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ABSTRACT

Finding rational points that satisfy functions known as elliptic curves induces a finitely-
generated abelian group. Such functions are powerful tools that were used to solve Fermat’s
Last Theorem and are used in cryptography to send private keys over public systems. Elliptic
curves are also useful in factoring and determining primality.
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1. INTRODUCTION

Given a certain cubic equation, we want to find rational points that satisfy the

equation and to find as many of these solutions as possible. In this paper, we will explore

the problem of finding rational solutions on generic cubics. We will then explore finding

rational solutions of cubics in a specific form (elliptic curves). Here we will see that the ge-

ometry of the specified form lends itself to easily define an operation of “adding points on

a curve.”

We will see how the addition of points and elliptic curve theory in general arose

from some classic problems and how the operation of point addition is applied in those

cases.

We also will see how elliptic curves were used to solve Fermat’s Last Theorem and

their connection to one of the outstanding Millenial Problems, the Birch-Swinnerton-Dyer

conjecture. We will then turn our attention to how point addition is applicable in the

problem of integer factorization and testing for primality.

Lastly, we will see that the operation of point addition and extracting the factor of

multiplication is similar to the hardness of the integer factorization problem and the dis-

crete logarithm problem. The hardness of the problem allows these elliptic curves in cer-

tain settings to be used in cryptography settings where the problem is deemed intractable.
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2. HISTORY OF ELLIPTIC CURVES

The terms elliptic curve and ellipse sound synonymous. It were as to say that el-

liptic curves is just another way to say ellipse. While it is true that both curves share the

same word-base, it turns out that the curves are different classes and have very different

properties, with elliptic curves having the more interesting and useful properties. The term

elliptic curve owes its name to the fact that it arises from an ellipse, but maybe not in a

way that one might expect.

2.1. The Starting Point

Consider the general form of an ellipse, a quadratic in terms of x and y given by

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

With a change of variables and rotation of axes, we can consider the same curve in a stan-

dard form given by

x2

a2
+
y2

b2
= 1. (2.1)

This is an ellipse centered at the origin of the xy-plane and if |a| > |b|, then the ellipse has

major axis a, minor axis b, and the foci located at c = ±
√
a2 − b2. Figure 2.1a shows an

ellipse whose equation is x2/25 + y2/16 = 1 and its foci are located at (−3, 0) and (3, 0).

Ellipses have the well-known property that the sum of the distances starting from one lo-

cus to a point on the curve and then to the other locus is equal for all points on the curve.

Ellipses are useful for focusing energy waves, studying the motions of celestial bodies, for

varying rotational speeds in gears (Fig. 2.1b), etc.
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(a) 1 = x2

25 + y2

16
(b) Elliptic Gears

Figure 2.1: Pictures of Ellipses

2.2. From Ellipses to Elliptic Integrals

The formula for arclength L of a continuous, differentiable curve f on interval x1 to

x2 is given by

Lx2x1 =

∫ x2

x1

√
1 + (f ′(u))2 du. (2.2)

Apollunius of Perga who studied and developed what was mostly known about ellipses for

two millennia was unable to answer the question of the length of an arc of an ellipse. Even

after the invention of calculus in 1600s, the works of Newton, Euler, and Maclaurin, could

only answer the question as a sum of infinite series, notably because the integration of the

arclength for an ellipse induces a non-elementary integral [15].

Observe that when solving for y in (2.1), y = f(x) = b
a

√
a2 − x2, thus,

f ′(x) = − bx

a
√
a2 − x2

(f ′(x))2 =
b2x2

a2(a2 − x2)
(2.3)
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Thus we substitute Eq. (2.3) into Eq. (2.2) and use variable x = au

L =

∫ u2

u1

a

√
1 +

a2b2u2

a2(a2 − a2u2)
du

=

∫ u2

u1

a

√
a2 − (a2u2 − b2u2)

(a2 − a2u2)
du

=

∫ u2

u1

√
a2 − k2u2

1− u2
du

where k2 = a2 − b2.

2.3. Elliptic Integrals to Elliptic Functions to Elliptic Curves

Non-elementary integrals were studied intensely by Adrien-Marie Legendre. He

came to the realization that arclength calculations could be parameterized by u = sin t

and y = b cos t. The arclength functions fell into one of three categories, which have be-

come to be known as elliptic integrals of first, second, and third kind, respectively. Abel

and Jacobi carried Legendre’s work further by parameterizing with x = sin t and refined

the three classes of integrals. Together, the three classes can be identified as F , E, and Π

as the first, second, and third kinds. We give their general presentations here.

F (u, k) =

∫ u

0

dx√
(1− x2)(1− k2x2)

,

E(u, k) =

∫ u

0

1− k2x2√
(1− x2)(1− k2x2)

dx

Π(u, k, n) =

∫ u

0

dx

(1 + nx2)
√

(1− x2)(1− k2x2)
, |u| ≤ 1.

Note that

F (u, 0) =

∫ u

0

dx√
1− x2

= sin−1 u,

the inverse sine function expressed as an integral. Jacobi considered nonzero k, and stud-

ied the inverses F−1(u, k), a function he called sine amplitude (using Legendre’s term),

4



denoted

snu = F−1(x).

This is an example of an elliptic function.

As a result, elliptic functions then are similar to the sine function. It is well-known

that the sine function is periodic with a period of 2π, that is for n ∈ Z, then sin x =

sin(x + 2nπ). Jabcobi showed that the elliptic functions are also periodic. Moreover, ellip-

tic functions and only elliptic functions are exactly (no more than) doubly periodic. That

is, there exists α, β ∈ C with α/β /∈ R such that

sn(u+mα) = sn(u+ nβ) = sn u

for m,n ∈ N [15].

We know that the derivative of trig functions are still trig functions. Let us con-

sider the derivatives of elliptic functions. To explore this topic further, consider the infinite

series
∞∑

m=−∞

(z +mπ)−2 = (sin z)−2.

Elliptic functions can also be expressed in a similar power series. Let ω1, ω2 ∈ C and

m,n ∈ Z, define a lattice L by

L = {mω1 + nω2}.

Then let l ∈ L for a given choice of m,n. Eisenstein showed that the elliptic function in

the form

y(z) =
∑

l∈L,l 6=0

(z + l)−2 −
∑

l∈L,l 6=0

l−2

had to satisfy a differential equation in the form of

[y′(z)]2 = p(y(z))

for a cubic polynomial p with no repeated roots. In 1863, Karl Weierstrass proved that his

5



℘-function defined

℘(z) = ℘(z;L) :=
1

z2
+

∑
l∈L, l 6=0

(
1

(z − l)2
− 1

l2

)
is doubly periodic, meromorphic function over the complex numbers, hence, an elliptic

function [11]. In fact ℘′(z), ℘′′(z) and all the derivatives of ℘(z) are elliptic functions.

Just like as all of trigonometric functions can be expressed as rational functions of

sin x and its derivatives, the Weierstrass ℘-function and its derivatives is the basis for all

elliptic functions ([15] p.172).

Here, we present the modern definition of an elliptic function: a single-valued, mero-

morphic function f , defined over C, for which there are two distinct complex numbers ω1

and ω2 such that the ratio ω1/ω2 /∈ R such that

f(z + ω1) = f(z + ω2) = f(z).

Weierstrass proved that ℘(z) satisfied a cubic differential equation, specifically

[℘′(z)]2 = 4℘(z)3 − g1℘(z)− g2

with constants g1, g2 that depend on ω1, ω2. By letting x = ℘(z) and y = ℘′(z), we see a

parameterization of the cubic curve

y2 = 4x3 − g1x− g2.

These results are discussed in Koblitz [11] and in Rice and Brown [15].

2.4. Chord and Tangent method

In the 1670s, Newton used the geometry of elliptic curves to describe the method of

obtaining rational points that lie on the curve. This method of obtaining rational points

gives elliptic curves a structure that is not immediately observable, and took the consider-

6



able efforts of Henri Poincaré in 1901 to pull all these ideas together [15].

Let’s describe the tangent-chord method that Newton investigated.

First, if a line intersects a cubic at two points, then that line will usually intersect

the cubic at a third. We can allow two or more of these points to be the same, so the line

can be tangent to the curve with multiplicity 2 or 3. If the line is tangent with multiplicity

2, then the line will intersect at one other point on the cubic. If a line is tangent to the

cubic with multiplicity 3, then the line will not intersect at any other point on the curve.

Notice in Figure 2.2, graphs one, two, and three represent three cubics; two are con-

nected and one is disconnected. The tangent-chord method works for connected and dis-

connected elliptic curves and we need not limit our studies to solely connected or discon-

nected elliptic curves.

For example,

E(x, y) = y2 − x3 + 2 = 0

We can see that P = (−1, 1) lies on E. We can find a third point on E by finding the

equation of the line tangent to E at P and solving for where it intersects E again.

First we find the derivative, 2y
(
dy
dx

)
= 3x2, and plug in P . This yields dy/dx = 3/2.

We find the y-intercept using y = mx + b and using P and dy/dx, we find b = 5/2. Thus

the equation of the line tangent to E at P is

y =
3

2
x+

5

2
.

We find where the tangent line intersects E again by taking its equation and substituting

into E. We then solve for the three roots.(
3

2
x+

5

2

)2

= x3 + 2

9

4
x2 +

15

2
x+

25

4
= x3 + 2

0 = x3 − 9

4
x2 − 15

2
x− 17

4

= (x+ 1)(x+ 1)(x− 17/4)

7



(a) y2 = x3 + 2x− 1 (b) y2 = x3 − 3x+ 10 (c) y2 = x3 − 4x

Figure 2.2: Elliptic curves of different shapes

We already know that the line was tangent at P so the first two solutions of x = −1 come

from P . We are interested in the third solution, x = 17/4. We take this value and plug

into E and we find y2 = 5041/64 and thus y = ±71/8. Since the tangent line has positive

slope we find ourselves interested in the positive value. Thus the tangent line intersects E

at (
17

4
,
71

8

)
.

This example will be discussed further in section 5.1.1 where we will look at the chord and

tangent method after more development of the ideas presented here. But to procede, we

must first discuss projective curves.
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3. PROJECTIVE PLANES

3.1. History

Consider the difficulties of capturing the essence of a 3-D scene on a 2-D piece of

paper or canvas. The process of fixing oneself to a point in space and capturing the ob-

served universe onto paper is called linear perspective. One can think of it as drawing lines

out from the observer’s eyes to objects in the distance, insert a piece of paper somewhere

between the observer and those objects, and where those lines intersect the paper is where

the information is relayed onto the drawing.

Hasan Ibn al-Haytham, also known as Alhazen, wrote about perspective and optics

in first century of 1000s, but his ideas were not immediately put to use. Giotto di Bon-

done in the late 1200s is noted to be one of the first to include perspective in his works.

Artists started started using ideas on perspective regularly beginning in the 1400s. Before

then, perspective on different objects was relegated by their importance, not necessarily

by their relation to each other geometrically. Brunelleschi and Alberti in 1415 used similar

triangles to try to capture the distance between objects. Piero della Francesco, a geome-

ter, mathematician and artist, wrote specifically on perspective in painting (in a paper by

the same name) in 1400s. His paintings are noted for his approach to perspective, notably

Brera Madonna. In 1500s, Luca Pacioli, an Italian artist and mathematician, wrote on ge-

ometric and artistic proportion, including the use of the golden ratio in architecture. He

was a contemporary of Da Vinci who illustrated some of Pacili’s works. Most famously, Da

Vinci used perspective to create a vanishing point in his most notable works, Mona Lisa

and The Last Supper. This is a summary of art history from the websites of [12] and [23].

Notice in Figure 3.1, the use of a vanishing point in relation to the railroad tracks.

Although the tracks are parallel, they appear to disappear (or merge or intersect) as we

look off into the distance. We could consider these particular set of tracks to represent a

family of parallel lines with a particular slope m on the xy-plane. The point where the

9



Figure 3.1: Perspective on Parallel lines in the distance

lines seem to intersect in the distance would then represent the point at infinity where

all the lines of that family of slope m would intersect. Likewise, a different family of lines

with a different slope m would have a vanishing point at infinity. For each family of lines

of slope with m ∈ R, including vertical lines that have no slope m, then there is one point

at infinity for each family.

These ideas of linear perspective and intersections at infinity will motivate our dis-

cussion of projections.

3.2. Homogeneous Coordinates and the Projective Plane

An affine plane over a field K is defined

A2
K = {(x, y)|x, y ∈ K}.

Similarly, affine space, denoted A3
K , or just K3, is defined

A3
K = K3 = {(x, y, z)|x, y, z ∈ K}

Projective n-space over a field K, which is denoted PnK , or simply Pn, is the set

10



of equivalence classes of (n+ 1)-tuples (a0, . . . , an) of elements of K, not all zero, such that

(a0, . . . , an) ∼ (λa0, . . . , λan) for λ ∈ K, λ 6= 0. In other words, Pn is the set of lines in

An+1\(0, . . . , 0) going through the origin with an equivalence relation that identifies which

points lie on the same line through the origin. An element of Pn is a point. Any point P ∈

Pn is a representative of some equivalence class, so P can represent the entire class. The

representatives for the equivalence for P are the set of homogeneous coordinates for

P . [9]

Consider the projective plane in the case when n = 2, that is, lines in K3 going

through the origin (0, 0, 0) and the plane z = 1. Then each line intersects the affine plane

z = 1 in a unique point. With our equivalence relation in place, this point is the represen-

tative for that equivalence class. In the case of lines in K3 that lie solely in the xy-plane

(z = 0), each with a different slope, these lines are equivalence classes that represent the

points at infinity for families of parallel lines in z = 1 with the same slope. This collection

of points at z = 1 plus the points at infinity creates the projective plane.

Homogeneous coordinates have the following properties.

1. Each line in K3 going through the origin is an equivalence class and is denoted (X :

Y : Z). We exclude the origin from the set of equivalence classes to avoid ambiguity.

We define the projective plane as P 2
K = {(X : Y : Z)|X, Y, Z ∈ K, (X : Y : Z) 6=

(0, 0, 0)}.

3. Any equivalence class (X : Y : Z) with z 6= 0 can be represented as (X/Z, Y/Z, 1).

For x = X/Z and y = Y/Z, each of these projective points in P2
K can be identified

with affine points (x, y) ∈ A2
K .

4. For Z = 0, then any point (X : Y : 0) is considered a point at infinity.

Figure 3.2 captures a 3-D view of the projective plane in space. The y-axis is green

extending positively to the right and negatively to the left. The x-axis is red extending

positively to the foreground and negatively in the background. The z-axis is blue extend-

11



Figure 3.2: The plane z = 1 one unit above the origin

ing positively up and negatively down. The light gray plane is the xy-plane where z = 0.

the light blue plane where z = 1 represents the projective plane.

Figure 3.3 Shows some lines through the origin and their intersections with the

plane z = 1.

Figure 3.4 is the same as Figure 3.3 but from the perspective of looking down the

z-axis so the the xy-plane is oriented as if it were the affine plane. One can see that the

lines through the origin intersect the plane z = 1 as they extend upward away from the

origin. The points A, B, C, D, E are represented by the blue balls. The solid portion of

the lines are the half of the lines above the plane z = 1; the dotted portion of the lines are

the half below z = 1.

3.3. Homogeneous Polynomials and Homogenization

The degree of a monomial k is the sum of exponents of variables within the

monomial. The degree of a polynomial F is the max d of all the degrees of terms of F .
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Figure 3.3: Lines through the origin intersect z = 1 in one point

Figure 3.4: Viewing the plane z = 1 as the affine plane

13



A homogeneous polynomial F is a polynomial in which all terms have the same degree.

A homogeneous polynomial of degree d can also be defined as one satisfying F (λX, λY, λZ) =

λdF (X, Y, Z) for any λ ∈ K.

To homogenize a polynomial expressed in terms of x and y is to multiply each

term of the polynomial by an appropriate power of Z so that the sum of the exponents in

each term is d. Given some polynomial f(x, y) of degree d, let F represent the the homog-

enized form of f given by

F (X, Y, Z) = Zdf(X/Z, Y/Z).

Example 1. Homogenize

f(x, y) = x3 + 2x2 − y2 − x− 5 = 0.

