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ABSTRACT 

Fourier-transform infrared (FTIR) spectra of organic compounds can be used to compare and 

identify compounds. A mid-FTIR spectrum gives absorbance values of a compound over the 

400-4000 cm-1 range. Spectral matching is the process of comparing the spectral signature of two 

or more compounds and returning a value for the similarity of the compounds based on how 

closely their spectra match. This process is commonly used to identify an unknown compound 

by searching for its spectrum’s closes match in a database of known spectra. A major limitation 

of this process is that it can only be used to identify substances already in the database. An 

unknown compound not found in the database will likely match to a similar yet structurally 

different compound. Alternatively, FTIR has been used to identify characteristics, substructures, 

or functional groups of a compound based on the compounds IR spectral features. However, 

most works have only attempted to predict a limited set of substructures and there has only been 

limited success in predicting the full structure of an unknown compound based purely on its 

FTIR spectrum. For this thesis, I investigated the possibility of identifying compounds and 

identifying substructures present in the compound’s structure by analyzing the compound’s FTIR 

spectrum. This was dependent on the property that the infrared (IR) absorbances of a compound 

are the result of the physical interactions between bonded sets of atoms in the compound’s 

structure. I hypothesized that different instances of the same substructures will either give similar 

spectral signatures or some pattern of spectral signatures that could be learned using machine 

learning. In this thesis I show that it is possible to use convolutional neural networks (CNN) to 

predict the presence or absence of substructures within a compound. Finally, I demonstrate a 

method of making predictions for the full structure of these compounds based on the substructure 

predictions and the compound’s FTIR spectrum. 
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INTRODUCTION 

 

Chemical compounds are made up of atoms which are connected by bonds. The number 

of atoms of each type and how those atoms are bonded together determine the properties of the 

compound. One of the methods to analyze the structure of a compound is infrared (IR) 

spectroscopy. The absorption of light at various wavelengths affects microscopic vibrations 

modes of chemical bonds between bonded atoms in a compound [1]. Fourier-transform infrared 

(FTIR) is a method which measures a compound’s absorbance at various wavelengths. This 

method uses infrared light in the mid-IR range (400-4000 cm-1) and provides an IR spectrum 

containing a distinct set of peaks and areas of absorbance [2]. These absorbances reflect the 

properties of chemical bonds between the atoms that are present within the structure of a 

compound. Adjacent sets of atoms form substructures within the greater structure. These 

substructures typically have a distinct spectral signature that can be observed by analyzing the 

FTIR absorbance peaks. In Figure 1 we can see the FTIR spectra from two heptanoic acid 

samples (C7H14O2). The spectral features of these samples come from their C=O, H-O, C-C, and 

C-H bonds. These features can be observed in Figure 1.  The majority of peaks which are 

frequently observed in FTIR spectra of organic compounds are shown in Figure 2. 

  Some substructures, such as carbonyl (C=O), are easier to identify than others because 

they produce large peaks in a consistent wavelength range. As shown in Figure 1 and elaborated 

in Figure 2, carbonyl and its variants strongly present absorbances in the 1600 to 1800 

wavenumber range. Generally, one should be able to tell by looking at its spectrum whether a 

compound contains the carbonyl group in its structure. However, it is not always straight forward 

to extract further information such as which other atoms are connected to the carbonyl group. It 



   

 

2 

is important to note that the peaks from different substructures could overlap with each other. 

Additionally, some substructures produce weaker absorption than others. For example, C#C 

(carbon triple bonded to carbon) produces a small peak, and it could overlap with C#N which 

produces peaks with variable intensity [3], [4]. 

 

 

Figure 1. Two FTIR spectra of heptanoic acid. 

 

While FTIR spectroscopy has widely been useful for spectral matching. However, two 

other methods - nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry in 

analyzing the fine details of the structural makeup of a compound. NMR is particularly useful in 

terms of how thoroughly it can analyze the contents and structure of a compound [5]. However, 

the drawback of NMR is the size and expensive price of the instrument. Mass spectrometry can 

be manufactured in a much smaller sizes than NMR, but it only provides the information on the 

mass-to-charge rate of a compound and/or fragments of the compound [6]. FTIR spectrometer is 

even more cost effective and in certain cases more compact. However, FTIR spectroscopy has 

been utilized, only to a limited extent, in the structure determination of a compound [7]. The 

challenge is that, while there is a definitive relation between a compound’s structure and its IR 
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spectrum, this relationship is rather complex. Furthermore, different FTIR scans of the same 

compound can produce slightly different sets of absorbances due to factors such as sample 

variance. This impreciseness also poses challenges in finding the correlation between the 

structure/substructure of compounds and spectral features. 

 

 

Figure 2. Diagram of substructures and the spectral ranges over which they present absorbance 

peaks [3]. 

 

Before discussing the substructures within a compound’s structure in detail, I would like 

to describe the definition use of the term, substructure, in this paper. A substructure is any 

continuous subset of atoms and bonds within the structure of a compound. A substructure can 

branch or be a linear series of connections. Substructures can intersect or overlap. In this work, 

substructures were defined as a part of compounds consisting of at least 2 atoms connected by at 
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least one bond. All bonds included in a substructure will also contain atoms from within the 

substructure at each of their 2 terminals. It will be assumed that an atom’s unshared valence 

electrons for bonds will be used to form chemical bonds with other atoms outside of the 

substructure. For example, carbon, hydrogen, nitrogen, and oxygen have 4, 1, 3, and 2 valence 

electrons for forming covalent bonds. If a carbon atom has 2 valence electrons that are available 

for bond formation, the carbon atom could further connect to either 1 atom via a double bond or 

2 different atoms via two single bonds. 

While, substructures are allowed to contain overlapping atoms and bonds, another major 

challenge is that two different substructures could produce peaks that overlap each other. Both 

substructures can absorb light in similar wavelengths, resulting in the appearance of convoluted 

peaks. This means a smaller peak can be masked by a larger peak, effectively resulting in a loss 

of information. Identifying substructures in compounds will require a robust technique that can 

detect the spectral signs of the substructure while minimizing the negative effect of these issues. 

Currently FTIR spectroscopy is only used in limited capacities for analyzing chemical structure. 

FTIR spectrum is often used for spectral matching because two chemical samples with matching 

spectra have a high likeliness that they are also the same or similar substances. In this process, a 

database of spectra from known compounds is used to identify unknown compounds. Various 

algorithms such as Pearson correlation are used to match compounds and minimize inaccuracy 

due to variance in absorbances [2], [7]-[9]. However, the primary limitation of this approach is 

that for a compound to be matched the compound must already exist in the database. This means 

that previously unobserved compounds will not have an exact match in the database. The only 

information that can be gained with this method is looking at commonalities between compounds 
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spectrally similar to this new compound. If there are common spectral features between two 

compounds, then it is likely there are also some meaningful structural similarities between them. 

The hurdle in developing algorithms to identify substructures using FTIR spectra are that 

there are areas where more than one substructure’s absorbances could appear in the similar 

spectral regions and the intensities of the substructure’s absorbance peak could be weak, or in 

cases highly variable (Figure 2). This is especially true for substructures of size 2 (one atom 

bonded to another). However, it is reasonable to assume that other atoms that are connected to 

the substructures could, to some extent, influence the shape and/or intensity of the peaks. This 

suggests that it could be helpful to capture the spectral characteristics of at slightly larger 

substructures, such as substructures consisting of up to 4 atoms, because these structures would 

have more complex, prominent, and potentially more unique spectral signatures. Based on these 

information and considerations, we hypothesized that, by analyzing the spectral peaks from a 

compound’s FTIR spectrum, it should be possible to predict substructures that are present within 

a compound and potentially predict the entire chemical structure of compounds. 

In this work, I focused on applying deep learning, a powerful machine learning 

technique, to mapping the relationship between samples in two or more sets, for the FTIR 

spectrum-based prediction of the presence/absence of substructures within the compound. These 

methods are commonly used to learn the classifications of samples in a dataset. The structure of 

a neural network is a graph which contains parameters for the edge weights and node biases. In 

this learning process, a neural network starts with random parameters and over a number of 

training iterations, called epochs, these parameters are trained to improve the mapping of the 

input to the true output of the training set. Neural networks are exceptionally good at learning the 
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data used to train them and therefore it is necessary to use a separate testing set to verify the 

accuracy of the network on new data. 

Among different deep learning methods, I employed convolutional neural networks 

(CNN), a type of neural network which learn multiple kernels for each layer. Multi-layer 

perceptrons (MLP) contain edges connecting the nodes in each layer which is referred to as 

being densely connected. Conversely, CNNs are sparsely connected. The kernels in a CNNs 

layers are used to detect patterns in the previous layer. The first layers of a CNN will recognize 

simple patterns within the network’s input. Subsequent layers will detect patterns within the 

previous layer’s activations. As the network’s input propagates through the network, the later 

layers will be able to detect much more complex patterns within the input data. The final layers 

of a CNN are typically an MLP. These final dense layers predict the class of the input sample 

based on the activations from the final CNN layer. This process is also called supervised learning 

because the network model’s training is supervised by the loss between the model’s output and 

the true class from the training data. 
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LITERATURE REVIEW 

 

As mentioned earlier, FTIR spectroscopy have been utilized to identify substructures and 

structural features of a broad range of compounds. It is well understood that there is information 

about a substance that can be obtained from IR analysis. Kely et al. found that the octane rating of 

gasoline could be predicted by analyzing its IR spectrum. This is because a fuel’s octane rating is 

dependent on the chemical makeup of the compounds in the fuel. Therefore, differences in fuel 

mixtures can be observed and analyzed [10]. Using similar principals, Soriano-Disla et al. found 

that many properties of soil can be determined with the use of IR [11]. Gosav, et al. have also 

reported successful classification of amphetamines using IR spectra and an MLP neural network 

[12]. 

Furthermore, neural networks and other machine learning algorithms such as support 

vector machines have been used to identify substructures within compounds. In 2005, Novic 

Marjana, and Jure Zupan investigated the use of Kohonen and counter propagation neural 

networks to analyze IR spectral features to recognize substructures. This method is similar to my 

proposal to use CNN’s for identifying substructures. They were able to get a 33% average false 

positive rate over 34 substructures [13]. With more modern techniques and more powerful 

hardware it should be possible to achieve higher accuracy and classify more substructures than 

these past efforts. Jun Hong et al. applied a support vector machine (SVM) on a dataset with 823 

samples. Out of 16 substructures, 12 were able to be classified with 90% accuracy and the other 4 

with at least 80% accuracy [14].  

In 2000, Markus Hemmer and Johann Gasteiger created a method to predict an unknown 

compound’s structure using spectral similarity search and spectral modeling using a 
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counterpropagation neural network in a system the authors call the STAR system (Search, 

Treatment and Adaptation of Radial Distribution Function Codes). When a spectrum is submitted 

to the STAR system, the system starts by searching for the most similar spectrum in a database of 

spectra. It is assumed that the submitted compound is structurally similar to this compound found 

in the database given that they are also spectrally similar because there tends to be a strong 

correlation between spectral similarity and structural similarity. The structure identified from the 

database is used as a starting point to generate the structure of the submitted unknown compound. 

This initial structure is stochastically modified over multiple iterations and with each iteration the 

neural network generates an artificial prediction of an IR spectrum based on the newly modified 

structure. If this new spectrum is closer to the submitted spectrum than any previously generated 

structures, then it is assumed this newly created structure is also closer to the true structure of the 

queried spectrum. This process stops when the STAR system is no longer able to generate new 

structures which have greater spectral similarity. The authors do not show any accuracy results for 

the project. They reported 6 examples of compounds identified by the STAR system, 5 positive 

examples and one example where the system identified a different yet similar chemical structure 

[15].  

In 2020 Fine et al. used deep learning to train an autoencoder and a multi-layer perceptron 

(MLP) with FTIR and mass spectroscopy to predict the presence of various functional groups 

such as aromatic, hydroxyl, nitro, carboxylic acid, ether, alkyl, aldehyde, etc. With 7393 

compounds in the dataset. Using FTIR spectroscopy only, their work was able to classify 9 of 

their 17 functional groups with at least an F1-score of 0.9, another 6 with an F1-score between 0.8 

and 0.9, and the other two with F1-scores under 0.75. Combining FTIR and mass spectroscopy 

gave a mild improvement to their results but was largely similar to FTIR only [16].  
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In 2002, Neugebauer et al. showed that it was possible to simulate the spectra of 

molecules through quantum calculation. This simulation method was limited by the complexity of 

calculating the spectra of especially large molecules. Each additional atom in a compound’s 

structure exponentially increases the time it takes to predict the compound’s spectrum. Therefore, 

these methods have seen limited use due to the exploding complexity of calculating the spectra of 

large compounds [17].  

An adjacent problem being researched is methods of simulating IR or FTIR spectra from a 

compound’s structure. However, these calculations are very computationally expensive. Due to 

the difficulty in simulating larger structures, researchers are beginning to investigate methods of 

simulating IR spectra using deep learning. In 2019, Ghosh et al. used a deep tensor neural network 

to simulate molecular excitation spectra [18]. In 2020, Ye et al. used an MLP to simulate the IR 

spectra of protein structures [19]. In the same year, Kovács et al. used deep learning to simulate 

the IR spectra of interstellar polycyclic aromatic hydrocarbons [20]. These works show that deep 

learning is proving to be a viable replacement for quantum calculations and is enabling quick 

simulations of IR spectra from chemical structures. 

Chemical structures can be represented in multiple forms. One of the more common and 

the method that will be used for this project is the SMILES format. A SMILES is represented by a 

string of letters, numbers, parentheses, brackets, and symbols. These characters represent the 

atoms in a structure and the bonds between atoms. Any chemical structure can be represented by a 

SMILES [21]. It is necessary for this project to create methods to represent chemical structures in 

a way that can be input into a neural network. M. Hirohara and K. Varmuza each propose similar 

methods for representing chemical structures using matrices. Varmuza’s method referred to as a 

substructure isomorphism matrix is meant to be used more for structural similarity. It compares a 
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set of queried substructures against a set of target structures. Each element of the matrix is given a 

binary value based on whether the query exists in the target [22]. Another method proposed by 

Hirohara uses 2D matrices to represent linear sections of a structure by representing the structure 

atoms as the columns and different SMILES characters as the rows. Therefor each column has a 

single 1 inserted into it on the row of the corresponding character. This is a simple method to 

input a structure or substructure into a network that does not require a 2D or 3D representation of 

a compound’s structure [23].  
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DATASET 

 

This project used a dataset of 5,297 unique FTIR spectra. Each spectrum is scanned from 

a compound with a unique chemical structure. The structures for each compound were 

represented by creating a doubly linked list of nodes and bonds based on the compounds 

SMILES string. The SMILES for the compounds were pulled from the PubChem website using 

an automated scraper which looked up each compound and copied the SMILES text. From these 

smiles I enumerated possible substructures and found 834 substructures up to size 5 with at least 

10 examples in the dataset. The enumerated substructures contained no rings, but ring 

substructures were manually added to the substructure set. 

