_9𝑚, unlike the symmetric scenarios I consider, gives a 

considerable advantage to the enemy forces, as they have an extra unit on their side. In order to 

win, a MARL system must demonstrate remarkable micro-management techniques and be able 

to wholly outperform the built-in SC2 game AI to an overwhelming degree. While success in this 

scenario is indicative of a superior methodology, failure is not necessarily indicative of a poor 

methodology. This scenario is used deliberately as an unfair challenge to the tested 

methodologies. This difficulty is reflected universally across each of the tested methods in Table 

4, Figure 30, Figure 31, and Figure 32. Figure 32 clearly indicates that none of the centralized, 

decentralized, nor the MAIDRL methods managed to achieve a peak performance greater than 

11, which is notably lower even than the 25𝑚 maximum of 14. 

 

 
Figure 30. Overall Performance: DenseNet Architecture, 8𝑚_𝑣𝑠_9𝑚. 
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Figure 31. Overall Stability (SD): DenseNet Architecture, 8𝑚_𝑣𝑠_9𝑚. 

 

 
Figure 32. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 8𝑚_𝑣𝑠_9𝑚. 

 

Centralized. The centralized baseline performed comparably to the preceding 

experiments in the 8𝑚_𝑣𝑠_9𝑚 scenario, though with definite decline in terms of overall 

performance, with the highest overall performance peaking near 9. As was the case in the 25𝑚 

scenario, I note that the most significant decline in performance can be seen in regard to the peak 

performance per threshold in Figure 32. Table 4 shows that the centralized method was unable to 

achieve a running average reward greater than 11 in any of the seeds tested. This suggests that 
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the centralized method is incapable of wholly outperforming the built-in SC2 game AI, though it 

does perform admirably given the asymmetry of the scenario. 

Decentralized. The decentralized baseline performed drastically worse than the other 

considered methods in every regard in this scenario, which is interesting as it suggests apparent 

volatility in performance across scenarios. It appears the decentralized method is as likely to 

perform comparably to the centralized method as it is to yield catastrophic failures. This is 

somewhat consistent with the hypothesized expectations of performance, though the potential of 

success appears to be greater than was previously understood, at least with respect to this specific 

environment and set of scenarios. 

MAIDRL. While the performance of the MAIDRL variants also suffered as a whole in 

this scenario, they still performed very comparably to the centralized method, as shown in Figure 

30, Figure 31, and Figure 32. In fact, each MAIDRL variant generally matches the centralized 

curve in each of the metrics considered. This suggests that, while MAIDRL was also incapable 

of wholly outperforming the built-in game AI, it did manage to maintain comparable 

performance to the centralized baseline. As with the 25𝑚 scenario though, it is not immediately 

apparent if MAIDRL can be considered equivalent or better than the centralized method in terms 

of overall performance without statistical analysis. 

 

Statistical Analysis of the Mean Scores 

Centralized versus MAIDRL. Table 5 contains the results of performing Welch's 

Unequal Variances t-test on the averages of the running average episode reward comparing the 

centralized baseline method to the MAIDRL variants, as well as the calculated statistical power 

of the test [71]. I use Welch's t-test in lieu of Student's because of the underlying assumption of 
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Student's t-test that the variances of the samples are equivalent [72]. I note here that the null 

hypothesis used in all of the t-tests in these comparisons is 𝐻0: 𝜇𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 ≤ 𝜇𝑀𝐴𝐼𝐷𝑅𝐿, with 

alternative hypothesis 𝐻𝐴: 𝜇𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 > 𝜇𝑀𝐴𝐼𝐷𝑅𝐿, and 𝛼 = 0.05 as the level of significance. The 

power of the test is representative of the probability that I would accept the alternative 

hypothesis if it were true. 

 

Table 5. Welch’s Unequal Variance t-test with Null Hypothesis 𝐻0: 𝜇𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 ≤ 𝜇𝑀𝐴𝐼𝐷𝑅𝐿 

where 𝜇 is the Average Episode Reward over all Episodes per Seed. 

