
BearWorks BearWorks

MSU Graduate Theses

Summer 2021

MAIDRL: Semi-centralized Multi-Agent Reinforcement Learning MAIDRL: Semi-centralized Multi-Agent Reinforcement Learning

using Agent Influence using Agent Influence

Anthony Lee Harris
Missouri State University, Anthony999@live.missouristate.edu

As with any intellectual project, the content and views expressed in this thesis may be

considered objectionable by some readers. However, this student-scholar’s work has been

judged to have academic value by the student’s thesis committee members trained in the

discipline. The content and views expressed in this thesis are those of the student-scholar and

are not endorsed by Missouri State University, its Graduate College, or its employees.

Follow this and additional works at: https://bearworks.missouristate.edu/theses

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Harris, Anthony Lee, "MAIDRL: Semi-centralized Multi-Agent Reinforcement Learning using Agent
Influence" (2021). MSU Graduate Theses. 3648.
https://bearworks.missouristate.edu/theses/3648

This article or document was made available through BearWorks, the institutional repository of Missouri State
University. The work contained in it may be protected by copyright and require permission of the copyright holder
for reuse or redistribution.
For more information, please contact bearworks@missouristate.edu.

https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/theses
https://bearworks.missouristate.edu/theses?utm_source=bearworks.missouristate.edu%2Ftheses%2F3648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=bearworks.missouristate.edu%2Ftheses%2F3648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bearworks.missouristate.edu/theses/3648?utm_source=bearworks.missouristate.edu%2Ftheses%2F3648&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu

MAIDRL: SEMI-CENTRALIZED MULTI-AGENT INFLUENCE DENSE

REINFORCEMENT LEARNING

A Master’s Thesis

Presented to

The Graduate College of

Missouri State University

TEMPLATE

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science, Computer Science

By

Anthony Lee Harris

July 2021

ii

Copyright 2021 by Anthony Lee Harris

iii

MAIDRL: SEMI-CENTRALIZED MULTI-AGENT INFLUENCE DENSE

REINFORCEMENT LEARNING

Computer Science

Missouri State University, July 2021

Master of Science

Anthony Lee Harris

ABSTRACT

In recent years, reinforcement learning algorithms, a subset of machine learning that focuses on

solving problems through trial-and-error learning, have been used in the field of multi-agent

systems to help the agents with interactions and cooperation on a variety of tasks. Given the

enormous success of reinforcement learning in single-agent systems like Chess, Shogi, and Go, it

is natural for the next step to be the expansion into multi-agent systems. However, controlling

multiple agents simultaneously is extremely challenging, as the complexity increases

tremendously with the number of agents in the system. Existing approaches in this regard use a

wide range of centralized, decentralized, semi-centralized, and even hybrid centralized-

decentralized state representation methodologies. In this thesis, I propose a novel semi-

centralized deep reinforcement learning algorithm, MAIDRL, for multi-agent interaction in

mixed cooperative and competitive multi-agent environments. Specifically, I design a robust

DenseNet-style actor-critic structured deep neural network for controlling multiple agents based

upon the combination of local observations and abstracted global information to compete with

opponent agents. I extract common knowledge through influence maps considering both enemy

and friendly agents for fine-grained unit positioning and decision-making in combat. Compared

to the centralized method, my design promotes a thorough understanding of the potential

influence that a unit has without the need for a complete view of the global state. In addition, this

design enables multi-agent understanding of a subset of the global information relative to

common goals, unlike fully decentralized methods. The proposed method has been evaluated on

StarCraft Multi-Agent Challenge scenarios in a real-time strategy game, StarCraft II, and the

results show that, statistically, the agents controlled by MAIDRL perform better than or as

competitive as those controlled by centralized and decentralized methods.

KEYWORDS: deep reinforcement learning, A2C, DenseNet, multi-agent system, influence

map, StarCraft II, SMAC, MAIRL, MAIDRL

iv

MAIDRL: SEMI-CENTRALIZED MULTI-AGENT INFLUENCE

DENSE REINFORCEMENT LEARNING

By

Anthony Lee Harris

A Master’s Thesis

Submitted to the Graduate College

Of Missouri State University

In Partial Fulfillment of the Requirements

For the Degree of Master of Science, Computer Science

July 2021

Approved:

Siming Liu, Ph.D., Thesis Committee Chair

Razib Iqbal, Ph.D., Committee Member

Jamil Saquer, Ph.D., Committee Member

Anthony Clark, Ph.D., Committee Member

Julie Masterson, Ph.D., Dean of the Graduate College

In the interest of academic freedom and the principle of free speech, approval of this thesis

indicates the format is acceptable and meets the academic criteria for the discipline as

determined by the faculty that constitute the thesis committee. The content and views expressed

in this thesis are those of the student-scholar and are not endorsed by Missouri State University,

its Graduate College, or its employees.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Razib Iqbal for setting me on the path of graduate research, and

Dr. Siming Liu for his tremendous guidance and insights throughout my graduate studies. Their

rigor and dedication to their crafts have been an inspiration that has pushed me to strive for

nothing short of excellence in this work. Additionally, I extend my thanks to Dr. Jamil Saquer

and Dr. Anthony Clark for serving on my thesis committee in addition to Dr. Liu and Dr. Iqbal.

These four incredible professors have taught me a tremendous amount in my time at Missouri

State University, and I am immensely grateful.

I would also like to thank my father, Rodger Harris, and grandparents, Mae Lynd and

Jackie Morgan, whose unending auxiliary support has made all my studies possible. Their

willingness to go out of their way to support me in whatever ways they could is something I will

never forget. Finally, it is with utmost gratitude that I thank my wife and best friend, Staci Lunn,

for her infinite patience and overwhelming support during the entirety of my studies. Words

cannot express how proud and happy I am to have her by my side. I am humbled and grateful to

have had such a phenomenal group of individuals to depend upon, and I could not have made it

this far without each of them.

This thesis is dedicated to my sons Aiden and Alexander Harris. I am so immensely proud of you

both, and I hope that this serves as a reminder that you can achieve anything in this life. I look

forward to many more years of laughter and games with you and mom, and I love you both more

than I can possibly express.

vi

TABLE OF CONTENTS

Introduction 1

Background 6

Supervised Learning 6

Unsupervised Learning 7

Reinforcement Learning 7

Foundations of Reinforcement Learning 8

Traditional Reinforcement Learning Algorithms 13

Extending Traditional Reinforcement Learning 16

Related Work 17

Simulation Environment 25

Methodology 31

General Experimental Features 31

Advantage Actor Critic (A2C) 33

Simple versus Dense A2C 34

Centralized versus Decentralized 35

Semi-centralized with Multi-Agent Influence Maps (MAIM) 36

Results and Discussion 41

Simple Architecture and MAIRL 41

DenseNet Architecture and MAIDRL 44

Generalizability of MAIDRL 49

Statistical Analysis of the Mean Scores 59

Discussion of Learned Behavior 62

Conclusion and Future Work 68

References 70

vii

LIST OF TABLES

Table 1. Sample ε Values at Various Environmental Steps. 32

Table 2. Peak Performance Across all Seeds with Simple Architecture. 42

Table 3. Peak Performance Across all Seeds: DenseNet Architecture – Initial Results. 44

Table 4. Peak Performance Across all Seeds: DenseNet Architecture – Extended Results. 50

Table 5. Welch’s Unequal Variance t-test Comparing Centralized to MAIDRL. 60

Table 6. Welch’s Unequal Variance t-test Comparing Decentralized to MAIDRL. 62

viii

LIST OF FIGURES

Figure 1. Sample Game Screenshots from the Arcade Learning Environment. 2

Figure 2. The Agent-Environment Interaction in RL. 8

Figure 3. The Actor-Critic Architecture. 18

Figure 4. BiCNet Architecture Visualization. 21

Figure 5. Outline of a Monte-Carlo Tree Search. 23

Figure 6. Sample Influence Map Representation from Liu, Louis, and Nicolescu’s Work. 24

Figure 7. Sample SMAC Scenarios. 26

Figure 8. The SMAC Sight and Shooting Range, shown by the Cyan and Red Circles. 27

Figure 9. SMAC's 3m Scenario, with 3 Marines on Each Team. 29

Figure 10. SMAC's 8m Scenario with 8 Marines on Each Team. 29

Figure 11. SMAC's 25m Scenario with 25 Marines on Each Team. 29

Figure 12. SMAC's 8m_vs_9m Scenario with 9 Marines Controlled by the Built-in SC2 Elite AI. 30

Figure 13. Example of a DenseNet-style grouping of 𝑛 128-neuron layers. 35

Figure 14. Sample AIM Heatmap with Cell Values. 37

Figure 15. Sample MAIM and In-Game at Time Step 1. 39

Figure 16. Sample MAIM and In-Game at Time Step 6. 39

Figure 17. Sample MAIM and In-Game at Time Step 17. 40

Figure 18. Overall Performance: Simple Architecture, 8𝑚. 43

Figure 19. Overall Stability (SD): Simple Architecture, 8𝑚. 43

Figure 20. % of Seeds with Peak Performance ≥ Thresholds: Simple Architecture, 8𝑚. 43

Figure 21. Overall Performance: DenseNet Architecture, 8𝑚. 45

Figure 22. Overall Stability (SD): DenseNet Architecture, 8𝑚. 45

Figure 23. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 8𝑚. 45

Figure 24. Overall Performance: DenseNet Architecture, 3𝑚. 51

ix

Figure 25. Overall Stability (SD): DenseNet Architecture, 3𝑚. 51

Figure 26. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 3𝑚. 52

Figure 27. Overall Performance: DenseNet Architecture, 25𝑚. 55

Figure 28. Overall Stability (SD): DenseNet Architecture, 25𝑚. 55

Figure 29. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 25𝑚. 55

Figure 30. Overall Performance: DenseNet Architecture, 8𝑚_𝑣𝑠_9𝑚. 57

Figure 31. Overall Stability (SD): DenseNet Architecture, 8𝑚_𝑣𝑠_9𝑚. 58

Figure 32. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 8𝑚_𝑣𝑠_9𝑚. 58

Figure 33. MAIDRL Wholly Overwhelming the Built-in SC2 AI on 8𝑚. 64

Figure 34. Example of Apparently Random Agent Positioning using Decentralized Method. 65

Figure 35. Comparison of Traveling Units in 25𝑚. 66

Figure 36. Nearest Achieved State to 8𝑚_𝑣𝑠_9𝑚 Victory – 21 Remaining Enemy Health Points. 67

x

LIST OF EQUATIONS

Equation 1. Discounted Reward Calculation. 9

Equation 2. State Value Function Definition. 10

Equation 3. Action Value Function Definition. 10

Equation 4. Monte-Carlo State Value Function Update. 11

Equation 5. Iterative Policy Evaluation State Value Function Update. 12

Equation 6. Single Step Temporal Differencing State Value Function Update. 12

Equation 7. Q-Learning Action Value Function Update. 14

Equation 8. Sarsa Action Value Function Update. 14

Equation 9. Generic Policy Gradient Calculation for Parameters θ. 16

Equation 10. StarCraft Multi-Agent Challenge Default Reward Function. 27

Equation 11. ε Calculation for Time Step t. 32

Equation 12. Actor Parameter Gradient Calculation. 34

xi

LIST OF ALGORITHMS

Algorithm 1: Create and Update Agent Influence Map. 36

xii

LIST OF ABBREVIATIONS

Abbreviation Definition

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

AC Actor-Critic

AI Artificial Intelligence

AIM Agent Influence Map

ALE Arcade Learning Environment

BC Behavioral Cloning

BRNN Bidirectional Recurrent Neural Network

CNN Convolutional Neural Network

DDPG Deep Deterministic Policy Gradient

DNN Deep Neural Network

DP Dynamic Programming

DQN Deep Q-Network

DRL Deep Reinforcement Learning

ELU Exponential Linear Unit

GA Genetic Algorithm

GCLA Global Critic - Local Actor

IM Influence Map

MADDPG Multi-Agent Deep Deterministic Policy Gradient

PS-MAGDS Parameter-Sharing Multi-Agent Gradient Decent Sarsa

MAIDRL Multi-Agent Influence Dense Reinforcement Learning

MAIM Multi-Agent Influence Map

MAIRL Multi-Agent Influence Reinforcement Learning

xiii

MARL Multi-Agent Reinforcement Learning

MAS Multi-Agent System

MDP Markov Decision Process

ML Machine Learning

MOBA Multiplayer Online Battle Arena

NN Neural Network

NP NumPy

PF Potential Field

PPO Proximal Policy Optimization

RL Reinforcement Learning

RRL Relational Reinforcement Learning

SAC Stochastic Actor-Critic

SARSA State, Action, Reward, State, Action

SC2 StarCraft II

SC2LE StarCraft II Learning Environment

SCC StarCraft Commander

SCDDPG Semi-Centralized Deep Deterministic Policy Gradient

SD Standard Deviation

SL Supervised Learning

SMAC StarCraft Multi-Agent Challenge

TCLA Total Critic - Local Actor

TD Temporal Difference

TF Tensorflow

TRPO Trust Region Policy Optimization

UL Unsupervised Learning

INTRODUCTION

Artificial Intelligence (AI) has made enormous progress in many aspects of our world in

recent decades. The rapid evolution in AI has enabled the high performance of a variety of tasks

including robotics, autonomous driving, and game playing. Particularly in game playing, AI has

reached human-level performance or even outperformed the best human experts [1]-[5].

However, the majority of the achievements of AI have been in single-agent circumstances, where

collaboration and competition among agents are unnecessary [2], [4], [6], [7]. Meanwhile, there

are a large number of applications that involve interaction between multiple agents that are

naturally modeled as cooperative or competitive multi-agent systems (MAS). For example,

coordination of self-driving vehicles, multi-robot control, and multiplayer games all operate in a

multi-agent domain. Among many AI techniques, reinforcement learning (RL) has been

considered one of the most promising methods in the past several years [8]. In this thesis, I am

interested in investigating how to expand RL effectively to learn interactions among agents in

MAS.