 

Structures 

The dataset was split into testing and training datasets using a genetic algorithm. This 

algorithm used genome which described whether each sample was in the training set or the 

testing set. This process targeted a 9:1 ratio between training and testing sets for each 

substructure. The algorithm was set to optimize the mean squared error between each 

substructures split and the targeted split ratio. This algorithm achieved a 0.2268% mean squared 

error when calculated by percentage in the training set and 5.2941 when calculated by the 

difference between targeted number of samples and final counts. Figure 3 shows the number of 

substructures which fall into positive count range. Some substructures had to be dropped because 

the most optimum split found left too few substructures in the testing set. This process resulted in 

a split with 4,767 samples in the training set and 530 samples in the testing set with 835 total 

substructures. An additional dataset was created from this dataset which will be referred to as the 
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simplified dataset. The simplified dataset contains compounds with only hydrogen, oxygen, 

carbon, and nitrogen atoms. These structures are also restricted to contain between 5 and 25 

atoms and not cyclic structures. This simplified dataset was created by dropping samples from 

the full dataset leaving it with 1,080 samples in its training set and 121 samples in its testing set. 

The simplified dataset uses 426 different substructures. 

 

 

Figure 3: Histogram for number of samples which contain each substructure. 

 

Substructures 

The substructures analyzed in this project were chosen by permuting possible 

substructures and then searching the dataset for relevant structures which contained the 

substructure. Substructures are grouped into sizes where the size of the substructure refers to the 

number of atoms in the substructure. The process of permuting substructure starts with all 

substructures of size 1 found in the dataset. These atoms are then permuted by connecting to 
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them each valid atom and bond pair to create new substructures of size 2. Any duplicate 

substructures created by this process are removed. I also removed any substructures which 

occurred in less than 10 samples in the dataset. The number is well below the number of samples 

required to accurately predict substructures. I still wanted to analyze the relationship between 

substructure count and prediction performance, so we chose an occurrence count requirement 

which balanced the need to observe infrequent substructures against the need to minimize the 

number of substructures observed. 

In this project I identified substructures up to size 5. Substructure predictions appear to be 

relevant beyond size 5. However, each additional size contains far more substructures than the 

previous size. After manually adding in the aromatic and other ring structures the substructure 

dataset contained 864 total substructures. I limited the scope of this project to size 5 due to 

hardware and time limitations. Current hardware would be capable of using my methods on 

larger substructures, but this would have increased development time beyond this project’s 

intended timeframe. 
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METHODS AND RESULTS 

 

This project is broken up into three parts: the substructure prediction CNNs, greedy 

structure building method [24], and the deep Q-learning structure prediction network [25]. The 

first two methods are novel, and they are also necessary to implement the final structure 

prediction method. Each method was developed on the same FTIR dataset or on a subset of this 

dataset. Each of these methods will be accompanied by their results where abdicable. 

 

Substructure Predictions 

I chose CNNs to analyze the spectral patterns of the FTIR spectra in order to predict the 

substructures within compounds. The network needs to maximize the accuracy of its predictions 

for each substructure but using a multi-hot structure vector proved to be problematic. In this 

original method, each element in a vector referred to a specific substructure and would have a 

value of 1 if the substructure was present in the structure or 0 if it was not. This method suffered 

from significant bias towards substructures with a high occurrence rate and would effectively 

ignore substructures which occurred in few samples. I attempted to use sample and class 

weighting to balance the network’s tendency to ignore infrequent substructures. However, I was 

unable to create an alternative method which worked as well as simply training a different 

network for each substructure. The process of tuning these networks, as will be discussed later in 

the Methods section, showed that an optimized network didn’t require an excessive number of 

parameters. The substructure networks used in this project contain roughly 1.2 million 

parameters and their saved models require only 9.52 MB. This relatively small size made it 

reasonable to simply train a unique model for each substructure. 
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The substructure neural networks created for this project all use the same topology but 

different training configurations. The training hyperparameters are varied between substructures 

depending on the number of samples which contain the substructure. These networks are all 

CNNs which contain 4 convolutional layers. The layers respectively have 53, 140, 23, and 160 

filters. Each of the convolutional layers feed into a batch normalization layer, next a leaky Relu 

layer which uses an alpha value of E-3.5839, and finally a max pooling layer which use a 2x1 

pool size. The exception is the final convolutional layer which uses valid padding and skips the 

max pool layer. The output of this final convolutional layer is flattened and fed into a dense layer 

with 95 nodes which uses the same batch normalization and leaky Relu activation as the 

convolutional layers. The input to the network is 600x3x1 and the outputs of each hidden layer 

bock are 300x3x53, 150x3x140, 75x3x23, 73x1x160, and 95. The network’s output is a simple 

perceptron with one node which uses sigmoid activation. The topology of this network can be 

seen in Figure 4. The hyperparameters listed denoting number of filters and dense nodes were 

found through an optimization process which used genetic algorithm. The genetic optimization 

process also determined the leaky Relu alpha value and additional hyperparameters which will 

be listed in the next subsection. 

 

Figure 4: Topology of the proposed substructure network 
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Genetic Optimization. To optimize the proposed networks, I turned to evolutionary 

algorithms [26]. Changes were made to the typical evolutionary optimization process in order to 

independently optimize the hyperparameters for different substructures. Exploratory 

investigations seemed to indicate that the network’s optimal hyperparameters varied depending 

on the ratio of positive to negatives samples for the given substructure. To create optimal 

networks for all substructures regardless of the number of positive samples, the genetic 

optimization process evolved curves based on polynomials. The genes for these curves were lists 

of the constant coefficients for these polynomials and take the form: 

 𝑄1(𝑥, 𝑔) = 𝑔1 ∗ (𝑥 + 𝑔2)3 + 𝑔3 ∗ (𝑥 + 𝑔4)2 + 𝑔5 ∗ (𝑥 + 𝑔6) + 𝑔7, where 𝑔 ∈ ℝ. 

Some curves require two inputs and take the form: 

𝑄2(𝑥, 𝑦, 𝑔) = 𝑔1 ∗ (𝑥 + 𝑔2)3 + 𝑔3 ∗ (𝑥 + 𝑔4)2 + 𝑔5 ∗ (𝑥 + 𝑔6) + 𝑔7 ∗ (𝑦 + 𝑔8)3 + 𝑔9 ∗
(𝑦 + 𝑔10)2 + 𝑔11 ∗ (𝑦 + 𝑔12) + 𝑔13.  

 

Figure 5 shows the curves for the 1 input curves and Figure 6 the 2 input learning rate 

curves. The network also uses constant values which are similarly evolved using this process. 

This genetic optimization process used 10 folds of the full dataset with each substructure getting 

an independent set of folds. For this process I chose 10 substructures with different occurrence 

rates [CC(-O)N, CC≡CC, C=CSO, CC(=C)F, CN(-C)C, CC(=O)C, CC=CN, C=CCO, CC(=C)C, 

CC=CC]. This process minimized 2 objectives: The first objective is to maximize the f1-score of 

the networks results averaged over 10 folds and across the 10 substructures. The second 

objective is to minimize the variance of the network over the 10 folds. During the optimization 

process, any network that is Pareto efficient is given the highest fitness value. Over several 

recursive iterations, multiple fronts of Pareto efficient networks are grouped together where the 

networks in each subsequent group is dominated by the networks in the previous groups, co-

dominant with networks in the same group, and dominates one or more networks in subsequent 
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groups. Networks in the most efficient group are given the highest rank and each less efficient 

group is given a lower rank. Network ranks are recalculated each time a new network is trained. 

Each time a new network is added to the population, one of the lowest ranked networks is 

dropped. In the case that there is more than one network in the lowest rank, the choice of which 

network to drop is made at random from the lowest ranked group. The genetic optimization 

process uses two-point-crossover for each set of genes within the genome and standard Gaussian 

mutation. This optimization process required a total of 2139 unique sets of hyperparameters to be 

tested before the population converged. The evolved curves can be seen in Figures 5 and 6. 

 

 

Figure 5: Curves for batch size (brown), number of epochs (black), learning rate step decay 

(blue), momentum (green), class weights (orange), patience (red), patience start epoch 

(magenta). Dashed lines use the number scale to the right of the graph and solid lines use the 

scale on the left. 

 

Hyperparameters. The training process for the networks use a training process which 

varies based on the ratio of samples belonging to the positive class. This ratio will be referred to 
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as r. The learning rate, batch size, number of epochs, learning rate step decay, momentum, class 

weights, patience, patience start epoch each vary in this way. The training process occurs over a 

number of epochs which ranges between 187 at r=0.01 and 395 at r=0.99. Optimum batch size 

also varied as r changes with the minimum batch size of 112 occurring at r=0.05 and maximum 

of 331 at r=0.98. Early stopping is used with a variable patience value ranging from 7 at r=0.99 

to 99 at r=0.01. The early stopping function is skipped for the first few epochs ensuring the 

training process runs for at least 62 epochs at r=0.01 and 79 at r=0.81. The learning process uses 

the stochastic gradient descent (SGD) optimizer with variable momentum which reaches a 

maximum of 0.9846 occurs at r=0.49 and decreases as r increases and decreases. The training 

process weights the positive and negative classes based on a similar curve. The positive class 

uses the formulas 𝐶𝑙𝑎𝑠𝑠𝑊𝑒𝑖𝑔ℎ𝑡1 = 𝑄1𝐷(𝑟, 𝑔𝐶𝑙𝑎𝑠𝑠𝑊𝑒𝑖𝑔ℎ𝑡) and 𝐶𝑙𝑎𝑠𝑠𝑊𝑒𝑖𝑔ℎ𝑡0 = 𝑄1𝐷(1 −

𝑟, 𝑔𝐶𝑙𝑎𝑠𝑠𝑊𝑒𝑖𝑔ℎ𝑡). This curve ranges from 0.0672 at r=0.99 to 0.9846 at r=0.01. The full list of 

hyperparameter curves can be found in Appendix A. 

The training process uses the concept of cyclical learning rates [27]. The networks 

learning rate is decayed over the length of the training process, decayed after every 23 steps, and 

a cyclical learning rate is repeated every 23 epochs. The cycle/step length of 23 was also found 

through the evolution process. The network’s learning rate (LR) is updated each epoch using the 

formula: 

 𝐿𝑅(𝑒𝑝𝑜𝑐ℎ) = 𝑆ℎ𝑜𝑟𝑡𝐿𝑅 (
𝑒𝑝𝑜𝑐ℎ % 𝐶𝑦𝑐𝑙𝑒𝐿𝑒𝑛

𝐶𝑦𝑐𝑙𝑒𝐿𝑒𝑛
, 𝑟, 𝑔𝑆ℎ𝑜𝑟𝑡𝐿𝑅 ) ∗ 𝐿𝑜𝑛𝑔𝐿𝑅 (

𝑒𝑝𝑜𝑐ℎ

𝐸𝑝𝑜𝑐ℎ𝑠
, 𝑟, 𝑔𝐿𝑜𝑛𝑔𝐿𝑅) ∗

𝑒
⌊

𝑒𝑝𝑜𝑐ℎ

𝐶𝑦𝑐𝑙𝑒𝐿𝑒𝑛
⌋

∗ LRStepDecay(r, gLRStepDecay). 

 

Cyclical learning rates have been shown to be useful in maximizing the accuracy or F1-Scores of 

neural networks. Learning rate decay is also commonly used when implementing variable 

learning rates. The curves shown in Figure 6 show both the cyclical variation of the learning rate 
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and the long-term decay of the learning rate. The evolution process was given the ability to 

utilize and tune cyclical learning rates, long term decay, and stepped decay. This allowed the 

optimization process to tune or even suppress these methods as needed ensuring the network was 

able to optimally utilize these strategies. A graph of the final learning rate can be seen below in 

Figure 7. 

 

 

Figure 6: 2D curves used for the learning rate of the proposed network. Short cycle learning rate 

(left) and long cycle learning rate (right) are based on the positive sample ratio and the current 

epoch number. 

 

Substructure Encoding. Some substructures have so few examples that even with 

hyperparameter tuning their predictions are too inaccurate to be useful. One way I mitigated this 

issue was by taking the networks of substructures with sufficient examples in the dataset and 

repurposing them as encoders. For this I removed the perceptron at the networks output and 

concatenated the network predictions for each sample. I then applied a 99% principal component 

analysis (PCA) dimensionality reduction to these predictions which reduced this combined size 

to 2219 datapoints. A new MLP was trained for the substructures on these new spectral 
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encodings. This method resulted in moderately better performance for the majority of 

substructures with less than 700 examples, but also tended to either decrease accuracy or make 

little difference for samples with more than 700 samples. Therefore, it was simplest to allow 

substructures with more than 700 examples to use their original predictions and for other 

substructures to use this encoding method. Another motivation to create these spectral encodings 

was for use in predicting the compound’s full structure as will be shown later in the paper. 

 

 

Figure 7: The network’s learning rate over the epochs by positive sample ratio. 
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Substructure Results. Figure 8 shows the F1-scores of substructures in the dataset. 

While many of these substructures show low performance, recall Figure 3 showed that 

approximately 70% of the substructures occurred in less than 2% of samples. While the 

structures that occur infrequently do give poor results, many of the 834 substructures can be 

predicted with high recall and precision. The primary factor in accurately prediction a given 

substructure is having a sufficient number of examples of the substructure. A full list of 

substructures and their F1-scores can be found in Appendix B. 

 

 

Figure 8: F1-scores for substructures in the dataset. 
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Figure 9 shows a histogram the Jaccard scores for samples in the dataset when compared 

to the base truth. Each score is based on the similarity to the prediction’s substructures to the 

base truth’s substructures. Of the 530 test samples, 363 were predicted with a similarity of over 

0.6, 201 with a similarity over 0.8, and 104 with a similarity over 0.9. 