Then f is degree 3 and

F (X, Y, Z) = Z3f(X/Z, Y/Z)

= Z3

[(
X

Z

)3

+ 2

(
X

Z

)2

−
(
Y

Z

)2

− X

Z
− 5

]
= X3 + 2X2Z − Y 2Z −XZ2 − 5Z3 = 0.

which makes F homogeneous with degree 3.

To dehomogenize a homogeneous polynomial F with respect to Z is to rewrite

F (X, Y, Z) such that X = x, Y = y, and Z = 1. If F (X, Y, Z) is homogeneous of degree d,

then

f(x, y) = Z−dF (X, Y, Z) = F (X/Z, Y/Z, 1) = F (x, y, 1)

Intuitively, this is the opposite process of homogenization where Z is “removed.”

Example 2. Dehomogenize

F (X, Y, Z) = X4 −X2Y 2 + 2XY 2Z − 3Y 3Z + 5Z4.

with rexpect to Z.
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Then F is homogeneous of degree 4 and we find

f(x, y) = Z−4F (X, Y, Z)

= F

(
X

Z
,
Y

Z
, 1

)
=

(
X

Z

)4

−
(
X

Z

)2(
Y

Z

)2

+ 2

(
X

Z

)(
Y

Z

)2

− 3

(
Y

Z

)3

+ 5

= x4 − x2y2 + 2xy2 − 3y3 + 5.

Then f is heterogeneous of degree 4.

Notice the connection between homogeneous coordinates and homogeneous polyno-

mials. If (x, y, z) ∼ (x′, y′, z′) then by definition (x, y, z) = (λx, λy, λz) for some λ ∈ K. If

F is a homogeneous polynomial with F (x, y, z) = 0, then

F (x′, y′, z′) = F (λx, λy, λz)

= λdF (x, y, z)

= λd(0)

= 0.

We see then that the choice of representative of an equivalence class does not mat-

ter and F is well-defined.

3.4. Points at Infinity

Now we turn our attention to the case of the lines that lie solely in the xy-plane,

the case when Z = 0.

In the affine plane, each family of parallel lines all have the same slope, m. Each

line has equation y = mx+ b, for some b. In projective coordinates, when Z 6= 0, then(
X

Z
: m

X

Z
+ b : 1

)
∼ (X : mX +BZ : Z).
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In the case of Z = 0, then

(X : mX : 0) ∼ (1 : m : 0).

There is one point at infinity for each family of parallel lines with slope m.

In the case of family of vertical lines, where x = c for some constant c, then when

Z 6= 0 (
c :

Y

Z
: 1

)
∼ (cZ : Y : Z).

When Z = 0, then

(0 : Y : 0) ∼ (0 : 1 : 0).

In general, by homogenizing and setting Z = 0, we can find the point at infinity for a

curve.

Example 3. Consider

(y − 2x)(3x− y)(2x− 3y) = 1.

Then f(x, y) = (y − 2x)(3x− y)(2x− 3y)− 1 = 0. If we homogenize f , then

F (X, Y, Z) = (Y − 2X)(3X − Y )(2X − 3Y )− Z3 = 0.

In the case of Z = 0, then the solutions are (X, 2X, 0), (X, 3X, 0), and (3X, 2X, 0). These

are equivalent to (1, 2, 0), (1, 3, 0), and (3, 2, 0), so there are three points at infinity.

Example 4. Consider the equation of an elliptic curve in special form

y2 = x3 + Ax+B.

Then f(x, y) = y2 − x3 − Ax− B = 0. The homogenized form of f is given by

F (X, Y, Z) = Y 2Z −X3 − AXZ2 − BZ3 = 0.

In the case of Z = 0, then X3 = 0, thus X = 0 and Y is arbitrary. Thus (0, Y, 0) ∼

(0, 1, 0). This shows that for equations of this form, there is one point of infinity for fami-

lies of vertical lines.
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4. THE GROUP LAW

4.1. Singular Curves, Elliptic Curves

Definition. A curve is singular at a point if its partial derivatives are simultaneously

zero at that point.

In particular, a homogeneous, projective curve F (X, Y, Z) = 0 with (X, Y, Z) 6=

(0, 0, 0) is singular at (X, Y, Z) if

F (X, Y, Z) = FX(X, Y, Z) = FY (X, Y, Z) = FZ(X, Y, Z) = 0.

Figures 4.1 and 4.2 below show some nonsingular and singular curves.

For example, if F (X, Y, Z) = Y 2Z −X3 − 3X2Z = 0, then FX(X, Y, Z) = −3X2 −

6XZ, FY = 2Y Z, and FZ = Y 2 − 3X2. Then (0,0,1) is a singular point of F . Singular

points occur when curves wrap around on themselves (self-intersect or nodes) or cusps are

created. Figure 4.2a shows an affine piece of the projective curve F in the affine plane,

f(x, y) = y2 − x3 − 3x2 = 0 and the point of singularity at the origin.

Definition. An elliptic curve over a field K is a projective, non-singular cubic curve

with at least one rational point in K3, also called K-rational points.

4.2. Weierstrass Form

The most general form of a cubic in terms of x and y is:

f(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0.

Weierstrass was able to show that any cubic with a K-rational point can be trans-

formed into a special form called Weierstrass normal form. Here, let us define these

special forms and then define the group of points on an elliptic curve E.
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(a) y2 = x3 + 2x (b) y2 = x3 − 3x+ 10 (c) y2 = x3 − 4x

Figure 4.1: Nonsingular curves

(a) y2 = x3 + 3x2

(b) y2 = x3

Figure 4.2: Singular Curves
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Definition (Normalized Weierstrass Form). A cubic in the form of

y2 = x3 + Ax+B

is called Normalized Weierstrass Form, or just normal form.

We note here that any cubic curve E over a field K that is not of characteristic 2

or 3 can be put in normal form.

Definition (Group of Rational Points). Let E be an elliptic curve in normal form defined

over Q. Then the set of rational points on E is defined as

E(Q) := {∞} ∪ {(x, y) ∈ Q2|y2 = x3 + Ax+B}.

For fields K with charK 6= 2, 3, then Weierstrass normalized form, or just Weier-

strass form, in projective coordinates can be written F (X, Y, Z) = Y 2Z − X3 − AXZ2 −

BZ3 = 0.

Since we require that elliptic curves be non-singular, we must then discuss what

limitation or limitations we must put on Weierstrass form to guarantee that an elliptic

curve is non-singular.

Proposition 4.2.1. An elliptic curve in Weierstrass form is non-singular if and only if

the quantity 4A3 + 27B2 6= 0.

Proof. Since the claim is bi-conditional, we will prove the contrapositive.

⇒ Assume 4A3 + 27B2 = 0. Then B =
√

4(−A)3/27. So consider the equation

f(x, y) = y2 − x3 − Ax−
√

4(−A)3

27
= 0.
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Then fy = 2y and fx = −3x2 − A. Now consider the point P = (
√
−A/3, 0). Then

f(
√
−A/3, 0) = 02 −

(√
−A
3

)3

− A

(√
−A
3

)
−
√

4(−A)3

27

=
A

3

√
−A
3
− A

√
−A
3

+
2A

3

√
−A
3

= 0. (4.1)

Then fy(P ) = 0 and fx(P ) = 3(
√
−A/3)2 +A = 0. Thus f(P ) = fy(P ) = fx(P ) = 0

and the curve is singular at P .

⇐ Assume the the curve is singular. Consider the projective, homogeneous Weier-

strass form F (X, Y, Z) = Y 2Z − G(X,Z) = 0 where G(X,Z) = X3 + AXZ2 + BZ3.

Then consider the partial derivatives of F : FX = −3X2 − AZ2, FY = 2Y Z, and FZ =

Y 2 − 2AXZ − 3BZ2.

If FY = 0, then Y = 0 or Z = 0. If Z = 0, FX = 0 means X = 0. Since FZ = 0,

this forces Y = 0. This gives the point (0,0,0) which is excluded upon assumption, so we

exclude the case Z = 0 and assume that Z is non-zero.

So then Y = 0. Since Z 6= 0, then we can dehomogenize G, and we have g(x) =

x3 + Ax + b, and g′(x) = 3x2 + A. But since Y = 0 and Y 2 = G(X,Z), then g(x) = 0 and

g′(x) = 0 and g has multiple roots.

Consider then that when g′(x) = 0, then x = ±
√
−A/3. Then substituting into

g(x) = 0,(
±
√
−A

3

)3

+ A

(
±
√
−A

3

)
+B = 0

B =

(
−A

3

)(
∓
√
−A/3

)
+ A

(
∓
√
−A/3

)
=

2A

3

(
∓
√
−A/3

)
B2 =

4A2

9
· −A

3

27B2 + 4A3 = 0.
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For example, in the case of y2 = x3 − 4x, then A = −4, and B = 0, thus 4A3 +

27B2 = 64 6= 0, thus it is non-singular, as shown in Fig 4.1c.

4.3. Definition of Point Addition

We wish to put a group structure on E(Q).

Geometrically, define point addition from the tangent-chord method where we want

to find where a tangent line or a chord intersects an elliptic curve at a third point. If P

and Q are two points on the curve, define the operation ? as finding a third point R′ =

(x1, y1) on the curve so that P ? Q = R′. After R′ is found, find its reflection across the x-

axis and define this operation as point addition + so that P +Q = R where R = (x1,−y1).

The line connecting points P and Q in Fig. 4.3 shows the operations of ? and +.

We also define P + Q = ∞ whenever the line connecting P and Q is vertical. We

use ∞ as a shorthand for (0, 1, 0), which we saw earlier was the point for infinity for our

elliptic curve. This is the point where all vertical lines intersect in the projective plane and

we identify this as the identity element so that P +∞ = P for all P on the curve.

Let E be a projective elliptic curve defined by y2 = x3 + Ax + B. Let P1 = (x1, y1)

and P2 = (x2, y2) be points on E. We can compute the addition of points

P1 + P2 = P3 = (x3, y3)

into the following cases.

1. For all points P , define

P +∞ = P.

For a vertical line connecting P1 and ∞, then the line crosses E a third time at the
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Figure 4.3: Adding Points on Elliptic Curves

reflection of P1 across the x-axis. By definition of ?, we find

P1 ?∞ = (x1,−y1),

so that by definition of +,

P1 +∞ = (x1,−(−y1) = P1,

which holds for all points P on E.

2. For P1 = P2 and y1, y2 6= 0,

we can find the slope of the line tangent to E by taking the derivative, finding

m =
3x21 + A

2y1
.

We find the y-intercept b of the tangent line by b = y1 − mx1. Thus we have the

equation of the line tangent to the curve y = mx+ b. By substitution,

(mx+ b)2 = x3 + Ax+B

0 = x3 −m2x2 + · · ·
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Note also, that if x1, x2, x3 are the roots of any cubic, then

0 = (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x
2 + · · ·

We can relate the two equations by setting them equal to each other. Thus

x3 − (x1 + x2 + x3)x
2 + · · · = x3 −m2x2 + · · · .

We set the coefficients of the x2 term equal to each other and

x1 + x2 + x3 = m2.

Since x1 = x2, then

x3 = m2 − 2x1. (4.2)

Therefore,

y′3 = mx3 + b

y3 = −y′3 = −(mx3 + y1 −mx1)

= m(x1 − x3)− y1

3. If x1 = x2, and y1 = −y2,

then line connecting the two points is vertical since m = y2+y1
x2−x1 = 2y1

0
. In the case

y1 = y2 = 0, then P1 = P2 and dy/dx = (3x2 + A)/0. Thus,

P1 + P2 =∞.

4. If x1 6= x2,
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and we find the slope of the line between the two points

m =
y2 − y1
x2 − x1

.

Find x3 by subtracting two known roots from m2 so that

x3 = m2 − x1 − x2.

Find y3 as in Case 2A:

y3 = m(x1 − x3)− y1.

4.4. Group Law Theorem

Theorem 4.4.1. The addition of points on E satisfies the following four properties:

1. Commutativity: P1 + P2 = P2 + P1 for all P1, P2 on E.

2. Existence of Identity: P +∞ = P for all P ∈ E.

3. Existence of Inverses: Given P on E, then there exists P ′ such that P + P ′ = ∞.
This is usually denoted −P .

4. Associativity: (P1 + P2) + P3 = P1 + (P2 + P3) for all P1, P2, P3 on E.

The points on E form an additive abelian group with ∞ as the identity element.

Proof. Commutativity is easy to see geometrically. The line that connects P1 and P2 is the

same as the line that connects P2 and P1. Also, the formulas will show that commutativity

holds.

The point at ∞ is the identity by definition.

Since P = (x, y) lies on E, then there is a reflection P ′ of P across the x-axis where

P ′ = (x,−y). Then P + P ′ = ∞ since x − x = 0 and the line connecting P and P ′ is

vertical.

Concerning associativity, consider the case of A = (xA, yA), B = (xB, yB), C =

(xC , yC) and A 6= B 6= C.
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Let A+B = (xA+B, yA+B). Let α be slope mA+B

α = mA+B =
yB − yA
xB − xA

.

Then

xA+B = α2 − xA − xB

and

yA+B = α(xA − xA+B)− yA

= α(xA − (α2 − xA − xB))− yA

= α(2xA + xB − α2)− yA.

Let β be slope m(A+B)+C :

β = m(A+B)+C

=
yC − yA+B
xC − xA+B

=
yC − [α(2xA + xB − α2)− yA]

xC − (α2 − xA − xB)

=
yC + yA − α(2xA + xB − α2)

xA + xB + xC − α2

Then

x(A+B)+C = β2 − xA+B − xC

= β2 − (α2 − xA − xB)− xC

= β2 + xA + xB − xC − α2,
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and

y(A+B)+C = β(xA+B − x(A+B)+C)− yA+B

= β[α2 − xA − xB − (β2 + xA + xB − xC − α2)] + β(xC − xA+B)− yC

= β(α2 − xA − xB − (β2 + xA + xB − xC − α2) + xC − (α2 − xA − xB))− yC

= −yC + β(2xC − xA − xB − β2 + α2).

Let α = αN/αD and let β = βN/βD so that

αN = yB − yA

αD = xB − xA

βN = (yA + yC)α3
D − αN [(2xA + xB)α2

D − α2
N ]

βD = (xA + xB + xC)α2
D − α2

N

Likewise we want to construct the point A + (B + C) = (xA+(B+C), yA+(B+C)). Let γ =

mB+C

γ = mB+C =
yB − yC
xB − xC

.

Then

xB+C = γ2 − xB − xC

and

yB+C = γ(xB − xB+C)− yB

= γ(xB − (γ2 − xB − xC)− yB

= γ(2xB + xC − γ2)− yB.
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Let τ be slope mA+(B+C):

τ = mA+(B+C)

=
yB+C − yA
xB+C − xA

=
γ(2xB + xC − γ2)− yB − yA

γ2 − xB − xC − xA

=
yA + yB − γ(2xB + xC − γ2)

xA + xB + xC − γ2

Then

xA+(B+C) = τ 2 − xA − xB+C

= τ 2 − xA − (γ2 − xB − xC)

= τ 2 + xB + xC − xA − γ2

and

yA+(B+C) = τ(xA − xA+(B+C))− yA

= τ [xA − (τ 2 + xB + xC − xAγ2)]− yA

= τ(2xA − xB − xC − τ 2 + γ2)− yA.

Let γ = γN/γD and τ = τN/τD so that

γN = yB − yC

γD = xB − xC

τN = (yA + yB)γ3D − γN [(2xB + xC)γ2D − γ2N ]

τD = (xA + xB + xC)γ2D − γ2N
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It can be shown that by multiplying both sides by α6
Dγ

6
D to clear denominators in β2τ 2,

x(A+B)+C − xA+(B+C) = β2 + xA + xB − xC − α2 − (τ 2 + xB + xC − xA − γ2)

= β2 − τ 2 + 2xA − 2xC + γ2 − α2

= β2
Nτ

2
Dγ

2
D − τ 2Nβ2

Dα
2
D + [(2xA − 2xC)α2

Dγ
2
D + γ2Nα

2
D − α2

Nγ
2
D]β2

Dτ
2
D

= 0.

It can be shown that multiplying both sides by α9
Dγ

9
D to clear denominators in β3τ 3,

y(A+B)+C − yA+(B+C) = (yA − yC) + β(2xC − xA − xB − β2 + α2)

−τ(2xA − xB − xC − τ 2 + γ2)

= (yA − yC)β3
Dτ

3
Dα

3
Dγ

3
D

+βNτ
3
Dγ

9
D[(2xC − xA − xB)β2

Dα
2
D − β2

N + α2
Nβ

2
D]

−τNβ3
Dα

9
D[(2xA − xB − xC)τ 2Dγ

2
D − τ 2N + γ2Nτ

2
D]

= 0.