Scenario Method Test Statistic P-Value Power 

8𝑚 64 × 641 -1.5045 0.9312 0.0001 

 32 × 321 0.2910 0.3860 0.1071 

 16 × 161 0.1013 0.4598 0.0662 

3𝑚 64 × 641 1.6634 0.0507 0.7440 

 32 × 321 -1.9117 0.9697 0.0000 

 16 × 161 -4.4780 1.0000 0.0000 

25𝑚 64 × 641 1.3098 0.0979 0.5663 

 32 × 321 2.5923 0.0071 0.9680 

 16 × 161 1.1923 0.1189 0.5018 

8𝑚_𝑣𝑠_9𝑚 64 × 641 1.2604 0.1062 0.5393 

 32 × 321 1.7636 0.0414 0.7865 

 16 × 161 2.4109 0.0095 0.9544 

1MAIDRL with given MAIM dimensions. 

 

From the table, it is clear that the overall performance of each MAIDRL variant is shown 

statistically to be greater than or equal to that of the centralized baseline in 8𝑚, with each p-

value much larger than any common level of significance, albeit with small powers. 
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Furthermore, this trend continues in the 3𝑚 scenario, with even the poorly performing 64 × 64 

MAIDRL variant demonstrating statistical significance. The 25𝑚 scenario shows that the 

64 × 64 and 16 × 16 MAIDRL variants tested fulfil this same condition, while the 32 × 32 

variant definitively does not come close to my selected level of significance, though I note that it 

is close to the commonly selected 0.01. Finally, the 8𝑚_𝑣𝑠_9𝑚 scenario shows that the 64 × 64 

MAIDRL variant fulfills the condition for statistical significance, the 32 × 32 variant comes 

close to my selected level of significance, and the 16 × 16 variant is very close to the common 

0.01 level of significance. When considering this statistical analysis, I claim that my semi-

centralized MAIDRL method is statistically shown to be capable of matching or outperforming 

the overall performance of a centralized alternative in MAS of varying complexities. 

Decentralized versus MAIDRL. Similar to Table 5, Table 6 contains the results of 

performing Welch's Unequal Variances t-test on the averages of the running average episode 

reward, but Table 6 compares the decentralized baseline method to the MAIDRL variants [71]. I 

note that the null hypothesis in this case is 𝐻0: 𝜇𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 ≤ 𝜇𝑀𝐴𝐼𝐷𝑅𝐿, with alternative 

hypothesis 𝐻𝐴: 𝜇𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 > 𝜇𝑀𝐴𝐼𝐷𝑅𝐿, and 𝛼 = 0.05 as the level of significance to maintain 

consistency. 

Table 6 shows that, even though the decentralized method did manage to perform much 

better than was expected, it did not perform well enough to reject the null hypothesis in almost 

all of the considered comparisons. The only case where the decentralized method is shown to be 

statistically superior to MAIDRL is in the 25𝑚 scenario. It is noteworthy that in every case 

where I do not reject the null hypothesis, the calculated p-values are at least twice as large as my 

selected level of significance, which further supports my claim that MAIDRL is as performant or 

better than a competitive decentralized baseline. 
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Table 6. Welch’s Unequal Variance t-test with Null Hypothesis 𝐻0: 𝜇𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 ≤ 𝜇𝑀𝐴𝐼𝐷𝑅𝐿 

where 𝜇 is the Average Episode Reward over all Episodes per Seed. 

Scenario Method Test Statistic P-Value Power 

8𝑚 64 × 641 -0.5555 0.7097 0.0079 

 32 × 321 1.2752 0.1035 0.5474 

 16 × 161 1.2173 0.1142 0.5156 

3𝑚 64 × 641 -1.2629 0.8935 0.0003 

 32 × 321 -6.2435 1.0000 0.0000 

 16 × 161 -12.4153 1.0000 0.0000 

25𝑚 64 × 641 0.8484 0.1998 0.3187 

 32 × 321 1.8915 0.0316 0.8342 

 16 × 161 0.5822 0.2814 0.2006 

8𝑚_𝑣𝑠_9𝑚 64 × 641 -3.4215 0.9994 0.0000 

 32 × 321 -3.2289 0.9989 0.0000 

 16 × 161 -2.9933 0.9978 0.0000 

1MAIDRL with given MAIM dimensions. 