 

 

Figure 9: Jaccard index scores for samples in the dataset. 

 

  Figure 10 shows that high accuracy is possible with enough examples of each 

substructure. Therefore, samples which are comprised of infrequently occurring substructures 

should be expected to also have low Jaccard index scores. This suggests that the largest 

limitation of this project is the small number of samples in the dataset. Increasing the number of 

samples in the training set could have a significantly positive impact on the results of these 

methods. 

0

20

40

60

80

100

120

C
o
u

n
t

Jacard Index



   

 

23 

 

Figure 10: Plot of substructure occurrence rates vs. their resulting F1-Score. 

 

Greedy Structure Prediction 

The final goal of this project is to predict the true structure of a compound from its FTIR 

spectra. Initial investigations showed that a greedy algorithm [24] could almost reconstruct a 

structure from perfect substructure predictions. However, this method also had a number of 

drawbacks. The primary limitation of this method was that it required the true substructures to 

function correctly and performed poorly when given the predictions from the substructure 

networks. The other issue was that there is some ambiguity between substructure predictions and 

the compound’s true structure. Greedily choosing a modification that improves substructure 

similarity is not guaranteed to create a structure that optimizes this similarity score. Furthermore, 

two different structures can have the same substructures.  

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
1
-S

co
re

Occurrence  Rate



   

 

24 

At the core of this method was an evaluation function that simply found all substructures 

in a predicted structure and compared this to the prediction. The predicted structure would then 

be given a score based on the similarity between the predicted structure’s substructures and the 

true structure’s substructure predictions. This method started with a single carbon atom. Then it 

enumerated each possible atom bond pair that could be connected to the structure and each pair 

of atoms in the structure that could be bonded together. Each of these possible modifications to 

the structure was evaluated and compared to the current structure evaluation. The algorithm 

would greedily choose the best modification with each iteration of this process which would 

grow the predicted structure based on the substructure predictions. This method would stop 

modifying the structure once all proposed modifications were given lower evaluations than the 

current structure. At this point the function would return its prediction for the structure. A 

diagram of this process can be seen below in Figure 11. 

 

Figure 11: Iterative creation of Dimethyl oxalate’s structure. This figure shows the proposed 

process of iteratively adding atoms and bonds in order to create a prediction for the compound’s 

full structure. 
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Evaluation method. The greedy structure prediction method bases the value of its 

predictions on an evaluation function which gives structures a score between 0 and 1 based on 

the structure’s similarity to the compound’s true structure. This score is based on three metrics: 

First is the cosine similarity between substructures found in the true structure and the predicted 

structure. The Jaccard index and f1-score were also tested in place of cosine similarity. The f1 

score resulted in similar final predictions to cosine similarity, but the Jaccard index resulted in 

the creation of highly dissimilar structures. Second is the similarity between atom bond paints 

found in the true and predicted structures, which uses the formula:  

1 −
∑|𝑐𝑎𝑟𝑑(𝑡𝑟𝑢𝑒_𝑠𝑡𝑢𝑐𝑡𝑠[𝑎𝑏])−𝑐𝑎𝑟𝑑(𝑝𝑟𝑒𝑑_𝑠𝑡𝑟𝑢𝑐𝑡𝑠[𝑎𝑏])|

∑ 𝑐𝑎𝑟𝑑(𝑡𝑟𝑢𝑒_𝑠𝑡𝑢𝑐𝑡𝑠[𝑎𝑏])+∑ 𝑐𝑎𝑟𝑑(𝑝𝑟𝑒𝑑_𝑠𝑡𝑟𝑢𝑐𝑡𝑠[𝑎𝑏])
, 𝑎 ∈ {𝐶, 𝑂, 𝑁}, 𝑏 ∈ {−, =, ≡}. 

The third is the similarity between the structure’s extended connectivity fingerprint with radius 6 

(ECFP6) [28] which is compared with the Jaccard/Tanimoto index [29]. The evaluation function 

uses the harmonic mean of these three values. This evaluation method will be referred to as the 

Structure Based Similarity Score (SBSS). 

Greedy prediction results. Figure 12 and 13 show that this greedy algorithm can at least 

partially recreate structures from perfect predictions. Smaller structures tend to work better than 

larger structures. The larger the structure is the more ambiguity there is in how substructures 

could be put together. Figure 13 also contains mirrored structures which further complicates the 

problem. 

Figure 14 shows that the greedy algorithm has issues with ring substructures. In the 

future it will be necessary to find a method for correctly piecing together these ring-based 

structure. However, for now this project will simply limit the dataset by removing samples with 

ring substructures. 
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Figure 12: Methyl Acrylate truth (left) [30] and prediction (right) created from using the greedy 

prediction method using the base truth structure. 

 

 
Figure 13: 2,5-Dimethyl-3-hexanol truth (left) [30] and prediction (right) created from using the 

greedy prediction method using the base truth structure. 

 

 
Figure 14: 9-Methylanthracene truth (left) [30] and prediction (right) created from using the 

greedy prediction method using the base truth structure. 

 

Deep Q-Learning for Structure Prediction 

As stated earlier, the greedy prediction method had a pair of flaws. It could only work 

with perfectly accurate predictions and it was not guaranteed to create a perfectly matching 

structure. To deal with these issues I turned to deep Q-learning. Q-learning uses greedy epsilon 

learning to make random predictions for the value of actions at various states. The algorithm’s 

epsilon value controls the probability that the algorithm takes a random action or takes the action 

with the highest predicted value. A Q-table is updated at the end of each iteration. This table 

represents the future value of each action in each state. Deep Q-learning replaced the Q-table 
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with deep learning model. This model is trained on the value of entering into new states based on 

the current state. 

Deep Q-learning. Deep Q-learning is a form of unsupervised reinforcement learning 

which is based on Q-learning [25]. Q-learning involves the creation of a Q-table which gives the 

values for various states and actions. The Q-table acts as a model to dictate the actions of a 

process over a time series. This table could learn the actions required to solve a puzzle or be used 

in learning similar problems. In this process, epsilon-greedy learning is used to make take 

random actions and the Q-table learns the value of entering into these states. Q-learning decays 

the epsilon value over time. The epsilon value determines the rate at which the next state will be 

chosen at random versus choosing the next state by taking the action with the highest value from 

the Q-table. The Q-learning process seeks to maximize some evaluation function by estimating 

the future values of states as evaluated by this evaluation function. Q-learning learns not just the 

value of various states but also assigns values to each state based on the current value of the state 

and the possible maximum future value of the state. At each step in Q-learning, the value of each 

action at each state is updated using the formula: 

𝑄(𝑠𝑡 , 𝑎𝑡) =  𝛼[𝑟𝑡 + 𝛾 ∗ max(Q(s𝑡+1, 𝑎)) − 𝑄(𝑠𝑡, 𝑎𝑡)]. 

Deep Q-learning replaced the Q-table with a neural network model. Here the network 

uses its own predicted rewards for subsequent states to estimate the value of the current state. To 

stabilize the learning process a second copy of the model is used to predict future rewards. This 

second target model is updated with the main model’s weights and biases on some regular 

number of training steps. The loss function used in deep Q-learning is: 

𝑙𝑜𝑠𝑠 = 𝐻𝑢𝑏𝑒𝑟 (𝑄(𝑠𝑡, 𝑎𝑡),  𝑟𝑡 +  𝛾 ∗ max (Q𝑡𝑎𝑟𝑔𝑒𝑡(s𝑡+1, 𝑎)))  
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Where Q-target is a copy of the Q-model which is updated on a less frequent interval. Huber loss 

is considered to provide for more stable convergence.  Having the model estimate the weighted 

sum of the immediate state reward and its own prediction for the action’s future value creates 

some instability in the learning process. As 𝛾 approaches 1 the training process becomes more 

unstable. Values for 𝛾 greater than or equal to 1 are inherently unstable and will not converge. 

One of the benefits of deep Q-learning is that it can generalize problems and be used to evaluate 

states that are independent from those seen during the training process. This also means a deep 

Q-model may have some ability to solve problems similar to those it was trained on. 

The deep Q-learning training process often uses two models. One is the Q-model, and the 

other is Q-target which is a copy of the Q-model. In the training process, the Q-model is taught 

to learn the past rewards plus the future rewards which is based on its own predictions. So, the 

Q-model’s predictions are dependent on the future rewards as predicted by a past version of 

itself. This means deep Q-learning needs to converge in two ways. First the Q and Q-target 

models need to converge with each other. Second the Q-learning process needs to explore the 

possibility space thoroughly enough that it can learn to solve the given problem. In this training 

process, the Q-model could be considered to be building its own dataset on the fly. At each step 

the Q-model predicts the best action based on its understanding of the problem. If the chosen 

action is in fact not the true best action, then the new state will either have a lower reward or lead 

to a lower reward in the future. By finding the situations where the model’s expectations for 

future rewards does not reflect the true value of the action, the model is able to actively find 

flaws in its comprehension of the problem. 
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Deep Q-learning Prediction Method. My project required some reinterpretation of the 

Deep Q-learning method. The biggest obstacle was that my project required this model to be able 

to predict the structure of as yet unseen compounds. This means I would need to evaluate this 

model on sample from the testing set while training it on compounds in the training set. To do 

this I would need to give the model any information I could about the nature of the compound 

whose structure it was trying to reconstruct. I designed a model that would take three inputs: 

First it would take a matrix representing features of the predicted compound’s structure. Second 

it would take the predictions of substructures within the structure. Third it would take the 

encoded spectra discussed in the previous section. The purpose for this design was to create a 

model that could interpret the relationship between a compound’s spectrum, substructures, and 

structure. 

This model was used to predict structures by piecing the structure together over multiple 

steps. Similar to how the greedy method worked, this new deep Q-learning method incrementally 

modified the predicted structure based on its predictions for the future value of each possible 

prediction. Each iteratively created prediction is evaluated and the network is trained using the 

following loss function: 

𝑙𝑜𝑠𝑠 = |𝑄𝑚𝑜𝑑𝑒𝑙 (𝑠𝑡𝑟𝑢𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑠𝑝𝑒𝑐_𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔) − [ 𝑟𝑒𝑤𝑎𝑟𝑑(𝑛𝑒𝑥𝑡_𝑠𝑡𝑟𝑢𝑐𝑡) +

 𝑔𝑎𝑚𝑚𝑎 ∗ 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑛𝑒𝑥𝑡_𝑠𝑡𝑟𝑢𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑠𝑝𝑒𝑐_𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔)]|. 

Q-learning predicts the future value of moving from one state to another. In this loss 

function the partially built structures are the states. Each partial structure that is built during the 

training process acts as a new training example for the model. In deep Q-learning, the model 

iteratively learns to output a value that is more similar to the current rewards for the state it left 

plus some percentage of the models’ predictions for the future rewards of the new state. Here 
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gamma is a parameter with a value between 0 and 1 which weights the importance of predicted 

future rewards to the immediate value of the new state.  

In deep Q-learning the Q-model predicts the approximate future value of various states. 

My implementation of this method attempts to predict the future value of various states based on 

the networks understanding of the current problem. Each compound in the dataset can be thought 

of as a unique problem which the model is attempting to solve. The model needs to understand 

the how to build all the structures for these compounds and be able to generalize its 

understanding well enough to predict the structures of compounds it has never seen before. 

Furthermore, it needs to be able to do this while accounting for the noisy nature of FTIR spectra 

and the inaccuracy of substructure predictions. 

With the goal of training a model which understands the potential inaccuracies this model 

would likely face in real world scenarios, I intentionally induced random false positive and false 

negatives into the substructure prediction based on the average rates from samples in the testing 

set by sample occurrence rate. Each time a structure is reset to its base state, new random 

inaccuracies are induced into the predictions. The substructure predictions and spectra encodings 

are also masked by Gaussian noise with a standard deviation of 0.1. The reason for these 

normalization techniques is to encourage the model to generalize its understanding of the 

problem by learning to compensate for the inaccuracies and noise which could appear in 

compounds. 

Structure prediction network. The structures predicted in this process need to be 

represented in a form that can be understood by a neural network. I chose a vector which 

represents linear substructures of up to size 5. This algorithm creates a vector whose elements 

each represent a different unique permutation of carbon, oxygen, and nitrogen atoms and single, 
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double, and triple bonds. An autoencoder was trained on the training set to reduce the 

dimensionality of the representations to 512 floating point values. 

The structure prediction network, shown below in Figure 15, predicts the estimated value 

of entering new states based on the current state and game. Here the game is the structure it is 

trying to build. The game is represented by the substructure network predictions and the spectral 

encoding. The current state is represented by an encoding of the current structure, newest 

modification to the current structure, and the current structure’s fingerprint. The substructure 

predictions and spectral encoding are there to inform the network about the possible structure 

features of the compound based on its FTIR spectrum. This network is trained using deep Q-

learning, a method that is often used for learning in games such as chess. Here the game the 

networks plays is building a structure which best matches the spectrum encoding and 

substructure predictions. 

The structure prediction network pieces the structure together one step at a time. The 

network is initially given a structure with only a single carbon atom, then it begins building out 

from this atom. Based on the current structure state, a simple algorithm permutes new possible 

structures by finding each new atom bond pair that could be added to the structure. Each of these 

possible modifications are evaluated by the network and the new state with the highest value is 

chosen. This process iteratively builds the structure of the compound until the network choses to 

stop. 

  Figure 15 shows the structure of the network. Each input to the network is given a 

separate multilayer perceptron (MLP) with two layers of size 1024 or size 512. The output of 

these sub-MLPs are concatenated and another three dense layers further interpret the inputs. The 

final layer of the network gives two outputs. One is the value of entering into the new state, 
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which is referred to as the Deep Learning Based Score (DLBS). The other is how similar the 

network believes the new structure’s size is to the size of the true structure, called the Deep 

Learning Completion Score (DLCS). When the DLCS value is greater than 1, the network stops 

building the structure. During the training process the network is trained on the true values of its 

predictions at each step, both the true SBSS and the TCS. 

 

 

Figure 15: Topology for structure prediction network. 