The recent development of deep neural networks (DNN) combined with improved

computational capability has led to considerable progress in RL, with many RL methods being

expanded into deep RL (DRL). One traditional RL method that has experienced significant

success is Q-Learning. A major limitation of Q-Learning is the inherent need to build a table of

mappings from state-action pairs to calculated action values [9]. This poses a significant

scalability issue in that, as the complexity of the state space grows, the number of possible state-

action pairs grows exponentially, leading to the requirement of exponentially larger amounts of

memory. The introduction of DNNs into this method spawned a new learning method called

2

Deep Q-Networks (DQN), which effectively resolved the curse of dimensionality with respect to

memory consumption by instead using a DNN as a function approximator to approximate the

expected action value function [6], [7].

Another contributor to the rapid growth of DRL in both single-agent and multi-agent RL

(MARL) scenarios has been the development of widely available simulation environments such

as the Arcade Learning Environment (ALE) introduced by Bellemare et al. in [10], which uses

various Atari games as a platform for learning, Malmo by Johnson et al. in [11], which similarly

uses Minecraft as a platform, the StarCraft II Learning Environment (SC2LE) by Vinyals et al. in

[12], and the StarCraft Multi-Agent Challenge (SMAC) by Samvelyan et al. in [13], each of

whom are deployed in StarCraft II (SC2) environments. A sample of screenshots from the ALE

can be seen in Figure 1, where the games Pitfall!, Space Invaders, Freeway, and SeaQuest are

shown from left to right. Video games, particularly those with research-oriented tools and

environments like those aforementioned, allow researchers to perform hundreds or even

thousands of experiments in parallel. This is particularly valuable as RL is generally a learn

through experience methodology. Unfortunately, solving MAS problems with traditional RL is

non-trivial. Extending RL to enable cooperation and competition among agents is critical to

building artificially intelligent systems in multi-agent environments.

Figure 1. Sample Game Screenshots from the Arcade Learning Environment [10].

3

There are many challenges in scaling up RL into MAS. One of the primary challenges of

MARL is that the traditional RL techniques like Q-Learning and policy gradient do not

generalize well to MAS. This is evident when considering the state of the MAS from the

perspective of an individual agent. The actions of this agent can be perceived to have non-

stationary impacts in the environment as a direct result of the actions of other agents. This leads

to significant stability issues, as well as the limitation of applicable stability enhancing

techniques such as experience replay. Furthermore, MAS themselves introduce additional layers

of complexities. For example, in cooperative MAS, agents must be able to act as a coordinated

unit which requires an understanding of the agents with whom they are cooperating. This

challenge in particular has been the focus of much research. A common starting point is to utilize

complete state information to train agents. This technique, commonly referred to as centralized

learning, provides each agent with perfect environmental information regarding both the agent's

local observations and the state observations on a global scale.

Many MAS, however, try to avoid the use of such perfect information as it may not be

available during execution. Such work has led to decentralized learning, which only provides an

agent with its local observations. This decentralized method, while more widely applicable in

practice due to the lack of dependence upon global information, generally struggles to

understand global objectives, leading to lackluster performance in many cases. This has been

improved somewhat by the introduction of the hybrid centralized learning, decentralized

execution as presented by Foerster et al. and Lowe et al. in [14], [15]. In response to the

aforementioned challenges, there has been much work regarding an intermediate technique

called semi-centralized learning [8]. Semi-centralized learning can be applied in various ways,

but it largely revolves around the representation or provision of global information in an

4

imperfect way that is more generalizable to scenarios where perfect information may be

otherwise unavailable. An example of a semi-centralized MARL technique is the Semi-

Centralized Deep Deterministic Policy Gradient (SCDDPG), which creates a 2-level hierarchical

structure of AC networks, one of which is provided only with local agent observations while the

other is provided with global observations, and both of which are then used to provide varying

levels of information granularity to the agents [8]. How to use global information with macro-

level control has been arguably solved in the context of SC2 by Vinyals et al. with AlphaStar in

[3] and Wang et al. with StarCraft Commander in [5], however, the question of how to use global

information for fine-grained decision making is still open.

My response to the above question is the novel definition and application of Agent

Influence Maps (AIM), aggregated into a global Multi-Agent Influence Map (MAIM), which is

used in addition to local agent observations for fine-grained decision-making. By abstracting a

subset of the perfect global information into an incomplete but descriptive representation, I

demonstrate a significant improvement over centralized, decentralized, and hybridized methods.

I evaluate the applicability of MAIMs by defining a simple artificial Neural Network (NN) that

contains only a single hidden layer and comparing the results of MAIM state representation to

centralized and decentralized alternatives, with no additional changes. This use of semi-

centralized MAIM state representation is defined as a new learning paradigm that I coin as

Multi-Agent Influence Reinforcement Learning (MAIRL), which is a preliminary contribution of

my work. This novel MAIRL method is then applied with a DenseNet-style model architecture

to improve the robustness and capability of the system. The DenseNet-style model architecture

was chosen because it has been shown to handle the exploding and vanishing gradient problems

of DNNs in a more memory-efficient manner than the comparable ResNet structure [16], [17].

5

The specifics of my DenseNet-style architecture implementation can be found in the Simple

versus Dense A2C section on page 34. To my knowledge, the application of DenseNet-style

architectures has only ever been done in the context of Convolutional Neural Networks (CNNs)

in image classification [16], [18], [19] optical flow prediction [20], or even in keyword

identification [21], but my work currently benefits from this architecture using simple Dense

layers, making this application somewhat novel as well. I define this combined use of MAIRL

and DenseNet-style model architectures as the logical extension of the aforementioned learning

paradigm, which I present as Multi-Agent Influence Dense Reinforcement Learning (MAIDRL),

and it is the primary contribution of my work. MAIRL and MAIDRL are evaluated on StarCraft

Multi-Agent Challenge (SMAC) [22] scenarios in a real-time strategy game, SC2. The results

show that, statistically, the agents controlled by MAIDRL perform better than or as well as those

controlled by centralized and decentralized methods in SMAC scenarios of varying complexity.

The remainder of this thesis is organized as follows: the Background section introduces

various concepts regarding machine learning, with emphasis on RL, while the Related Work

section introduces some of the relevant RL techniques that have been shown to perform well in

RL and MARL scenarios. The Simulation Environment section provides a detailed description of

the environment that was used in my experimentation, and the Methodology section provides

detailed information regarding said experimentation. The Results and Discussion section

subsequently presents the results from my experimentation, as well as the observed behaviors

that were learned by the various considered methodologies, and the Conclusion And Future

Work section draws the conclusions and suggests future works.

6

BACKGROUND

Machine learning (ML) is a subset of AI and is defined to be the use of computational

methods to better predict future information based upon historical data [23]. The primary

components of ML methods can be categorized into any one of three broad categories, with

many advanced ML methods using some combination of the three: supervised learning (SL),

unsupervised learning (UL) and reinforcement learning (RL) [24], each of whom are discussed in

the following subsections.

Supervised Learning

SL is an incredibly powerful methodology and is defined as the process of identifying

some function 𝑓 that maps some set of inputs 𝑋 to a corresponding set of target outputs 𝑌, such

that a minimum amount of cost or risk is accrued [23]. The cost or risk is often problem-

dependent, and it determines the efficacy of the resulting feature mapping. As the amount of

available labeled data grows, so too does the power of SL, because the data, as well as the

learned function mapping inputs to outputs, grows more representative of the complete

distribution of all possible input-output pairs, which in turn leads to better generalizability to

pairs that have not been encountered before. SL can also be supplementary to RL by being used

as a warm-start solution to provide insights more quickly and efficiently to RL agents via

supervised means. This method is referred to as behavioral cloning, or imitation learning [25].

SL is the most commonly used methodology in classification, regression, and ranking problems

[23], but it has a major limitation: data dependency. SL, while preferrable if possible, is only

possible when labeled data is readily available, and there are many cases when it is not.

7

Unsupervised Learning

When there exists some feature set of inputs, but no known corresponding labeled output

set, UL is used in lieu of SL. UL is the process of using an unlabeled set of feature data to draw

conclusions about the entire feature space, and is most often used in clustering, which is the UL

equivalent of categorization [23]. Clustering is the attempt to identify commonalities amongst

subsets of the inputs such that the inputs within a cluster are logically similar to those within the

same cluster, while also remaining distinct and separable from those in other clusters. Due to the

uncertainty of the determined clusters relative to the true categories, however, it is challenging to

truly define the efficacy of UL methods, though some metrics such as the Silhouette score [26]

have been defined to provide some insight to the quality of the determined clusters. Like SL,

however, UL still maintains dependency upon the availability of feature data, albeit without the

dependence upon the corresponding labels. As such, UL is only viable in scenarios where this

feature data is available.

Reinforcement Learning

RL, unlike SL and UL, is wholly non-reliant upon the availability of data. Rather, RL is a

goal-directed learning methodology that learns through interaction in an environment, instead of

pre-existing data [9]. This definition then shifts the dependency from data availability to

interactability in an environment, which can be considered as the process of generating the data

or experience that is then used to make insights about future interactions. An important

distinction between RL and other types of ML is that RL learns through interaction evaluation

based upon the results of the interaction, rather than by considering a “correct” action [9]. This

process is similar to the way in which we might consider living creatures learn in reality. For

8

example, when a child is first learning how to walk, they might stumble and fall hundreds of

times simply exploring what they can do with the tools at their disposal in the environment

around them, rather than learning from what is necessarily correct. Given enough time though, a

child eventually identifies patterns in their actions that ultimately lead to the ability to walk.

Admittedly, there numerous other factors at play in this example, such as the child potentially

observing intelligent behavior from other individuals in the environment, but the core concept

remains.

Foundations of Reinforcement Learning

As my work is in the field of RL, I will now introduce various components and

methodologies of traditional RL in detail. Figure 2 provides a high-level overview of the agent-

environment interactions in RL. To contextualize this figure with the preceding example, one

would consider the child to be the agent in the environment, which would be the world around

said child. The state then is simply the observed condition of the world around the child at a

given time step, and the action taken by the child is simply how the child interacted with the

world given the state of the environment at the given time step. Finally, the reward could be

considered to be distance traveled via bipedal means.

Figure 2. The Agent-Environment Interaction in RL [9].

9

Formally, the learner or decision-maker is called the agent, while everything outside the

agent is referred to as the environment. Scenarios such as these are most commonly modeled to

Markov Decision Processes (MDP) [9], [27], [28]. MDPs are non-deterministic search problems

where the outcome of an action at a state is independent from preceding states and results in

some numerical reward 𝑟 and new state 𝑠′ and can be represented as a 4-tuple (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛,

𝑟𝑒𝑤𝑎𝑟𝑑, 𝑠𝑡𝑎𝑡𝑒′), or, more concisely, (𝑠, 𝑎, 𝑟, 𝑠′) [28]. For every given state 𝑠, the agent acts

according to a policy 𝜋 which is a mapping from state to probabilities of selecting each possible

action, denoted as 𝜋(𝑎|𝑠). RL methods define how this policy is updated based upon the agent’s

experience, and the goal overall is simply to maximize the expected return over some number of

steps [9]. The utility or expected value of a state is defined to be sum of the discounted reward

for each time step as shown in Equation 1, where 𝛾 is the discount rate which fulfills the

condition 0 ≤ 𝛾 ≤ 1, 𝑅 is the reward received in the time steps following the current time step 𝑡,

𝑘 is the number of time steps into the future being considered, and 𝑇 is the terminal time step.

Simply put, the discount rate determines the current value of future rewards, where the value of

the future reward is only 𝛾𝑘−1 times what it would be immediately worth [9]. This process

occurs at each time step until the MDP reaches a problem-specific terminal state, and the

sequence of transitions from the initial state to the terminal state is referred to as an episode.

𝐺𝑡 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

𝑇−𝑡−1

𝑘=0

(1)

The large majority of RL methodologies depend upon value functions, defined to be

functions of states or state-action pairs, to determine the expected utility or potential usefulness

of being in a state or taking an action in a given state. These functions are defined using the

10

agent’s policy, as well as the discounted reward calculation 𝐺𝑡 shown in Equation 1. Equation 2

and Equation 3 show the state value and action value functions for policy 𝜋, respectively [9]. I

note that the state value function is often referred to as the 𝑉 value function, whereas the action

value function is similarly referred to as the 𝑄 value function.

 𝑉𝜋(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠] (2)

 𝑄𝜋(𝑠, 𝑎) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3)

The 𝑄 and 𝑉 value functions may be approximated through agent experience. In the case

of Monte-Carlo methods, an agent may keep an average received reward for each action in each

visited state, which would result in 𝑄 converging to the true action-value for each action as the

number of times that a state is visited approaches infinity. Similarly, 𝑉 converges to the true

state-value under the same conditions, without considering individual actions. Equation 4

provides a simple example of an every-visit Monte-Carlo state value function update, where 𝛼 is

the step-size parameter, often referred to in modern ML methods as the learning rate. As the

number of states grows large though, 𝑄 and 𝑉 are more efficiently defined as parameterized

functions, where the parameters are tuned to reflect the actual values more closely in each case.

The inherent exponential increase in the number of possible states relative to the number of state

variables is referred to as the “curse of dimensionality” [29], and it is a problem that is solved to

a large degree with the parameterized variants of the 𝑄 and 𝑉 value functions. The introduction

of parameterized 𝑄 and 𝑉 value functions also brings to bear the introduction of a means of more

efficiently guiding the parameters to the optimal state: experience replay. Experience replay is

simply a methodology that stores the experiences that an agent obtains while interacting in the

11

environment in a data structure that is often called a replay memory. The experiences stored

therein are then revisited periodically to improve the long-term stability of the agent and reduce

the likelihood of an agent needing to revisit previously explored experiences in real-time. This

helps prevent what is often referred to as catastrophic forgetting, which is the result of

parameters being tuned in a way that is poorly representative of the experiences gained in earlier

episodes due to the prevalence of potentially contrary more recent experiences [30].