 

Discussion of Learned Behavior 

While the presented results so far are purely quantitative in nature, it is of interest to 

consider the qualitative perspective of the results as well. To that end, I identified the best 

performing network from each considered method in each scenario and simulated 10 episodes in 

a headed environment using only the trained controller. I found that there were two primary 

strategic components prevalent throughout the observed episodes: prioritized collaborative 

enemy targeting and unhindered unit positioning. Generally, controllers that prioritized agent 

targeting to focus fire on enemy units were victorious much more often than when agent 

targeting was not focused. Additionally, controllers that successfully positioned agents in such a 
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way that all the agents were able to start dealing damage as early as possible with minimal 

extraneous repositioning tended to be successful. The following subsections provide scenario-

specific observations and observations of actors that behaved interestingly compared to others.  I 

found that controllers that learned both prioritized collaborative enemy targeting and efficient 

agent placement tended to perform better than those that demonstrated one or neither. 

8𝑚. I considered both the simple network architecture controllers and the DenseNet 

architecture actors in the 8𝑚 scenario during this evaluation. Comparing the two architectures 

generally, I observed that the DenseNet architecture controllers tended to demonstrate a clearer 

understanding of the scenario and the agents behaved more cohesively overall. Another general 

observation was that the controllers that focused agent fire on a maximum of three enemy units 

at a time tended to be more successful. The decentralized controllers were observed to 

sometimes struggle to target enemy units when the number of enemies was near zero. This is 

surprising, as the surviving agents were close enough the remaining units to observe them with 

the local observations, but still took several time steps to target and eliminate them. GCLA, on 

the other hand, demonstrated an entirely unique strategy from any of the other methods. While 

all other methods moved the controlled army toward the opposing army at the start of each 

episode, GCLA moved the opposite direction and appeared to wait for the SC2 AI army to come 

within firing range. This strategy resulted in poorer agent positioning, however, and ultimately 

was unsuccessful a large majority of the time. The 64 × 64 MAIDRL variant demonstrated 

several episodes of overwhelming the SC2 AI, as shown in Figure 33, where there are 5 

remaining controlled agents and only a single SC2 AI unit, which I note was defeated before any 

more MAIDRL agents were lost. 
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Figure 33. MAIDRL Wholly Overwhelming the Built-in SC2 AI on 8𝑚. 

 

3𝑚. The 3𝑚 observations provided much unexpected insight into the importance of unit 

positioning. While the controllers from each method generally demonstrated an ability to focus 

fire on an individual enemy unit, the most notable change in end-results was apparent when 

observing unit positioning. Due to the smaller number of units in either army, the feat of 

focusing fire had the potential to happen simply because of only a single agent at a time being 

within firing range. As a result, when the controllers managed to arrange the agents in such a 

way that it prompted the SC2 AI to spread their fire across multiple agents, victory was achieved 

almost every time. However, when the controllers did not manage to accomplish positioning the 

units in this way, the outcome of the skirmish was largely up to chance. I observed an instance 

where both armies were reduced to a single marine with 3 hit points going into the last time step 

of the episode, but the SC2 AI managed to deal damage before the controlled agent, resulting in 

a loss. This behavior helps explain the apparent lackluster performance presented in the 

quantitative results as well because near victories such as these are not awarded the winning 

bonus in the reward calculation. The only significantly different behavior occurred when 

observing the decentralized method’s controller, which appeared to be as likely to move the 

controlled agents in apparently random directions as it was to cohesively move the agents toward 
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the enemy force at the start of an episode. Figure 34 illustrates the first actions taken in the 

environment by the controller trained using the decentralized method, and the agents are not 

being directed toward the enemy’s initial position. If anything, this suggests a poor 

understanding of the environment, which is not unexpected given the fully decentralized nature 

of the relevant training.  

 

 
Figure 34. Example of Apparently Random Agent Positioning using Decentralized Method. 