 

Training the structure predictions network. The structure prediction network was 

trained on the training set using greedy epsilon learning. The model was given a base truth 

dataset to learn from which contained the true structures of the compounds in the training set, 
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pseudo-partial predictions created by removing atoms one at a time from true structures, and the 

last 350,000 partial structure predictions created by the model. Training used Huber loss with a 

learning rate of 10-4. The primary Q-model would be updated every 4 frames and the target Q-

model would be updated every 32 frames. Over the first 128 training iterations, random updates 

to structures were used. This is part of the greedy-epsilon Q-learning method. After these 128 

iterations the epsilon value began to decay from 1.0 to 0.1 over the next 384 iterations. Figure 16 

shows the decay of 𝜀. The training process is stopped when loss reduction slows as shown in 

Figure 17.  

 

Figure 16: Decay curve of epsilon value. 

 

In each training iteration, 303 different compounds were permuted and their new partial 

predictions evaluated. When a structure was completed, a new compound would replace it and 

begin the process from the initial state of a single carbon atom. Before each structure 

permutation and evaluation, a random number alpha whose value is between 0 and 1 would be 

created and this number would be compared to epsilon. If 𝛼 < 𝜀 then a new random permutation 
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would be chosen, if 𝛼 > 𝜀 the new permutation would be chosen based on the model’s 

evaluation using the DLBS values. 

 

 

Figure 17: Loss value over training process. 

 

Structure predictions algorithms 

The good_and_unique algorithm uses two parameters, n and q. The n parameter 

determines the maximum number of candidate structures that well be retained at each iteration. 

The q parameter determines the weighting applied to the value of variation within these n 

predictions. The n predictions with the highest value are returned from the good_and_unique 

algorithm. These metrics were tuned by splitting the testing set in half and testing various values 

for n and q as shown in Figures 18 and 19. Overall n=13, q=1.0 worked well for both halves of 

the testing dataset. Given that there was little difference between the results on both halves of the 

testing set, the remainder of this thesis will give results on the full testing dataset. 
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𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎: 𝒈𝒐𝒐𝒅_𝒂𝒏𝒅_𝒖𝒏𝒊𝒒𝒖𝒆 
𝑖𝑛𝑝𝑢𝑡𝑠: {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛} 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛, 𝑓𝑙𝑜𝑎𝑡 𝑞 
𝑜𝑢𝑡𝑝𝑢𝑡: 𝐴 𝑠𝑒𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 
𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = { } 
𝒘𝒉𝒊𝒍𝒆 |𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠| < 𝑛 && |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠| > 0 𝒅𝒐 
      𝑏𝑒𝑠𝑡_𝑖 = 0 
      𝑏𝑒𝑠𝑡 = −∞ 
      𝑓𝑜𝑟 𝑖, 𝑝 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)𝑑𝑜 
              𝑑 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑠𝑡𝑑𝑒𝑣(𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 + {𝑝}))  
              𝑣 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒({_𝑝. 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 _𝑝 𝑖𝑛 (𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 + {𝑝})}) 
              𝑠 = 𝑣 + 𝑞 ∗ 𝑑 
              𝒊𝒇 𝑥 > 𝑏𝑒𝑠𝑡 𝒕𝒉𝒆𝒏 
                      𝑏𝑒𝑠𝑡 = 𝑠 
                      𝑏𝑒𝑠𝑡_𝑖 = 𝑖 
              𝒆𝒏𝒅 𝒊𝒇 
       end for 
        𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 + {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠. 𝑝𝑜𝑝(𝑏𝑒𝑠𝑡_𝑖)} 
end while 
𝒓𝒆𝒕𝒖𝒓𝒏 𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠   
 

   

Figure 18: Top 1 scores (left) and best of top 5 scores (right) by q parameter value. 

 

The structure prediction process can easily be modified to output multiple predictions by 

simply taking the top n predictions at each step. This modified process can be thought of as 

building a tree of possible new states. Branches from this tree are continued if they received 

scores high enough to put them in the top n predictions. 
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Figure 19: Top 1 scores (left) and best of top 5 scores (right) by n parameter value. 

 

Any predictions with DLCS values greater than 1 are set aside into a list of finished predictions 

and new and unfinished predictions are placed into a separate list. At each step, the 

good_and_unique algorithm is used on both lists. This modified process ends when none of the 

new and unfinished predictions improve upon any of the previous best predictions. The finished 

and unfinished predictions are merged and good_and_unique algorithm is applied one more 

time. This list is sorted by the DLBS, and the top n results are returned. 

Structure predictions results. The structure prediction network was next used to predict 

structures for the testing dataset. Here the system again started with a single carbon atom and 

modified the structure of the compound over multiple steps. This process uses two populations: 

finished and unfinished predictions. If a prediction has a completion value of >=1 then it is 

placed into the finished predictions population, otherwise it is appended to the unfinished 

predictions. This method uses good and unique algorithm for both populations at each step in this 

process. Once a step delivers no new improved predictions the prediction process ends. The 

finished and unfinished populations are then combined and the good_and_unique algorithm is 

applied one more time. These predictions are sorted by the model’s scores and the results are 
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output. Below are a set of these results. The rest of the results for the testing set can be found in 

Appendix C. 

Figure 20 shows the results from two samples which the model was able to provide 

correct predictions within its top 5 predictions. Sample 42072-39-9 is an example of a compound 

which the model predicted correctly with its top result. The other predictions are similar 

alternatives to this prediction. Sample 30414-53-0 is an example of a structure which the model 

was able to predict, but not as its top result. The fifth prediction does match the truth, but there 

were four other predictions that did not match the original and were given higher scores by the 

model. In both these cases the model’s score for the original structure is shown. Here we can see 

that the model gives scores less than 1.0 to both these true structures. This suggests the model 

know the truth but has low confidence in its prediction. 

 

 

 

Figure 20: Results for 42072-39-9 (top) and 30414-53-0 (bottom). Shows true evaluation and 

model’s predicted value for top 5 predictions and base truth. 

 

Figure 21 shows the results from two samples which the model was able to predict to 

some degree, but not perfectly. The true structures were not in these predictions. Here the model 
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identified elements of the true structure but was not able to recreate the true structure. The results 

for 87-91-2 shows that the network was able to identify elements the carboxylic (R−CO2H) of 

the structure but missed the symmetry within the structure. The network produced results for 

109-76-2 that formed chains of single bonded carbon atoms with nitrogen atoms. However, the 

network was unable to correctly predict the exact shape of the structure. 

 

 

Figure 21: Results for 87-91-2 (top) and 109-76-2 (bottom). Shows true evaluation and model’s 

predicted value for top 5 predictions and base truth. 

 

Figure 22 shows two samples which were poorly predicted by the model. We can see that 

the model gave the true structures for these predictions low scores, thus suggesting that the 

model has not captured the relationship between spectrum and structure well for these 

compounds. Both structures contain carbon triple bonds which are absent from the model’s 

predictions. The 628-36-4 results show that the network often misses the nitrogen in the 

structure, incorrectly identifies a C=C substructure, and tends to miss the symmetric nature of the 

compound. The 112-45-8 results miss some details about the compound’s shape and exclude the 

C=C substructure present in the true structure. 
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Figure 22: Results for 628-36-4 (top) and 112-45-8 (bottom). Shows true evaluation and model’s 

predicted value for top 5 predictions and base truth. 

 

Figure 23 shows a histogram of the SBSS for the model’s highest DLBS for each sample 

in the testing set. Again, the evaluation scores used here are based on the harmonic mean of three 

metrics. The first metric is substructure similarity, the second was the fingerprint similarity, and 

the third was atom bond pair similarity. These metrics are useful for measuring the similarity of 

predictions shown here to the truth. Remember that in a previous section these metrics were 

shown to be useful for building a compound with the greedy structure building algorithm. 

Therefore, we case use this metric to judge how similar the predictions are to the truth. 

The results of this method can also be judged by accuracy. The model produces 1 correct 

top prediction and 9 correct top 5 predictions from the 116 tested structures giving this method a 

0.86% top 1 accuracy and an 7.76% top 5 accuracy. These results show that this method is still 

not capable of giving the exact structure of the compound. However, the structures it produces 

are often structurally similar to the truth as indicated in SPR4. 
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Figure 23: Histogram of SBSS for top 1 results (green) and best of top 5 results (blue). 

 

Figure 24 shows a histogram of the individual metrics for the top 1 prediction for each 

testing sample. This shows that the model’s DLBS correlates well with the substructure 

similarity and atom bond pairs metrics. However, the model has trouble predicting the 

fingerprint similarity metric. Therefore, the model tends to create structures that are of a similar 

size and contain similar substructures, but also differ from the true structure in meaningful ways.  

Figure 25 shows a histogram of the individual metrics for the best SBSS from the top 5 

DLBS for each testing sample.  Moving to the top 5 predictions improves the top predictions 

scores based on the fingerprint metric, but at the cost of the substructure similarity and atom 

bond pairs metrics. This would indicate that the model is having a hard time generating 

structures which simultaneously satisfy each of these metrics. 

Figure 26 shows a scatter plot of each prediction’s SBSS vs the model’s DLBS. The true 

similarity is the x-axis and the model’s prediction for this value is the y-axis. This graph contains 

5 predictions for each of the 106 testing samples. The correlation between the SBSS and DLBS 

values is 0.5433. Overall, this means the deep learning method’s ability to model the SBSS is 
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imperfect. The model can consistently produce structures that are similar to but is generally 

unable to completely predict the true structure. 

 

 
Figure 24: Histogram of top 1 predictions by fingerprint similarity (orange), substructure 

similarity (blue), and atom bond pairs (gray) metrics. 

 

 
Figure 25: Histogram of best of top 5 predictions by fingerprint similarity (orange), substructure 

similarity (blue), and atom bond pairs (gray) metrics. 
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Figure 26: Scatter plot of the prediction’s SBSS vs the model’s DLBS. 
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CONCLUSIONS 

 

The results presented in this paper show that the relationship between a compound’s 

FTIR spectrum and its structure can be modeled to some degree. The first experiments conducted 

in this paper were based on using binary classifier networks to analyze an FTIR spectrum in 

order to predict whether a given substructure was present in a compound. These networks were 

optimized by changing from uniformly chosen hyperparameters to hyperparameter curves. The 

networks were optimized against a subset of the substructures present in the dataset using a 

genetic algorithm which maximized the average F1-score and minimized variance between 

replicates. These hyperparameter curves were used to train each of the substructure networks. 

Finally, substructures with too few examples to reliable be used in the network training process 

were instead predicted through an MLP which was trained on an PCA transformation of the 

outputs from the last layer of the networks with sufficient substructure counts. The results of 

these experiments showed that many substructures could be predicted with high accuracy with 

this method. However, this also revealed a fundamental limitation which was the limited dataset. 

A strong connection was shown between substructure occurrence rates and the F1-score of 

substructure predictions. My conclusion is that this method could potentially be used to predict a 

wide variety of substructures on the condition that a large enough dataset of spectra could be 

created. Specifically, this larger dataset would need to contain a variety of structures which 

provide a sufficient number of examples for even the rarer substructures. 

The next investigation was into a method for iteratively building a compound’s structure. 

In this section I created a structure evaluation method which could be used to iteratively build a 

compound’s structure by listing possible additions to a structure and greedily choosing the best 
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one. This process would stop when no possible new modification to the structure would increase 

the similarity by this evaluation metric. This metric was based on the harmonic mean of the 

fingerprint similarity, substructure similarity, and atom bond pairs similarity. Results showed this 

method had some issues with cyclic structures and symmetrical structures. However, I predicted 

that Q-learning would help overcome these issues to some degree by allowing this method to 

understand the future value of each possible modification and not just the immediate benefit. 

Hopefully, this would allow it to overcome the limitation of only greedily choosing the 

modification giving the highest value by the evaluation metric. 

The third method explored was a deep Q-learning method which attempted to estimate 

the future rewards of the greedy structure building method by learning the relationship between 

the input FTIR spectrum, the current state of the structure prediction it is building, and the 

evaluation metric’s value for the current version of the structure prediction. It was not clear if 

utilizing Q-learning would be sufficient to overcome the symmetry issue. In the results from this 

experiment, the deep Q-learning method used still had low performance when predicting the 

spectra-structure relationship of symmetric structures. However, it also had issues with non-

symmetric structures. 

Overall, this method was not as successful as I had hoped it would be. However, I believe 

the promise of these approaches. Even though the percentage of the cases where network 

predicted the true structure was relatively low, the predicted structures often showed similarities 

to the true structures. With further development of this method, it should be possible to push 

these results further. It may also be possible to generate the spectrum of a given structure and use 

spectral similarity to help improve this process. By comparing this current work and other works, 

it seems likely that predicting spectrum from structure may be considerably more effective than 
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predicting structure from spectrum. The structure prediction method used in this paper might 

benefit from viewing the relationship from both directions. Additionally, improvements to the 

dataset, further development of the training process, development of the model, and refinement 

of the method could further improve results. For the dataset, it stands to reason that the limitation 

I saw in substructure predictions also applies to structure predictions. 

The methods presented in this thesis showed varying levels of success. The substructure 

prediction networks proved to be quite capable for substructures with a sufficient number of 

examples to learn from. This work was able both increase the breadth of structural features being 

predicted and predict more specifically defined substructures than previously reported works. 

While the structure prediction method developed in this thesis work may not be perfect, these 

findings provided valuable insights toward the development of computational approaches that 

can predict a compound’s structure solely based on its IR spectrum. Other structure prediction 

methods that employ quantum calculations do exist. However, these methods are often 

computationally highly expensive and therefore are not applicable in many applications. 

Therefore, while predicting the nature of a compound from its IR spectrum is a fundamentally 

challenging task, I believe the methods outlined in this thesis provide a meaningful and novel 

step forward in our ability to identify substances from their IR spectrum. 
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APPENDICES 

 

Appendix A. Substructure hyperparameter curves. 