The other cases can be done similarly. The case above is solely the case of 2D of

the algorithm of adding points listed above, and one can see that the calculations are long

and arduous. It suffices to say that proof of associativity is tedious. Geometrically, the

proof can be easy to see.

Associativity can be done by using explicit equations or by using homogeneous

equations. We leave this to Washington [20].

4.5. Theorems on Group Structure

The question of the structure of the group on an elliptic curve was first posed by

Henri Poincaré in 1901. The first proof came from Louis Mordell in 1922 and taken up

again by André Weil in 1928.

28



Theorem 4.5.1 (Mordell-Weil Theorem). Let E be an elliptic curve defined over Q. Then

E(Q) is a finitely generated abelian group.

Theorem 4.5.2 (Fundamental Theorem of Finitely Generated Abelian Groups). Let A be

a finitely generated abelian group. Then

A ∼= Zr × B

where B is some finite abelian group. For a given abelian group A, the isomorphism above

is unique, thus r is unique and r is call the rank of A.

Concerning elliptic curves, the rank r is the number of independent basis points

that have infinite order. The rank of a curve is not easily calculated. There is no known

method for finding those independent basis points. It is not known if r can be arbitrarily

large. The largest known rank is at least 28 found in 2006 which is given by

y2 + xy + y = x3 − x2

−20 067 762 415 575 526 585 033 208 209 338 542 750 930 230 312 178 956 502x

+34 481 611 795 030 556 467 032 985 690 390 720 374 855

944 359 319 180 361 266 008 296 291 939 448 732 243 429

where the last two lines represent 1 83-digit decimal number. This was discovered by Noam

Elkies in 2006 [6]. The question of the nature of r is the Birch and Swinnerton-Dyer con-

jecture, which is one of the seven Millenial problems. Just as we have looked at the group

of points of an elliptic curve E over the rationals, the group E(Q), we can consider E over

other fields Fp for prime p. These groups are simply noted E(Fp).

For the Hasse-Weil L function at s = 1,

L(E, 1) =
∏
p

(1− 2app
−s + p1−2s)−1

where ap is determined from #E(Fp) = p+ 1− ap for each p.
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Conjecture 4.5.3 (Birch-Swinnerton-Dyer Weak Form). L(E, 1) = 0 ⇐⇒ E has

infinitely many rational points.

The strong version of the conjecture states the relation between the rank r of a

curve C in the projective plane and the L function.

Points P whose order is finite are called torsion points. These torsion points are

a subgroup of E(Q). The following theorem allows for a quick determination of the num-

ber of torsion points of the group over Q.

Theorem 4.5.4 (Lutz-Nagell Theorem). Let E be defined by y2 = x3 + Ax + B, where

A,B ∈ Z and 4A3 + 27B2 6= 0. Let P = (x, y) ∈ E(Q) with ord(P ) < ∞. Then x, y ∈ Z.

If y 6= 0, then

y2 | 4A3 + 27B2.

The Lutz-Nagell theorem ([20] p.195) gives a bound on the size of the torsion group

in terms of the curve’s discriminant. Although it is unclear whether rank is unbounded,

the number of possible groups of torsion points is limited to the 15 groups listed below in

Mazur’s theorem.

Theorem 4.5.5 (Mazur). Let E be an elliptic curve defined over Q. Then the torsion

subgroup of E(Q) is one of the following:

Zn with 1 ≤ n ≤ 10 or n = 12

Z2 ⊕ Z2n with 1 ≤ n ≤ 4.

Now we state Hasse’s theorem which puts bounds on the size of a group over a field

F of prime q.

Theorem 4.5.6 (Hasse’s Theorem). Let E be defined over a field Fq, for some prime q.

Then the order of E(Fq), denoted #E(Fq), satisfies

|q + 1−#E(Fq)| ≤ 2
√
q
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This is equivalent to saying that E(Fq) falls in the interval q+ 1− 2
√
q ≤ #E(Fq) ≤

q + 1 + 2
√
q, which we will call Hasse’s Interval.
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5. EXAMPLES

5.1. Examples Over the Rationals

5.1.1. Chord-Tangent Method Continued. In section 2.4, we looked at

y2 = x3 + 2 (5.1)

over the rationals with P = (−1, 1). Recall that we defined ? as the operation of finding

the third point where a line intersects an elliptic curve E. In this case, we saw that when

we took the line tangent to the curve at this point, we found that the tangent line inter-

sected the curve at
(
17
4
, 71

8

)
= P ? P . With reflection across the x-axis, then P + P =(

17
4
,−71

8

)
= 2P .

The line adjoining P and 2P is entirely different from the tangent line at P and

will cross E at a third point. We find the slope between the two points is −79/42 and the

equation of the line through the two points is y = −79
42
x− 37

42
. Substitute this into Eq. (5.1)

and factor and we find a third x-coordinate of x = 127/441. We plug this into Eq. (5.1)

and find y2 = 173 580 625
85 766 121

and y = ±13175
9261

. Then P ? 2P =
(
127
441
,−13175

9261

)
and P + 2P =(

127
441
, 13175

9261

)
.

Figure 5.1 on right shows E and P from the example, the line tangent to E at P ,

the operation P ? P , and the operation P + P . Let Q = 2P . The right shows the analogue

Figure 5.1: Chord-Tangent Method with reflection
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for P +Q.

5.1.2. Example 1. Consider curve E :

y2 = x3 + 1. (5.2)

We see that that the point P = (2, 3) is a rational point on Eq. (5.2). Say we want

to find points 2P , 3P , 4P , etc. First, we take the derivative of Eq. (5.2) with respect to x,

and find the slope m = dy/dx at P . We see then that 2y dy = 3x2dx ⇒ 6dy = 12dx ⇒

m = 2. Then using slope-intercept form, 3 = 2 · 2 + b, which shows that the tangent line is

y = 2x− 1. (5.3)

Now, we substitute Eq. (5.3) into Eq. (5.2) to obtain (2x− 1)2 = x3 + 1, thus

0 = x3 − 4x2 − 4x (5.4)

We already know that x = 2 is a double root of Eq. (5.4) since we took the tangent

to E at x = 2. Since x factors out of all three terms, x = 0 is the 3rd root. Plugging x = 0

into Eq. (5.3), we find that P ? P = (0,−1) and P + P = 2P = (0, 1).

To find 3P = P + 2P , first we find the slope between the two points, which is m =

1. Thus the equation of the line connecting P and 2P is y = x+ 1. We substitute this into

Eq. (5.2) to find (x+ 1)2 = x3 + 1. Thus,

0 = x3 − x2 − 2x. (5.5)

We already know that x = 2 and x = 0 are roots from P and 2P respectively, so

we find that x = −1 is the 3rd root. Plugging this into y = x + 1, we find y = 0, and this

yields 3P = (−1, 0).

We see that y = 0 on (−1, 0), so 3P has order 2, thus P has order 6. Figure 5.2

shows the curve and the addition of points.
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Figure 5.2: y2 = x3 + 1

5.1.3. Example 2. Consider the curve

x3 + y3 + 1 = 5xy (5.6)

Let’s say that we want to find rational solutions to this curve. We can use the ad-

dition law to find those points. Note that in this example, we will be using y = x as the

line of reflection, rather than reflecting across x = 0. Upon inspection we see that (2,1) is

a solution, so P = (2, 1).

We can then find tangent lines, points of intersection and use reflection to find

those points. Taking the derivative, then 3x2 + 3y2y′ = 5y + 5xy′. Plugging in (2, 1),

then y′ = 1. The equation of tangent line is y = x− 1.

Plugging this into Eq. (5.6);

x3 + (x− 1)3 + 1 = 5x(x− 1)

x3 + x3 − 3x2 · · · = 5x2 − 5x

0 = 2x3 − 8x2 + · · ·

= x3 − 4x2 + · · ·

The sum of the roots add up to the opposite of the x2 term after dividing by the
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leading coefficient, thus x3 = 4 − 2 − 2 = 0. This yields the point (0,−1). Reflected across

the line y = x, we have 2P = (−1, 0).

For 3P = P + 2P , finding the slope and the y-intercept, the equation between the

two points is y = 1
3
x+ 1

3
.

Plug this into Eq. (5.6)

x3 +

(
1

3
x+

1

3

)3

+ 1 = 5x

(
1

3
x+

1

3

)
(5.7)

x3 +
1

27
x3 +

1

9
x2 + · · · =

5

3
x2 +

5

3
x

0 =
28

27
x3 − 14

9
x2 + · · ·

= x3 − 3

2
x2 + · · · .

We take the opposite of x2 term and subtract the two known roots. Then x3 =

3/2−−1− 2 = 1/2. Finding y, and reflecting across y = x, then 3P =
(
1
2
, 1
2

)
.

To find 4P = P + 3P , we find the equation between the 2 lines and see that y =

1
3
x + 1

3
. This leads us to the substitution in Eq. (5.7), so we subtract out the known roots.

Then x3 = 3/2 − 2 − 1/2 = −1. We find then that y = 0. We reflect across y = x, so that

4P = (0,−1).

To find 5P = P + 4P , we find the equation between the two points, y = x − 1.

This leads to the substitution in Eq. (5.6). We subtract the known roots, which is x3 =

4− 2− 0 = 2. We find y = 1. Reflect across y = x, we find 5P = (1, 2).

We find the slope between the two points, m = −1. This slope is perpendicular to

our line of reflection, so this gives us the point at infinity, so 6P =∞.

Therefore (2, 1) has order 6. It turns out then that this elliptic curve contains only

a finite number of rational points. Figure 5.3 shows the different multiples kP up to 6P =

∞.

5.1.4. Example 3. Consider the problem of finding integer solutions to

a3 + b3 + c3 = 6abc. (5.8)
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(a) P=(2,1)
6P = ∞ (b)

2P=(-1,0);
5P = (1,2)

(c)
3P=(1/2,1/2);
4P=(0,-1)

Figure 5.3: x3 + y3 + 1 = 5xy

Suppose that we want to know rational roots to Eq. (5.8). Upon inspection, we see

that (1, 2, 3) is a solution to Eq. (5.8). The permutations (2, 1, 3) (3, 1, 2), (1, 3, 2), (2, 3, 1),

and (3, 2, 1) are also solutions to Eq. (5.8). We can ask if there is a finite or an infinite

number of primitive solutions (i.e. solutions with no common factor). We can use elliptic

curves and the addition group law to find the answer to these questions.

First, let’s dehomogenize by dividing by c3. Then, define new variables x = a
c

and

y = b
c
. to get

x3 + y3 + 1 = 6xy (5.9)

Since we have divided by c, then the following are all solutions of Eq. (5.9):

(
1
3
, 2
3

) (
2
3
, 1
3

) (
3
2
, 1
2

) (
1
2
, 3
2

)
(2, 3) (3, 2) .

It also turns out that (−1, 0) and (0,−1) are solutions to Eq. (5.9).

We want to double a point and see if it leads to a new set of solutions. Apply-

ing implicit differentiation to Eq. (5.9) at the point (2, 3), we find that y′ = 6y−3x2
3y2−6x , and

y′(P ) = 2
5
. The equation of the line through (2, 3) is given by

y =
2

5
x+

11

5
. (5.10)
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Substitute Eq. (5.10) into Eq. (5.9)

x3 +

(
2

5
x+

11

5

)3

= 6x

(
2

5
x+

11

5

)
x3 +

8

25
x3 +

132

125
x2 + · · · =

12

5
x2

133

125
x3 − 168

125
x2 + · · · = · · · . (5.11)

Divide Eq. (5.11) by 133/125 and the coefficient of the x2 term is −24/19. We find

the 3rd root by subtracting the double known root from the opposite of the coefficient,

x3 = 24/19 − 2 − 2 = −52/19. Plug this into Eq. (5.10) to obtain y2, reflect across y = x

and we find 2P =
(
21
19
, −52

19

)
.

Let’s reconsider Eq. (5.9) to obtain a new triplet solution to Eq. (5.8). Since x =

a/c and y = b/c in Eq. (5.9), when we multiply by c (i.e. when we homogenize), we obtain

3 integers. Therefore (19, 21,−52) is a primitive solution of Eq. (5.8). We can take the

permutations and divide by c to obtain a new family of solutions to Eq. (5.9).

(
−19

52
,−21

52

) (
−21

52
,−19

52

) (
−52

21
, 19
21

) (
19
21
,−52

21

) (
21
19
,−52

19

) (
−52

19
, 21
19

)
.

We can continue to find more and more families of solutions: P + 2P = (2, 3) +

(21/19,−52/19) = (1817/3258, 5275/3278). Thus (1817, 3258, 5275) is another solution to

Eq. (5.8), which will then create a new family of solutions to Eq. (5.9). Continuing in this

manner, we can find infinitely many families of solutions to Eq. (5.8).

Figure 5.4 shows the first two families of rational points on the curve discussed

above.

5.1.5. Example 4. Consider the curve

y2 = x3 + 3x. (5.12)

We see that P = (1, 2) is a rational solution of Eq. (5.12). For this example we will

find points 2P , 3P , and 4P . We notice that this equation is in Weierstrass normal form,

so we can use the shortcuts of the methods listed in § 4.3 to find k-multiples of P , rather
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Figure 5.4: x3 + y3 + 1 = 6xy

than using the method of substitution that was used in the three examples above.

To find 2P = P + P , we find the slope of the line that is tangent to Eq. (5.12)

through the point (1, 2). We see that when we differentiate with respect to x and evaluate

at (1, 2), then dy/dx = (3x2 + 3)/(2y) = 3/2. Since we took the tangent, then x = 1 is a

double root, and we find x3 = m2 − x1 − x2 = (3/2)2 − 1 − 1 = 1/4 as a 3rd root. We find

that y3 = m(x1 − x3)− y1 = 3
2

(
1− 1

4

)
− 2 = −7

8
. Thus 2P =

(
1
4
,−7

8

)
.

To find 3P = P + 2P , we will take the slope between (1, 2) and
(
1
4
,−7

8

)
, and we

find that m = 23/6. We know that x = 1 and x = 1/4 are roots, thus we find x3 =

m2−x1−x3 = 529
36
−1− 1

4
= 121/9. We find y3 = m(x1−x3)−y1 = 23

6

(
1− 121

9

)
−2 = −1342

27
.

Thus, 3P =
(
121
9
, −1342

27

)
.

To find 4P = P + 3P , we find the slope of the line between the points (1, 2) and(
121
9
, −1342

27

)
. We find then that m = −349

84
. We know that x = 1 and x = 121/9 are roots,

and we find that x3 = m2−x1−x3 = 121801
7056
−1− 121

9
= 2209

784
. We find y3 = m(x1−x3)−y1 =

−349
84

(
1− 2209

784

)
− 2 = 121871

21952
. Thus, 4P =

(
2209
784

, 121871
21952

)
.
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Upon further investigation, we find

5P =

(
26 499

35 678 000
,− 22 304 640 511

470 527 400 000

)
,

and we can see that rational points, even after just a few iterations, can become quite un-

wieldly.

5.2. An Example Over a Finite Field

Examining elliptic curves over most fields does not make sense geometrically. So, to

conceptualize we have begun by constructing elliptic curves over the reals and examining

their graphs. We now consider elliptic curves over different fields. Let’s again consider the

curve

y2 = x3 + 3x (mod 5). (5.13)

This time, we are considering the curve over F5, the field of 5 elements. Maybe not sur-

prisingly, we can still use the methods outlined in § 4.3 to find the addition of points. Here,

we still have that P = (1, 2) is a solution of Eq. (5.13). We want to find points 2P , 3P ,

and 4P .

To find 2P , we want to find the slope of the line tangent to the curve, so taking the

derivative with respect to x and evaluating at (1, 2), we see 2y dy = (3x2 + 3)dx ⇒ 4dy =

6dx. Since we are now operating modulo 5 instead of over the rationals, as noted above,

division corresponds to multiplying by the multiplicative inverse. We immediately see that

4−1 ≡ 4 (mod 5), thus we multiply both sides by 4, and find dy/dx = 6 · 4 = 24 ≡ 4

(mod 5). The slope of the tangent line is m = 4 we can find the 3rd x root just as we did

in the algorithm of § 4.3. Thus, given that x1 = x2 = 1, then x3 = m2 − 2x1 = 16 − 2 =

14 ≡ 4 (mod 5). We find y3 = m(x1−x3)−y1 = 4(1−4)−2 = −14 ≡ 1. Thus, 2P = (4, 1).