 𝑉(𝑆𝑡) = 𝑉(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)] (4)

Some RL methodologies use a fourth component in addition to the states, actions, and

rewards. This additional component is called the model of the environment, and it allows for

inferences to be made regarding the ways in which the environment is expected to behave. In

most model-based RL methodologies, the model comprises of an explicit transition and reward

function, denoted as 𝑇(𝑠, 𝑎, 𝑠′) and 𝑅(𝑠, 𝑎, 𝑠′), respectively. The transition function 𝑇 is logically

equivalent to the probability of the state 𝑠′ occurring, given the state-action pair (𝑠, 𝑎) [28].

Methodologies such as these are generally referred to as dynamic programming (DP)

methodologies, and they are unique from many other approaches in that they bootstrap their

updates. That is, the updates to the value functions are determined in part by the current

approximations of the value function in a future time step. This update process is shown in

Equation 5 by using the Bellman equation [27] for 𝑉 as an update rule, and it is called iterative

policy evaluation [9]. In iterative policy evaluation, the value of a given state 𝑆𝑡 is determined by

the largest expected value at the state 𝑆𝑡+1, assuming that the optimal action is taken. Simply put,

DP methods simulate the entire episode using the environmental model and specified reward

12

discount rate to identify the best course of action to take. Model-based methods like DP are not

as widely used as their model-free counterparts, however, because of their dependence upon a

perfect model of the environment, as well as their tremendous computational expense as the

complexity of the environment grows large.

 𝑉(𝑆𝑡) = 𝑚𝑎𝑥
𝑎

𝐸[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5)

One of the most powerful and novel foundational methodologies available in RL is

temporal-difference (TD) learning, which combines the ideas of learning from raw experience as

in Monte-Carlo methods and updating estimates in part on other estimates as in DP methods [9].

TD methods have the advantage over DP methods in that they are not dependent upon perfect

understanding of the environment, and they have the advantage over Monte-Carlo methods in

that they are able to update in an online manner without the need to wait for the full completion

of an episode. Equation 6 demonstrates the state value function update method used in a simple

single-step TD method, known as TD(0) [9]. In short, the most significant difference between the

TD update method and the Monte-Carlo update method in Equation 4 is that the targets are

𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) and 𝐺𝑡, respectively.

 𝑉(𝑆𝑡) = 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)] (6)

One of the challenges present in RL that is not present in other forms of ML is the need

for a balance between exploration and exploitation. That is, RL agents must use the experiences

that they have gained in their interactions within the environment to maximize the reward

13

received, but in order to exploit in this way they must first discover the actions that yield

desirable rewards through exploration. There are two significant algorithms that are used in this

regard: 𝜀-greedy and softmax. These algorithms are often referred to as behavior policies

because they are distinct from the agent target policy 𝜋, but they are used to define the way in

which an agent behaves [9]. These behavioral policies may be used in both on- and off-policy

RL algorithms. I note here that the difference between on- and off-policy algorithms is that on-

policy algorithms update the action values by considering the action value of the next state given

by the current policy, while off-policy algorithms update using a greedy approach to the

considered action in the next state. In 𝜀-greedy, the variable 𝜀, which represents the probability

of taking a uniformly selected random action in the environment, is initialized to a value between

0 and 1 and is then decayed over time to some specified minimum value. As is suggested by the

“greedy” portion of the name, when the agent does not take a random action, it instead takes

what is currently defined to be the optimal action as determined by the policy. The softmax

behavioral policy, however, is more exploitative in nature in that it takes a random action where

the likelihood of an action being taken is the proportion of the action value relative to the sum of

the values of all other valid actions, though this still allows for exploration.

Traditional Reinforcement Learning Algorithms

With an understanding of the foundation of RL, it is now possible to introduce and

discuss some of the most iconic traditional RL algorithms: Q-Learning [31], Sarsa [32], and

Policy Gradients [33]. Each of these algorithms have been instrumental in the advancement of

RL and are the inspiration or foundation of many currently state-of-the-art RL algorithms [14],

[6], [4]. I note though that each of these algorithms in isolation scale poorly to MAS, due to the

14

inherent assumption of action value stationarity, which is the assumption that an action taken in

the environment will yield a stationary reward.

Q-Learning. Q-Learning was introduced in 1989 by Watkins and Dayan, and is

considered to be one of the most important breakthroughs in RL [31], [9]. Q-Learning is an off-

policy TD control algorithm that effectively removed the explicit reliance upon the policy in the

training process. The policy still determines the way in which the state-action pairs are visited,

but the analysis and proof of convergence process is made significantly simpler without the

explicit consideration of the policy itself. All that is required for convergence is the continued

updates of the state-action pairs. Equation 7 shows the action value function update logic, and I

note that it is remarkably similar to that of the original TD learning state value function update

logic [9].

 𝑄(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] (7)

Sarsa. Sarsa, short for State, Action, Reward, State, Action [32], [9], is a slightly

modified version of Q-Learning. Sarsa is also one of few RL methodologies that use a 5-tuple in

lieu of a 4-tuple, as it also considers the action in time step 𝑡 + 1. Simply put, Sarsa is the on-

policy equivalent of Q-Learning, which can be seen in Equation 8. Note that the only difference

in the update logic is the target. Where Q-Learning uses the greedy action determined by

𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) in action selection, Sarsa chooses an action based upon the current policy.

 𝑄(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)] (8)

15

Policy Gradients. Unlike Q-Learning and Sarsa, policy gradient methods are strictly

associated with the parameterized state and action value functions, though I note again that both

Q-Learning and Sarsa are capable of being implemented with such parameterization, with

variants like DQN [6], [7] and deep Sarsa [34]. I note here that policy gradients as they are

known today are improvements made upon the general REINFORCE category of RL algorithms

introduced in [35]. The appeal of policy gradients is that they provide an inherent

generalizability that was not offered in either Q-Learning or Sarsa. Both Q-Learning and Sarsa

are tabular, meaning that they store state and/or action values given some state-action pair in a

table, and then update the values for the respective pair in each visit. This is undesirable, as it is

more challenging to make intelligent decisions on states that have not been visited before. As

such, researchers explored the concept of state and action function approximators in the form of

parameterized state and action value functions, which promotes generalizability. Often, policy

gradient methods such as these simply treat the weights of a NN as the parameters being tuned

by the parameterized state and action value functions. The gradient of the achieved rewards

relative to these parameters is then calculated such that the changes made to the parameters result

in the most rapid improvement in a policy’s performance. With respect to the core logic of policy

gradient methods, the only major change in the underlying traditional RL method is the way in

which the policies are updated. Unlike the very simple update rules shown in Equation 7 and

Equation 8, Equation 9 shows the more complicated calculation for the gradient of the

parameters 𝜃 where 𝜌 is a specified reward assignment calculation and 𝑑 is the stationary

distribution of states under the policy 𝜋, which is assumed to be independent of the initial state of

all policies [33].

16

 𝜕𝜌

𝜕𝜃
= ∑ 𝑑𝜋(𝑠)

𝑠

∑
𝜕𝜋(𝑠, 𝑎, 𝜃)

𝜕𝜃
𝑎

𝑄𝜋(𝑠, 𝑎, 𝜃)
(9)

Extending Traditional Reinforcement Learning

Given the aforementioned foundations of RL, as well as the core algorithms that have

been built upon them, it is important to consider how the boundaries of RL have been expanded

by my predecessors in the RL research community, such as the expansion of Q-Learning into the

deep learning space with DQN. The following chapter fulfils this role, as it considers the novel

ways in which these foundational algorithms have been expanded upon in both single- and multi-

agent systems.

17

RELATED WORK

Extensive studies have been performed on applying different variants of RL algorithms to

controlling agents in both single-agent systems and cooperative and competitive MAS. The DQN

method that improved upon Q-Learning has been further improved in recent years, with

improvements such as stabilized memory replay with prioritized replay memory sampling which

more efficiently tunes the network parameters by retraining on state-action pairs that are deemed

valuable to the overall performance of the agent as shown by Schaul et al. in [36]. Concurrently,

Nair et al. used parallel learning with a distributed network and replay memory to spread the

burden of learning across multiple instances of a simulation, effectively increasing the rate at

which agents learn [37]. Policy over-estimation reduction was introduced by Van Hasselt, Guez,

and Silver with double DQN which strove to create more intelligent value estimations by

decomposing the action selection into action selection and action evaluation [38], while dueling

DQNs were introduced by Wang et al. to improve state value estimation via creative use of

network architectures to allow for simultaneous updates of both state and action value function

parameters [39]. Policy gradients, on the other hand, have been improved with higher sampling

efficiency techniques introduced by Dong et al. in [40], leading to a decrease in training times by

combining the benefits of model-free and model-based RL with a Gaussian process that creates a

system model capable of generating supplementary off-policy samples to enrich the on-policy

experience pool.

Konda et al. introduced the Actor-Critic (AC) algorithm that combines value-based and

policy-based learning methods by utilizing the best features of both Q-Learning and policy

gradients [41]. In this algorithm, the actor network is used to estimate the best action(s) to take

18

by approximating the action value function, whereas the critic network is used to approximate

the state value function. Figure 3 shows this architecture graphically and illustrates that the critic

is trained using TD and linear approximation and is then used to provide an approximate gradient

to the actor during training. This method is often referred to as Stochastic Actor-Critic (SAC), as

the policy is represented as a parametric probability distribution, where the parameters refer to

the network weights [41].

Figure 3. The Actor-Critic Architecture shown in [9].

This method has been adopted and improved widely in the DRL community, with

numerous variants such as deep deterministic policy gradient (DDPG), which applied target

network to expand the AC learning process into deterministic methodologies by utilizing a

distinct stochastic behavior policy to approximate a true deterministic policy [42]. This is an

important success in the field of RL, as a deterministic policy gradient was previously considered

to be non-existent, at least without the use of the transition probability distribution, which is not

considered in model-free algorithms such as AC [43]. DDPG and its variants have been shown to

19

yield considerable success in real-time strategy scenarios such as StarCraft [44]. Xie and Zhong

expanded the DDPG algorithm into semi-centralized DDPG (SCDDPG) which utilized two-level

AC structures to process local observations and global information to help the agents with

interactions and cooperation in StarCraft combat [8]. Lowe et al. utilized DDPG in MARL

scenarios and introduced Multi-Agent DDPG (MADDPG) [15] which showed promising results

by developing cooperation and competition amongst agents via inter-agent policy approximation

in the Grounded Communication environment [45].

In addition to the deterministic AC variants, Mnih et al. built upon SAC and proposed

Advantage Actor-Critic (A2C), which improves the learning curve of SAC by considering the

advantage of taking an action over another simply by considering the difference in the estimated

reward calculated by the critic and the actual reward received at any given timestep [46]. In the

same work, Mnih et al. also introduce Asynchronous Advantage Actor-Critic (A3C), which

builds upon the benefits of A2C by running multiple instances of the simulation in parallel and

then averaging the network weights across all instances to reduce the overall training time and

increase the learning efficiency. Both of these variants have shown significant improvements

over the standard SAC and many other traditional RL methods [46]. The AC family of

algorithms has also been combined with Monte-Carlo Tree Search by Silver et al. showing

remarkable success in AlphaGo [2], which was able to defeat 18-time Go world champion Lee

Sedol, 4 games to 1, a feat which was previously believed to be at least a decade away [47].

Silver et al. then further built upon this success with AlphaZero, which learned only from self-

play in lieu of human play, and outperformed AlphaGo in a matter of days [4]. AC algorithms

have also been explored in tandem with centralized learning, decentralized execution techniques

by Foerster et al. in StarCraft [14]. My work differs from Foerster et al.'s work in that I focus

20

primarily on representing the global information in an abstracted way and using robust network

architectures to improve performance as opposed to providing the critic with direct global feature

input, though I do compare the results of MAIDRL to that of a centralized learning,

decentralized execution method. Furthermore, one of the primary contributions of Foerster et

al.’s work is their definition of a counterfactual multi-agent baseline that aims to improve upon

the way in which A2C learns by computing agent-specific advantages that consider the

advantage of taking an action over a given default action [14].

In the MARL spectrum specifically, algorithms such as the Bidirectionally Coordinated

Network (BiCNet), introduced by Peng et al. and shown in Figure 4, have shown that using a

vectorized extension of the AC family can perform well with arbitrary numbers of agents being

considered [48]. This work is interesting in that they use a centralized Bi-directional Recurrent

Neural Network (BRNN) [49] in their AC architecture, which is then used to represent

communication between the agents in the environment. Schulman et al. improved the way in

which DRL models learn with the introduction of Trust Region Policy Optimization (TRPO)

[50] in 2015 and Proximal Policy Optimization (PPO) [51] in 2017, and both of these methods

have been shown to effectively reduce the variance in the results output by DRL models. PPO

was then used by Berner et al. to train an agent capable of defeating top human players in the

popular Multiplayer Online Battle Arena (MOBA) game Dota 2 [1] and by Wang and Vinyals to

achieve GrandMaster rank in SC2 with the StarCraft Commander (SCC) [5] and AlphaStar [3]

models, respectively. The research around the use and improvement of PPO is distinct from my

work as PPO's focus is on improving the way in which models learn by clipping the gradient,

while my focus is on state representation. Sarsa has been expanded into MAS with Parameter-

Sharing Multi-Agent Gradient Descent Sarsa (PS-MAGDS) by Shao, Zhu, and Zhao in [52]. PS-

21

MAGDS utilized a centralized state representation and updated the network weights using

parameterized 𝑄 value functions in lieu of the traditional 𝑄 value functions shown in Equation 8.

This work, while focused on solving a similar micromanagement problem to my own, is

considerably different in terms of state representation, reward calculation, and training

methodology.

Figure 4. BiCNet Architecture Visualization [48].