Epochs = [0.047(x − 0.9745)1 − 0.2116(x − 0.2728)2 + 0.0528(x + 0.7725)3 + 0.2041]
∗ 300 + 100 

Patience = [−0.0214(x − 0.298)1 − 0.4379(x + 0.6145)2 + 0.069(x + 0.3208)3 + 0.9842]
∗ 99 + 1 

Patience start = [−0.0267(x − 0.8995)1 − 0.0506(x − 0.6714)2 + 0.0119(x − 0.5949)3

+ 0.5772] ∗ 100 

Batch size = [0.8833(x + 0.4823)1 + 0.0496(x + 0.7182)2 − 0.379(x − 0.0411)3

− 1.1391] ∗ 336 + 64 
Class weight = −0.1882(x − 0.683)1 + 0.0977(x + 0.2613)2 − 0.1961(x + 0.5303)3

+ 0.5073 
Momentum = −0.1575(x + 0.2917)1 − 0.5004(x − 0.6315)2 − 0.2746(x + 0.5987)3

+ 2.214 
LRDecay = 0.3394(x − 0.4892)1 + 0.1081(x + 0.8084)2 + 0.0558(x − 0.3281)3 + 0.2503 

LRShortCycle = 10^(−10
∗ [0.2064(x − 0.5378)1 − 0.1252(y − 0.4827)1 + 0.2273(x − 0.228)2

+ 0.1541(y + 0.3901)2 + 0.1186(x + 0.6983)3 − 0.0048(y + 0.1242)3

− 1.1597]) 
LRShortCycle = 10^(−10

∗ [0.2529(x − 0.0924)1 − 0.1458(y − 0.3639)1 − 0.1981(x − 0.228)2

+ 0.1954(y + 0.2633)2 + 0.0603(x − 0.4494)3 + 0.0533(y + 0.5467)3

− 0.0525]) 
𝐿𝑅𝑆ℎ𝑜𝑟𝑡𝐶𝑦𝑐𝑙𝑒𝐿𝑒𝑛 =  23 
Conv2DSize =  [53, 140, 23, 160] 
DenseSize =  [95] 
LRAlpha =  10^(−3.5839) 
 

Appendix B. Structure prediction results. 

Substructure Count Precision Recall F1-score 

0C-1C 5189 0.98473 0.99422 0.98945 

0C-1C(0-2C) 4252 0.8802 0.85919 0.86957 

O 4119 0.94417 0.94189 0.94303 

0C=1C 3562 0.94302 0.91944 0.93108 

0C=1C(0-2C) 3515 0.9422 0.91831 0.9301 

0C=1C-2C(0-3C) 3251 0.94921 0.90881 0.92857 

0O-1C 3051 0.9085 0.9085 0.9085 

0C-1O(0-2C) 3011 0.91176 0.92079 0.91626 
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0C-1C=2C(0=3C) 2909 0.94483 0.93836 0.94158 

0C=1C-2C=3C(0-4C) 2877 0.9338 0.92096 0.92734 

1?=0?-5?=4?-3?=2?-1 2840 0.94366 0.93056 0.93706 

0C-1C-2C(0-3C) 2817 0.81887 0.77778 0.79779 

0O=1C 2719 0.96139 0.94677 0.95402 

0C-1C=2C(0-3C) 2676 0.85338 0.85019 0.85178 

1C=0C-5C=4C-3C=2C-1 2658 0.89209 0.91176 0.90182 

0C=1O(0-2C) 2592 0.92941 0.948 0.93861 

0C-1C=2C-3C(0-4C) 2552 0.85039 0.84375 0.84706 

0C-1C(0=2C)(0-3C) 2467 0.832 0.8595 0.84553 

0C=1C-2C(1-3C)(0-4C) 2368 0.85714 0.86076 0.85895 

0C=1C(0-2C=3C)(0-4C) 2258 0.84681 0.88444 0.86522 

0C-1C-2O(0-3C) 2086 0.79902 0.79126 0.79512 

0C-1C=2O(0-3C) 2061 0.82927 0.89005 0.85859 

0C-1C-2C-3C(0-4C) 1829 0.79355 0.66848 0.72566 

N 1772 0.85987 0.77143 0.81325 

0N-1C 1600 0.84564 0.80255 0.82353 

0O-1C(0-2C) 1598 0.89796 0.83019 0.86275 

0C-1O-2C(0-3C) 1576 0.85417 0.77848 0.81457 

0C=1O(0-2O) 1557 0.88235 0.90604 0.89404 

0C-1C(0-2C=3C)(0=4C) 1552 0.72549 0.76552 0.74497 

0C-1C-2O(0=3C) 1536 0.81169 0.81169 0.81169 

0C-1O(0=2O)(0-3C) 1501 0.89286 0.88028 0.88652 

0C-1C-2C=3C(0-4C) 1465 0.6993 0.67114 0.68493 

0C=1C-2C-3O(0-4C) 1424 0.82734 0.8042 0.8156 

0C-1N(0-2C) 1393 0.8189 0.76471 0.79087 

0C-1C-2C(1=3C)(0-4C) 1355 0.67391 0.66429 0.66906 

0C-1C-2C-3O(0-4C) 1341 0.74627 0.76336 0.75472 

0C-1C=2O(0=3C) 1303 0.84328 0.86923 0.85606 

0C=1C-2C=3O(0-4C) 1188 0.808 0.84167 0.82449 

0C-1C-2C=3O(0-4C) 1160 0.73737 0.68868 0.7122 

0C-1C-2O(1=3O)(0-4C) 1129 0.77679 0.82857 0.80184 

0C-1C-2C=3O(0=4C) 1016 0.77064 0.80769 0.78873 

0C-1C(0-2C-3C)(0=4C) 1010 0.53097 0.54545 0.53812 

0C-1C-2O-3C(0-4C) 1010 0.72632 0.71134 0.71875 

0C-1O-2C-3C(0-4C) 1008 0.73913 0.69388 0.71579 

0C-1O(0=2C) 992 0.78 0.78788 0.78392 

0C=1C(0-2C=3O)(0-4C) 990 0.74286 0.82105 0.78 

0C-1N(0=2C) 977 0.7957 0.73267 0.76289 
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0C=1C-2O(0-3C) 970 0.8 0.81633 0.80808 

0C-1C(0-2C)(0-3C) 959 0.70455 0.62 0.65957 

0C=1C(0-2O)(0-3C) 955 0.83158 0.84043 0.83598 

0C=1C-2C(1-3O)(0-4C) 946 0.82796 0.81915 0.82353 

0C=1C-2N(0-3C) 924 0.76344 0.73958 0.75132 

0C-1C=2C-3O(0=4C) 921 0.82418 0.79787 0.81081 

0O-1C=2O(0-3C) 907 0.90426 0.93407 0.91892 

0C-1C=2C(1-3O)(0=4C) 896 0.86517 0.84615 0.85556 

0C-1C-2N(0=3C) 867 0.73973 0.60674 0.66667 

0O-1C-2C=3C(0-4C) 838 0.78205 0.75309 0.7673 

0O-1C-2C(1=3O)(0-4C) 837 0.90123 0.87952 0.89024 

0C=1C-2C-3N(0-4C) 821 0.72857 0.61446 0.66667 

0C-1C-2C(1-3C)(0-4C) 817 0.69565 0.56471 0.62338 

0C-1C=2C-3N(0=4C) 788 0.81159 0.70886 0.75676 

0N-1C(0-2C) 783 0.725 0.75325 0.73885 

0C=1C(0-2N)(0-3C) 779 0.79452 0.6988 0.74359 

0C-1C-2C-3O(0=4C) 777 0.65854 0.72 0.6879 

0C-1C-2C=3C(0=4C) 751 0.625 0.64286 0.6338 

0C=1C(0-2C-3O)(0-4C) 746 0.67123 0.68056 0.67586 

0C-1N-2C(0-3C) 741 0.72857 0.68 0.70345 

0C-1C-2N(0-3C) 740 0.60563 0.59722 0.6014 

0C=1C-2C(1-3N)(0-4C) 737 0.73846 0.61538 0.67133 

0C-1C(0-2C-3C)(0-4C) 730 0.66129 0.54667 0.59854 

0C-1C(0-2C=3O)(0=4C) 729 0.63636 0.71014 0.67123 

Cl 719 0.54412 0.52857 0.53623 

0C-1O-2C=3O(0-4C) 717 0.88889 0.91429 0.90141 

0Cl-1C 684 0.53846 0.51471 0.52632 

0C-1C(0-2O)(0-3C) 667 0.75385 0.66216 0.70504 

0C-1C=2C(1-3N)(0=4C) 662 0.84746 0.73529 0.7874 

0C-1C(0=2O)(0-3C) 645 0.72727 0.7619 0.74419 

0C-1Cl(0-2C) 638 0.53571 0.5 0.51724 

0C-1C-2C(1=3O)(0-4C) 599 0.7963 0.76786 0.78182 

0C-1C(0-2C-3O)(0=4C) 591 0.68966 0.70175 0.69565 

0O-1C=2C(0-3C) 576 0.83333 0.71429 0.76923 

0C=1C-2O-3C(0-4C) 558 0.85714 0.76364 0.80769 

0O-1C-2C(1=3C)(0-4C) 544 0.83673 0.77358 0.80392 

0C-1C-2O(1=3O)(0=4C) 537 0.88 0.83019 0.85437 

0C-1C-2C(1-3O)(0-4C) 523 0.72727 0.68966 0.70796 

0N=1C 505 0.725 0.54717 0.62366 
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0C-1N-2C-3C(0-4C) 476 0.63636 0.65116 0.64368 

0C-1C(0-2C-3C)(0=4O) 475 0.58696 0.72973 0.6506 

0C-1N(0=2O) 473 0.78431 0.8 0.79208 

0C-1C-2Cl(0=3C) 467 0.4 0.43902 0.4186 

0C=1C-2C-3Cl(0-4C) 448 0.41463 0.44737 0.43038 

0N-1C-2C=3C(0-4C) 438 0.67568 0.55556 0.60976 

0C-1C(0-2C-3C)(0-4O) 433 0.63462 0.71739 0.67347 

0C-1C-2N-3C(0-4C) 431 0.5814 0.5814 0.5814 

0C-1C-2C-3N(0-4C) 430 0.54054 0.47619 0.50633 

0C-1Cl(0=2C) 428 0.45455 0.38462 0.41667 

0C=1C-2Cl(0-3C) 420 0.45455 0.39474 0.42254 

0N-1C=2C(0-3C) 415 0.58537 0.57143 0.57831 

S 412 0.64516 0.4878 0.55556 

0C=1C(0-2Cl)(0-3C) 403 0.42105 0.45714 0.43836 

0N=1C(0-2C) 400 0.73333 0.5641 0.63768 

0C=1C-2C(1-3Cl)(0-4C) 397 0.45714 0.45714 0.45714 

0C-1C=2C-3Cl(0=4C) 395 0.44118 0.44118 0.44118 

0C-1C=2C(1-3Cl)(0=4C) 388 0.42857 0.46875 0.44776 

0C=1C-2N-3C(0-4C) 386 0.61111 0.5641 0.58667 

0N-1C=2O(0-3C) 377 0.77273 0.80952 0.7907 

0C=1N(0-2C) 376 0.64286 0.5 0.5625 

0C-1C-2O(0-3O) 371 0.62162 0.65714 0.63889 

0C=1O(0-2N)(0-3C) 368 0.70455 0.79487 0.74699 

0N-1C-2C(1=3C)(0-4C) 364 0.67742 0.56757 0.61765 

0S-1C 364 0.66667 0.44444 0.53333 

0C=1C(0-2C-3N)(0-4C) 350 0.58065 0.51429 0.54545 

0C-1N=2C(0=3C) 349 0.58621 0.51515 0.54839 

0C-1N-2C=3O(0-4C) 339 0.72973 0.81818 0.77143 

0C-1C-2C-3N(0=4C) 337 0.625 0.45455 0.52632 

0C-1C(0-2C=3C)(0=4O) 323 0.625 0.55556 0.58824 

0C-1C(0-2C)(0-3C)(0-4C) 310 0.95455 0.55263 0.7 

0C-1O-2C=3C(0-4C) 309 0.75 0.58065 0.65455 

0C-1C=2N(0=3C) 305 0.63636 0.5 0.56 

0C=1C-2N=3C(0-4C) 303 0.68421 0.43333 0.53061 

1C-0C-5C-4C-3C-2C-1 300 0.66667 0.46154 0.54545 

0C-1S(0-2C) 296 0.77778 0.48276 0.59574 

Br 294 0.57143 0.34286 0.42857 

0Br-1C 293 0.55 0.31429 0.4 

0C-1C(0-2C-3O)(0-4C) 292 0.64 0.53333 0.58182 



   

 

54 

0N-1C-2C(1=3O)(0-4C) 290 0.76667 0.67647 0.71875 

0C-1C(0-2C=3C)(0-4C) 287 0.85 0.51515 0.64151 

0C-1N-2C=3C(0-4C) 286 0.75 0.62069 0.67925 

0C-1C-2N(0-3O) 284 0.66667 0.62069 0.64286 

0O-1C-2C-3O(0-4C) 282 0.48148 0.5 0.49057 

0C=1N-2C(0-3C) 279 0.47368 0.3913 0.42857 

0C-1Br(0-2C) 276 0.47826 0.31429 0.37931 

0C-1C-2C-3O(0-4O) 275 0.6 0.67742 0.63636 

0C-1C(0-2O-3C)(0-4C) 264 0.65 0.48148 0.55319 

0N-1C(0-2C)(0-3C) 259 0.66667 0.63636 0.65116 

0C=1C-2C=3N(0-4C) 258 0.7 0.30435 0.42424 

0C-1S(0=2C) 250 0.68421 0.59091 0.63415 

F 249 0.86957 0.76923 0.81633 

0F-1C 248 0.86364 0.73077 0.79167 

0C-1C-2C=3O(0-4O) 248 0.56 0.6087 0.58333 

0C-1C=2C-3O(0-4C) 247 0.63158 0.5 0.55814 

0C-1N-2C(1-3C)(0-4C) 246 0.72222 0.61905 0.66667 

1?=0?-5?-4?-3?-2?-1 243 0.44444 0.17391 0.25 

0C-1F(0-2C) 242 0.85 0.68 0.75556 

0N=1C-2C=3C(0-4C) 240 0.57143 0.4 0.47059 

0C-1C-2Cl(0-3C) 237 0.5 0.25926 0.34146 

0C-1C(0-2C-3N)(0=4C) 236 0.36842 0.28 0.31818 

0C=1C-2S(0-3C) 234 0.73333 0.57895 0.64706 

0C-1C=2O(1-3N)(0-4C) 226 0.55 0.52381 0.53659 

0C-1O(0-2C-3O)(0-4C) 223 0.5 0.54545 0.52174 

0C-1C-2N(0=3O) 219 0.56522 0.68421 0.61905 

0C-1C=2C-3S(0=4C) 219 0.73333 0.61111 0.66667 

1?=0?-5?-4?-3?=2?-1 218 0.57143 0.30769 0.4 

0C=1N-2C=3C(0-4C) 216 0.5 0.35294 0.41379 

0C-1C(0-2C=3O)(0-4C) 214 0.6 0.42857 0.5 

0C-1C=2C(1-3O)(0-4C) 213 0.33333 0.22222 0.26667 

0C-1C=2C(1-3N)(0-4C) 211 0.52941 0.36 0.42857 

1?=0N-5?=4?-3?=2?-1 211 0.66667 0.52632 0.58824 

0C-1C-2F(0=3C) 205 0.76471 0.61905 0.68421 

0C-1C=2O(0-3O) 203 0.6087 0.56 0.58333 

0C=1C(0-2S)(0-3C) 203 0.78571 0.61111 0.6875 

0C-1C(0-2N)(0-3C) 199 0.64286 0.45 0.52941 

0C=1C-2C-3F(0-4C) 198 0.75 0.6 0.66667 

0C-1N=2C(0-3C) 195 0.7 0.35 0.46667 
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0C-1C-2S(0=3C) 195 0.8 0.6 0.68571 