To find 3P = P + 2P , we take the slope between the two points. Since we are mod
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5, it is helpful to think of slope as m = (y2 − y1)(x2 − x1)−1. The slope between (1, 2) and

(4, 1) is m = (1 − 2)(4 − 1)−1 = 4 · 2 = 8 ≡ 3 (mod 5). We find x3 = m2 − x1 − x2 =

32 − 1 − 4 = 4 (mod 5). We find that y3 = m(x1 − x3) − y1 = 3(1 − 4) − 2 = −11 ≡ 4

(mod 5). Thus, 3P = (4, 4).

To find 4P = P + 3P , we find the slope between (1, 2) and (4, 4) by m = (4− 2)(4−

1)−1 = 2 · 2 ≡ 4 (mod 5). Then we find x3 = 42 − 1 − 4 ≡ 1 (mod 5). Also, we see that

y3 = 4(1− 1)− 2 ≡ 3 (mod 5). Thus, 4P = (1, 3).

To find 5P = P + 4P , we want to find that the slope between the points P = (1, 2)

and 4P = (1, 3). It is easy to see that the slope between these two points is undefined,

thus 5P brings us to the identity, the point where all vertical lines intersect, thus 5P =∞.

Let O(P ) denote the order of a point P , that is, O(P ) = min{n|nP = ∞}. Thus,

we see that (1, 2) has order 5, or O(1, 2) = 5.

Upon further investigation, we find other rational points that hold for Eq. (5.13)

and their corresponding orders.

O(2, 2) = 10 O(1, 2) = 5 O(0, 0) = 2 O(2, 3) = 10 O(1, 3) = 5

O(∞) = 1 O(3, 1) = 10 O(4, 1) = 5 O(3, 4) = 10 O(4, 4) = 5

We have already mentioned that the addition of points follows group laws and have

shown that group axioms hold for point addition. In this example, since we let our curve

be modulus 5, we see that Eq. (5.13) generates a group of 10 elements that are indeed

congruent to Z10, an additive abelian group.

Let’s reconsider the normalized Weierstrass form mod 5:

y2 = x3 + Ax+B.

Firstly, since we are using modulus 5, there are 25 elliptic curves to consider (since

A ∈ {0, 1, 2, 3, 4} and B ∈ {0, 1, 2, 3, 4}. Are all the groups induced by changing A and

B the same? In fact, they are not. Table 5.1 shows what group E(F5) is isomorphic to for

the given A and B. Entries with an X in the table indicate that for the chosen A and B,
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Table 5.1: Group Isomorphisms

B=0 B=1 B=2 B=3 B=4

A=0 X Z6 Z6 Z6 Z6

A=1 Z2 × Z2 Z9 Z4 Z4 Z9

A=2 Z2 Z7 X X Z7

A=3 Z10 X Z5 Z5 X

A=4 Z4 × Z2 Z8 Z3 Z3 Z8

the quantity 4A3 + 27B2 ≡ 0 (mod 5), thus the curve is not of Weierstrass form and no

group exists.

5.3. Finding the Order of a Group

Previously, we mentioned that the order of the group E(Fq) of an elliptic curve E

fell into what is called Hasse’s Interval, q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q. Finding the

exact order of such a group or finding the order of a particular point P ∈ E(Fq) is easy.

There are methods and processes for finding the orders of these.

5.3.1. Baby Step-Giant Step. Below, the Baby Step-Giant Step (BSGS) al-

gorithm is outlined in Washington ([20] § 4.3.4) and an example is provided. Given point

P ∈ E(Fq), q a prime power, we wish to find the order of P .

First, let Q = (q + 1)P . Choose an integer m > q1/4. Compute jP for 0, 1, 2, . . . ,m.

Calculate Q+k(2m)P for integers k = [−m, . . . ,m]. Look for a match in the x-coordinates

in the small jumps of jP and the large jumps of Q + 2kmP . For a matching x-coordinate,

conclude that if the y-coordinates also match, then Q + 2kmP = jP , otherwise, conclude

that Q + 2kmP = −jP . Thus (q + 1 + 2km ∓ j)P = ∞. Let M = q + 1 + 2mk ∓ j and

conclude M is a multiple of the order of P . Determine the primes p1, p2, . . . , pl that divide

M . Test (M/piz)P . If (M/pi)P = ∞, then M/pi is a new candidate for the order of P
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and substitute M/pi → M . Continue testing each pi|M for (M/pi)P = ∞ and divide out

the pi that induce the identity. If (M/pi)P 6= ∞ for each pi, then conclude M is the order

of P .

To find the order of the group, it may be possible to tell the order of the group

from the known order of one point. By Lagrange’s Theorem, for N such that N = #E(Fq),

then NP = ∞ for all P ∈ E(Fq). Then N = kM for some k-multiple of M . By Hasse’s

Theorem, we know q+ 1− 2
√
q ≤ N = kM ≤ q+ 1− 2

√
2. Then, if the following inequality

holds for some k-multiple of M ,

(k − 1)M < q + 1− 2
√
q ≤ kM ≤ q + 1 + 2

√
q < (k + 1)M,

then we can conclude that kM = #E(Fq) is indeed the order of the group.

If it is not possible to establish the order of the group using the known order M of

one point P , then it will be necessary to find the order of several other random points of

E. Find orders of those points until the greatest common multiple of these orders divides

only one number N such that q+1−2
√
q ≤ N ≤ q+1+2

√
q. Then conclude N = #E(Fq).

Lastly, we wish to note that BSGS is useful since the number of integers to be tested

to find a multiple of the order of P from (q+1+2
√
q)− (q+1−2

√
q) = 4

√
q is taken down

to 4 4
√
q steps.

5.3.2. Example. Determine the order of the group induced by E such that

y2 = x3 + 3x− 13 (mod 331).

The reader can verify that P = (2, 1) satisfies E. Since q = 331, compute Q =

(q + 1)P = 332P = (247, 50). Since q1/4 ≈ 4.27, chose m = 5. Table 5.2 shows j-multiples

of P from −m = −5 to m = 5. Since m = 5, Table 5.3 shows (q + 1 + 2mk)P -multiples for

integers k = −5, ..., 5.

Notice then that Q + 0 · 10P = 332P ≡ −3P (mod 331). We conclude then that

Q + 3P = ∞ and let M = q + 1 + 3 = 331 + 1 + 3 = 335 be a multiple of order of P .
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Table 5.2: Baby Steps for Determining Point Order

jP jP

0P =∞

P = (2, 1) −P = (2, 330)

2P = (135, 160) −2P = (135, 171)

3P = (247, 281) −3P = (247, 50)

4P = (9, 322) −4P = (9, 9)

5P = (268, 48) −5P = (268, 283)

Table 5.3: Giant Steps for Determining Point Order

(q + 1 + 2mk)P (q + 1 + 2mk)P

282P = (7, 196) 292P = (31, 322)

302P = (143, 30) 312P = (32, 197)

322P = (84, 303) 332P = (247, 50)

342P = (91, 12) 352P = (50, 130)

362P = (191, 259) 372P = (253, 67)

382P = (40, 104)

Factoring M finds that M = 5 · 67. For pi = 5, we see that

(M/pi)P = 67P = (280, 307) 6=∞.

For pi = 67, then

(M/pi) = 5P = (268, 48) 6=∞.

Since (M/pi)P 6=∞ for all pi|M , we then can conclude that M = 335 is the order of P .

To find the order of the group, let us first consider M . We know from Hasse’s The-

orem that q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q. Since q = 331 and

√
q ∼ 36.4, then

296 ≤ #E(Fq) ≤ 368
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Consider that M = 335, we can easily see that 1 · 335 is the only multiple of 335 that fits

in the Hasse Interval. Thus we conclude that #E(F331) = 335.

5.4. Applications

5.4.1. The Hardy-Ramanujan Problem. The story goes that G. H. Hardy

went to go visit Srinivasa Ramanujan in the hospital. On his way to the hospital he had

ridden in taxicab number 1729, which he remarked to Ramanujan that it seemed “a rather

dull” number, to which Ramanujan remarked, “No, it is a very interesting number; it is

the smallest number expressible as the sum of two cubes in two different ways.” Hardy fol-

lowed up the remark by asking Ramanujan, what number was the smallest number that

could be written as the sum of 4th powers in two different ways? To this, Ramanujan

replied that he did not know [27], [19].

We can use the method of looking for rational points on a cubic to answer this

question.

Let’s reformulate the question into four unknown integers:

a4 + b4 = c4 + d4. (5.14)

Dehomgenizing (5.14) by dividing by c4, we choose new variables x, y, and z, such

that x = a
c
, y = b

c
, and z = d

c
to obtain a surface S defined by

x4 + y4 = z4 + 1. (5.15)

Choose a parameter t. The line `1 whose equation is given by

(x, y, z) = (t, 1, t) (5.16)

satisfies Eq. (5.15) and lies on S. For any given constant λ, the plane Π whose equation is
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given by

λx+ y − λz − 1 = 0 or y = −λx+ λz + 1 (5.17)

contains `1. Since `1 lies on S and Π contains `1, then the intersection of S and Π will give

a 4th degree curve that contains a line. In other words, the 4th degree polynomial curve

must factor into a linear and a cubic. Substituting the expression for y in Eq. (5.17) into

Eq. (5.15) gives

x4 + (−λx+ λz + 1)4 = z4 + 1

which can be factored into (x− z)hλ(x, z) = 0 where

hλ(x, z) = −4λ+ 6λ2x− 4λ3x2 + x3 + λ4x3 − 6λ2z + 8λ3xz + x2z

−3λ4x2z − 4λ3z2 + xz2 + 3λ4xz2 + z3 − λ4z3. (5.18)

We want to use our elliptic curve techniques on the elliptic curve defined by Eq.

(5.18). In order to do so, we need to have a point with rational coordinates on the curve.

We will see where the line (t, 1, t) meets the curve. Since x = t and z = t, let x = z so that

hλ(x, z) = hλ(x, x) = 0. This simplifies Eq. (5.18) to 0 = −4λ+ 4x3. Therefore, x3 = λ.

Since we are only interested in rational (eventually solely integer) solutions to Eq.

(5.15), we let p = 3
√
λ for some p ∈ Q. Then λ = p3 and Eq. (5.18) becomes

h2(x, z) = −4p3 + 6p6x− 4p9x2 + x3 + p12x3 − 6p6z + 8p9xz + x2z

−3p12x2z − 4p9z2 + xz2 + 3p12xz2 + z3 − p12z3. (5.19)

Since x3 = λ = p3 by construction, then x = p. Since the point of intersection (x, z)

between the line (t, 1, t) and Eq. (5.18) occurred when x = z, then we let P = (x, z) =

(p, p) be a point of rational coordinates satisfying the cubic polynomial h2.

Here, we could try find 2P using the methods of point addition, by taking the tan-

gent line and finding a third point. This method yields nothing of use, so it become neces-

sary to look for a different point on our curve with rational coordinates.
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Consider the line `2 given by the equation

(x, y, z) = (1, t,−t) (5.20)

that also satisfies Eq. (5.15) and lies on S. Since the intersection of Π and S produces a

line and a cubic, then the intersection of Π and `2 must either be on the line `1 or the cu-

bic h2. It is clear that `2 and `1 do not intersect. Thus the intersection of Π and `2 must

be a second point of cubic h2.

Therefore, we want to know where plane Π and l2 intersect. We do so by substitut-

ing Eq. (5.20) into Eq. (5.17). Then λ+ t+ λt− 1 = 0 and t = 1−p3
1+p3

. Given the parameters

of `2, where x = 1, and z = −t, now we have point Q = (x, z) =
(

1, p
3−1

1+p3

)
, a second point

with rational coordinates that also satisfies the cubic h.

Now we can consider a new line l3 that goes through P and Q and we can find

where it intersects h2 a third time. A straightforward computation shows that `3 is given

by the equation

z =
1 + p− p3 + p4

(1− p)(1 + p3)
x+

2p

(1− p)(1 + p3)
(5.21)

Substitute Eq. (5.21) into Eq. (5.19) and find

−4p(p− x)(x− 1)(p+ 3p2 − 2p3 + p5 + p7 − x− p2x+ 2p4x− 3p5x− p6x)

(p− 1)2(1 + p)(1− p+ p2)2
= 0

We find linear terms x = p and x = 1, as we must. Solving for x in the last linear

factor of h3, we find

x =
p+ 3p2 − 2p3 + p5 + p7

1 + p2 − 2p4 + 3p5 + p6
(5.22)

Substitute Eq. (5.22) into Eq. (5.21) to find the z-coordinate.

z =
p− 3p2 − 2p3 + p5 + p7

1 + p2 − 2p4 + 3p5 + p6
(5.23)
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Find the y-coordinate by substituting Eq. (5.22) and Eq. (5.23) into Eq. (5.18).

y =
1 + p2 − 2p4 − 3p5 + p6

1 + p2 − 2p4 + 3p5 + p6
(5.24)

We now have a 4-tuple, say R = (x, y, z, 1), that satisfies Eq. (5.15).

R =

(
p+ 3p2 − 2p3 + p5 + p7

1 + p2 − 2p4 + 3p5 + p6
,
1 + p2 − 2p4 − 3p5 + p6

1 + p2 − 2p4 + 3p5 + p6
,
p− 3p2 − 2p3 + p5 + p7

1 + p2 − 2p4 + 3p5 + p6
, 1

)
Since p ∈ Q, let p = m/n, for m, n ∈ N. The lowest common denominator e of R

can be shown to be e = n(m6 + 3m5n − 2m4n2 + m2n4 + n6). Since R satisfies Eq. (5.15),

R also satisfies Eq. (5.14). Then we can let R∗ = Re = (ex, ey, ez, e) = (a, b, c, d). where a,

b, c, and d are given by

a = mn6 + 3m2n5 − 2m3n4 +m5n2 +m7

b = n7 +m2n5 − 2m4n3 − 3m5n2 +m6n

c = mn6 − 3m2n5 − 2m3n4 +m5n2 +m7

d = m6n+ 3m5n2 − 2m4n3 +m2n5 + n7.

If we choose m = 1, and n = 1, we get (4,−2,−2, 4). However, if we choose m = 2 and

n = 1, we get (158,−59, 134, 133) which is equivalent to (158, 59, 134, 133). A simple com-

puter search shows that

1584 + 594 = 1334 + 1344 = 635 328 657

is the smallest number that can be written as the sum of two 4th powers written in two

different ways.

5.4.2. Congruent Number Problem. One of the oldest questions in number

theory uses elliptic curves for its solution. The question can be posed as follows.

Problem. Given an integer n, when is there a right triangle with rational sides that has

an area of n? That is, when is n = ab/2 for n ∈ Z and a, b ∈ Q, when are a and b the legs

of a right triangle?
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We will see that the problem of the congruent number n has been turned into a

question concerning an elliptic curve. We know that for a right triangle with legs of lengths

a and b and hypotenuse with length c,

a2 + b2 = c2

and the area of the triangle is n = ab/2. If we let x = c2/4, then(
a+ b

2

)2

=
a2 + 2ab+ b2

4
=
c2

4
+
ab

2
= x+ n

(
a− b

2

)2

=
a2 − 2ab+ b2

4
=
c2

4
− ab

2
= x− n

We see then that x, x+n, and x−n are all themselves the square of some rational number,

thus their product must still be a square of some rational number y, hence

y2 = x(x+ n)(x− n) = x3 − n2x

Proposition 5.4.1. Given an elliptic curve E with equation y2 = x3 − n2x and a point P

that lies on E, if 2P 6=∞, then the x-coordinate of 2P is a square.

Proof. We know that when taking a line tangent to E, and since 2P 6=∞, then 2y1 6= 0,

m =
3x21 + A

2y1
and x3 = m2 − 2x1.

Thus

x3 =

(
3x21 + A

2y1

)2

− 2x1

=
9x41 + 6Ax21 + A2

4y21
− 2x1

=
9x41 + 6Ax21 + A2

4(x31 + Ax1)
− 2x1(4)(x31 + Ax1)

4(x31 + Ax1)

=
x41 − 2Ax21 + A2

4(x31 + Ax1)

=
(x21 − A)2

4y21
.
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The numerator and denominator are squares, so x3 is a square.