 

25𝑚. A general observation that was made in the 25𝑚 scenario is a general inability of 

the considered methods to position the controlled agents as efficiently as the SC2 AI. The 

centralized method did demonstrate the ability to adjust frontline agent positioning to allow 

agents behind them to get within firing range, but it did not do so consistently or efficiently 

enough to significantly change the course of the battle. An interesting behavior that was 

observed in all episodes regardless of the controller is the initial positioning of the units closest 

to the enemy army. In almost every episode, the 8-10 agents that spawned closest to the enemy 

army are positioned within the enemy firing range before they collectively start shooting. This 

results in the enemies having time to deal considerable damage to the RL-controlled forces 

before the controller issues an attack command. Another interesting observation was made with 

respect to the positioning of units on the skirmish line. Figure 35 shows the skirmish line in a 

sample episode with the currently repositioning units highlighted by a yellow box. This makes it 
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clear to see that the actor is less efficient than the SC2 AI at positioning units in such a way that 

they can contribute to the damage being dealt to the enemies. This was observed in every 

considered methodology and was notably more exaggerated when using a controller that 

demonstrated advanced agent movement cohesion, such as the 64 × 64 MAIDRL variant, which 

was the controller in Figure 35. Interestingly, this behavior is lessened in severity when using the 

decentralized controller, as the agents tend to move less as a cohesive unit and more individually 

to create a larger skirmish line. 

 

 
Figure 35. Comparison of Traveling Units in 25𝑚. 

 

8𝑚_𝑣𝑠_9𝑚. None of the observed episodes from any method managed to defeat the SC2 

AI with the unfair advantage of an extra unit, though the 32 × 32 MAIDRL variant did come 

very close in multiple episodes. This variant managed to reduce the enemy army down to a 

single unit with just under half health remaining, and it demonstrated impressive coordination in 



67 

 

both prioritized targeting and unit positioning, but it still did not quite manage to overcome the 

disadvantage. Figure 36 illustrates one such very close episode. After observing the 8𝑚_𝑣𝑠_9𝑚 

episodes, it seems to be the case that the strategy that must be learned is that of using higher hit 

point agents as a shield to protect low hit point agents to ensure that as much damage is being 

dealt to the enemy as possible for as much time as possible.  

 

 
Figure 36. Nearest Achieved State to 8𝑚_𝑣𝑠_9𝑚 Victory – 21 Remaining Enemy Health Points. 
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CONCLUSION AND FUTURE WORK 

 

In this thesis, I introduced MAIRL and MAIDRL, novel semi-centralized methodologies 

to solve various MARL scenarios using abstracted feature information in the form of MAIMs 

and a robust model architecture inspired by DenseNet. MAIDRL was demonstrated in SMAC 

combat scenarios of varying complexity to be statistically capable of matching or bettering the 

overall performance of comparable centralized and decentralized baselines, even in scenarios 

with large or unfair numbers of agents. MAIDRL also demonstrated significant improvements in 

the overall performance, overall stability, and peak performance shown in some of said 

scenarios, with MAIDRL variants being the top performers by a large degree in both small- and 

medium-scale MARL scenarios. 

While I did not demonstrate full comprehension of all scenarios by MAIDRL, there are 

several aspects can be improved in future work. First, a logical next step would be to incorporate 

the use of convolutional neural networks (CNN) in my network architectures. The MAIM 

representation of features lends itself very well to CNNs and would allow for a more intelligent 

interpretation of the MAIM by the networks. Second, the use of multiple MAIMs to represent 

various features would likely improve agent understanding of influence in the environment. I 

focused on the relative health of the unit as described in the Simple Architecture and MAIRL 

section, but there are other features that could be used as well, e.g., cooldown or possible damage 

per second. Building on these two potential improvements, the application of a 3D CNN that 

might learn the relationship between each of the feature MAIMs would also be interesting. 

Finally, there is need to investigate the generalizability of MAIDRL in heterogeneous scenarios. 
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I demonstrated generalizability in a range of homogeneous scenarios, but I acknowledge that the 

application of MAIDRL in heterogeneous scenarios is a necessary consideration for future work.  
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