0C=1C-2C(1-3S)(0-4C) 195 0.71429 0.55556 0.625 

0C-1C(0-2C-3O)(0-4O) 194 0.44 0.55 0.48889 

0C-1C(0=2C-3N)(0-4C) 192 0.42857 0.15 0.22222 

0C=1C-2C-3S(0-4C) 191 0.86667 0.65 0.74286 

0S-1C(0-2C) 190 0.88889 0.42105 0.57143 

0C-1C(0-2C)(0-3O)(0-4C) 181 0.90476 0.82609 0.86364 

0C-1N(0-2N) 180 0.58824 0.52632 0.55556 

0C=1N(0-2N) 179 0.53846 0.36842 0.4375 

0N-1C-2C-3O(0-4C) 176 0.73333 0.61111 0.66667 

0C-1C=2C(1-3S)(0=4C) 176 0.76923 0.625 0.68966 

0C-1C(0=2C-3O)(0-4C) 170 0.6 0.40909 0.48649 

0C-1C=2C-3N(0-4C) 170 0.57143 0.21053 0.30769 

0C-1N-2C=3O(0=4C) 169 0.61111 0.61111 0.61111 

0C-1C=2O(1-3N)(0=4C) 168 0.4375 0.35 0.38889 

0C=1C(0-2N=3C)(0-4C) 167 0.55556 0.3125 0.4 

1C-0C-4C-3C-2C-1 162 0.85714 0.4 0.54545 

0C=1O(0-2C-3N)(0-4O) 162 0.6875 0.73333 0.70968 

0C-1F(0=2C) 161 0.85714 0.70588 0.77419 

0C=1C(0-2F)(0-3C) 159 0.92308 0.70588 0.8 

0C=1C-2F(0-3C) 159 0.8 0.70588 0.75 

0N=1C-2N(0-3C) 158 0.58333 0.41176 0.48276 

0C=1C-2C(1-3F)(0-4C) 157 0.91667 0.64706 0.75862 

0C-1C=2C-3F(0=4C) 157 0.85714 0.70588 0.77419 

1C=0C-5C-4C-3C-2C-1 157 0.57143 0.30769 0.4 

0C-1C=2C(1-3F)(0=4C) 156 0.86667 0.76471 0.8125 

0C-1C-2Br(0=3C) 153 0.55556 0.2381 0.33333 

0C-1C-2C(1-3N)(0-4C) 152 0.8 0.47059 0.59259 

0C=1C-2C-3Br(0-4C) 151 0.6 0.3 0.4 

1C=0C-5C-4C-3C=2C-1 150 0.6 0.35294 0.44444 

0S=1O 147 0.91667 0.78571 0.84615 

0N#1C 144 1 0.73333 0.84615 

0S=1O(0=2O) 141 0.92308 0.85714 0.88889 

0S=1O(0-2C) 140 0.92308 0.85714 0.88889 

0C-1Br(0=2C) 139 0.625 0.3125 0.41667 

0S=1O(0=2O)(0-3C) 138 0.91667 0.78571 0.84615 

0C#1N(0-2C) 137 1 0.84615 0.91667 

0C-1S-2C(0-3C) 135 1 0.21429 0.35294 

0C=1C-2Br(0-3C) 133 0.66667 0.25 0.36364 
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0C=1C(0-2Br)(0-3C) 132 0.625 0.3125 0.41667 

0C-1C=2C-3Br(0=4C) 130 0.66667 0.25 0.36364 

0N-1C-2C=3O(0-4C) 130 0.72727 0.72727 0.72727 

0C-1C-2Br(0-3C) 129 0.71429 0.33333 0.45455 

0C=1C(0-2C-3Cl)(0-4C) 129 0.5 0.14286 0.22222 

0C-1C=2N(0-3C) 129 1 0.23077 0.375 

0S-1C=2C(0-3C) 129 0.85714 0.54545 0.66667 

0C-1C=2C-3O(0-4O) 128 0.375 0.27273 0.31579 

0C=1C-2C(1-3Br)(0-4C) 127 0.83333 0.3125 0.45455 

0C-1C=2C-3N(0=4O) 127 0.33333 0.13333 0.19048 

0C-1S=2O(0-3C) 126 0.91667 0.84615 0.88 

0C-1N=2C-3N(0=4C) 126 0.5 0.30769 0.38095 

0C-1S=2O(1=3O)(0-4C) 125 0.91667 0.84615 0.88 

0C-1C=2C(1-3Br)(0=4C) 124 0.66667 0.25 0.36364 

0N-1N 123 0.6 0.21429 0.31579 

0C-1C(0=2N)(0-3C) 121 0.6 0.1875 0.28571 

0C-1O(0-2O) 120 0.875 0.5 0.63636 

0C-1O(0-2C=3O)(0-4C) 120 0.41667 0.45455 0.43478 

0C-1C-2S=3O(0=4C) 119 0.91667 0.91667 0.91667 

0C-1C#2N(0-3C) 119 0.9 0.81818 0.85714 

0N-1C-2N(0-3C) 118 0.4 0.28571 0.33333 

0C-1S=2O(0=3C) 118 0.83333 1 0.90909 

0C-1N=2C-3C(0-4C) 118 0.5 0.2 0.28571 

0O-1C-2O(0-3C) 117 0.88889 0.61538 0.72727 

0C=1C-2S=3O(0-4C) 117 0.83333 1 0.90909 

0C-1S=2O(1=3O)(0=4C) 117 0.81818 0.9 0.85714 

0C=1C(0-2S=3O)(0-4C) 115 0.83333 1 0.90909 

0C-1C-2N=3C(0=4C) 114 0.75 0.25 0.375 

0C=1C-2S-3C(0-4C) 114 0.5 0.22222 0.30769 

0C-1C-2N(0-3N) 113 0.44444 0.5 0.47059 

0C-1C-2S(0-3C) 112 0.66667 0.18182 0.28571 

0C=1C-2O(0-3O) 111 0.75 0.375 0.5 

0O-1C-2O-3C(0-4C) 110 1 0.8 0.88889 

0C-1C(0-2C-3Cl)(0=4C) 109 0.6 0.25 0.35294 

0C-1O(0=2C-3O)(0-4C) 109 1 0.28571 0.44444 

0C-1C(0-2C=3C)(0-4O) 105 0.875 0.46667 0.6087 

0O-1C-2C=3O(0-4C) 105 0.85714 0.46154 0.6 

0N-1N(0-2C) 105 0.42857 0.25 0.31579 

0C-1C(0-2C-3O)(0-4N) 104 0.63636 0.63636 0.63636 
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0C-1C-2F(0-3C) 102 0.85714 0.5 0.63158 

0C=1C-2C=3O(0-4O) 102 0.42857 0.27273 0.33333 

0C-1C-2C=3O(0=4O) 101 0.875 0.58333 0.7 

0C-1C(0-2N-3C)(0-4C) 100 0.66667 0.36364 0.47059 

0C-1C=2C-3Cl(0-4Cl) 100 1 0.22222 0.36364 

0C-1N-2C-3N(0-4C) 99 0.57143 0.30769 0.4 

0N-1C(0-2C=3C)(0-4C) 99 0.75 0.25 0.375 

0C-1C-2C-3Cl(0-4C) 97 1 0.18182 0.30769 

0C-1C(0-2C=3O)(0-4N) 97 0.625 0.5 0.55556 

0C-1C-2C-3Cl(0=4C) 95 0.5 0.27273 0.35294 

0C-1C-2O(1=3O)(0-4O) 95 0.77778 0.63636 0.7 

0C-1O(0-2O)(0-3C) 94 0.83333 0.41667 0.55556 

0O-1C-2C(1-3O)(0-4C) 91 0.85714 0.54545 0.66667 

0C-1C=2C-3N(0-4O) 91 1 0.44444 0.61538 

0C-1N-2C=3O(0=4O) 91 0.5 0.57143 0.53333 

0C-1C-2C-3N(0-4O) 90 0.33333 0.09091 0.14286 

0C-1N-2C=3C(0=4C) 90 1 0.33333 0.5 

0N-1C-2C-3N(0-4C) 89 0.5 0.16667 0.25 

0C-1O-2C-3O(0-4C) 88 0.875 0.58333 0.7 

0O-1C=2C-3O(0-4C) 87 1 0.28571 0.44444 

0C-1O-2C=3C(0=4C) 86 1 0.30769 0.47059 

0S-1C-2C(1=3C)(0-4C) 85 1 0.25 0.4 

0C#1C 82 1 0.75 0.85714 

0C#1C(0-2C) 82 0.9 0.75 0.81818 

0C=1C-2C=3N(0-4N) 82 0.5 0.33333 0.4 

0C-1N(0-2N)(0=3O) 82 0.71429 0.71429 0.71429 

0C-1C-2C-3N(0=4O) 81 0.6 0.3 0.4 

0C-1C=2C(1-3Cl)(0-4C) 79 0 0 0 

0O-1C-2C-3N(0-4C) 79 1 0.25 0.4 

0C=1C(0-2C=3N)(0-4C) 79 Nan 0 0 

0C=1C(0-2C-3F)(0-4C) 77 1 0.375 0.54545 

0C-1C-2C#3N(0=4C) 77 0.71429 0.625 0.66667 

0C-1F(0-2F) 77 1 0.85714 0.92308 

0C-1N(0-2O) 76 1 0.5 0.66667 

0N-1C=2N(0-3C) 76 Nan 0 0 

0C-1C=2C-3Cl(0-4C) 76 1 0.25 0.4 

0N-1C=2O(1-3N)(0-4C) 76 0.71429 0.71429 0.71429 

0C=1C-2N(0-3N) 75 0.5 0.25 0.33333 

0C-1C(0=2C-3Cl)(0-4C) 75 1 0.16667 0.28571 
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0C-1N-2N(0-3C) 74 0.5 0.22222 0.30769 

0N-1C=2N-3C(0-4C) 73 0 0 0 

0C-1C-2C-3Br(0-4C) 73 0.66667 0.28571 0.4 

0C-1C(0=2N-3C)(0-4C) 73 1 0.28571 0.44444 

0N-1C-2N-3C(0-4C) 72 0.83333 0.71429 0.76923 

0C-1F(0-2F)(0-3C) 72 1 1 1 

0C-1C(0-2C-3O)(0=4O) 71 0.75 0.33333 0.46154 

0C-1C#2N(0=3C) 71 0.875 0.875 0.875 

0C-1O-2C=3O(0=4C) 71 0.71429 0.625 0.66667 

0C-1Cl(0=2O) 71 0.66667 0.66667 0.66667 

0C-1S-2C=3C(0=4C) 71 1 0.25 0.4 

0S-1C-2C=3C(0-4C) 70 1 0.11111 0.2 

0C-1C-2N=3C(0-4C) 70 1 0.125 0.22222 

0N-1C(0-2C=3O)(0-4C) 70 0.2 0.2 0.2 

0N-1N(0=2C) 69 0 0 0 

0O-1C-2N(0-3C) 69 1 0.625 0.76923 

0N-1C=2N(0=3C) 69 1 0.375 0.54545 

0C-1C-2O(1-3O)(0-4C) 68 0.5 0.28571 0.36364 

0C-1C(0-2C=3O)(0-4O) 68 0.66667 0.57143 0.61538 

0C-1F(0-2F)(0-3F) 68 1 1 1 

0C-1C-2C-3F(0=4C) 67 1 0.75 0.85714 

0C-1C(0-2C-3C)(0-4N) 66 0.66667 0.22222 0.33333 

0C-1C=2O(0=3O) 66 0.66667 0.25 0.36364 

0N-1O 65 0.66667 0.18182 0.28571 

0S-1O 65 1 0.8 0.88889 

0S=1O(0-2O) 65 1 0.8 0.88889 

0C-1C=2N-3C(0-4C) 65 1 0.4 0.57143 

0C-1C=2C-3N(0-4N) 64 0.66667 0.2 0.30769 

0C-1F(0-2F)(0-3F)(0-4C) 64 1 1 1 

0C-1N=2C-3N(0-4C) 63 Nan 0 0 

0S=1O(0=2O)(0-3O) 63 1 0.8 0.88889 

0C-1C-2C=3N(0=4C) 63 Nan 0 0 

0N-1C-2N(0=3C) 62 0.5 0.33333 0.4 

0C-1C-2C(1=3N)(0-4C) 62 0.66667 0.25 0.36364 

0C-1C-2Cl(0-3O) 62 0.5 0.14286 0.22222 

0N-1C=2C-3N(0=4C) 62 1 0.33333 0.5 

0C=1C(0-2C#3N)(0-4C) 61 0.75 0.85714 0.8 

0N=1C-2N=3C(0-4C) 61 1 0.42857 0.6 

P 61 0.83333 1 0.90909 
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0S-1O(0-2C) 61 1 0.8 0.88889 