22

There has also been research into several other RL methods that are distinct from DRL

but can be supplementary. For example, Bain and Sammut introduced Behavioral Cloning (BC),

also called Imitation Learning, which is the process of using supervised learning to learn a policy

based upon a dataset of state-action pairs from expert replays [25]. BC has been shown to

improve the performance of DRL methods when used as a warm-start in various complex

environments such as Minecraft [53], [54] and SC2 [3], [5]. Reward Shaping, introduced by Ng,

Harada, and Russell, allows agents to achieve intermediate rewards for accomplishing

incremental steps towards goals that may not be inherently clear at a high level [13]. This

method of rewarding agents for intermediate actions is widely used to encourage more rapid

understanding of the objectives by agents and has been shown to be effective in various

scenarios [14], [1]. Though there have been some incredible successes, Reward Shaping can

often result in agents over-optimizing policies based upon the shaped reward in lieu of the sparse

reward. This prompted Huong and Ontañòn to introduce an alternative solution called Action

Guidance that handles sparse rewards without losing the benefit of sample efficiency that comes

with reward shaping by using a main agent, whose objective is to learn the sparse reward

function with the assistance of some auxiliary agent that learns from the shaped reward [55].

Relational Reinforcement Learning (RRL), inspired by Muggleton and De Raedt [56] and

defined by Zambaldi et al. [57], is an interesting and unique approach to RL that aims to

represent states, actions, and policies using a relational language, which improves the

generalizability of said features. This method may become more widely utilized as the desire for

more generally intelligent agents rises in game AI, though it is not currently used as widely as

the other supplementary methods mentioned here.

23

Heuristic search can also be used in RL, with algorithms such as Monte-Carlo Tree

Search, shown in Figure 5, and Portfolio Greedy Search showing promising results in various

scenarios such as Silver et al.'s work in Go [2], [4], Churchill et al. and Liu, Louis, and

Nicolescu's analysis in SC2 [58], [59], [60], and Churchill and Buro's large-scale combat in SC2

[61]. Sun et al. [62] and Pang et al. [63] demonstrate that a hierarchical structuring of simple

tasks that make up a more complex task can yield positive results in highly complex

environments by each defeating cheater-level built-in game AI in SC2. Skrynnik et al. [53]

further demonstrate the capability of hierarchical structuring by earning the first-place position in

the MineRL competition in 2020 [64]. A comparable, yet notably distinct, method was

introduced by Lee et al., which described a modular architecture of models that allows for

various subsets of the environmental complexities to be learned by dedicated models that convey

their information to an overarching system has also shown promise in SC2 scenarios [65].

Figure 5. Outline of a Monte-Carlo Tree Search [66].

24

Of all of the work that I am aware of, the work that is most similar to mine with respect

to my interpretation of agent influence maps is the work done by Liu, Louis, and Nicolescu in

2013 [59], [60]. In these works, Potential Fields (PF) and Influence Maps (IM) are defined using

various unit parameters and are used to represent unit influence in the environment. A sample IM

from their work is shown in Figure 6. Liu, Louis, and Nicolscu use PF to determine how the

agents will navigate toward areas of interest that are identified by the IM. These works, however,

focus on the use of genetic algorithms (GA) to determine the optimal IM and PF parameters to

use, and the comparison of said GAs to heuristic search algorithms, whereas my work focuses

solely on the use of DRL with a predefined IM definition based upon my own understanding of

the environment.

Figure 6. Sample Influence Map Representation from Liu, Louis, and Nicolescu’s Work [60].

25

SIMULATION ENVIRONMENT

The StarCraft Multi-Agent Challenge (SMAC) [22] environment was used as the MARL

simulation environment. SMAC is built upon the StarCraft II (SC2) Learning Environment [12],

and provides a set of multi-agent micromanagement scenarios where the objective is to defeat

your opponents with the given units. Micromanagement is defined in this context as fine-grained

control of individual units, whereas the logical inverse is macromanagement, which is defined as

the high-level strategic considerations, such as resource management and control of multiple

units simultaneously [22]. This difference is an important distinction to make, as my work

focuses solely on the micromanagement of individual units who share a common goal, rather

than the macromanagement of the army as a whole. That is, my work treats each agent in the

environment as a unique entity whose actions are not bound to the actions determined by a group

command.

Some sample SMAC scenarios can be seen in Figure 7, each of which are heterogeneous

in nature. Scenarios such as those provided by SMAC can be represented with a Markov game,

which is a multi-agent extension of Markov Decision Processes (MDPs) [48], [15], [14]. A

Markov game with 𝑁 agents comprises a set of states 𝑆 that describe the properties of the agents

and the environment, and a set of actions 𝐴1, 𝐴2, . . . , 𝐴𝑁 and observations 𝑂1, 𝑂2, . . . , 𝑂𝑁 for each

of the 𝑁 agents. Each of the agents treat the surrounding units as a part of their local information

and perform an action in the environment based upon its own observation. 𝑆 × 𝐴1 ×. . .× 𝐴𝑁 → 𝑆′

denotes the state transition from 𝑆 to 𝑆′ where each agent performs an action following a policy

𝜋 in each environmental step.

26

Figure 7. Sample SMAC Scenarios [22].

There are two types of observation spaces in SMAC that I consider: local and global. The

local observation space represents a fully decentralized perspective, where each agent has access

to the information that it can observe in the local vicinity, while the global observation space is

the fully centralized equivalent. The local observation is defined as the following attributes in the

form of a one-dimensional vector for both allied and enemy units within sight range, which

SMAC sets to 9: distance, relative 𝑥, relative 𝑦, health, and unit type. All aforementioned

features are provided by the SMAC environment, where the distance is the Euclidean distance

between the observing and the observed agents, the relative 𝑥 and 𝑦 are the directional difference

with respect to the same pair of agents, and the health and unit type are of the observed agent.

The global observation contains information regarding all units on the map with the relative

positions to the center of the map along with all other features from the local observations, albeit

from a global perspective. The global observation additionally contains the cooldown and

previous action for each unit where the cooldown is representative of how long a unit must wait

after attacking to be able to attack again. All features are normalized by their maximum values in

both the local and global observation spaces. I do not simulate noise in the SMAC environment,

and assume that the features provided are the true feature values. The actions that living units are

allowed to take are a discretized subset of the full action set that is available in SC2. They are

27

move North, South, East, or West, attack an enemy by identifier, and stop. Units that have been

defeated are limited to only the no-op action and are invisible to all surviving units. I note here

that units are restricted on their attack action to agents that are within their shooting range, where

each unit in SMAC has a shooting range set to 6 [22]. The SMAC definition of the sight and

shooting range is shown in Figure 8, with the cyan and red circles representing sight and

shooting, respectively.

Figure 8. The SMAC Sight and Shooting Range, shown by the Cyan and Red Circles [22].

The reward achieved in each episode is scaled to be between 0 and 20, inclusive, as

defined in SMAC [22]. The reward is a shaped reward that awards points for damage dealt to the

enemy, bonus points on a kill, and a substantial bonus for victory. Rewards are not received by

individual agents, rather, the rewards are accumulated by the allied forces as a whole and are

aggregated into a shared pool as shown in Equation 10.

𝑅 = 20 ×

∑ (∑ (𝐷𝑛) × 10𝑘𝑁
𝑛=1)𝑇

𝑡=1 + 200𝑤

𝑅𝑚𝑎𝑥

(10)

28

Equation 10 shows the reward calculation for a full episode of a game where 𝑡 is the

current environmental step, 𝑇 is the terminal step, 𝑛 is the agent identifier of an agent, 𝑁 is the

maximum number of agents, 𝐷𝑛 is the damage dealt to enemy units by agent 𝑛 in step 𝑡, 𝑘 is the

number of enemies that have been defeated in step 𝑡, 𝑅𝑚𝑎𝑥 is the maximum possible reward

amount, and 𝑤 is 1 on a win and 0 on a loss. The total reward of an episode is calculated when

the terminal state has been reached, and I then calculate the discounted rewards with a decay rate

of 0.9, normalize the discounted values, and use the resulting reward per environmental step to

train my models. I note here that, by default, each unit in my experimentation has 45 health

points, which are translated to rewards when an allied agent deals damage to enemy agents.

SMAC provides scenarios that utilize units of each of the three races in StarCraft II.

These races are Terran, Zerg, and Protoss. The Terran race is a human race that boasts emphasis

on a balance between technological and biological units. The Zerg and Protoss races represent

the extremes of biological and technological races, respectively, with the Zerg being an

exclusively biological race with emphasis on evolution and metamorphosis, while the Protoss are

very heavily technologically oriented, with minimal dependence upon biological units. My work

focuses purely on the use of Marines, which are medium-ranged Terran infantry units. This focus

on homogenous armies is largely due to the foundational nature of my work, and I note here that

the introduction of heterogeneous armies is wholly supported by my methodologies, though this

may require additional parameter tuning.

The SMAC combat scenarios that were used in training and evaluation are 3𝑚, 8𝑚,

25𝑚, and 8𝑚_𝑣𝑠_9𝑚, shown in Figure 9, Figure 10, Figure 11, and Figure 12, respectively. I

used the 8𝑚 scenario in SMAC as the baseline experimental scenario where each team controls

eight marines to fight against each other. This scenario serves as a good foundation for my

29

research, as it has neither very large nor very small numbers of units, and it is representative of a

medium-scale MARL scenario, while the other selected scenarios demonstrate the

generalizability of the evaluated methods. Each of these scenarios comprises only Marines, with

the number of Marines per team given in the name of the scenario. Scenarios with a single

number are symmetric and the rest are asymmetric in favor of the built-in SC2 game AI, whose

difficulty is set to 7 in SMAC, which is equivalent to Elite in SC2, which in turn poses a

significant challenge to players that are unaware of the AI that they are combating, due to its

aggressive, but predictable with context, nature. The objective of the agents in each scenario is to

defeat the built-in SC2 game AI by eliminating all the enemies without losing all the allied

troops. This task, while conceptually simple, requires a detailed understanding of the behaviors

and capabilities of the agents on each team. Cooperation amongst allied agents is critical to the

success of the team as a whole. Allied agents must work together and focus their fire on enemies

to efficiently reduce the amount of damage received while maintaining damage dealt over time

by minimizing sustained casualties.

Figure 9. SMAC's 3m Scenario, with 3 Marines on Each Team.

Figure 10. SMAC's 8m Scenario with 8 Marines on Each Team.

Figure 11. SMAC's 25m Scenario with 25 Marines on Each Team.

30

Figure 12. SMAC's 8m_vs_9m Scenario with 9 Marines Controlled by the Built-in SC2 Elite AI.

31

METHODOLOGY

All of my experiments were performed using Python 3.7.3 with NumPy (NP) 1.19.5 [67]

and Tensorflow (TF) 2.4.0 [68] as the framework used to create and train all of my NNs. I used

SMAC 1.0.0 [22] as my MARL environment, with SC2 version 4.10. To ensure that my results

could be reliably reproduced, I refrained from using GPU acceleration and constrained the

models to CPUs, seeding all random generators with values ranging from 1-32, corresponding to

the experiment number relative to the specific methodology used in said experiment. While this

did result in a moderate increase in the experimental completion time, particularly of

experiments with NNs of larger parameter counts, it was deemed a worthwhile cost to ensure

experimental reproducibility.

General Experimental Features

Each explored MARL method was executed in 32 independent instances with

corresponding random seeds for TF, NP, and SMAC. All experiments are executed for a duration

of 3,000 episodes in their respective combat scenarios. My experiments promote early

exploration followed by incrementally increasing exploitation with a hybrid ε-greedy, softmax

approach called ε-soft that initializes ε to 1.0 and diminishes it to 0.0001 over the course of

30,000 environmental steps. My implementation is considered ε-soft because when the greedy

action would be taken in traditional ε-greedy, I instead select an action in accordance with the

softmax behavioral policy which randomly selects an action, where the likelihood of selecting an

action is the proportion of the action’s estimated value relative to the sum of the estimated values

for all actions. I chose this particular methodology because it promotes continued intelligent

32

exploration of the state space, even when ε itself becomes arbitrarily small. The value of ε at

environmental step 𝑡 can be calculated as shown in Equation 11 below, where 𝜀0 is 1.0, 𝜀𝑚𝑖𝑛 is

0.0001, and 𝛾 is 30,000. Table 1 shows some sample ε values at various environmental steps, to

better demonstrate the values at various points.

𝜀𝑡 = 𝑚𝑎𝑥 (𝜀0 −

𝑡 × 𝜀0

𝛾
, 𝜀𝑚𝑖𝑛)

(11)

Table 1. Sample ε Values at Various Environmental Steps.

Environmental Step (𝑡) Probability of Random Action (𝜀𝑡)

0 1.0000

1,000 0.9667

5,000 0.8333

10,000 0.6667

25,000 0.1667

30,000+ 0.0001

In addition to ε-soft, I utilized A2C as the core learning algorithm in all of my

experiments, with separate NNs for the actor and critic. The size of the inputs to the actor and

critic varies between explored MARL methods and combat scenarios. The number of output

neurons in the actors also depend upon the combat scenario, while the number of output neurons

in the critics is always one. The activation function used in all layers except for the output layers

is the Exponential Linear Unit (ELU) with 𝛼 = 1.0 [69]. The output layer of the actors used

softmax, and the output layer of the critics used a simple linear activation. The actor and critic

were compiled with losses categorical cross-entropy and mean squared error, respectively, and

both use the adam optimizer with a learning rate of 0.00001 [70]. The use of batch normalization

33

and dropout layers was considered, though they were not used in the reported results due to a

lack of sufficient improvement. Additionally, preliminary experimentation with Proximal Policy

Optimization (PPO) [51] and experience replay both yielded a considerable decrease in overall

performance compared to the standard A2C algorithm and are thus excluded from the final

results.

I note here that I used TF’s saved model format to save the actor and the critic so that

they may be loaded back into memory and evaluated after the initial training process. The actor

and critic are only saved when the running average reward achieved at the end of an episode is

greater than the previous maximum, so the saved networks are representative of the best

performers that were found for each combination of seed, method, and scenario.