The question of congruent numbers has seen much work, and certain classes of

primes have been ruled out, and other classes of primes have been shown to be congru-

ent numbers. Tunnell’s Theorem gives partial resolution to the Congruent Number Prob-

lem, with one part implying the other. The other direction awaits a proof of the Birch and

Swinnerton-Dyer Conjecture, which deals with the open question of whether the rank of

an elliptical curve can be arbitrarily large ([20] p.6).

Theorem 5.4.2. Tunnell’s Theorem ([11] p. 221)

If n is an odd (respectively even), square-free natural number and n is the area of a

right triangle with rational sides, then the number of triples of integers (x, y, z) satisfying

2x2 + y2 + 8z2 = n is equal to twice the number of triples satisfying 2x2 + y2 + 32z2 = n;

(respectively for n even, the number of triples of integers (x, y, z) satisfying 4x2+y2+8z2 =

n
2

is equal to twice the number of triples satisfying 4x2 + y2 + 32z2 = n
2
).

If the weak form of Birch-Swinnerton-Dyer conjecture for elliptic curves En : y2 =

x3 − n2x is true, then these equalities imply that n is a congruent number.

Example 5. Consider if n = 15 is a congruent number.

We want to find a triple of rationals a, b, c ∈ Q that form a right triangle and have

specific area n = ab/2 = 15. Therefore we consider the curve where n = 15,

y2 = x3 − 225x. (5.25)

It is obvious that (−15, 0), (0, 0), and (15, 0) are all solutions to Eq. (5.25), but the

tangents at these points are vertical lines. So when P is any of these three points, then

P + P =∞, which is not helpful in finding new points.

A quick search with Excel shows that x = −9 produces y2 = 1296, therefore

(−9, 36) is a solution. Lines through (−9, 36) and the first three do not produce an x value
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that is a square, for example (−15, 0) + (−9, 36) = (60,−450) and (15, 0) + (−9, 36) =

(15
4
,−225

8
); or produced a triplet that was not a set of integers, such as (0, 0) + (−9, 36) =

(25, 100) which yielded triple a = 3
√

10, b =
√

10, c = 10. So, these particular choices of

point addition are not helpful.

So we consider the line that is tangent to the curve at (−9, 36) to see if we do find

an x value that is a square. Using the methods of § 4.3, then slope of the tangent is found

by m =
3x21+A

2y1
= 3(−9)2−225

2(36)
= 1

4
. Then x3 = m2 − 2x1 =

(
1
4

)2 − 2(−9) = 289
16

.

Since negative area does not make sense, we want to find P ?P and find the positive

y-coordinate. With reflection y3 = m(x1−x3)−y1, then without reflection y∗3 = y1−m(x1−

x3). Thus y∗3 = 36− 1
4

(
−9− 289

16

)
= 2737

64
.

Since x = (c/2)2, then c/2 = 17/4, and c = 17/2.

Recall

y2 =
(a+ b)2

4

(a− b)2

4

c2

4
,

thus,

y =
(a2 − b2)c

8
.

Then we find

2737

64
=

(a2 − b2)
8

· 17

2
.

Then a2 − b2 = 161
4

. We also know that a2 + b2 = c2 =
(
17
2

)2
= 289

4
. When we solve by

eliminating b2, we find 2a2 = 450
4

. Thus, a = 15/2 and b = 4. We have found a triple of

rationals

15

2
; 4;

17

2

that form a right triangle and have area 15.

Figure 5.5 shows the line tangent to the curve at the point (−9, 36).

5.4.3. Fermat’s Last Theorem. An equation of the form x2 + y2 = z2 fits the

form of the Pythagorean equation a2 + b2 = c2. We know that there are infinitely many

Pythagorean triples of a, b, c ∈ Z that will satisfy the Pythagorean equation. Likewise, the
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Figure 5.5: y2 = x3 − 225x

equation x2 + y2 = z2 has infinitely many solutions x, y, z ∈ Z. But it was Fermat who

conjectured that for n > 2, the equation

xn + yn = zn

has no triple of nonzero integer solutions. He wrote in the margin of his copy of the works

of Diaphantus,

“It is impossible to separate a cube into two cubes, or a fourth power into two

fourth powers, or in general, any power higher than the second, into two like

powers. I have discovered a truly marvelous proof of this, which this margin is

too narrow to contain.”

Pierre de Fermat, 1637 [5]

Fermat’s statement can be summarized below.

Theorem 5.4.3. Fermat’s Last Theorem

If n is an integer such that n > 2, then the equation

xn + yn = zn

has no solutions when xyz 6= 0.

51



Here, we review a short overview of the developments of the proof of FLT and how

that proof is connected to elliptic curves.

From Cox [3], we visit a brief overview of the work done on FLT and its progres-

sion. Fermat was able to prove a special case of n = 4 using infinite descent. In 1770,

Euler attempted to prove the case of n = 3, but his proof contained an error which was

fixed by Legendre. In 1820’s, Sophie Germaine proved a special case of FLT. If n = p and

2p + 1 are both prime, then xp + yp = zp has no simultaneous non zero integer solutions

and p - xyz. She also showed in the case of n = 5, if the equality x5 + y5 = z5 were to hold,

then 5 would have to divide one of x, y, or z ([16] p.516). In 1825, Dirichlet and Legendre

independently proved the case of n = 5 using infinite descent. In 1832, Dirichlet proves the

case of n = 14. In 1839, Lamé proved the case of n = 7 also using infinite descent.

In 1840’s Kummer’s original work on a problem concerning an area known as quadratic

reciprocity turned the question of FLT into a question concerning the nature of cyclotomic

numbers (imaginary numbers that satisfy ζp = 1 for a prime p). Primes (called regular

primes) have the property that the associated ring of cyclotomic numbers has a form of

unique factorization. Other primes (called irregular primes) do not allow for that form of

unique factorization. Kummer showed that FLT held for regular primes. Unfortunately,

although it is known that there are an infinite number of irregular primes, the cardinal-

ity of regular primes is not known. This earned him a medal from the French academy in

1856. With help from Vandiver, Kummer showed that FLT held for all p < 100. In 1976,

Wagstaff showed the FLT held for primes less than 125,000. By 1992, the upper bound for

which FLT held had been raised to p < 4, 000, 000 [3].

In 1986, Frey turned the question of FLT into a question about elliptic curves. He

studied the equation

y2 = x(x− an)(x+ bn) = g(x).

Such curves are called Frey curves. Although curves of this nature bear Frey’s name, he

was not the first to discover such curves. The Frey curve was mentioned by French math-
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ematician, Y. Hellegouarche in 1975 regarding FLT and by D. Kubert and Serge Lang

in 1985. However, Frey was the first to formalize the idea that the Frey curve could not

exist because of the Taniyama-Shimura conjecture which was first partially proposed by

Y. Taniyama in 1956 and further refined by G. Shimura in 1957. The Taniyama-Shimura

Conjecture has also been called the Taniyama-Shimura-Weil after being reconsidered and

expanded by A. Weil in 1967.

It was Frey who conjectured that Frey curves could not possibly be a modular func-

tion (a special type of function meeting certain assumptions) because of their special prop-

erties. He then made the connection to the Taniyama-Shimura conjecture that, if true,

held that all elliptic curves were indeed modular functions. Thus Frey conjectured Frey

curves would directly contradict the assumptions of Taniyama-Shimura conjecture (widely

held to be true), and a proof thereof would imply that FLT held.

Frey was unable to prove his conjecture. Progress on this conjecture was made by

Jean-Pierre Serre and was called the Serre epsilon-conjecture, which made assertions on

Galois representations and modularity given certain conditions. In 1990, K. Ribet proved

that the Serre epsilon-conjecture was true. A corollary was that Frey curves could not be

modular. Also, by extension, he had shown that the Taniyama-Shimura conjecture (TSC)

implied FLT for all primes, since if one could prove that elliptic curves could indeed be

parameterized by modular forms, then, since Frey curves are elliptic curves, it too could be

parameterized by a modular form.

In 1995, Wiles showed that Frey curves were semi-stable (a special property re-

lating the discriminant of a polynomial and its roots). Wiles, with Taylor’s help, proved

a special case of TSC for semi-stable curves. Since Frey curves can also be shown to be

semi-stable, then the special case of TSC says that Frey curves could also be parameter-

ized by modular forms. This indeed showed that Frey curves were a contradiction to TSC

which was sufficient to prove FLT [3].

The TSC is now simply called the modularity theorem. After Wiles proved the spe-
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cial case of semi-stable curves in his proof of FLT, Breuil, Conrad, Diamond, and Taylor

proved the full modularity theorem in 2001 [24].
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6. ELLIPTIC CURVE FACTORING

6.1. Some Methods of Factorization

6.1.1. Brute Force. Given an integer n, this method simply means testing all

the primes p such that p <
√
n. This method is the most inefficient and only useful for

relatively small numbers.

6.1.2. Fermat Factorization. Again this method is still inefficient, but becomes

the basis for other factorization methods. Suppose that there are integers s and t such

that n = s2 − t2. Then n = (s− t)(s+ t).

The methodology of Fermat factorization can be described as follows. One, deter-

mine s = d
√
ne. Two, compute s2 − n = k. Three, for k = t2, determine if t ∈ N. Lastly, if

t ∈ N, then the factorization of n is found by n = (s + t)(s − t). Else, take s + 1 → s and

return to step 2.

Example 6. Find a factorization of 6887.

Since
√

6887 ≈ 82.99, let s = 83:

832 − 6887 = 2

842 − 6887 = 169 = 132

Thus s = 84, t = 13, and 6887 = (84 + 13)(84 − 13) = 97 · 71.

6.1.3. Pollard p − 1 Method. This method was developed by John Pollard in

1974 and uses Fermat’s Little Theorem as its basis ([16] p. 219).

Theorem 6.1.1 (Fermat’s Little Theorem). If p is prime and a is a positive integer with

p - a, then ap−1 ≡ 1 (mod p).

Proof. Since p is prime and p - a, then the list of integers a, 2a, . . . , (p − 1)a are not divis-

ible by p. Also, since p is prime, then a has an inverse and no two integers in the list are
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equal (if ja ≡ ma (mod p), then j ≡ m (mod p), which is a contradiction to the assump-

tion of the list). Therefore the list of integers a, 2a, . . . , a(p − 1) is equal to some ordering

of 1, 2, . . . , p− 1, and therefore

a · 2a · · · a(p− 1) ≡ 1 · 2 · · · (p− 1).

There are p− 1 factors of a on the left, thus after a rearranging:

ap−1(p− 1)! ≡ (p− 1)! (mod p).

After multiplying both congruence’s by the inverse of (p − 1)! (which exists since

gcd((p− 1)!, p) = 1), then ap−1 ≡ 1 (mod p).

Let n be a composite number and n = pq for a prime factor p . For some integer a,

if gcd(a, p) = 1, then ap−1 ≡ 1 (mod p). If k! is the smallest factorial such that (p − 1)|k!,

then ak! = a(p−1)c ≡ 1 (mod p) for some integer c. Let M ≡ ak! − 1 ≡ 0 (mod p) and

let d = gcd(M,n). In order to be effective, p − 1 must be the product of small primes,

otherwise the iterations described below must be repeated until all the primes of p − 1 are

expressed within k!.

We wish to find k! such that gcd(ak! − 1, n) 6= 1. This can be done by taking ever-

increasing powers of a modulo p and and performing the Euclidean algorithm with each

step to see if we have reached a desired factorization. Let rk be the step where a is raised

the to k! power.

The methodology for the Pollard p−1 method can be described as follows. Let n be

the number that is to be factored. First, choose a base a. One can choose a = 2 initially,

but any base will work. Second, perform rk = ak! (mod n), with k = 2 initially. Third,

compute gcd(rk − 1 (mod n), n) = d. If d 6= 1, then d is a nontrivial factor of n and n can

be factored in terms of d. Else, k + 1→ k and return to step 2.
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Example 7. Find a factorization of 200027.

r2 = 22! = 22 ≡ 4 (mod 200027) and gcd(3, 200027) = 1

r3 = 23! = 43 ≡ 64 (mod 200027) and gcd(63, 200027) = 1

r4 = 24! = 644 ≡ 174975 (mod 200027) and gcd(174974, 200027) = 1

r5 = 25! = 1749755 ≡ 94062 (mod 200027) and gcd(94061, 200027) = 1

r6 = 26! = 940626 ≡ 141976 (mod 200027) and gcd(141975, 200027) = 1

r7 = 27! = 1419767 ≡ 58053 (mod 200027) and gcd(58052, 200027) = 631

So then 631 is a factor of 200027 and we have a factorization of

200027 = 631 · 317.

6.1.4. Quadratic Sieve Factorization. A much more powerful tool is the qua-

dratic sieve factorization (QSF) which uses the idea of Fermat factorization. We will give

the statement and proof of QSF and then discuss briefly how the process would be used to

find a factorization of a number ([7], p. 5).

Theorem 6.1.2 (QSF). Let n, x, y ∈ N \ 0. Suppose there exists x, y such that x2 ≡ y2

(mod n) and x 6≡ ±y (mod n). Then gcd(x− y, n) is a non-trivial factor of n.

Proof. Let d = gcd(x − y, n). Then d is a divisor of n and thus 1 ≤ d ≤ n. If d = n, then

n is a divisor of x − y and thus x − y ≡ 0 mod n, which implies that x ≡ y mod n. This

contradicts the assumption, thus d 6= n.

If d = 1, then n - x− y. By assumption, x2 ≡ y2 mod n, thus x2 − y2 ≡ 0 (mod n),

and (x + y)(x − y) ≡ 0 mod n and hence n|(x + y)(x − y). Since gcd(x − y, n) = 1, then

n|x+ y. This implies that x ≡ −y mod n, which also contradicts hypothesis, so d 6= 1.

Thus 1 < d < n and d is a non-trivial factor of n.

In short, the idea is to find a pair of congruent squares a, b (mod n), such that a 6=

±b (mod n), and then use the Euclidean algorithm to find gcd(a ± b, n) to find a non-
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trivial factor. Consider the following congruences:

x21 ≡ pk111 pk122 . . . p
k1j
j (mod n)

x22 ≡ pk211 pk222 . . . p
k2j
j (mod n)

...

x2i ≡ pki11 pk122 . . . p
kij
j (mod n)

Looking at just the exponents of the right-hand side, the factorizations of congru-

ences of x2i form a matrix (aij) where each row correspond to the powers of primes of the

factorization. If one can find a combination of rows where the sum of each column is even,

then product of squares xi is then equal to a product of squares mod n. Furthermore, if

the square-root of the left-hand side is not equal to plus/minus the square root of the right

hand side, then we can use the Euclidean algorithm to find the factor.

To keep the square of numbers that need to be factored small, it is common to use

b
√
mn + rc as candidates for xi. Here, m and r are arbitrary integers, but it seems fruitful

to use increasing primes for m and to use r = 1, until one can find a sum of rows that has

the desired results.

Here, we describe the methodology in using QSF. Let n be the number to be fac-

tored. Choose integers m and r. Initially, one can choose r = 1 and m = 2. For each m,

(one can choose successive primes), compute sm = b
√
mn + rc and then find the prime

factorization s2m = pki11 pki22 · · · p
kij
i (mod n). Choose rows of s2m so that

∑
kij ∈ 2Z for each

j. Therefore Πs2m = y2. Then compute D =
∏
sm − y (mod n) for the chosen m. Lastly,

compute gcd(D,n). This is a nontrivial factor of n.

Example 8. Find the factorization of 410027.

Table 6.1 shows some choices for m, sm, s2m (mod n), and the factorization f of s2m.

Notice then that for lines m = 59, 71, 89,
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Table 6.1: Quadratic Sieve Congruences

m sm s2m (mod n) f

59 4919 4968 23 · 33 · 23

61 5002 8357 61 · 137

67 5242 6755 5 · 7 · 193

71 5396 4899 3 · 23 · 71

73 5472 10813 11 · 983

79 5692 6731 53 · 127

83 5834 3315 3 · 5 · 13 · 17

89 6041 1278 2 · 32 · 71

49192 · 53962 · 60412 ≡ (23 · 33 · 23)(3 · 23 · 71)(2 · 32 · 71) (mod 410027)

(4919 · 5396 · 6041)2 ≡ 24 · 36 · 232 · 712 (mod 410027)

4919 · 5396 · 6041 ≡ 22 · 33 · 23 · 71 (mod 410027)

235237 ≡ 176364 (mod 410027).