0S-1O(0=2O)(0-3C) 61 1 0.8 0.88889 

0S-1O(0=2O)(0=3O)(0-

4C) 61 1 0.8 0.88889 

0C-1N-2C=3N(0-4C) 60 0 0 0 

0C-1S-2C-3C(0-4C) 60 Nan 0 0 

0C-1S-2C=3C(0-4C) 60 Nan 0 0 

0C=1O(0-2Cl)(0-3C) 60 0.6 0.75 0.66667 

0C-1O(0-2C-3O)(0=4C) 60 0.66667 0.66667 0.66667 

0C-1C#2C(0-3C) 59 1 0.8 0.88889 

0C-1C-2F(1-3F)(0-4C) 58 0.8 0.8 0.8 

0C-1C(0-2C-3F)(0=4C) 58 1 0.6 0.75 

0C-1S-2O(0-3C) 58 1 1 1 

0C-1S-2O(1=3O)(0-4C) 58 1 1 1 

0C-1N-2N(0=3C) 57 0.25 0.14286 0.18182 

0C=1C-2N-3N(0-4C) 57 0 0 0 

0C=1C-2C#3N(0-4C) 57 0.57143 0.66667 0.61538 

0C-1N-2C=3N(0=4C) 57 0 0 0 

0C=1N-2N(0-3C) 56 Nan 0 0 

0C-1C(0-2C#3N)(0=4C) 56 0.625 0.83333 0.71429 

0C-1S-2O(0=3C) 56 1 1 1 

0C=1C(0-2S-3O)(0-4C) 56 1 1 1 

0C-1C-2S-3O(0=4C) 56 1 1 1 

0C-1S-2O(1=3O)(0=4C) 56 1 1 1 

0C-1S(0=2N) 55 0.6 0.6 0.6 

0C=1N-2C=3N(0-4C) 55 0.75 0.6 0.66667 

0C=1C-2S-3O(0-4C) 55 1 1 1 

0C-1N-2C-3N(0=4C) 54 0.2 0.11111 0.14286 

0C-1C=2C-3Cl(0=4O) 54 0 0 0 

I 54 0.4 0.4 0.4 

0S-1C=2N(0-3C) 54 0.6 0.6 0.6 

0C-1C-2C#3N(0-4C) 54 0 0 0 

0C-1C-2C-3S(0-4C) 53 0.5 0.14286 0.22222 

0C-1N-2C-3N(0=4O) 53 0.71429 0.71429 0.71429 

0N=1N 53 0.66667 0.33333 0.44444 

0N=1N(0-2C) 53 1 0.5 0.66667 

0C=1C(0-2C-3S)(0-4C) 53 1 0.5 0.66667 

0I-1C 53 0.33333 0.4 0.36364 

0C-1N-2N(0=3O) 53 0.66667 0.5 0.57143 

0C-1C-2N-3N(0=4C) 52 0.66667 0.28571 0.4 
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0N-1N=2C(0-3C) 52 Nan 0 0 

0C-1C-2S-3C(0-4C) 52 1 0.2 0.33333 

0C-1C=2O(1-3Cl)(0-4C) 52 0.5 0.66667 0.57143 

0C-1O-2C-3N(0-4C) 51 1 0.57143 0.72727 

0C=1C-2Cl(0-3Cl) 50 0 0 0 

0C-1I(0-2C) 50 0.4 0.4 0.4 

0C-1C-2Cl(0=3O) 50 0 0 0 

0C-1C(0-2C-3N)(0-4C) 50 Nan 0 0 

0C-1C=2C(1-3S)(0-4C) 50 0.33333 0.2 0.25 

0C-1N(0=2N)(0-3C) 50 Nan 0 0 

0C-1N(0-2C-3N)(0=4O) 50 0 0 0 

0C-1C(0-2C-3C)(0=4N) 49 0.5 0.16667 0.25 

0C-1S(0-2N) 48 1 0.14286 0.25 

0C-1C-2O(0#3C) 48 1 0.83333 0.90909 

0C-1N(0=2C-3N)(0-4C) 48 0 0 0 

0C-1N=2N(0-3C) 48 1 0.5 0.66667 

0N=1C-2S(0-3C) 48 0.75 0.75 0.75 

0C=1C-2S(0-3N) 48 0.5 0.25 0.33333 

0C=1C(0-2C-3Br)(0-4C) 48 0.33333 0.25 0.28571 

0C-1Cl(0=2C-3Cl)(0-4C) 47 0 0 0 

0C-1C(0-2C=3C)(0=4N) 47 Nan 0 0 

0C-1N=2N(0=3C) 47 1 0.4 0.57143 

0C=1O(0-2C=3O)(0-4C) 47 1 0.2 0.33333 

0N=1N-2C(0-3C) 47 1 0.5 0.66667 

0N=1C-2S-3C(0-4C) 47 0.75 0.75 0.75 

0C-1C-2C-3Br(0=4C) 47 0.33333 0.33333 0.33333 

0C-1Cl(0=2N) 46 0.66667 0.28571 0.4 

0S-1C-2N(0-3C) 46 0.5 0.16667 0.25 

0C-1N(0-2N)(0=3C) 46 0.33333 0.16667 0.22222 

0N-1C-2O(0-3C) 46 1 0.4 0.57143 

0C-1O-2C=3O(0=4O) 46 0.71429 1 0.83333 

0P-1O 46 0.8 1 0.88889 

0P=1O 46 0.8 1 0.88889 

0N-1C=2C-3N(0-4C) 46 0 0 0 

0S=1C 45 1 0.28571 0.44444 

0C=1C(0-2N-3N)(0-4C) 45 0.5 0.14286 0.22222 

0C=1C-2N(1-3N)(0-4C) 45 0.5 0.16667 0.25 

0C=1N-2N-3C(0-4C) 45 0 0 0 

0C=1C(0-2N=3N)(0-4C) 45 1 0.5 0.66667 
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0C-1C-2F(1-3F)(0=4C) 45 1 1 1 

0C-1C=2C-3F(0-4F) 44 1 0.57143 0.72727 

0P-1O(0-2O) 44 1 1 1 

0C-1N=2N-3C(0-4C) 44 1 0.5 0.66667 

0C-1C-2N=3N(0=4C) 44 1 0.5 0.66667 

0C-1N=2C-3S(0=4C) 44 1 1 1 

0C=1C-2C-3Cl(0-4N) 44 0.33333 0.33333 0.33333 

0N=1C-2Cl(0-3C) 43 0.66667 0.28571 0.4 

0C-1C-2Br(0-3O) 43 0 0 0 

0O-1C-2N-3C(0-4C) 43 1 0.4 0.57143 

0C-1N(0=2N)(0-3N) 43 0.66667 0.5 0.57143 

0N=1N-2C=3C(0-4C) 43 1 0.5 0.66667 

0C=1C-2N=3N(0-4C) 43 1 0.5 0.66667 

0C-1C(0-2C-3Br)(0=4C) 43 0.33333 0.33333 0.33333 

0C-1Cl(0-2Cl) 42 0 0 0 

0C=1O(0-2N)(0-3O) 42 1 0.83333 0.90909 

0O-1C=2O(1-3N)(0-4C) 42 1 0.83333 0.90909 

0N=1C-2N(1-3N)(0-4C) 42 0.5 0.66667 0.57143 

0C-1N-2N=3C(0=4C) 41 0.5 0.2 0.28571 

0C=1C-2N(0-3O) 41 0.5 0.5 0.5 

0C-1O(0=2C-3N)(0-4C) 41 0.5 0.5 0.5 

0C-1C(0-2C=3N)(0=4C) 41 Nan 0 0 

0C-1C-2C#3C(0-4C) 40 0.85714 0.85714 0.85714 

0S-1N 40 1 0.5 0.66667 

0N-1O(0=2C) 40 1 0.16667 0.28571 

0C=1N-2O(0-3C) 40 1 0.16667 0.28571 

0C-1C-2Br(0=3O) 40 0 0 0 

0C=1O(0-2N-3N)(0-4C) 40 1 0.66667 0.8 

0C-1N(0-2C-3N)(0=4C) 40 Nan 0 0 

0C-1C-2Cl(0-3Cl) 39 0 0 0 

0C-1C-2F(0-3F) 39 0.8 0.66667 0.72727 

0C-1C-2C-3N(0-4N) 39 1 0.2 0.33333 

0O-1P(0-2C) 39 1 1 1 

0P=1O(0-2O) 39 0.8 1 0.88889 

0C-1C-2C-3Cl(0=4O) 39 0 0 0 

0C-1C-2S=3O(0-4C) 38 0.75 0.6 0.66667 

0C=1N-2C-3N(0-4C) 38 0.66667 0.4 0.5 

0C-1O(0-2C-3N)(0-4C) 38 0.66667 0.4 0.5 

0O-1P-2O(0-3C) 38 1 0.75 0.85714 
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0P-1O(0=2O)(0-3O) 38 0.8 1 0.88889 

0S-1N(0-2C) 37 1 0.5 0.66667 

0C-1Cl(0-2N) 37 1 0.16667 0.28571 

0C=1S(0-2N) 37 Nan 0 0 

0C-1Cl(0-2Cl)(0-3C) 37 0 0 0 

0C-1N=2C-3N(0-4N) 37 0.25 0.25 0.25 

0P-1C 37 0.75 1 0.85714 

0N=1C-2C(1-3N)(0-4C) 37 Nan 0 0 

0S-1C=2C-3N(0-4C) 37 0.66667 0.66667 0.66667 

0C-1S-2C=3N(0=4C) 37 0.66667 0.66667 0.66667 

0N-1C(0-2N)(0-3C) 36 1 0.2 0.33333 

0C-1C=2N-3N(0=4C) 36 Nan 0 0 

0C-1C-2S(0=3O) 36 1 0.25 0.4 

0C=1C-2Cl(0-3O) 36 1 0.33333 0.5 

0C-1C=2C-3S(0-4C) 36 Nan 0 0 

0C-1O(0=2C-3Cl)(0-4C) 36 Nan 0 0 

0C-1C-2N(1=3N)(0=4C) 36 Nan 0 0 

0C-1C-2C=3N(0=4O) 36 1 0.33333 0.5 

0C-1O-2P(0-3C) 35 1 1 1 

0O-1P-2O-3C(0-4C) 35 1 0.75 0.85714 

0C-1C-2N-3N(0-4C) 35 1 1 1 

0C-1O(0-2C-3N)(0=4C) 34 1 0.33333 0.5 

0C-1C=2C(1-3F)(0-4C) 34 0 0 0 

0C-1N-2N=3C(0-4C) 34 1 0.2 0.33333 

0N-1C=2C(1-3N)(0=4C) 34 0.33333 0.2 0.25 

0C-1C-2S(0-3N) 34 Nan 0 0 

0C-1O-2P-3O(0-4C) 34 1 0.75 0.85714 

0C-1C-2C-3S(0-4O) 34 1 0.33333 0.5 

0C-1C=2N(0=3N) 33 1 0.33333 0.5 

0S-1N(0=2O) 33 1 0.6 0.75 

0S=1O(0-2N)(0=3O) 33 1 0.6 0.75 

0C-1C-2C-3F(0-4C) 33 1 0.6 0.75 

0C=1N(0-2S)(0-3N) 33 0 0 0 

0C-1C=2C-3Br(0-4C) 33 Nan 0 0 

0C-1C=2O(1-3Cl)(0=4C) 33 0.33333 0.5 0.4 

0S=1O(0-2N)(0-3C) 32 1 0.6 0.75 

0S=1O(0=2O)(0-3N)(0-

4C) 32 1 0.6 0.75 

0C-1C-2C-3Cl(0-4O) 32 Nan 0 0 

0C-1C(0-2C=3O)(0=4O) 32 0.5 0.2 0.28571 
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1C=0C-4C-3C-2C-1 32 0 0 0 

0C-1C(0-2Br)(0-3C) 32 1 0.25 0.4 

0C#1C-2C(0-3C) 32 1 0.25 0.4 

0O-1P=2O(0-3C) 32 1 1 1 

0C=1C-2Cl(0-3N) 32 Nan 0 0 

0C-1C(0=2C-3F)(0-4C) 32 0 0 0 

0O-1P-2O(1=3O)(0-4C) 32 1 1 1 

0N-1C-2O(1=3O)(0-4C) 32 1 0.5 0.66667 

0C-1C=2C-3Cl(0-4O) 32 Nan 0 0 

0C-1C=2N-3N(0-4C) 32 Nan 0 0 

0C-1N-2C-3O(0-4C) 32 1 0.66667 0.8 

0S-1C-2N(1=3N)(0-4C) 32 0 0 0 

0C-1N(0=2C-3S)(0-4C) 32 1 0.5 0.66667 

0C-1C(0-2C-3S)(0=4C) 32 0.5 0.5 0.5 

0N-1C=2C-3S(0=4C) 32 0.66667 1 0.8 

0C=1N-2C=3N(0-4N) 31 Nan 0 0 

0C=1C-2F(0-3F) 31 1 0.5 0.66667 

0C-1F(0=2C-3F)(0-4C) 31 1 0.75 0.85714 

0C-1N=2C-3Cl(0=4C) 31 0 0 0 

0C=1N(0-2O) 31 1 0.33333 0.5 

0S-1C-2C=3O(0-4C) 31 1 0.33333 0.5 

0C-1C-2C=3N(0-4C) 30 1 0.16667 0.28571 

0C-1S-2N(0=3C) 30 0.66667 0.5 0.57143 

0C-1P(0-2C) 30 0.75 1 0.85714 

0C-1C(0-2Cl)(0-3C) 30 0 0 0 

0O-1C=2N(0-3C) 30 1 0.33333 0.5 

0N-1C(0-2C-3N)(0-4C) 30 0.33333 0.33333 0.33333 

0C-1O-2P=3O(0-4C) 29 1 1 1 

0C-1I(0=2C) 29 0 0 0 

0C=1C(0-2I)(0-3C) 29 0 0 0 

0C-1C-2Cl(0-3N) 29 Nan 0 0 

0C-1N=2C-3S(0-4C) 29 1 0.33333 0.5 

0C=1C-2S-3N(0-4C) 29 0.66667 0.66667 0.66667 

0C-1C=2C(1-3Br)(0-4C) 29 Nan 0 0 

0C-1O(0-2C=3O)(0=4C) 29 1 0.5 0.66667 

0C-1N-2C(1-3N)(0-4C) 28 1 0.2 0.33333 

0C-1C=2N-3O(0-4C) 28 1 0.2 0.33333 

0C-1C=2N(0-3N) 28 Nan 0 0 

0C-1F(0-2C-3F)(0=4C) 28 1 0.75 0.85714 
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0C=1N(0-2Cl)(0-3C) 28 0.5 0.33333 0.4 