Advantage Actor Critic (A2C)

In the A2C RL algorithm, there are two intuitive components: the actor and the critic. I

utilized two separate NNs, one for each component, and each with the same hidden layer

architecture. The hidden layer architecture used in my MAIRL and MAIDRL experiments are

described in the Simple versus Dense A2C section. My A2C implementation represents a single

controller that controls each agent individually, and the resulting shared parameters allow for

more rapid and intelligent learning because the parameters are updated based upon the

experiences of each agent.

The critic can be viewed as a value-based, model-free approximation of the state value

function shown in Equation 2, which represents the expected reward to be returned by a given

state based upon the policy. Let 𝑉∗(𝑠) be the optimal state value function, i.e., the state value

function that returns the maximum reward. The goal of the critic is to make 𝑉𝜋(𝑠; 𝜃𝑐) ≈ 𝑉∗(𝑠)

34

where 𝜃𝐶 represents the parameters of the critic. The critic parameters 𝜃𝐶 are updated using

standard gradient ascent at the end of an episode, where the discounted reward values are used to

perform a supervised update [46]. Because the critic is necessary to calculate the advantage to be

used when training the actor, the critic update occurs after the advantage has been calculated.

The actor can be viewed as a value-based, model-free approximation of action value

function shown in Equation 3, which represents the expected reward for action 𝑎 given state 𝑠

and following policy 𝜋(𝑎|𝑠). Let 𝑄∗(𝑠, 𝑎) be the optimal action value function, i.e., the action

value function that returns the maximum reward. The goal of the actor is to make 𝑄𝜋(𝑠, 𝑎; 𝜃𝐴) ≈

𝑄∗(𝑠, 𝑎) where 𝜃𝐴 represents the parameters of the actor. I note that, in accordance with the A2C

algorithm, 𝑄𝜋(𝑎𝑡, 𝑠𝑡; 𝜃𝐴) − 𝑉𝜋(𝑠𝑡; 𝜃𝐶) is the target network representative of the advantage of

taking an action over another, and it is determined in part by both the action value estimation

determined by the actor and the state value estimation determined by the critic. At the end of an

episode, the parameters 𝜃𝐴 of the actor are updated in the direction determined by the gradient

ascent in Equation 12 [46].

 ∇𝜃𝐴
𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡)(𝑄𝜋(𝑎𝑡, 𝑠𝑡; 𝜃𝐴) − 𝑉𝜋(𝑠𝑡; 𝜃𝐶)) (12)

Simple versus Dense A2C

Before considering the inclusion of the DenseNet-style model architecture, I explored the

effectiveness of using a MAIM state representation with a NN that contained only a single

hidden 1024-neuron layer. I used the 8𝑚 scenario in this experiment, noting that 8𝑚 was chosen

as the baseline scenario due to its intermediate scale and difficulty. I improve this simple A2C by

defining a DenseNet-style model architecture for both actor and critic [16].

35

Figure 13 demonstrates an example of a DenseNet-style grouping of layers which is

defined to be an arbitrary number of 𝑛 layers such that the output of every layer is input to each

of the following layers in the group via concatenation. My network architectures contain two of

such groups, each with five 128-neuron dense layers. The only additional layer in my DenseNet

architecture is a 256-neuron dense layer that precedes the first DenseNet-style group of layers,

immediately after the input layer.

Figure 13. Example of a DenseNet-style grouping of 𝑛 128-neuron layers.

Centralized versus Decentralized

I apply A2C with centralized, decentralized, and hybrid centralized learning decentralized

execution state representations to investigate how to effectively use global information for fine-

grained decision-making in multi-agent environments. First, I apply A2C in with centralized

state representations where each agent utilizes local and global observations to train the actor and

critic networks for learning interactions among agents. Second, I similarly considered fully

decentralized state representations, where agents only observed their local observations. These

two methods are further used as the baseline for comparison with other algorithms. Third, I

explored the option of a global critic with a local actor (GCLA), where the critic received the

global information while the actor received the local observations of each agent. This particular

36

method is unique from the other methods in that the critic is arguably centralized but not with

respect to each agent, while the actor remains entirely decentralized. Finally, I explored the

option of total critic and a local actor (TCLA), where the critic is centralized, while the actor is

decentralized. This method was inspired by the use of centralized training with decentralized

execution as in the case of MADDPG [15].

Semi-centralized with Multi-Agent Influence Maps (MAIM)

Algorithm 1: Create and Update Agent Influence Map.

Result: Square agent influence matrix based on 𝐼0, 𝜆𝐼,

and 𝑑𝐼, centered on the agent.

if AIM not defined then

 | 𝑁 = 2 × 𝑑𝐼 + 1
 | 𝐴𝐼𝑀 = 𝑁 × 𝑁 matrix of 0’s
end

for 𝑐𝑒𝑙𝑙 ∈ 𝐴𝐼𝑀 do

 | if 𝑑𝑖𝑠𝑡(𝑐𝑒𝑙𝑙, 𝑐𝑒𝑛𝑡𝑒𝑟) ≤ 𝑑𝐼 then

 | | 𝐴𝐼𝑀[𝑐𝑒𝑙𝑙] = 𝜆𝐼 × 𝐼0

 | end

end

In addition to the centralized, decentralized, and hybridized experiments, I propose a

novel method to abstract the global features in such a way that is representative of how a human

might interpret them. I define an Agent Influence Map (AIM) that is determined by three values:

the source influence 𝐼0, the influence decay rate 𝜆𝐼, and the range of influence 𝑑𝐼 for each unit in

the environment. Algorithm 1 demonstrates the creation and update process of each AIM. Part of

the appeal of this method is that it enables dynamic information representation with relative ease,

simply by adjusting the values of 𝐼0, 𝜆𝐼, and 𝑑𝐼. For my experiments, I set 𝑑𝐼 equal to the range

of the agent as defined by SC2, 𝐼0 equal to the current relative health of the agent as defined by

37

SMAC, and 𝜆𝐼 equal to the inverse of the distance from the agent, where a distance of 0 was

assigned the value of 𝐼0. To allow for a distinction between allied units and enemy units, I set 𝐼0

of the allied units to the negative of the relative health provided by SMAC. Figure 14

demonstrates a sample 13 × 13 AIM in the form of a heatmap with the cell values shown to

illustrate the rate at which agent influence decays.

Figure 14. Sample AIM Heatmap with Cell Values.

The AIM of each agent is aggregated into a Multi-Agent Influence Map (MAIM), where

the AIM is simply added to the MAIM based upon the agents position in the environment. The

AIM is positioned with the center over the agent position on the MAIM, and the overlapping

cells are summed, ignoring any non-overlapping cells. The MAIM is a scaled representation of

the units on the map in a SMAC scenario. For example, the 8𝑚 scenario has a map size of

32 × 32 units, but the MAIM dimensions can be any positive integers, and my implementation

will scale the AIM to fit the MAIM's dimension while also maintaining the scale of the agents

influence on 8𝑚, which maintains the environmental map aspect ratio relative to unit ranges. I

38

explored MAIMs of size 16 × 16, 32 × 32, and 64 × 64, each with the same AIM parameters,

and each MAIM is flattened prior to propagation through the NNs.

Figure 15, Figure 16, and Figure 17 demonstrate three snapshots of MAIMs taken from a

random agent versus the built-in SC2 AI at time steps 1, 6, and 17, respectively. Time step 1 was

chosen to be displayed as it represents the first time step that the agents can take an action in the

environment and it shows the uniform behavior of the built-in SC2 AI in contrast to the random

AI. Time step 6 represents the first contact between the two armies, and time step 17 was

arbitrarily chosen as it illustrates the change in the MAIM as units are defeated. Each of the

figures show both the in-game state as well as the corresponding MAIM, with both the in-game

state and corresponding MAIM cropped and scaled in the figures to allow for easier comparison,

though I note that the MAIMs have not been adjusted horizontally and are representative of unit

longitudinal positions. In both the in-game and MAIM representations, the built-in SC2 AI is

represented by the red army, while the blue army is controlled by the random AI. The figures

clearly show the built-in SC2 AI wholly overwhelms the random AI without losing a single

agent. I note here that the built-in SC2 AI are scripted to move toward the spawn point of the

blue army, so a conflict is almost guaranteed. This is reflected in the MAIM of each figure, as

the blue influence region is shown to collectively move toward the red influence region’s initial

spawn point. An interesting phenomenon that is worth mentioning in this MAIM representation

of the states is that there is a consistent visible conflict wall between competing influences,

shown as the white line compressing otherwise circular regions of influence. This conflict wall

may also be considered to represent the degree to which an influence source is overwhelming

another, as this wall appears closer to the source of regions that are currently at a disadvantage,

39

as is shown when comparing the relative position of the wall in Figure 15, Figure 16, and Figure

17.

Figure 15. Sample MAIM and In-Game at Time Step 1.

Figure 16. Sample MAIM and In-Game at Time Step 6.

40

Figure 17. Sample MAIM and In-Game at Time Step 17.

41

RESULTS AND DISCUSSION

I analyze the results of the MARL methods used with three primary metrics: the average

of the running average episode reward which I define to be the average reward of the most recent

50 episodes, the standard deviation of the running average episode reward, and the percentage of

seeds that achieve a maximum running average reward with respect to various thresholds, all

considering all 32 seeds. Henceforth, these metrics shall be referred to as overall performance,

overall stability, and peak performance, respectively. I also perform more detailed evaluation

regarding the peak performance per method across all seeds, considering the minimum,

maximum, average, and standard deviation. That is, for each scenario and method, I consider the

best performance of each seed, then find the minimum, maximum, average, and standard

deviation with respect to the determined peak from each seed. The applicable tables contain the

highest minimum, maximum, and average reward displayed in bold font, as well as the lowest

standard deviation. I perform Welch’s unequal variance t-test [71] on the average rewards

achieved across all 32 seeds and compare MAIDRL to both the centralized and the decentralized

methods in each of the considered scenarios. Finally, I discuss the learned behaviors that are

observed for each MARL method when the trained actor of the best performing seed per MARL

method is deployed in each scenario in a headed environment without any additional training.

Simple Architecture and MAIRL

Table 2, Figure 18, Figure 19, and Figure 20 display the results achieved by the use of the

simple network architecture in the 8𝑚 scenario. It is evident that MAIRL considerably increased

the overall and peak performance of the agents, as well as maintained comparable overall

42

stability to the centralized method, though the decentralized method was found to yield lower

standard deviation in terms of peak performance across all seeds as shown in Table 2. Table 2

further shows that MAIRL wholly outperforms both the centralized and decentralized methods in

terms of minimum, maximum, and average peak performance, with the 64 × 64 MAIRL variant

achieving a 4.58 higher minimum, 5.03 higher maximum, and 6.18 higher average peak

performance, all while maintaining a lower standard deviation than the centralized method.

Figure 18 shows the overall performance of each method as well as the 90% confidence intervals

based upon the standard deviations in Figure 19, and this illustrates that each of the MAIRL

variants achieved an overall performance around or above 11, while the centralized and

decentralized methods only achieved 8. MAIRL outperformed to such a degree that the upper

bounds of the centralized and decentralized confidence intervals do not overlap with the lower of

any of the MAIRL variants after episode 1300. The 64 × 64 MAIRL variant is shown in Figure

20 to be the only method to achieve running average rewards greater than 19, with over 15% of

all seeds doing so. MAIRL is shown to be superior to both the centralized and decentralized

methods, and I note that the performance of the decentralized method relative to the centralized

is surprising, as it was expected to perform more poorly rather than almost identically.

Table 2. Peak Performance Across all Seeds with Simple Architecture with Best Result Per

Scenario Bolded.

Scenario Method Min Max Avg Std

8𝑚 Centralized 5.31 14.55 9.95 2.79

 Decentralized 5.72 14.21 9.73 2.15

 64 × 641 10.30 19.58 16.13 2.64

 32 × 321 8.16 18.81 15.19 2.73

 16 × 161 6.44 18.05 12.73 3.39

1MAIRL with given MAIM dimensions.

43

Figure 18. Overall Performance: Simple Architecture, 8𝑚.

Figure 19. Overall Stability (SD): Simple Architecture, 8𝑚.

Figure 20. % of Seeds with Peak Performance ≥ Thresholds: Simple Architecture, 8𝑚.

44

DenseNet Architecture and MAIDRL

Due to the underwhelming performance of the centralized and decentralized methods

relative to MAIRL with the simple network architecture, I considered ways to create more

competitive baselines with which to form a basis of comparison for my proposed methods. I

found that the introduction of a DenseNet-style model architecture considerably improved the

performance of both the centralized and decentralized methods, while also demonstrating a

notable improvement over the MAIRL early learning curve. Table 3, Figure 21, Figure 22, and

Figure 23 present the peak performance across all seeds, overall performance across all seeds

with 90% confidence intervals, standard deviation across all seeds, and percentage of seeds

whose peak performance achieved various reward thresholds, respectively. In addition to the

centralized, decentralized, and semi-centralized MAIDRL methods, they also contain the results

of two hybridized methods, GCLA and TCLA. The following subsections present and analyze

the results of each considered method with the DenseNet-style architecture.

Table 3. Peak Performance Across all Seeds: DenseNet Architecture – Initial Results with Best

Result Per Scenario Bolded.

Scenario Method Min Max Avg Std

8𝑚 Centralized 3.24 20.00 14.20 4.22

 Decentralized 7.09 19.82 15.49 3.90

 GCLA 2.87 15.31 5.99 3.15

 TCLA 6.47 19.53 12.32 3.92

 64 × 641 10.35 19.86 16.84 2.99

 32 × 321 6.53 19.86 14.38 4.18

 16 × 161 6.79 20.00 14.30 3.62

1MAIDRL with given MAIM dimensions.

45

Figure 21. Overall Performance: DenseNet Architecture, 8𝑚.

Figure 22. Overall Stability (SD): DenseNet Architecture, 8𝑚.