Subtracting 235237 − 176364 = 58873. Lastly, gcd(58873, 410027) = 521 and by the

theorem, 521 is a nontrivial factor of 410027. We find the factorization

521 · 787 = 410027.

6.1.5. Number Field Sieve. The best algorithm for factoring large numbers

(numbers over 115 decimal digits) is the number field sieve. However, the factorization of

1024-bit numbers which are now common with RSA systems would still take thousands of

years of computing time to factor any one random 1024-bit (309 decimal-digit) number.

The theory of this method is beyond the scope of this thesis ([16] pp. 125-6).

6.1.6. Shor’s Algorithm. The most efficient algorithm would be Shor’s algo-

rithm, but this requires the use of quantum computers. If quantum computers ever be-
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come a challenge to today’s bit-computers, then quantum computers can factor large num-

bers in polynomial time and would be a threat to our current encryption methods. Quan-

tum computers could defeat the discrete logarithm problem (see § 7.3.1) and integer fac-

torization problem, but such feats seem to be a long way off, if ever. The largest number

factored by a quantum computer so far is 1, 099, 551, 473, 989 = 1, 048, 589 · 1, 048, 601 in

December 2019 [4].

6.2. Elliptic Curve Factorization

6.2.1. Usefulness. Elliptic curve factorization (ECF) is a fast, intermediate

method when factoring integers of 50 to 60 digits and most commonly used to pull out

small divisors (up to 20 to 30 digits) of a large integer ([22], [20] p. 180). Pollard’s p − 1

method may be useful for factoring numbers up to 107, the quadratic sieve up to 1075, and

number sieve for numbers beyond that. These bounds are not hard and fast as to what re-

searchers and computer programmers employ when deciding which algorithms to use when

factoring numbers, this fact is simply mentioned to give an idea of when different algo-

rithms are put into effect. ECF is also useful that it can be run in parallel. As we will see

below, several curves to be explored can be built and tested at the same time. This allows

the algorithm to be run on several processors at once and to gain results in a reasonable

amount of time.

6.2.2. ECF Overview. For a curve E in Weierstrass form, when computing

slope dy/dx = u/v (mod n) for some n, one must compute v−1 (mod n). If no such in-

verse exists, then v is not invertible, so gcd(v, n) 6= 1 and v and n share a common fac-

tor. For an n that one wishes to factor, the goal of ECF is took look for non-invertible ele-

ments v (mod n) and then compute gcd(v, n) to find a non-trivial factor of n.

For example, consider the following elliptic curve E

y2 = x3 + 3x (mod 15)
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Consider the case of P = (9, 9). In order to find 2P , we must first find the slope m.

We know that

2y dy = (3x2 + 3)dx (mod 15)⇒ 3 dy = 6dx (mod 15).

In order to find the slope, we must first multiply by the inverse of 3, however gcd(3, 15) 6=

1. Thus there is no inverse, and 3 is non-invertible. We calculate gcd(3, 15) = 3 and 3 is

a non-trivial factor of 15. We find then that 15 is factored as 15 = 3 · 5. This method

requires one to use enough elliptic curves Ei mod the desired n and enough starting points

Pi on the curves to find a point where one finds non-invertibility.

Here, we describe the steps to perform ECF.

Elliptic curves can be easily constructed by choosing parameters, A, u, and v and

computing

B = v2 − u3 − Au. (mod n) (6.1)

Thus, if we let u = x, and v = y, then we have created elliptic curve E = y2 = x3 + Ax +

B (mod n) in normal Weierstrass form modulo a chosen integer. The algorithm calls for

several curves to be constructed and tested simultaneously. We can let each Ei correspond

to parameters (ui, vi, Ai). For example, working with modulus 29, the reader can verify

that the parameters (u1, v1, A1) = (10, 1, 3) produce the curve E1 = y21 = x3 + 3x + 15

(mod 29) with rational point (10, 1).

Recall that for an elliptic curve E written in normal Weierstrass form, for a given

point P , one can easily find 2P using the formulas previously outlined. By using this dou-

bling algorithm, one can compute any 2-power multiple of P . Thus if we can easily deter-

mine 2P , then we can just as easily determine 4P , 8P , 16P , etc. Recall, also, that there

is a binary expression for any integer. Thus with the doubling of points, any k-multiple of

P can be found by adding the appropriate powers of 2 multiples of P that sum to kP . In

this manner, C!P can be also be found. As an example, if one wanted to find 23P , then
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23P = 16P + 4P + 2P + P .

Let E be an elliptic curve defined by equation written y2 = x3 + Ax + B (mod n)

with primes p and q dividing n. Let P be a point that lies on E. Then, we also have

y2 = x3 + Ax+B (mod p) and y2 = x3 + Ax+B (mod q).

Recall also that by Hasse’s theorem, Np = #E(Fp) falls between p+1−2
√
p ≤ Np ≤ p+1+

2
√
p, with Np happening with uniform randomness. Likewise, this holds for Nq = #E(Fq).

Because of Np and Nq happening equally randomly within their respective Hasse intervals,

the chances of Np and Nq containing larger primes that divide both is low.

Let P have order k in E(Fp). Then kP = ∞ and k|Np. Moreover, NpP = ∞ and

(tNp)P = ∞ for any t-multiple of Np. Likewise, say P has order m in E(Fq). Then mP =

∞, and m|Nq. Also, NqP = ∞, and (sNq)P = ∞ for any s-multiple of Nq. Because of the

likelihood that Np and Nq contain different primes, then without loss of generality, there

is likely a small C! such that k|C!, but m - C!. Then C!P = ∞ (mod p), but C!P 6= ∞

(mod q), a contradiction that will express itself as for dy/dx = u/v, then gcd(v, p) 6= 1 (v

is non-invertible is Fp) while gcd(v, q) = 1 (q remains invertible in Fq) . Then gcd(C!, n) is

a non-trivial factor of n.

If none of the C!P induce elements for any Ei, then one can continue to increase C

or choose new Ei and repeat the process.

6.2.3. Example. Find a factorization of 332977.

For parameters (u1, v1, A1, ), we chose (10, 1, 3). After substituting into (6.1), this

yields B = 331948. Thus

E1 = (10, 1, 3)⇒ y2 = x3 + 3x+ 331948.

Before finding C!, we find doubled points of P = (10, 1) such as 2P = (272665, 148403),

4P = (16212, 288709), etc. up to whatever 2k-multiple of P is necessary till a contradiction

is reached.
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Calculating up to 9!P , we find the following

2!P = 2P = (272665, 148403)

3!P = 6P = 2P + 4P

= (216731, 197614)

4!P = 24P = 16P + 8P =

= (257684, 150650)

5!P = 120P = (64P + 32P ) + 16P + 8P

= (255384, 188904)

6!P = 720P = (512P + 128P ) + 64P + 16P

= (244293, 261270)

7!P = 5040P = (4096P + 512P ) + 256P + 128P + 32P + 16P

= (71093, 179000)

8!P = 40320P = 32768P + 4096P + 2048P + 1024P + 256P + 128P

= (320501, 59583)

9!P = 362880P = [262144P + 65536P ] + 32768P + 2048P + 256P + 128P

= (294766, 283642) + (193877, 155420)

When trying to find the slope between these two points in order to find point addition, we

find that x1 − x2 = 294766 − 193877 ≡ 100899 (mod 332977). After performing the Eu-

clidean algorithm in order to find 100899−1 (mod 332977), we find gcd(100889, 332977) =

433. Thus we have found a factor of 433 and we find

332977 = 433 · 769.

If this choice of elliptic curve had not worked, we could have used other curves until we

succeeded.
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6.3. Primality Testing

6.3.1. Remarks. No algorithm that can factor an integer in polynomial time is

known to exist, and it has not yet been proven (and it is widely believed) that no such al-

gorithm does exist. The largest integer factored that is not of a special form is RSA-250,

a 250 decimal digit integer that was factored in February 2020 and took 2700 core-hours

[26]. In fact the largest of the RSA numbers, RSA-2048, a 2048 bit, 617 decimal-digit

number, may not be factorable for the next century with current bit-computing. A quan-

tum computer (if even possible) could factor RSA-2048 in less than 24 hours, but that ca-

pability may still be ten to twenty years from this writing.

There are algorithms that can test a number’s primality in polynomial time. They

can test integers that are much larger than those that have been factored [25]. Some tests

can test numbers with several hundred digits, but elliptic curve primality testing is the

most popular and can test random integers not of a special form with over a thousand

decimal-digits ([20] p. 184).

If a primality test states that a number is composite, it does not necessarily pro-

duce a factorization; it only says that an integer is composite. If p is the number that

is being tested for primality, and for some base ap−1 6≡ 1 (mod p), then we conclude p

is composite. Integers that continually pass pseudo-primality tests (that is, fail to show

that they are composite) are probably prime. The more tests that they pass, the more the

probability increases that they are prime.

6.3.2. Pocklington-Lehmer Primality Testing. The Pocklington-Lehmer test

is restated and proved below with the help of Washington ([20] pp. 184-5).

Theorem 6.3.1 (Pocklington-Lehmer). Let n > 1 be an integer, and let n − 1 = rs with

r ≥
√
n. Suppose that, for each prime l|r, there exists an integer al with

an−1l ≡ 1 (mod n), and gcd
(
a
(n−1)/l
l − 1, n

)
= 1.
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Then n is prime.

Proof. Let p be a prime factor of n, then n = pk, for some k. Let le be the highest power

of each prime l that divides r. Let bl ≡ a
(n−1)/le
l (mod p). Then bl

e

l ≡ an−1l ≡ 1 (mod p).

Since a
(n−1)/l
l 6≡ 1 (mod pk), therefore bl

e−1

l 6≡ 1 (mod pk). Then ord(bl) (mod p) = le.

Since bp−1l ≡ 1 (mod p), then le|p − 1 by Lagrange’s Theorem. Since this is true for every

le|r, then r|p − 1. Therefore, p > r, and thus p > r ≥
√
n. Since p is a prime factor and n

is larger than n that would be at most
√
n, then p = n and n is prime.

6.3.3. General Form Example. Prove that 140681 is prime.

First, subtract 1, then 140681 − 1 = 140680 = 23 · 5 · 3517. To use the theorem

above, we let r1 = 3517 >
√

140681 ≈ 375.1. If we were not sure that r1 is prime or

that we have a complete prime factorization, then we can use the theorem again on factors

that need their primality verified. Suppose that we need to verify that r1 is indeed prime,

then we can reiterate the theorem again. Thus, 3517 − 1 = 3516 = 22 · 3 · 293. We let

r2 = 293 >
√

3517 ≈ 59.3. Let’s say we were not sure if 293 was prime, so we iterate the

theorem one more time so that 293− 1 = 292 = 22 · 73. We will let r3 = 73 >
√

293 ≈ 17.1.

Suppose that we are now confident that we have a factor r3 that is prime (or any other

cases have a complete prime factorization). Now we can use the theorem to build back up

to the original question. We use the fact that 73 is prime (we have all the prime factors of

r2) to show that 293 is prime, thus we have all the prime factors of r1 to show that 3517 is

prime, which we then can use to show that n is prime.

So first, we prove 293 is prime by making sure we have met the assumptions of the

hypothesis. Since r = 73, we need only test 73. For large calculations, we can create algo-

rithms that use succesive doublings and a binary representation of the number we wish to

test.

2292 = 2256 · 232 · 24· ≡ 1 (mod 293), and gcd(2292/73, 293) = 1

Since r3 = 73, and 73 is prime, then conditions of hypothesis are met and 293 is prime.
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Now we use the conditions of the hypothesis to test if 3517 is prime.

23516 ≡ 1 (mod 3517) and gcd(23516/293, 3517) = 1.

Since r2 = 293 and 293 is prime, then l = 293 is the only l needing to be tested. Again the

conditions of the hypothesis are met and 3517 is prime.

Lastly, r1 = 3517 and 3517 is prime, so l = 3517, is the only one to be tested:

2140680 ≡ 1 (mod 140681) and gcd(2140680/3517, 140681) = 1.

Thus the hypothesis are satisfied and 140681 is prime.

6.3.4. Remarks on Pocklington-Lehmer Method. Notice that the hypoth-

esis was used several times to prove that we had all the prime factors of r. While testing

the primality of extremely large numbers, it may be necessary to show the primality of re-

sulting l|r.

The hypothesis of the theorem supposes that one can find factorization of n − 1 (it

need not be complete) so that one assumes that enough small factors of n − 1 can be di-

vided out such that one can derive an r such that r >
√
n. When dealing with extremely

large n of say a thousand decimal digits (and since factoring is a non-trvial process), then

n− 1 may not have a readily apparent factorization. It might be that n− 1 is the product

of two 500 decimal-digit integers, or three 300+ decimal digit integers, or four 250-decimal

integers, and so on, cases where factorization is not easily obtained. To this extent, then

elliptic curves come to play. They are the next method to use when the above method

does not work.

6.3.5. Elliptic Curve Theorem. This theorem uses the fact that #E(Fp) is

close to the order of Z×p which has order p − 1, the number that we are trying to factor.

If we are able to find enough primes pi, such that for a finite point P ∈ E(Zn) such that

p1P = ∞, then we can gather enough information to show that n is prime. The algorithm

shown below is taken from Washington ([20] p. 186).
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Theorem 6.3.2 (Goldwasser-Kilian Primality Algorithm). Let n > 1 and E be an elliptic

curve mod n. Suppose there exist distinct prime numbers l1, . . . , lk and finite points Pi ∈

E(Zn) such that

1. liPi =∞ for 1 ≤ i ≤ k,

2.
∏k

i=1 li > (n1/4 + 1)2.

Then n is prime.

Proof. Let p be a factor of n. Then write n = pfn1 for some exponent f of p such that

p - n1. Then

E(Zn) = E(Zpf )⊕ E(Zn1).

Let Pi be a finite point of E(Zn). Then Pi is a finite point of E(Zpf ) and furthermore, also

a finite point of E(Fp). Then since Pi has finite order in E(Zn), then liPi = ∞ (mod n)

for some prime li, then liPi =∞ for any factor of n. So liPi =∞ (mod p). Thus li divides

order of the group E(Fp), that is li|#E(Zp) for all i, thus
∏
li|#E(Fp). Thus the following

inequality shows:

(n1/4 + 1)2 <
k∏
i=1

li ≤ #E(Fp) < p+ 1 + 2
√
p = (

√
p+ 1)2.

Thus p >
√
n. Since n has a non-trivial factor at most

√
n, and p is prime, then n is

prime.

6.3.6. Elliptic Curve Example. Determine if 331 is a prime number.

First we must choose an elliptic curve mod 331 and determine its group order. Let’s

choose

y2 = x3 + 2x− 11 (mod 331).

Earlier, when reviewing BSGS, we found that the order of this group was 335. Con-

sider the point P = (268, 48). We find that 67P = ∞. We also find that this is the only

prime l which induces the identity for this point. Now we consider (q1/4 + 1)2 ≈ 27.7. Since∏
l1 = 67 > (q1/4 + 1)2 ≈ 27.7, then we conclude that 331 is prime.
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7. ELLIPTIC CURVE CRYPTOGRAPHY

7.1. Introduction and Definitions

Cryptography is the science of sending and receiving messages with confidence that

the chances of the messages being intercepted are extremely low. Here, we discuss some

basic terminology related to cryptography. Then we discuss the key that keeps cryptogra-

phy safe, that is, the discrete logarithm and its counter-part as it relates to elliptic curves;

some methods of encryption, especially those that relate to elliptic curves; and some meth-

ods (attacks) that are used to attempt to decode messages.

The legitimate players are involved in the act of sending and decoding messages

(the ones that are sending the messages and the ones who are the intended receivers) are

normally called Alice and Bob. If an algorithm that involves a third legitimate party, he

is called Chris. Any information sent by Alice is denoted with an A, or a subscript a de-

pending on notation; information from Bob is denoted with B, or b; and information from

Chris is denoted with C or c.