Figure 23. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 8𝑚.

46

Centralized. Table 3 shows that the introduction of the DenseNet-style architecture

raised the peak performance across seeds 5.45 points to a perfect maximum of 20, while

simultaneously improving the average peak performance across seeds to 14.20, a 4.25-point

improvement. Additionally, Table 3 shows that the centralized method with the DenseNet

architecture can achieve a perfect running average score, however, this perfect running average

does not appear frequently enough to bring the average across all seeds up to the level of the

64 × 64 MAIDRL variant. Table 3 also shows that the baseline yields the highest standard

deviation in terms of peak performance compared to the other methods, albeit by a very small

margin in the case of the 32 × 32 MAIDRL variant. The centralized method is shown in Figure

21 to perform respectably overall as a baseline, achieving a consistent running average 3 points

higher than the simple network equivalent and balancing out around 11. Figure 22 shows that the

overall standard deviation balances out around 5, which is notably somewhat higher than the

simple network architecture equivalent, but consistent with the results of the other considered

DenseNet methods. Figure 23 shows that this method maintains a high percentage of seeds that

can achieve running averages that are close to the upper limit, with almost 16% of all seeds

achieving a maximum running average greater than 19. The results of the DenseNet-style

architecture with the centralized method suggest that the use of such a structure yields better

results overall, with a moderate increase in standard deviation compared to the single-layer

architecture, though I argue that the general improvements in the other metrics outweigh this

detriment. As such, the centralized DenseNet architecture is considered a baseline for

comparison for each of the considered methods, and said methods are applied in tandem with the

same architecture.

47

Decentralized. The decentralized method with the DenseNet architecture once again

exceeded expectations and performed nearly identically to the centralized method. Table 3 shows

that, in terms of peak performance, the decentralized method actually outperformed the

centralized method in every regard with the exception of the maximum peak performance, where

it fell short by only 0.18. Figure 21 then illustrates that, in terms of overall performance, the

decentralized method maintains a competitive level of performance with even the 64 × 64

MAIDRL variant, being the only method to overcome the overall performance at any point after

episode 1300, though I note that this only occurs after the 64 × 64 MAIDRL variant diminishes

in performance. The overall stability is shown to be on par with each of the other considered

methods as shown in Figure 22. The surprising performance of this method is further emphasized

in Figure 23, where it is shown that over 20% of all seeds managed to achieve running average

rewards greater than 19. This result is second only to the 64 × 64 MAIDRL variant, which it

trails behind by just over 10%. The results of the decentralized method with the DenseNet

architecture are consistent with that of the centralized method, and further support the use of said

architecture in my experimentation.

GCLA. The GCLA method is shown in Figure 21 and Figure 23 to perform considerably

worse with regard to both overall and peak performance, only achieving an overall performance

of 4 and with no seeds managing to exceed a peak performance of 16 at any point. To its credit,

GCLA did demonstrate the lowest standard deviation when compared to the other MARL

methods, staying close to 2-3 for the majority of the episodes, though this is most likely due to

the generally lower scores. The maximum and average of the peak performance achieved in any

seed was considerably lower than that of the compared methods, as shown in Table 3, only

achieving 15.31 and 5.99, respectively. Because the actor learns from the advantage, which is

48

determined in part by the critic, the lack of understanding of the local state for each agent on the

part of the critic unsurprisingly leads to a poor performance overall. This hypothesis is supported

by the results of the TCLA method which performed much better than GCLA, with the only

change being the provision of the local information in addition to the global. Due to the apparent

inability of the GCLA method to perform on a competitive level, I do not consider it in any

further experiments to reduce the level of noise present in the reported results.

TCLA. The TCLA method, inspired by [15], is shown in Figure 21 to perform notably

more poorly overall than the MAIDRL and centralized methods, peaking at a score around 8 at

episode 1100, then steadily declining from there. TCLA performed somewhat comparably to the

other methods with respect to the percentage of seeds at various thresholds, though it is

consistently below all other curves for the majority of said thresholds, except for GCLA. Table 3

further demonstrates the results shown in Figure 23. The maximum of the peak performance

across all seeds is 19.53, which is only 0.29 lower than the next highest and is a 4.22

improvement over the GCLA method, but the average of the maximum running average reward

is only 12.32, which suggests that such a peak is less than common. The results show that, while

TCLA can perform well in the 8𝑚 scenario, it fails to do so consistently. This too was somewhat

surprising, given the results that were shown in [15]. While TCLA did demonstrate that it is

capable of performing well, the overall performance was poor enough that it also is not

considered in future results.

MAIDRL. When a DenseNet-style model architecture was applied in tandem with

MAIRL, I found that the improvements were marginally smaller than those of the centralized

method but were statistically significant enough to warrant a fundamental addition to MAIRL,

which in turn defines MAIDRL. My semi-centralized MAIDRL method produced varying levels

49

of results in the 8𝑚 scenario depending upon the size of the MAIM. The 16 × 16 and 32 × 32

MAIM MAIDRL variants both performed very similarly to the centralized baseline on each of

the three metrics that I consider, though they both fall just below the baseline in terms of peak

performance greater than 19 as shown in Figure 23. The 64 × 64 MAIM significantly

outperformed each of the other MARL methods that I tested, notably without a significant

decrease in overall stability, with Figure 22 demonstrating a consistent standard deviation just

below 4. Figure 21 demonstrates that the learning curve for the 64 × 64 MAIM grew to the

highest point around 14 in a comparable amount of time as the other methods. While the steady

decline thereafter is somewhat worrisome, I note that there is a distinct improvement with

respect to the peak performance above a near-perfect threshold of 19, with a total of just over

34%. Furthermore, Table 3 demonstrates that each MAIDRL variant outperformed the

centralized and decentralized baselines in every regard when considering the peak performance

across all seeds, except for the maximum, where the 16 × 16 MAIM variant matched the perfect

score of the baseline, while the others fell short by 0.14 points. The results of the various

MAIDRL variants in the 8𝑚 scenario indicates that my semi-centralized MAIDRL consistently

performs at least as well or better than the centralized baseline per episode, while the peak

performance across all seeds of the MAIDRL methods wholly outperform said baselines.

Generalizability of MAIDRL

To evaluate the generalizability of my approach, I further applied the DenseNet

architecture and MAIDRL on three new SMAC scenarios: 3𝑚, 25𝑚, and 8𝑚_𝑣𝑠_9𝑚. Table 4

contains the peak performance across all seeds for each of these scenarios, with the best

minimum, maximum, average, and standard deviation with respect to each scenario being

50

highlighted in bold, as with Table 3. The following subsections detail the results per method per

scenario, and I note that only the centralized, decentralized, and MAIDRL methods are

considered in this expanded list of scenarios, as they each exhibited the most promise.

Table 4. Peak Performance Across all Seeds: DenseNet Architecture – Extended Results with

Best Result Per Scenario Bolded.

Scenario Method Min Max Avg Std

3𝑚 Centralized 4.00 18.79 14.41 4.19

 Decentralized 1.64 11.88 9.25 1.98

 64 × 641 3.74 18.83 11.48 5.04

 32 × 321 5.89 18.80 14.86 4.10

 16 × 161 12.42 18.76 16.61 1.87

25𝑚 Centralized 8.18 13.27 10.81 1.35

 Decentralized 8.25 13.37 11.12 1.62

 64 × 641 7.20 12.73 10.08 1.50

 32 × 321 5.34 13.53 9.82 1.77

 16 × 161 7.97 13.20 10.26 1.25

8𝑚_𝑣𝑠_9𝑚 Centralized 7.69 10.68 9.59 0.76

 Decentralized 4.03 10.23 7.42 2.22

 64 × 641 6.25 10.95 9.21 1.20

 32 × 321 7.05 10.67 9.33 1.98

 16 × 161 6.55 10.12 9.00 0.99

1MAIDRL with given MAIM dimensions.

𝟑𝒎. 3𝑚 is a very similar scenario to 8𝑚, but the unit count on each team is reduced to

three. I chose this scenario to explore the applicability of MAIDRL in combat scenarios of

varying complexity. In theory, 3𝑚 should be simpler to learn than 8𝑚, though the results shown

in Table 4, Figure 24, Figure 25, and Figure 26 suggest that the disproportionate reward

51

associated with winning the scenario relative to the availability of incremental rewards may have

led to poorer performance than expected overall. A consistent trend that was found amongst the

baseline and each MAIDRL variant is that none of them seemed to accomplish a peak

performance greater than 19. I hypothesize that this is due to the somewhat different score

distribution in 3𝑚 as a result of the lower number of units on the field, noting again the reward

calculation in Equation 10 and the fact that the reward achieved is an aggregate sum of damage

dealt to enemies with a large bonus for winning.

Figure 24. Overall Performance: DenseNet Architecture, 3𝑚.

Figure 25. Overall Stability (SD): DenseNet Architecture, 3𝑚.

52

Figure 26. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 3𝑚.

Centralized. The centralized baseline performed almost exactly as well in 3𝑚 as it did in

8𝑚 with respect to the overall performance and stability, shown in Figure 24 and Figure 25,

respectively. With a maximum overall performance around 11 and standard deviation leveling

out near 6, the most concerning phenomenon that was recorded by the centralized baseline was

the notable decrease in overall performance to 8 after reaching the initial maximum of 11. The

percentage of seeds that achieved various peak performance thresholds also behaved similarly as

in the 8𝑚 scenario, but with a notably more drastic decline at the highest threshold, decreasing

from nearly 35% of seeds achieving peak performance above 18, to none above 19. Table 4

further illustrates that the centralized method performed consistently between 3𝑚 and 8𝑚, with

the most significant difference being in the maximum of the peak performance across all seeds,

with a reduction of 1.21 compared to the recorded 8𝑚 value.

Decentralized. The 3𝑚 scenario is the first scenario in which the decentralized method

performed as poorly as I hypothesized it would throughout the duration of my experimentation.

Table 4 shows an almost catastrophic failure of the decentralized method compared to both the

results of this same method in the 8𝑚, as well as the other considered methods in the 3𝑚

53

scenario. Compared to its own 8𝑚 results, the decentralized method’s average peak performance

across all seeds decreased by 6.23, from a respectable and competitive 15.49 down to a meager

9.26, as shown in Table 3 and Table 4, respectively. This failure to compete is shown further in

terms of overall and percentage of seeds achieving peak performance at various thresholds in

Figure 24 and Figure 26, respectively, with the decentralized curves sagging far below the rest.

In terms of overall stability, however, Figure 25 shows that the decentralized method maintained

the lowest standard deviation of any of the other considered methods, though I note that this is

most certainly due to the generally lower overall performance more than a significant show of

improved stability.

MAIDRL. The MAIDRL variants performed much differently on 3𝑚 when compared to

8𝑚. In the 3𝑚 scenario, the 64 × 64 MAIM yielded the worst overall results, while it had

previously shown to yield the best. Figure 25 shows that it maintained a standard deviation that

was comparable to its own 8𝑚 performance, but the overall performance across seeds decreased

considerably, as did the average peak performance per threshold, from 14 to 9 and 16.84 to

11.48, which are demonstrated in Figure 24 and Table 4, respectively. The 32 × 32 MAIM

performed nearly identically to the 8𝑚 scenario, maintaining an overall performance around 12,

then decaying over time to around 10. The most notable difference occurred in the 16 × 16

MAIM, which wholly outperformed the other variants, as well as the centralized method,

achieving an overall performance of 14, with minimal decline thereafter. The lower bound of the

90% confidence interval consistently remained higher than the upper bound of the next highest

confidence interval after episode 2500. It further improved with respect to the standard deviation,

leveling out at only 2. This is markedly better than the other MAIDRL variants, and better still

compared to the otherwise competitive centralized method, particularly when considering that it

54

simultaneously achieved the highest overall performance. Table 4 shows that the 16 × 16 variant

also dominated in regard to the peak performance across all seeds, though it is noteworthy that

Figure 26 suggests that this variant actually struggled more in terms of the very high thresholds

greater than 18, while it maintained a solid lead up to that point. Interestingly, Table 4 also

shows that the 64 × 64 variant achieved the highest peak overall, though less consistently than

the other tested methods, which is reflected in the average of the peak performance across all

seeds. This variance in results between MAIM resolutions and scenarios suggests that there may

be room for future exploration into the matter, though it has little effect on my claim that

MAIDRL as a methodology is statistically superior to the centralized and decentralized

baselines.

𝟐𝟓𝒎. 25𝑚 represents one of the largest combat scenarios that SMAC offers, with 25

marines on either team. As such, it is a considerably more challenging scenario to master. I

chose the 25𝑚 scenario because it is representative of large-scale combat. While 3𝑚 and 8𝑚

represent small- and medium-scale respectively, they are both significantly smaller and less

complex than 25𝑚. The relative difficulty of 25𝑚 is illustrated throughout the results presented

in Table 4, Figure 27, Figure 28, and Figure 29, though it is most clearly illustrated in Figure 29,

where it is shown that none of the centralized, decentralized, nor the MAIDRL methods managed

to achieve a peak performance greater than 14 in any of the 32 considered seeds. This is not

particularly surprising, as the complexity of multi-agent scenarios increases considerably with

more agents, though it does show that each method was at least able to make considerable

progress toward solving this scenario.

55

Figure 27. Overall Performance: DenseNet Architecture, 25𝑚.

Figure 28. Overall Stability (SD): DenseNet Architecture, 25𝑚.

Figure 29. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 25𝑚.

56

Centralized. The centralized method again performed comparably to its performance in

8𝑚, though with a definite decrease in the maximum overall performance as shown in Figure 27.

The standard deviation shown in Figure 28 demonstrated a notable improvement over the 8𝑚

and 3𝑚 scenarios, settling around 2 for the large majority of the episodes, though I note that this

is most likely a direct result of the overall performance being consistently lower than the

aforementioned scenarios. Interestingly, the centralized method does manage to set itself apart

from my MAIDRL methods in Figure 29, where it maintained a consistently higher percentage

of seeds capable of achieving the various considered reward thresholds.