The illegitimate player, the one who is trying to intercept messages not intended

for her, she is called Eve (short for eavesdropping). We can always assume that Eve has

the knowledge and computing capability to intercept any sent message. Thus any created

cryptographic algorithm must be strong enough to resist Eve’s attacks.

The text that is meant to be read by messenger is called plaintext. This is usually

denoted with a P . This is the message that is needs to be protected. Messages that en-

crypted are called the ciphertext. These are usually denoted with a C. These are the mes-

sages that need algorithms strong enough that Eve cannot decipher them.

7.2. Types of Cryptographic Systems

7.2.1. Private Key Systems. Private key systems are ones where Alice and

Bob have a key in advance of the message. They have communicated before the message
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was sent and developed a key that can be used to encode and decode the text. A simple

such system would be a mono-alphabetic system. If Alice encodes each letter of the alpha-

bet to the next one (A is sent to B, B to C, C to D, etc.), then Bob know that when he

receives the message, he sends each letter backwards to the previous letter). The security

of the message depends on Eve not being able to deduce the key in a reasonable amount of

time.

There are other types of private key systems. An interesting example is the Enigma

machine used by the Germans in WWII, and was featured in a movie The Imitation Game

(2014) starring Benedict Cumberbatch as the mathematician Alan Turing. The Enigma

used rotors that scrambled the letters of the alphabet such as in an alphabet cipher de-

scribed above, but the circuitry of the machine would send keep sending letters to other

characters so that any one letter was not repeatedly sent to itself. The period of when pat-

terns would start repeating was 16900 characters which was much longer than any one

sent message. Finding the length of such a period is key when deciphering such system.

With the right settings, Enigma messages were equivalent to 67-bit messages. Since the ro-

tor settings were reset everyday at midnight, the security of the system depended on Eve

not being able to determine the correct rotor settings within any given 24-hour period. It

has been said that had the Germans used “good” practices, then Enigma would have been

“unbreakable.” Inherent weaknesses in the methodology and the practices of the Germans

allowed the Allied powers to intercept and read German messages thus helping to end the

war [21].

Other systems such as Data Encryption Systems (DES) and Advanced Encryption

systems (AES) are private-key systems. These types of systems are called symmetric en-

cryption. These systems are much quicker than public key encryption.

7.2.2. Public Key Systems. These systems are called asymmetric encryp-

tion. These systems allow for the exchange of information without having to have met

beforehand. Alice can send a message to Bob, with her signature on it, and Bob can ver-
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ify that it was indeed that Alice was the one that sent the message and can decrypt the

message.

These messages depend on the fact that the decryption process cannot be found in

a reasonable amount of time. In this way, the algorithm for encrypting and the encrypted

message can be “broadcasted” because the assumption is that even with Eve’s most pow-

erful tools, she will not be able to decipher the original message. These public algorithms

are more computationally involved, thus take longer and require more storage to transmit.

Because asymmetric systems are slower than symmetric ones, sometimes one will

opt to send a symmetric key via an asymmetric transmission. Then only the new private-

key need be decoded using the slower public-key, and then information between two par-

ties can then be exchanged with their private-key system. In this way, the slower public-

key encryption allows two parties to exchange information for their private-key encryption

without having to worry about the security of their private key in the exchange.

7.2.3. RSA Encryption. One of the most well-known public key systems is

the one developed by Rivest, Shamir, and Adelman in 1977. This algorithm uses modu-

lar arithmetic and Fermat’s Little Theorem. RSA uses the apparent difficulty of the in-

teger factorization problem for its security. Sufficiently large numbers apparently cannot

factored in a reasonable time. As mentioned before, it maybe take centuries for a random

2048-bit number can be factored. Note that viable quantum computers would make factor-

ing easy and would therefore defeat RSA.

To send messages using RSA, large primes p and q are chosen and then n = pq is

determined. From these primes, the number k = (p−1)(q−1) is determined, and then some

number d is chosen so that gcd(d, k) = 1 and then e = d−1 (mod k) is determined. Then

numbers n and e are announced, but p, q, d are kept secret. A message M can be encoded

by M e (mod n). The message is decoded by (M e)d = M (mod n). The message remains

secure by the apparent difficulty of factoring n so that k cannot be easily determined and

therefore d cannot be easily determined.
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RSA works by the following theorem [10].

Theorem 7.2.1. Let n = pq and k = (p − 1)(q − 1) for primes p, q. For integer d, let

gcd(d, k) = 1 and let e = d−1 (mod k). Then for every b ∈ Z,

bed ≡ b (mod n).

Proof. Since e is a solution of dx ≡ 1 (mod k), then ed − 1 ≡ 0 (mod k) and ed − 1 = kt

for t-multiples of k. Then,

bed = bkt+1 = b(p−1)(q−1)tb.

If p - b, then b(p−1)(q−1)tb = 1(q−1)tb = b (mod p) by Fermat’s Little Theorem. If p|b, then

b ≡ 0 (mod p) and bed = b (mod p) in all cases. Similarly, bed ≡ b (mod q) in all cases.

Lastly, since p|bed − b and q|bed − b, then pq|bed − b. Thus n divides bed − b Therefore

bed ≡ b (mod n).

Sometimes a receiver of a message wants to verify that the message is from the

proper sender (not an imposter posing as the sender). This verification of the sender is

called a digital signature, a separate message from the encrypted message that the sender

uses to verify the authenticity of the encrypted message. For RSA, a hashing function

hash is used on m to generate hash(m) = h. Then the sender performs hd = s and sends

signature s along with m to the receiver. The receiver then takes m and uses the same

hashing function and performs hash(m). The receiver then performs se = h2. The receiver

then analyzes h2 and h and if h2 = h, then they conclude that m is an authentic message

from the intended sender [13]. This is true since

hde = (hd)e = se = h (mod n).
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7.3. Logarithm Problems

The likewise apparent difficulty of the discrete logarithm problem is what makes

these systems secure.

7.3.1. Discrete Logarithm Problem (DLP). Given a, b, and p, solve the fol-

lowing equation

ak ≡ b (mod p)

for k (assuming that a solution exists) ([20] p. 133).

7.3.2. Elliptic Curve Discrete Logarithm Problem (ECDLP). Given an

elliptic curve E defined over a field for some prime, Fq, a point P ∈ E(Fq) of order n, and

a point Q ∈ 〈P 〉, find an integer ` ∈ [0, n− 1] (if it exists) such that Q = `P ([8] p. 153).

7.3.3. Elliptic Curve Diffie-Helman Problem (ECDHP). Given P , aP , bP

in E(Fq), find abP ([20] p. 161).

Here, we note that this is not aP + bP . This requires the use of discrete logs. If Eve

can solve discrete logs over E(Fq), then given P and aP , she can find a (or she can use P

and bP to find b). She can then multiply bP by a to obtain abP (or she can multiply aP

by b to obtain the same).

7.3.4. Decision Diffie-Helman Problem (ECDDHP). Given P , aP , and bP

in E(Fq) and a given point Q ∈ E(Fq), decide if Q = abP .

7.3.5. A Note on Logarithm problems. It is not known if ECDLP can be

reduced to a polynomial time algorithm. Interestingly, the proof of a non-existence of a

polynomial-time algorithm for ECDLP would prove that P 6= NP , one of the still out-

standing, unsolved Millenial Problems ([8], p. 154).

7.4. Attacks on DLP and ECDLP

7.4.1. Index Calculus. This section describes the attack on DLP explained in

Washington ([20] pp. 134-5).
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Given g, h ∈ Zp, find k such that gk = h.

Let g ∈ Zp be a primitive root. That is, for g ∈ Z×p (a multiplicative group), then

ord(g) = p− 1. In other words, for every h ∈ Zp and h 6≡ 0 (mod p), then h = gk (mod p)

for some non-zero integer k. We define the discrete logarithm of h with respect to g as

L(h) = k.

Since g is a primitive root based on its order within the multiplicative group Z×p

(that is gp−1 ≡ 1 (mod p)), L is determined by its value modulo (p − 1). Suppose that

gk1 = h1 and gk2 = h2. Then L(h1) = k1 and L(h2) = k2 and

gL(h1h2) ≡ h1h2 ≡ gk1gk2 ≡ gk1+k2 ≡ gL(h1)+L(h2) (mod p).

Hence,

L(h1h2) = L(h1) + L(h2) (mod p− 1).

Also, note that g(p−1)/2 ≡ −1 (mod p). Therefore (p− 1)/2 ≡ L(−1) (mod p− 1).

We use the following procedure to determine k.

In trying solve for k in the congruence gk ≡ h (mod p), we want to take g raised to

some different powers such that the representatives of gki is the product of a fixed set B of

primes. Using the L function turns these products into sums. Using enough powers of g,

we determine L(pj). Given,

gk1 ≡ pe111 pe122 . . . p
e1j
j (mod p)

gk2 ≡ pe211 pe222 . . . p
e2j
j (mod p)

...

gk1 ≡ pei11 pei22 . . . p
eij
j (mod p),
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we then apply the L function to both sides of equivalences and find that

k1 ≡ e11L(p1) + e12L(p2) + · · ·+ e1jL(pj) (mod p− 1)

k2 ≡ e21L(p1) + e22L(p2) + · · ·+ e2jL(pj) (mod p− 1)

...

ki ≡ ei1L(p1) + ei2L(p2) + · · ·+ eijL(pj) (mod p− 1).

If possible, we solve this system for each L(pi). Here, it is worth mentioning since the sys-

tem of equations is constrained by the size of choice of B. If B is too small, then there

may not be enough information to solve the system of equations. If B is too big, the sys-

tem can become extremely large and such matrix calculations become cumbersome for

some systems.

Next, we take take h · gl (mod p) for several random l until we find a product of

primes for whom we have determined a value for each L(pi) so that

h · gl ≡ pe11 p
e2
2 . . . p

ej
j (mod p).

Lastly, we then applying the L function to find k.

k = L(h) ≡ e1L(p1) + e2L(p2) + · · ·+ ejL(pj)− l (mod p− 1).

Example 9. Given, 12k ≡ 1000 (mod 1627), find k.

First p− 1 = 1626. We can assume that we know the factorization of 1626, which is

2 · 3 · 271. Also g is primitive root of G if g(p−1)/q 6≡ 1 (mod p) for all q|p− 1. Then

121626/271 = 126 ≡ 439 (mod 1627)

121626/3 = 12542 ≡ 1362 (mod 1627)

121626/2 = 12813 ≡ 1626 (mod 1627)
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Thus, 12 is a primitive root. After searching some small exponents, we find the following.

1254 ≡ 11 (mod 1627)

1269 ≡ −169 (mod 1627)

1210 ≡ 39 (mod 1627)

This gives way to the following.

54 ≡ L(11) (mod 1626)

69 ≡ L(−1) + 2L(13) (mod 1626)

10 ≡ L(3) + L(13) (mod 1626)

Solving for the second equation, since L(−1) ≡ 813 (mod 1626) in this case, then 69 −

813 = −774 ≡ 882 ≡ 2L(13) (mod 1626), thus L(13) = 441 (mod 1626). The third

equation becomes 10 ≡ L(3) + 441 (mod 1626), so −431 ≡ 1195 ≡ L(3) (mod 1626). Next

we take 1000 · 12l for various values of l and the reader can verify that

1000 · 1213 = 33 (mod 1627)

Thus

L(1000) + 13 ≡ L(3) + L(11) (mod 1626).

Then L(1000) = 1195 + 54− 13 = 1236 (mod 1626) and indeed

121236 ≡ 1000 (mod 1627).

7.4.2. Baby-Step, Giant Step. Given points P, Q on elliptic curve E such

that #E(Fq) = N , find k such that Q = kP .

Here, the algorithm for determining k is similarly to the algorithm explained previ-

ously in § 5.3.1 for finding the order of a point. First, choose m such that m >
√
N . Then

calculate Q − jmP for j = 0, 1, . . . ,m − 1. These points cycle through the group in big
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jumps (Giant Step); meanwhile, compute iP for i = 0, 1, 2, . . . ,m. These constitute small

jumps (Baby Step), we compare the lists until we have a match in x-coordinate. If the y-

coordinates are equal, then we conclude that Q − jmP = iP . If the y-coordinates are

opposites, then conclude that Q− jmP = −iP and then conclude k = ±i+ jm (mod N).

Notice that the algorithm requires that two separate lists be stored. We will see

that Pollard’s ρ method takes about as many steps as BSGS. However BSGS requires lots

of storage, which is one of its disadvantages. Notice that it is not necessary to calculate

the order of N . This saves steps and time. BSGS is useful for calculating moderately-sized

N , but storage space needed grows as N grows.

Example 10. Suppose the elliptic curve E is given by

y2 = x3 + 3x+ 318 (mod 331)

and P, Q ∈ E(Q) such that P = (2, 1) and Q = (188, 27) and Q = kP . Find k.

First,
√

331 + 1 + 2
√
q ≈ 19.2, so choose m = 20.

Second, we list of multiples of iP as seen in Table 7.1, for i = 0, 1, 2, . . . ,m− 1.

Table 7.1: Baby Steps of BSGS Attack

iP iP iP iP

0P =∞ P = (2, 1) 2P = (135, 160) 3P = (247, 281)

4P = (9, 322) 5P = (268, 48) 6P = (317, 74) 7P = (91, 12)

8P = (132, 35) 9P = (223, 206) 10P = (329, 142) 11P = (22, 42)

12P = (269, 64) 13P = (84, 28) 14P = (217, 126) 15P = (192, 4)

16P = (232, 187) 17P = (50, 130) 18P = (272, 225) 19P = (287, 20)

Next we see in Table 7.2 the difference Q− jmP for j = 0, 1, 2, . . .m− 1. Note that

for nPi = (xi, yi), then −nPi = (xi,−yi). So Q− nP = Q + (−nP ). These calculations are
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verifiable on an online elliptic curve calculator [1].

Table 7.2: Giant Steps of BSGS Attack

jmP Q-jmP jmP Q-jmP

0P =∞ Q− 0P = (188, 27) 20P = (195, 273) Q− 20P = (150, 94)

40P = (294, 292) Q− 40P = (172, 56) 60P = (65, 210) Q− 60P = (178, 73)

80P = (36, 270) Q− 80P = (260, 233) 100P = (63, 48) Q− 100P = (226, 215)

120P = (126, 138) Q− 120P = (81, 167) 140P = (276, 101) Q− 140P = (222, 203)

160P = (144, 11) Q− 160P = (129, 39) 180P = (271, 44) Q− 180P = (95, 41)

200P = (77, 77) Q− 200P = (239, 292) 220P = (90, 8) Q− 220P = (298, 312)

240P = (225, 266) Q− 240P = (31, 9) 260P = (213, 327) Q− 260P = (32, 134)

280P = (263, 185) Q− 280P = (247, 281) 300P = (224, 115) Q− 300P = (50, 201)

320P = (192, 327) Q− 320P = (253, 264) 340P = (268, 48) Q− 340P = (203, 256)

360P = (48, 13) Q− 360P = (318, 125) 380P = (286, 165) Q− 380P = (14, 159)

Notice then that

Q− 280P = 3P = (247, 281)

Therefore, we conclude that Q = 283P and k = 283.

7.4.3. Pollard’s Rho Method. Whereas BSGS is very straight-forward since

it is based on the division algorithm, Pollard’s ρ method (PRM) takes a more “random”

approach by using a function f to send a point P0 through a series of random steps that

takes it throughout the group E(Fq). However, since the group is finite, then f will find a

repeat at some point, and f is periodic.

Suppose that we have an initial point P0 ∈ E(Fq). For some randomizing function

f , we define Pi recursively by

Pi+1 = f(Pi).
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If we have two points Pi and Pj with j > i such that

Pi = Pj,

for smallest possible j for which this holds true, then period d of f is j − i and Pi+l = Pj+l

for all l ≥ 0.

Suppose that we are given P,Q in E(Fq) such that Q = kP and we want to find k.

Choose random integers a0, b0 and define an initial point P0 by

P0 = a0P + b0Q.

Partition E(Fq) into disjoint subsets S1, S2, . . . , Ss so that for each Si, choose random inte-

gers ai, bi, and define a point Mi by

Mi = aiP + biQ.

Define a function f such that

Pk+1 = f(Pk) = Pk +Mi, if Pk ∈ Si.

Write Pk+1 in terms of P and Q. For Pk = akP + bkQ and Mi = aiP + biQ, then

Pk+1 = akP + bkQ+ aiP + biQ = (ak + ai)P + (bk + bi)Q = ak+1P + bk+1Q.