Decentralized. As was the case with the 8𝑚 scenario, the decentralized method was

surprisingly competitive in 25𝑚, achieving both the highest minimum and average peak

performance as shown in Table 4 and falling only 0.16 short of the highest maximum. Figure 27

shows that the decentralized method manages to perform almost precisely like the centralized

method, once again behaving contrary to my hypothesis regarding the expected performance.

Furthermore, Figure 29 shows that the decentralized method actually outperforms the other

considered methods in terms of percentage of seeds capable of achieving various reward

thresholds, surpassing even the centralized method for thresholds between 11 and 14.

MAIDRL. The 25𝑚 scenario is the first scenario that I tested whose results are not

immediately apparent with respect to whether my semi-centralized MAIDRL method is as

performant or better than the centralized and decentralized baselines. Figure 27 and Figure 28

both seem to suggest that MAIDRL may be equivalent to said baselines, though Figure 29 shows

that each MAIDRL variant fell below them in terms of peak performance. Table 4 shows that,

when comparing the best performing seed of each method, MAIDRL variants still achieved the

57

highest maximum and lowest standard deviation values, though the decentralized baseline

claimed the highest minimum and average.

𝟖𝒎_𝒗𝒔_𝟗𝒎. The 8𝑚_𝑣𝑠_9𝑚 scenario was chosen because it presents an additional level

of challenge to the 8𝑚 scenario. 8𝑚_𝑣𝑠_9𝑚, unlike the symmetric scenarios I consider, gives a

considerable advantage to the enemy forces, as they have an extra unit on their side. In order to

win, a MARL system must demonstrate remarkable micro-management techniques and be able

to wholly outperform the built-in SC2 game AI to an overwhelming degree. While success in this

scenario is indicative of a superior methodology, failure is not necessarily indicative of a poor

methodology. This scenario is used deliberately as an unfair challenge to the tested

methodologies. This difficulty is reflected universally across each of the tested methods in Table

4, Figure 30, Figure 31, and Figure 32. Figure 32 clearly indicates that none of the centralized,

decentralized, nor the MAIDRL methods managed to achieve a peak performance greater than

11, which is notably lower even than the 25𝑚 maximum of 14.

Figure 30. Overall Performance: DenseNet Architecture, 8𝑚_𝑣𝑠_9𝑚.

58

Figure 31. Overall Stability (SD): DenseNet Architecture, 8𝑚_𝑣𝑠_9𝑚.

Figure 32. % of Seeds with Peak Performance ≥ Thresholds: DenseNet Architecture, 8𝑚_𝑣𝑠_9𝑚.

Centralized. The centralized baseline performed comparably to the preceding

experiments in the 8𝑚_𝑣𝑠_9𝑚 scenario, though with definite decline in terms of overall

performance, with the highest overall performance peaking near 9. As was the case in the 25𝑚

scenario, I note that the most significant decline in performance can be seen in regard to the peak

performance per threshold in Figure 32. Table 4 shows that the centralized method was unable to

achieve a running average reward greater than 11 in any of the seeds tested. This suggests that

59

the centralized method is incapable of wholly outperforming the built-in SC2 game AI, though it

does perform admirably given the asymmetry of the scenario.

Decentralized. The decentralized baseline performed drastically worse than the other

considered methods in every regard in this scenario, which is interesting as it suggests apparent

volatility in performance across scenarios. It appears the decentralized method is as likely to

perform comparably to the centralized method as it is to yield catastrophic failures. This is

somewhat consistent with the hypothesized expectations of performance, though the potential of

success appears to be greater than was previously understood, at least with respect to this specific

environment and set of scenarios.

MAIDRL. While the performance of the MAIDRL variants also suffered as a whole in

this scenario, they still performed very comparably to the centralized method, as shown in Figure

30, Figure 31, and Figure 32. In fact, each MAIDRL variant generally matches the centralized

curve in each of the metrics considered. This suggests that, while MAIDRL was also incapable

of wholly outperforming the built-in game AI, it did manage to maintain comparable

performance to the centralized baseline. As with the 25𝑚 scenario though, it is not immediately

apparent if MAIDRL can be considered equivalent or better than the centralized method in terms

of overall performance without statistical analysis.

Statistical Analysis of the Mean Scores

Centralized versus MAIDRL. Table 5 contains the results of performing Welch's

Unequal Variances t-test on the averages of the running average episode reward comparing the

centralized baseline method to the MAIDRL variants, as well as the calculated statistical power

of the test [71]. I use Welch's t-test in lieu of Student's because of the underlying assumption of

60

Student's t-test that the variances of the samples are equivalent [72]. I note here that the null

hypothesis used in all of the t-tests in these comparisons is 𝐻0: 𝜇𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 ≤ 𝜇𝑀𝐴𝐼𝐷𝑅𝐿, with

alternative hypothesis 𝐻𝐴: 𝜇𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 > 𝜇𝑀𝐴𝐼𝐷𝑅𝐿, and 𝛼 = 0.05 as the level of significance. The

power of the test is representative of the probability that I would accept the alternative

hypothesis if it were true.

Table 5. Welch’s Unequal Variance t-test with Null Hypothesis 𝐻0: 𝜇𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 ≤ 𝜇𝑀𝐴𝐼𝐷𝑅𝐿

where 𝜇 is the Average Episode Reward over all Episodes per Seed.

Scenario Method Test Statistic P-Value Power

8𝑚 64 × 641 -1.5045 0.9312 0.0001

 32 × 321 0.2910 0.3860 0.1071

 16 × 161 0.1013 0.4598 0.0662

3𝑚 64 × 641 1.6634 0.0507 0.7440

 32 × 321 -1.9117 0.9697 0.0000

 16 × 161 -4.4780 1.0000 0.0000

25𝑚 64 × 641 1.3098 0.0979 0.5663

 32 × 321 2.5923 0.0071 0.9680

 16 × 161 1.1923 0.1189 0.5018

8𝑚_𝑣𝑠_9𝑚 64 × 641 1.2604 0.1062 0.5393

 32 × 321 1.7636 0.0414 0.7865

 16 × 161 2.4109 0.0095 0.9544

1MAIDRL with given MAIM dimensions.

From the table, it is clear that the overall performance of each MAIDRL variant is shown

statistically to be greater than or equal to that of the centralized baseline in 8𝑚, with each p-

value much larger than any common level of significance, albeit with small powers.

61

Furthermore, this trend continues in the 3𝑚 scenario, with even the poorly performing 64 × 64

MAIDRL variant demonstrating statistical significance. The 25𝑚 scenario shows that the

64 × 64 and 16 × 16 MAIDRL variants tested fulfil this same condition, while the 32 × 32

variant definitively does not come close to my selected level of significance, though I note that it

is close to the commonly selected 0.01. Finally, the 8𝑚_𝑣𝑠_9𝑚 scenario shows that the 64 × 64

MAIDRL variant fulfills the condition for statistical significance, the 32 × 32 variant comes

close to my selected level of significance, and the 16 × 16 variant is very close to the common

0.01 level of significance. When considering this statistical analysis, I claim that my semi-

centralized MAIDRL method is statistically shown to be capable of matching or outperforming

the overall performance of a centralized alternative in MAS of varying complexities.

Decentralized versus MAIDRL. Similar to Table 5, Table 6 contains the results of

performing Welch's Unequal Variances t-test on the averages of the running average episode

reward, but Table 6 compares the decentralized baseline method to the MAIDRL variants [71]. I

note that the null hypothesis in this case is 𝐻0: 𝜇𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 ≤ 𝜇𝑀𝐴𝐼𝐷𝑅𝐿, with alternative

hypothesis 𝐻𝐴: 𝜇𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 > 𝜇𝑀𝐴𝐼𝐷𝑅𝐿, and 𝛼 = 0.05 as the level of significance to maintain

consistency.

Table 6 shows that, even though the decentralized method did manage to perform much

better than was expected, it did not perform well enough to reject the null hypothesis in almost

all of the considered comparisons. The only case where the decentralized method is shown to be

statistically superior to MAIDRL is in the 25𝑚 scenario. It is noteworthy that in every case

where I do not reject the null hypothesis, the calculated p-values are at least twice as large as my

selected level of significance, which further supports my claim that MAIDRL is as performant or

better than a competitive decentralized baseline.

62

Table 6. Welch’s Unequal Variance t-test with Null Hypothesis 𝐻0: 𝜇𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 ≤ 𝜇𝑀𝐴𝐼𝐷𝑅𝐿

where 𝜇 is the Average Episode Reward over all Episodes per Seed.

Scenario Method Test Statistic P-Value Power

8𝑚 64 × 641 -0.5555 0.7097 0.0079

 32 × 321 1.2752 0.1035 0.5474

 16 × 161 1.2173 0.1142 0.5156

3𝑚 64 × 641 -1.2629 0.8935 0.0003

 32 × 321 -6.2435 1.0000 0.0000

 16 × 161 -12.4153 1.0000 0.0000

25𝑚 64 × 641 0.8484 0.1998 0.3187

 32 × 321 1.8915 0.0316 0.8342

 16 × 161 0.5822 0.2814 0.2006

8𝑚_𝑣𝑠_9𝑚 64 × 641 -3.4215 0.9994 0.0000

 32 × 321 -3.2289 0.9989 0.0000

 16 × 161 -2.9933 0.9978 0.0000

1MAIDRL with given MAIM dimensions.

Discussion of Learned Behavior

While the presented results so far are purely quantitative in nature, it is of interest to

consider the qualitative perspective of the results as well. To that end, I identified the best

performing network from each considered method in each scenario and simulated 10 episodes in

a headed environment using only the trained controller. I found that there were two primary

strategic components prevalent throughout the observed episodes: prioritized collaborative

enemy targeting and unhindered unit positioning. Generally, controllers that prioritized agent

targeting to focus fire on enemy units were victorious much more often than when agent

targeting was not focused. Additionally, controllers that successfully positioned agents in such a

63

way that all the agents were able to start dealing damage as early as possible with minimal

extraneous repositioning tended to be successful. The following subsections provide scenario-

specific observations and observations of actors that behaved interestingly compared to others. I

found that controllers that learned both prioritized collaborative enemy targeting and efficient

agent placement tended to perform better than those that demonstrated one or neither.

8𝑚. I considered both the simple network architecture controllers and the DenseNet

architecture actors in the 8𝑚 scenario during this evaluation. Comparing the two architectures

generally, I observed that the DenseNet architecture controllers tended to demonstrate a clearer

understanding of the scenario and the agents behaved more cohesively overall. Another general

observation was that the controllers that focused agent fire on a maximum of three enemy units

at a time tended to be more successful. The decentralized controllers were observed to

sometimes struggle to target enemy units when the number of enemies was near zero. This is

surprising, as the surviving agents were close enough the remaining units to observe them with

the local observations, but still took several time steps to target and eliminate them. GCLA, on

the other hand, demonstrated an entirely unique strategy from any of the other methods. While

all other methods moved the controlled army toward the opposing army at the start of each

episode, GCLA moved the opposite direction and appeared to wait for the SC2 AI army to come

within firing range. This strategy resulted in poorer agent positioning, however, and ultimately

was unsuccessful a large majority of the time. The 64 × 64 MAIDRL variant demonstrated

several episodes of overwhelming the SC2 AI, as shown in Figure 33, where there are 5

remaining controlled agents and only a single SC2 AI unit, which I note was defeated before any

more MAIDRL agents were lost.

64

Figure 33. MAIDRL Wholly Overwhelming the Built-in SC2 AI on 8𝑚.

3𝑚. The 3𝑚 observations provided much unexpected insight into the importance of unit

positioning. While the controllers from each method generally demonstrated an ability to focus

fire on an individual enemy unit, the most notable change in end-results was apparent when

observing unit positioning. Due to the smaller number of units in either army, the feat of

focusing fire had the potential to happen simply because of only a single agent at a time being

within firing range. As a result, when the controllers managed to arrange the agents in such a

way that it prompted the SC2 AI to spread their fire across multiple agents, victory was achieved

almost every time. However, when the controllers did not manage to accomplish positioning the

units in this way, the outcome of the skirmish was largely up to chance. I observed an instance

where both armies were reduced to a single marine with 3 hit points going into the last time step

of the episode, but the SC2 AI managed to deal damage before the controlled agent, resulting in

a loss. This behavior helps explain the apparent lackluster performance presented in the

quantitative results as well because near victories such as these are not awarded the winning

bonus in the reward calculation. The only significantly different behavior occurred when

observing the decentralized method’s controller, which appeared to be as likely to move the

controlled agents in apparently random directions as it was to cohesively move the agents toward

65

the enemy force at the start of an episode. Figure 34 illustrates the first actions taken in the

environment by the controller trained using the decentralized method, and the agents are not

being directed toward the enemy’s initial position. If anything, this suggests a poor

understanding of the environment, which is not unexpected given the fully decentralized nature

of the relevant training.

Figure 34. Example of Apparently Random Agent Positioning using Decentralized Method.

25𝑚. A general observation that was made in the 25𝑚 scenario is a general inability of

the considered methods to position the controlled agents as efficiently as the SC2 AI. The

centralized method did demonstrate the ability to adjust frontline agent positioning to allow

agents behind them to get within firing range, but it did not do so consistently or efficiently

enough to significantly change the course of the battle. An interesting behavior that was

observed in all episodes regardless of the controller is the initial positioning of the units closest

to the enemy army. In almost every episode, the 8-10 agents that spawned closest to the enemy

army are positioned within the enemy firing range before they collectively start shooting. This

results in the enemies having time to deal considerable damage to the RL-controlled forces

before the controller issues an attack command. Another interesting observation was made with

respect to the positioning of units on the skirmish line. Figure 35 shows the skirmish line in a

sample episode with the currently repositioning units highlighted by a yellow box. This makes it

66

clear to see that the actor is less efficient than the SC2 AI at positioning units in such a way that

they can contribute to the damage being dealt to the enemies. This was observed in every

considered methodology and was notably more exaggerated when using a controller that

demonstrated advanced agent movement cohesion, such as the 64 × 64 MAIDRL variant, which

was the controller in Figure 35. Interestingly, this behavior is lessened in severity when using the

decentralized controller, as the agents tend to move less as a cohesive unit and more individually

to create a larger skirmish line.

Figure 35. Comparison of Traveling Units in 25𝑚.

8𝑚_𝑣𝑠_9𝑚. None of the observed episodes from any method managed to defeat the SC2

AI with the unfair advantage of an extra unit, though the 32 × 32 MAIDRL variant did come

very close in multiple episodes. This variant managed to reduce the enemy army down to a

single unit with just under half health remaining, and it demonstrated impressive coordination in

67

both prioritized targeting and unit positioning, but it still did not quite manage to overcome the

disadvantage. Figure 36 illustrates one such very close episode. After observing the 8𝑚_𝑣𝑠_9𝑚

episodes, it seems to be the case that the strategy that must be learned is that of using higher hit

point agents as a shield to protect low hit point agents to ensure that as much damage is being

dealt to the enemy as possible for as much time as possible.

Figure 36. Nearest Achieved State to 8𝑚_𝑣𝑠_9𝑚 Victory – 21 Remaining Enemy Health Points.

68

CONCLUSION AND FUTURE WORK

In this thesis, I introduced MAIRL and MAIDRL, novel semi-centralized methodologies

to solve various MARL scenarios using abstracted feature information in the form of MAIMs

and a robust model architecture inspired by DenseNet. MAIDRL was demonstrated in SMAC

combat scenarios of varying complexity to be statistically capable of matching or bettering the

overall performance of comparable centralized and decentralized baselines, even in scenarios

with large or unfair numbers of agents. MAIDRL also demonstrated significant improvements in

the overall performance, overall stability, and peak performance shown in some of said

scenarios, with MAIDRL variants being the top performers by a large degree in both small- and

medium-scale MARL scenarios.

While I did not demonstrate full comprehension of all scenarios by MAIDRL, there are

several aspects can be improved in future work. First, a logical next step would be to incorporate

the use of convolutional neural networks (CNN) in my network architectures. The MAIM

representation of features lends itself very well to CNNs and would allow for a more intelligent

interpretation of the MAIM by the networks. Second, the use of multiple MAIMs to represent

various features would likely improve agent understanding of influence in the environment. I

focused on the relative health of the unit as described in the Simple Architecture and MAIRL

section, but there are other features that could be used as well, e.g., cooldown or possible damage

per second. Building on these two potential improvements, the application of a 3D CNN that

might learn the relationship between each of the feature MAIMs would also be interesting.

Finally, there is need to investigate the generalizability of MAIDRL in heterogeneous scenarios.

69

I demonstrated generalizability in a range of homogeneous scenarios, but I acknowledge that the

application of MAIDRL in heterogeneous scenarios is a necessary consideration for future work.

70

REFERENCES

[1] C. Berner et al, "Dota 2 with large scale deep reinforcement learning," arXiv preprint

arXiv:1912.06680, 2019.

[2] D. Silver et al, "Mastering the game of Go with deep neural networks and tree search,"

Nature, vol. 529, p. 484–489, 2016.

[3] O. Vinyals et al, "Grandmaster level in StarCraft II using multi-agent reinforcement

learning," Nature, vol. 575, p. 350–354, 2019.

[4] D. Silver et al, "A general reinforcement learning algorithm that masters Chess, Shogi, and

Go through self-play," Science, vol. 362, p. 1140–1144, 2018.

[5] X. Wang et al, "SCC: an efficient deep reinforcement learning agent mastering the game of

StarCraft II," arXiv preprint arXiv:2012.13169, 2020.

[6] V. Mnih et al, "Human-level control through deep reinforcement learning," Nature, vol.

518, p. 529–533, 2015.

[7] V. Mnih et al, "Playing Atari with deep reinforcement learning," arXiv preprint

arXiv:1312.5602, 2013.

[8] D. Xie and X. Zhong, "Semicentralized deep deterministic policy gradient in cooperative

StarCraft games," IEEE Transactions on Neural Networks and Learning Systems, 2020.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: an introduction, Cambridge, MA:

MIT Press, 2011.

[10] M. G. Bellemare, Y. Naddaf, J. Veness and M. Bowling, "The Arcade Learning

Environment: an evaluation platform for general agents," Journal of Artificial Intelligence

Research, vol. 47, p. 253–279, 2013.

[11] M. Johnson, K. Hofmann, T. Hutton and D. Bignell, "The Malmo platform for artificial

intelligence experimentation," in IJCAI, 2016.

[12] O. Vinyals et al, "StarCraft II: a new challenge for reinforcement learning," arXiv preprint

arXiv:1708.04782, 2017.

[13] A. Y. Ng, D. Harada and S. Russell, "Policy invariance under reward transformations:

theory and application to reward shaping," in ICML, 1999.

[14] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli and S. Whiteson, "Counterfactual multi-

agent policy gradients," in Proceedings of the AAAI Conference on Artificial Intelligence,

71

2018.

[15] R. Lowe et al, "Multi-agent Actor-Critic for mixed cooperative-competitive environments,"

arXiv preprint arXiv:1706.02275, 2017.

[16] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, "Densely connected

convolutional networks," in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017.

[17] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition," in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[18] K. Zhang, Y. Guo, X. Wang, J. Yuan and Q. Ding, "Multiple feature reweight DenseNet for

image classification," IEEE Access, vol. 7, p. 9872–9880, 2019.

[19] F. Iandola et al, "Densenet: implementing efficient convnet descriptor pyramids," arXiv

preprint arXiv:1404.1869, 2014.

[20] Y. Zhu and S. Newsam, "DenseNet for dense flow," in 2017 IEEE International Conference

on Image Processing (ICIP), 2017.

[21] M. Zeng and N. Xiao, "Effective combination of DenseNet and BiLSTM for keyword

spotting," IEEE Access, vol. 7, p. 10767–10775, 2019.

[22] M. Samvelyan et al, "The StarCraft multi-agent challenge," CoRR, vol. abs/1902.04043,

2019.

[23] M. Mohri, A. Rostamizadeh and A. Talwalkar, Foundations of machine learning, MIT

Press, 2018.

[24] M. I. Jordan and T. M. Mitchell, "Machine learning: trends, perspectives, and prospects,"

Science, vol. 349, p. 255–260, 2015.

[25] M. Bain and C. Sammut, "A framework for behavioural cloning," in Machine Intelligence

15, 1995.

[26] P. J. Rousseeuw, "Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis," Journal of Computational and Applied Mathematics, vol. 20, p. 53–65, 1987.

[27] R. Bellman, "A markovian decision process," Journal of Mathematics and Mechanics, vol.

6, p. 679–684, 1957.

[28] S. Russell and P. Norvig, "Artificial intelligence: a modern approach," 2002.

[29] R. Bellman, "Dynamic programming and Lagrange multipliers," Proceedings of the

72

National Academy of Sciences of the United States of America, vol. 42, p. 767, 1956.

[30] R. M. French, "Catastrophic forgetting in connectionist networks," Trends in Cognitive

Sciences, vol. 3, 1999.

[31] C. J. C. H. Watkins and P. Dayan, "Q-learning," Machine Learning, vol. 8, p. 279–292,

1992.

[32] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems, vol. 37,

University of Cambridge, Department of Engineering Cambridge, UK, 1994.

[33] S. SuttoRichard, D. A. McAllester, S. P. Singh and Y. Mansour, "Policy gradient methods

for reinforcement learning with function approximation," in Neural Information Processing

Systems, 1999.

[34] D. Zhao, H. Wang, K. Shao and Y. Zhu, "Deep reinforcement learning with experience

replay based on SARSA," in 2016 IEEE Symposium Series on Computational Intelligence

(SSCI), 2016.

[35] R. J. Williams, "Simple statistical gradient-following algorithms for connectionist

reinforcement learning," Machine Learning, vol. 8, p. 229–256, 1992.

[36] T. Schaul, J. Quan, I. Antonoglou and D. Silver, "Prioritized experience replay," arXiv

preprint arXiv:1511.05952, 2015.

[37] A. Nair et al, "Massively parallel methods for deep reinforcement learning," arXiv preprint

arXiv:1507.04296, 2015.

[38] H. Van Hasselt, A. Guez and D. Silver, "Deep reinforcement learning with double Q-

learning," in Proceedings of the AAAI Conference on Artificial Intelligence, 2016.

[39] Z. Wang et al, "Dueling network architectures for deep reinforcement learning," in

International Conference on Machine Learning, 2016.

[40] D. Li, D. Zhao, Q. Zhang and C. Luo, "Policy gradient methods with Gaussian process

modelling acceleration," in 2017 International Joint Conference on Neural Networks

(IJCNN), 2017.

[41] V. R. Konda and J. N. Tsitsiklis, "Actor-Critic algorithms," in Advances in Neural

Information Processing Systems, 2000.

[42] D. Silver et al, "Deterministic policy gradient algorithms," in International Conference on

Machine Learning, 2014.

73

[43] J. Peters and J. A. Bagnell, "Policy gradient methods," Scholarpedia, vol. 5, p. 3698, 2010.

[44] N. Usunier, G. Synnaeve, Z. Lin and S. Chintala, "Episodic exploration for deep

deterministic policies: an application to StarCraft micromanagement tasks," arXiv preprint

arXiv:1609.02993, 2016.

[45] I. Mordatch and P. Abbeel, "Emergence of grounded compositional language in multi-agent

populations," in Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[46] V. Mnih et al, "Asynchronous methods for deep reinforcement learning," in International

Conference on Machine Learning, 2016.

[47] F.-Y. Wang et al, "Where does AlphaGo go: from church-turing thesis to AlphaGo thesis

and beyond," IEEE/CAA Journal of Automatica Sinica, vol. 3, pp. 113-120, 2016.

[48] P. Peng et al, "Multiagent bidirectionally-coordinated nets: emergence of human-level

coordination in learning to play StarCraft combat games," arXiv preprint arXiv:1703.10069,

2017.

[49] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE

Transactions on Signal Processing, vol. 45, p. 2673–2681, 1997.

[50] J. Schulman, S. Levine, P. Abbeel, M. Jordan and P. Moritz, "Trust region policy

optimization," in International Conference on Machine Learning, 2015.

[51] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, "Proximal policy

optimization algorithms," arXiv preprint arXiv:1707.06347, 2017.

[52] K. Shao, Y. Zhu and D. Zhao, "StarCraft micromanagement with reinforcement learning

and curriculum transfer learning," IEEE Transactions on Emerging Topics in

Computational Intelligence, vol. 3, p. 73–84, 2018.

[53] A. Skrynnik et al, "Hierarchical deep Q-network from imperfect demonstrations in

Minecraft," Cognitive Systems Research, vol. 65, p. 74–78, 2021.

[54] A. Amiranashvili, N. Dorka, W. Burgard, V. Koltun and T. Brox, "Scaling imitation

learning in Minecraft," arXiv preprint arXiv:2007.02701, 2020.

[55] S. Huang and S. Ontañón, "Action guidance: getting the best of sparse rewards and shaped

rewards for real-time strategy games," arXiv preprint arXiv:2010.03956, 2020.

[56] S. Muggleton and L. De Raedt, "Inductive logic programming: theory and methods," The

Journal of Logic Programming, vol. 19, p. 629–679, 1994.

[57] V. Zambaldi et al, "Relational Deep Reinforcement Learning," arXiv preprint

74

arXiv:1806.01830, 2018.

[58] D. Churchill, Z. Lin and G. Synnaeve, "An analysis of model-based heuristic search

techniques for StarCraft combat scenarios," in Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment, 2017.

[59] S. Liu, S. J. Louis and M. Nicolescu, "Comparing heuristic search methods for finding

effective group behaviors in rts game," in 2013 IEEE Congress on Evolutionary

Computation, 2013.

[60] S. Liu, S. J. Louis and M. Nicolescu, "Using CIGAR for finding effective group behaviors

in rts game," in 2013 IEEE Conference on Computational Intelligence in Games (CIG),

2013.

[61] D. Churchill and M. Buro, "Portfolio greedy search and simulation for large-scale combat in

StarCraft," in 2013 IEEE Conference on Computational Intelligence in Games (CIG), 2013.

[62] P. Sun et al, "TStarBots: defeating the cheating level builtin ai in StarCraft II in the full

game," arXiv preprint arXiv:1809.07193, 2018.

[63] Z.-J. Pang et al, "On reinforcement learning for full-length game of StarCraft," in

Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[64] W. H. Guss et al, "The MineRL 2020 competition on sample efficient reinforcement

learning using human priors," arXiv preprint arXiv:2101.11071, 2021.

[65] D. Lee et al, "Modular architecture for StarCraft II with deep reinforcement learning," in

Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, 2018.

[66] G. Chaslot, S. Bakkes, I. Szita and P. Spronck, "Monte-Carlo tree search: a new framework

for game AI," in AIIDE, 2008.

[67] C. R. Harris et al , "Array programming with NumPy," Nature, vol. 585, p. 357–362, 9

2020.

[68] M. Abadi et al, TensorFlow: large-scale machine learning on heterogeneous systems, 2015.

[69] D.-A. Clevert, T. Unterthiner and S. Hochreiter, "Fast and accurate deep network learning

by exponential linear units (elus)," arXiv preprint arXiv:1511.07289, 2015.

[70] D. P. Kingma and J. Ba, "Adam: a method for stochastic optimization," arXiv preprint

arXiv:1412.6980, 2014.

[71] B. L. Welch, "The generalization of Student's problem when several different population

75

variances are involved," Biometrika, vol. 34, p. 28–35, 1947.

[72] Student, "The probable error of a mean," Biometrika, p. 1–25, 1908.

	MAIDRL: Semi-centralized Multi-Agent Reinforcement Learning using Agent Influence
	Recommended Citation

	Missouri State University