When there is a match, say Pi = Pj for Pi = aiP + biQ and Pj = ajP + bjQ, then we

conclude

aiP + biQ = ajP + bjQ⇒ (ai − aj)P = (bj − bi)Q.

Since Q = kP , then for N = #E(Fq) if gcd(bj − bi, N) = 1, then

k = (ai − aj)(bj − bi)−1 (mod N).
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If for period d, gcd(bj − bi, N) = d then

k = (ai − aj)(bj − bi)−1 (mod N/d).

7.4.4. PRM Example. Suppose elliptic curve E is given by

y2 = x3 + 3x− 13 (mod 331).

Suppose also that points P = (2, 1) and Q = (300, 227) which satisfy E are related such

that Q = kP for some integer k. Find k.

By selecting random coefficients as described above, define points P0, M0, M1, M2,

M3, M4 by

P0 = 3P + 13Q = (247, 281) + (253, 67) = (294, 292)

M0 = 11P + 17Q = (22, 42) + (260, 233) = (220, 55)

M1 = 17P + 9Q = (50, 130) + (104, 184) = (178, 73)

M2 = 18P + 7Q = (272, 225) + (129, 39) = (41, 50)

M3 = 10P + 9Q = (329, 142) + (104, 184) = (131, 205)

M4 = 8P + 2Q = (132, 35) + (239, 292) = (241, 127)

For Pi = (xi, yi) if xi ≡ k (mod 5), then define function f by

Pi+1 = f(Pi) = Pi +Mk.

For example, in the first iteration, for P0 = (x0, y0), then x0 = 294 ≡ 4 (mod 5), thus Mk=4

will be chosen.

Next, the first few lines of iteration are shown in more depth to show the addition

of points and keeping track of the cumulative sums of coefficients of P and Q.
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P1 = f(P0) = P0 +M4 = (294, 292) + (241, 127) = (35, 277)

= (3P + 13Q) + (8P + 2Q) = 11P + 15Q

P2 = f(P1) = P1 +M0 = (35, 277) + (220, 55) = (329, 142)

= (11P + 15Q) + (11P + 17Q) = 22P + 32Q

P3 = f(P2) = P2 +M4 = (329, 142) + (241, 127) = (215, 231)

= (22P + 32Q) + (8P + 2Q) = 30P + 34Q

P4 = f(P3) = P3 +M0 = (215, 231) + (220, 55) = (195, 58)

= (30P + 34Q) + (11P + 17Q) = 41P + 51Q

P5 = f(P4) = P4 +M0 = (195, 58) + (220, 58) = (41, 281)

= (41P + 51Q) + (11P + 17Q) = 52P + 68Q (7.1)

The Table 7.3 shows the rest of the iterations with less computation. The reader

can verify.

Table 7.3: Iterations of Pollard’s Rho Method

P6 = (292, 88) = 69P + 77Q P7 = (178, 73) = 87P + 84Q

P8 = (302, 233) = 97P + 93Q P9 = (257, 4) = 115P + 100Q

P10 = (245, 67) = 133P + 107Q P11 = (211, 42) = 144P + 124Q

P12 = (52, 260) = 161P + 133Q P13 = (28, 138) = 179P + 140Q

P14 = (144, 320) = 189P + 149Q P15 = (236, 235) = 197P + 151Q

P16 = (72, 166) = 214P + 160Q P17 = (294, 39) = 232P + 167Q

P18 = (245, 67) = 240P + 169Q

We see that P10 = P18, thus 133P + 107Q = 240P + 169Q. We have previously

80



shown in § 4.6 that the order of this particular curve is N = 335. Then

−62Q = 273Q = 107P (mod 335).

Since 273−1 ≡ 27 (mod 335), then Q = 27 · 107P = 209P (mod 335) and we find

k = 209.

7.4.5. Notes on PRM. PRM gets its name from the “shape” that the random-

ness represents. Since f is periodic, it can be thought of as circling in on itself after some

initial sequence that is not repeated. Thus the tail of the initial sequence and the circle of

the period can form a “p,” or the Greek letter ρ, hence the name.

The periodicity of f gives PRM an advantage of BSGS in that, even though both

have about the same number of steps in computation, PRM doesn’t require the storage of
√
N that BSGS requires. The function f can be used as a doubling function. Consider the

pair of points [Pi, P2i]. Then a subsequent pair of points can be found by iterating f on

the first point once and iterating f on the second point twice. That is,

[Pi+1, P2i+2] = [f(Pi), f(f(P2i))].

This allows one to to keep only a pair of points until a match is found. Since d =

j − i, then d|(j + l + kd) − (i + l) for some lth iteration of f of Pi. Thus, in a program-

ming environment, it would only be necessary to hold on to the current set of pairs until a

matched is reach. This eliminates the need to store all the single iterations of f and look-

ing for matches.

From the example above, the following pairs occur.

(P1, P2) = [(35, 277); (329, 241)] (P2, P4) = [(329, 142); (195, 58)]

(P3, P6) = [(215, 231); (292, 88)] (P4, P8) = [(195, 58); (302, 233)]

...
...

(P15, P30) = [(236, 235); (144, 320)] (P16, P32) = [(72, 166); (72, 166)]
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We see that P16 = P32. Although, not noted above, the coefficients of P and Q were

sufficiently tracked so that the reader can verify P16 = 214P + 160Q = 428P + 284Q = P32.

Collecting terms,

−124Q = 211Q = 214P (mod 335).

Multiply by the inverse, 211−1 ≡ 181 (mod 335), then Q = 214 · 181P = 209P . Thus we

conclude k = 209.

7.4.6. Pohlig-Hellman Attack. The Pohlig-Hellman Attack (PHA) uses the

Chinese remainder theorem (CRT) to reconstruct k from Q = kP ([20] pp. 141-2).

Suppose after determining N = #E(Fq) that the factorization of N is known and

N has small primes and

N =
r∏
i=1

peii .

Then the goal is to create a base pi representation ki of Q so that

ki = a0 + a1pi + a2p
2
i + · · ·+ ae−1p

e−1
1 (mod peii ).

To obtain coefficients ak for each pi, first determine a0. This is essentially solving an in-

stance of ECDLP, but for a small prime. This instance is solved by storing list of ai
N
pi
P for

each a1 ∈ [0, p − 1]. The point N
pi
Q is then compared to the list and a match determines

the desired ai. We want to find the first coefficient a0 of the base pi expansion by

N

pi
Q = a0

N

pi
P

for some a0 ∈ [0, p− 1]. Next, compute Q1 by

Q1 = Q− a0P.

Then determine a1 by

N

p2i
Q1 = a1

N

pi
P

for some a1 ∈ [0, p− 1]. (Note here that the denominator pi does not increase on the right-
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hand side for P as it did in the left-hand side for Q. This means that it is not necessary

to create and store a new list for successive powers of pi.) Then Q2 = Q1 − a1P and sub-

sequently, a2 can be extracted is the same manner as a0 and a1. Each ak is then system-

atically extracted by increasing the power of pi up to e − 1, and solving ECDLP in each

case. Use the extracted ak from each power of pi to create a congruence modulus pe1i . This

process is then repeated for each pi|N . Lastly, the system of equations

k ≡ k1 (mod pe11 )

k ≡ k2 (mod pe22 )

...

k ≡ kr (mod perr )

is solved by CRT to obtain k.

7.4.7. PHA Example.. Given the curve E determined by

y2 = x3 + 28x+ 662 (mod 701)

with P = (2, 5), Q = (119, 500) and the relation Q = kP , solve for P .

First, we can verify that N = #E(F701) = 722, thus N = 2 · 192. We want to build

two congruence equations for modulus 2 and modulus 192.

To extract a0 for p = 2, first we determine N
q
P = 722

2
P = 361P = (689, 0). For

361P , we create a set S2 of j(361P ) for j ∈ [0, 1]. Thus

S2 = {0(361P ) =∞; 1(361P ) = (689, 0)}

Then we determine N
q
Q = 722

2
Q = 361Q = ∞. Thus for N

q
Q = a0

N
q
P , then we see

a0 = 0. Since p = 21, then no further iterations of the algorithm are necessary. Thus

k2 = 0 (mod 2) and we have the first congruence statement

k ≡ 0 (mod 2).
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To extract a0 for p = 19, first we determine N
q
P = 722

19
P = 38P = (82, 559). Table

7.4 shows the j-multiples of 38P for j ∈ [0, 18].

Table 7.4: Multiples of 38P for Pohlig-Hellman Attack

0(38P ) =∞ 1(38P ) = (82, 559) 2(38P ) = (88, 628)

3(38P ) = (444, 380) 4(38P ) = (476, 36) 5(38P ) = (613, 48)

6(38P ) = (211, 80) 7(38P ) = (403, 421) 8(38P ) = (547, 545)

9(38P ) = (108, 687) 10(38P ) = (108, 14) 11(38P ) = (547, 156)

12(38P ) = (203, 280) 13(38P ) = (211, 621) 14(38P ) = (613, 653)

15(38P ) = (476, 665) 16(38P ) = (488, 321) 17(38P ) = (88, 73)

18(38P ) = (82, 142)

Then we determine N
q
Q = 722

19
Q = 38Q = (613, 48). Thus for N

q
Q = a0

N
q
P , we

see that a0 = 5. Since 192|N , the algorithm must iterated again. Let Q1 = Q − a0P =

Q − 5P = (119, 500) + (192,−624) = (314, 169). We can extract a1 by a1
N
q
P = N

q2
Q1 =

722
361
Q1 = 2Q1 = (108, 14). Thus a1 = 10. We now build the second congruence statement,

k19 = 5 + 10 · 19 ≡ 195 (mod 192). And the second congruence equation is

k ≡ 195 (mod 361).

Solving the two equations, we determine that k = 556.

7.5. Key Exchange/Encryption

7.5.1. Diffie-Hellman Key Exchange (DHKE). As mentioned earlier, the

asymmetric elliptic curve key exchanges allow for the exchange of a private key for a sym-

metric system. DHKE is one such exchange ([20] pp. 160-1).

Alice and Bob choose an elliptic curve E such that the ECDLP is deemed hard.
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They chose a point P on E such that the order of P is a large prime. Then they follow the

outlined procedure.

1. Alice chooses her own secret integer a and computes Pa = aP and sends the result to
Bob.

2. Bob chooses his own secret integer b and computes Pb = bP and sends the result to
Alice.

3. After receiving Pb from Bob, Alice uses her integer a and computes Pab = aPb = abP .

4. After receiving Pa from Alice, Bob uses his integer b and computes Pab = bPa = abP .

5. Alice and Bob use agreed upon method to extract the private key from Pab.

Notice that the elliptic curve E, and points P , aP , and bP , are broadcast. This is

the information that Eve will be able to see. Since E is chosen so the ECDLP is consid-

ered hard, then Eve should not be able to extract a or b from aP or bP in reasonable time.

If she can extract a or b, then she will be able to easily determine Pab. Finding this infor-

mation is again the essence of ECDHP, which is no harder than the ECDLP.

7.5.2. Massey-Omura Encryption. Asymmetric systems, such as RSA and

elliptic curve cryptography, can be used to encode and decode information.

Alice and Bob agree on an elliptic curve E over Fq where the ECDLP is deemed

intractable for E(Fq). Let N = #E(Fq). Then the following steps are used to transmit and

decode the message.

1. Let M denotes Alice’s message. Alice chooses a secret integer a such that gcd(a,N) =
1 and computes aM = Ma and transmits to Bob.

2. Bob receives Ma from Alice. He then chooses his own secret integer b such that
gcd(b,N) = 1 and computes bMa = abM and sends this to Alice.

3. Alice receives abM from Bob. Since gcd(a,N) = 1, Alice then determines the inverse
of her integer a−1 computes a−1abM = bM and transmits the result to Bob.

4. Bob has now received bM from Alice. Since gcd(b,N) = 1, Bob then computes the
inverse of his integer b−1 and computes b−1bM = M . Bob now has the original mes-
sage M .
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Notice that Eve will see E, N , Ma, abM , and bM . If Eve can extract b from abM , then

she can determine b−1 (mod N) and can then easily find M by taking M = b−1bM . The

intractability of the ECDLP in this case will keep M secure.

7.5.3. ElGamal Public Key Encryption. The following steps outline a meth-

od in which a sender’s public key is broadcast and used to encode and decode messages

([20] pp. 164-5).

1. Alice chooses an elliptic curve E defined over Fq such that the ECDLP for E(Fq)
is deemed to be hard. Alice chooses a point P on E such that the order of P is a
large prime. Alice then chooses her own secret integer a and computes K = aP . The
integer a is Alice’s private key. Alice then broadcasts E, Fq, P , and K, all of which
are Alice’s public key.

2. Bob wants to send a message to Alice. Bob downloads Alice public key information.
Bob creates a message M . Bob then chooses a private key b and computes M1 = bP .
He also then computes M2 = M + bK. He sends M1, and M2 to Alice.

3. Alice receives M1 and M2 from Bob. Then Alice takes her private-key a and com-
putes M by

M2 − aM1 = (M + bK)− a(bP ) = M + b(aP )− b(aP ) = M.

We notice that Eve knows E, Fq, P , K, M1 and M2. If Eve is able to extract a from K =

aP , then M comes easily from M1 and M2. The intractability of the ECDLP in this case

will keep Alice’s private key secure and M safe.

7.6. Digital Signatures

Digital signatures are used to show that a message originated from a legitimate

source, that is, Eve is unable to send new messages having disguised herself as being Alice

or Bob. If a signature scheme prevents Eve from generating valid signatures of new mes-

sages, then the scheme is said to be secure as defined by Goldwasser, Micali, and Rivest

(called GMR-secure). The definition of GMR-secure signature schemes is strong in the

sense that it assumes that Eve has exceptional capabilities yet has only the intention of
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signing any new message, useless or not. This definition has gained wide acceptance as be-

ing the correct mentality towards signature schemes. Just as we explored one particular

RSA digital signature algorithm, there are digital signature algorithms for elliptic curves

analogous to the one described for RSA.

7.7. The Elliptic Curve Cryptography (ECC) Advantage

Although the theory of elliptic curve cryptography deals with the mathematics, the

actual implementation of such systems requires the use of physical systems where such

considerations as power consumption, storage, running time of algorithms, number of pro-

cessors used and their speeds, available bandwidth, and other considerations. Not all al-

gorithms are the same, and there is no one standard to measure the efficiency of an algo-

rithm. Different applications require different algorithms and security companies vary in

their available resources to execute various algorithms.

The three different cryptosystems (RSA, DL, and ECC) all lend their security to

the hardness of their respective problems: RSA to the integer factorization problem, DL

systems to DLP, and EC systems to the ECDLP. The perceived hardness affects the size

of the parameters of the domains of the systems so that the problems remain intractable

within reasonable time. The size of the parameters in turn affects the speed and resources

necessary to carry out such systems.

The short answer is that EC systems are advantageous in that fewer bits are re-

quired to run them. Washington states that the hardness of solving ECDLP in a 313-bit

instance of an EC system is comparable to solving DLP in a 4096-bit instance in a RSA

system ([20] p. 159). Likewise, Hankerson et al. state that solving ECDLP in 256-bit in-

stance of an EC system is comparable to solving DLP in a 3072-bit instance of integer

factorization ([8] p. 196). The number of bits for EC systems to be secure compared to

another system from the same attack can be up to a factor of 30 in some cases. Fewer
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bits require less storage, and less processing time, thus making EC systems faster and less

costly overall.

88



8. CONCLUSION

Elliptic curves have certainly pushed the boundaries of mathematics and broadened

our understanding of numerous fields simultaneously. Studying elliptic curves requires

studies in fields such as complex analysis, abstract algebra, cyclotomic fields, matrix the-

ory, and algebraic geometry, just to name a few. Certainly the author’s understanding of

mathematics as a whole has been broadened by this study.

This thesis has mentioned two of the Millennial problems and Fermat’s Last The-

orem. It is interesting to note how these problems are related to elliptic curves. Also note

that the Birch-Swinnerton-Dyer conjecture that deals directly with elliptic curves also uses

a function related to the one arising in the Riemann hypothesis. So a solution to the Rie-

mann hypothesis may require a journey through elliptic curves.

Certainly, the expansion of knowledge in the area of elliptic curves will fuel further

insights to all of mathematics.
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