0C-1C-2N=3N(0-4C) 28 0.66667 0.66667 0.66667 

0O-1C-2C-3Cl(0-4C) 28 Nan 0 0 

0P=1O(0-2C) 28 0.66667 1 0.8 

0C-1C=2N(0=3O) 28 Nan 0 0 

0C-1N-2N(0-3N) 28 Nan 0 0 

0C-1C-2C-3S(0=4C) 28 0 0 0 

0C-1S-2N(0-3C) 27 1 0.6 0.75 

0C-1C(0-2C)(0-3N)(0-4C) 27 1 0.2 0.33333 

0C-1S=2O(1-3N)(0-4C) 27 1 0.6 0.75 

0N-1C-2Cl(0=3C) 27 1 0.25 0.4 

0N=1C-2O(0-3C) 27 0.5 0.33333 0.4 

0C-1C-2I(0=3C) 27 0 0 0 

0C-1C-2F(0-3O) 27 1 1 1 

0C=1C-2C-3I(0-4C) 27 0 0 0 

0C-1C=2C(1-3I)(0=4C) 27 0 0 0 

0C-1C-2C-3S(0=4O) 27 0.5 0.33333 0.4 

0C-1C-2S(0-3O) 26 Nan 0 0 

0C-1C-2S-3N(0=4C) 26 1 0.75 0.85714 

0O-1S(0-2C) 26 1 0.33333 0.5 

0O-1S=2O(0-3C) 26 1 0.33333 0.5 

0N-1C(0-2N=3C)(0-4C) 26 1 0.33333 0.5 

0O-1C=2N-3C(0-4C) 26 1 0.66667 0.8 

0N=1C-2C(1-3Cl)(0-4C) 26 0.5 0.33333 0.4 

0N=1C-2C=3N(0-4C) 26 1 0.66667 0.8 

0C-1C=2N-3O(0=4C) 26 Nan 0 0 

0C-1S=2O(1-3N)(0=4C) 26 0.66667 0.66667 0.66667 

0C-1C(0-2C-3N)(0-4O) 26 0.66667 0.66667 0.66667 

0S-1Cl 26 0.66667 1 0.8 

0C=1C-2I(0-3C) 26 0 0 0 

0C=1C-2C(1-3I)(0-4C) 26 0 0 0 

0N=1C-2N(1-3S)(0-4C) 26 0 0 0 

0C-1C=2C-3I(0=4C) 26 0 0 0 

0N-1C-2C-3N(0=4C) 26 Nan 0 0 

0C=1N(0-2C=3N)(0-4C) 25 1 0.4 0.57143 

0C-1O(0=2N)(0-3C) 25 1 0.33333 0.5 

0C=1C(0-2S-3N)(0-4C) 25 0.66667 0.66667 0.66667 

0C-1S-2C-3N(0=4C) 25 1 0.33333 0.5 

0C-1C=2N(1-3Cl)(0=4C) 25 0.5 0.33333 0.4 
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0N-1C-2N(1=3N)(0=4C) 25 1 0.66667 0.8 

0S-1Cl(0=2O) 25 0.66667 1 0.8 

0C-1Cl(0-2Cl)(0-3Cl) 25 0.5 0.5 0.5 

0C-1C(0=2C-3S)(0-4C) 25 Nan 0 0 

0C=1O(0-2C=3O)(0-4O) 24 1 0.16667 0.28571 

0C-1C(0=2N-3N)(0-4C) 24 1 0.2 0.33333 

0N-1C=2S(0-3C) 24 Nan 0 0 

0C-1S-2C-3N(0-4C) 24 1 0.25 0.4 

0C-1Cl(0-2C-3Cl)(0=4C) 24 Nan 0 0 

0C-1C-2O(1-3O)(0-4O) 24 0.5 0.25 0.33333 

0C-1N(0=2S)(0-3N) 24 Nan 0 0 

0O-1C-2C(1=3N)(0-4C) 24 1 0.33333 0.5 

0C-1S-2C=3N(0-4C) 24 0.5 0.33333 0.4 

0O-1S=2O(1=3O)(0-4C) 24 1 0.33333 0.5 

0C-1N(0=2C-3Cl)(0-4C) 24 0 0 0 

0S-1Cl(0-2C) 24 0.66667 1 0.8 

0C-1C-2I(0-3C) 24 0.66667 1 0.8 

0S=1O(0-2Cl)(0=3O) 24 0.66667 1 0.8 

0O-1C-2C-3Br(0-4C) 24 0 0 0 

0C-1N(0-2C-3N)(0-4C) 24 1 1 1 

0C-1C=2O(1-3N)(0=4O) 24 1 1 1 

0N-1C-2N=3C(0-4C) 23 0 0 0 

0O-1N(0-2C) 23 Nan 0 0 

0O-1S-2C(0-3C) 23 1 0.33333 0.5 

0C-1O-2S(0-3C) 23 1 0.33333 0.5 

0C-1C-2P(0=3C) 23 0.75 1 0.85714 

0C-1C#2C-3C(0-4C) 23 1 0.33333 0.5 

0O-1S-2C(1=3O)(0-4C) 23 1 0.33333 0.5 

0C-1O-2S=3O(0-4C) 23 1 0.33333 0.5 

0C=1C-2C-3P(0-4C) 23 0.66667 0.66667 0.66667 

0P-1O(0-2C) 23 0.66667 1 0.8 

0S=1O(0-2Cl)(0-3C) 23 0.66667 1 0.8 

0C-1C=2C-3F(0-4C) 23 Nan 0 0 

0N-1C(0-2C=3N)(0-4C) 23 0 0 0 

0S=1O(0=2O)(0-3Cl)(0-

4C) 23 0.66667 1 0.8 

0C-1Cl(0-2Cl)(0-3Cl)(0-

4C) 23 0 0 0 

0C-1C(0=2N-3O)(0-4C) 22 0 0 0 

0C-1O-2N(0-3C) 22 Nan 0 0 
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0C=1O(0-2C-3Cl)(0-4C) 22 1 0.33333 0.5 

0S-1C-2C-3N(0-4C) 22 Nan 0 0 

0C-1C(0-2C-3Cl)(0=4O) 22 Nan 0 0 

0C-1C(0-2C=3N)(0=4N) 22 1 0.66667 0.8 

0C-1P(0=2C) 22 0.5 1 0.66667 

0C-1S-2Cl(0-3C) 22 0.66667 1 0.8 

0P-1O(0=2O)(0-3C) 22 0.66667 1 0.8 

0C-1S-2Cl(0=3C) 22 0.66667 1 0.8 

0C=1N-2N(0-3N) 22 Nan 0 0 

0C-1C-2S-3O(0-4C) 22 0.5 0.5 0.5 

0C-1C(0-2O)(0-3O)(0-

4C) 22 1 0.5 0.66667 

0C-1C-2N(1=3N)(0-4C) 22 Nan 0 0 

0C=1C-2S-3Cl(0-4C) 22 0.66667 1 0.8 

0N-1C-2C-3O(0=4C) 22 Nan 0 0 

0C-1C(0-2C-3N)(0-4N) 22 1 1 1 

0N-1C(0-2C=3C)(0-4N) 22 1 0.5 0.66667 

0C-1O-2S-3C(0-4C) 21 1 0.33333 0.5 

0N=1C-2C(1-3O)(0-4C) 21 1 0.33333 0.5 

0C-1P=2O(0-3C) 21 0.66667 1 0.8 

0S-1C(0=2O)(0-3C) 21 Nan 0 0 

0P-1O(0-2O)(0-3C) 21 1 1 1 

0C-1S=2O(1-3Cl)(0-4C) 21 0.66667 1 0.8 

0C=1N-2C-3Cl(0-4C) 21 0 0 0 

0P-1O(0-2O)(0=3O)(0-

4C) 21 1 1 1 

0C-1C-2S-3Cl(0=4C) 21 0.66667 1 0.8 

0C-1S=2O(1-3Cl)(0=4C) 21 0.66667 1 0.8 

0C-1N-2C=3S(0-4C) 20 Nan 0 0 

0C-1N(0-2Cl)(0=3C) 20 Nan 0 0 

0C-1N-2C-3N(0-4N) 20 1 0.33333 0.5 

0C=1C(0-2P)(0-3C) 20 0.66667 1 0.8 

0C=1C-2P(0-3C) 20 0.66667 1 0.8 

0C-1S-2O-3C(0-4C) 20 1 0.5 0.66667 

0C=1C-2C(1-3P)(0-4C) 20 0.66667 1 0.8 

0O-1S-2C=3C(0-4C) 20 1 0.5 0.66667 

0C=1C(0-2S-3Cl)(0-4C) 20 0.66667 1 0.8 

0C=1O(0-2C-3N)(0-4C) 20 1 1 1 

0C-1C=2C(1-3P)(0=4C) 20 0.66667 1 0.8 

0C-1C=2C-3P(0=4C) 20 0.66667 1 0.8 
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0C-1N-2C-3O(0=4C) 20 Nan 0 0 

0N-1O(0-2C) 19 Nan 0 0 

0C-1C(0-2C#3C)(0-4O) 19 1 0.75 0.85714 

0N-1C-2O(0=3C) 19 0.66667 0.66667 0.66667 

0C-1C-2C(1-3Cl)(0-4C) 19 Nan 0 0 

0C-1C=2N(0-3O) 19 Nan 0 0 

0S-1C(0=2O)(0=3O)(0-

4C) 19 Nan 0 0 

0C#1C-2C-3O(0-4C) 19 0 0 0 

0O-1C-2C#3C(0-4C) 19 1 1 1 

0C-1C(0-2F)(0-3C) 18 0.75 0.75 0.75 

0C=1C-2N(1-3Cl)(0-4C) 18 Nan 0 0 

0N-1C-2N(1=3S)(0-4C) 18 Nan 0 0 

0N-1N-2C(0-3C) 18 Nan 0 0 

0C-1S-2C(1=3O)(0-4C) 18 1 0.5 0.66667 

0S-1C-2C-3O(0-4C) 18 Nan 0 0 

0N=1C-2C-3N(0-4C) 18 Nan 0 0 

0C=1C-2C=3N(0-4O) 18 Nan 0 0 

0C-1C-2C=3N(0-4N) 18 1 0.5 0.66667 

0C-1C-2C-3Cl(0-4Cl) 18 Nan 0 0 

0N-1C-2C=3O(0=4C) 18 Nan 0 0 

0C-1C=2C-3S(0=4O) 18 Nan 0 0 

0C-1C-2C(1-3F)(0-4C) 17 0.75 0.75 0.75 

0N-1C=2C(1-3N)(0-4C) 17 0 0 0 

0C-1C(0-2C-3C)(0-4F) 17 0.8 1 0.88889 

0C-1C-2C(1-3Br)(0-4C) 17 1 0.33333 0.5 

0C-1C-2O-3S(0-4C) 17 1 0.33333 0.5 

0N-1C=2C(1-3Cl)(0=4C) 17 0 0 0 

0C=1O(0-2C-3Br)(0-4O) 17 0 0 0 

0C-1N=2C-3Cl(0=4N) 17 1 0.66667 0.8 

0P-1O(0-2O)(0-3O) 17 1 0.5 0.66667 

0C=1N(0-2Cl)(0-3N) 17 1 0.5 0.66667 

0O-1P-2O(1-3O)(0-4C) 17 1 0.5 0.66667 

0N-1C-2C-3Cl(0-4C) 17 Nan 0 0 

0C-1C-2O(1=3N)(0=4C) 17 1 0.5 0.66667 

0C-1N=2C-3O(0=4C) 17 0 0 0 

0C-1C(0=2C-3Br)(0-4C) 17 Nan 0 0 

0N-1N-2C=3O(0=4C) 17 Nan 0 0 

0C=1O(0-2C-3Cl)(0-4O) 17 0 0 0 

0C-1N-2O(0-3C) 16 Nan 0 0 
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0C-1C(0-2C#3C)(0-4C) 16 1 0.5 0.66667 

0O-1P-2C(0-3C) 16 1 1 1 

0C-1P-2O(0-3C) 16 0.66667 1 0.8 

0N-1C-2S(0-3C) 16 Nan 0 0 

0N-1C-2S-3C(0-4C) 16 Nan 0 0 

0C-1C-2Cl(1-3Cl)(0-4C) 16 Nan 0 0 

0N=1C-2N(1-3Cl)(0-4C) 16 1 0.5 0.66667 

0C=1C-2C-3N(0-4O) 16 Nan 0 0 

0C=1C-2N(1-3N)(0-4N) 16 Nan 0 0 

0C-1C(0-2C-3C)(0-4Cl) 16 0 0 0 

Si 16 1 1 1 

0S-1S 16 0 0 0 

0S-1S(0-2C) 16 0 0 0 

0S-1S-2C(0-3C) 16 0 0 0 

0O-1C-2N=3C(0-4C) 16 1 1 1 

0C-1C-2C-3F(0-4O) 16 0 0 0 

0C=1O(0-2C-3S)(0-4O) 16 0 0 0 

0C-1C=2C-3Br(0-4Br) 16 Nan 0 0 

0C-1N-2C=3S(0=4C) 15 Nan 0 0 

0C-1N-2C=3N(0=4O) 15 0 0 0 

0C-1O(0-2C-3Cl)(0-4C) 15 Nan 0 0 

0C-1N(0-2C=3N)(0=4C) 15 Nan 0 0 

0C-1C-2C-3F(0=4O) 15 Nan 0 0 

0C-1C-2F(0-3N) 15 Nan 0 0 

0O-1P-2C(1-3O)(0-4C) 15 1 1 1 

0O-1P-2C(1=3O)(0-4C) 15 1 1 1 

0C-1P-2O(1=3O)(0-4C) 15 0.66667 1 0.8 

0C-1N=2C-3Cl(0-4C) 15 Nan 0 0 

0C=1O(0-2C-3Br)(0-4C) 15 0 0 0 

0C=1C-2C#3N(0-4N) 15 0 0 0 

0N-1N=2C(0=3C) 15 Nan 0 0 

0N-1C-2N(1=3N)(0-4C) 15 0 0 0 

0C-1O(0-2C-3Cl)(0=4C) 15 1 1 1 

0C-1O(0-2C-3Br)(0=4C) 15 Nan 0 0 

0C-1C-2C=3N(0-4O) 15 Nan 0 0 

0C=1C-2C-3Cl(0-4F) 15 Nan 0 0 

0C-1O(0-2N)(0=3C) 14 Nan 0 0 

0C-1C-2Br(0-3Br) 14 Nan 0 0 

0C=1C-2O(1-3N)(0-4C) 14 1 0.33333 0.5 
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0C=1C-2C-3F(0-4N) 14 Nan 0 0 

0C-1C-2C-3I(0-4C) 14 1 1 1 

0C-1O-2P-3C(0-4C) 14 1 1 1 

0C-1P-2O(1-3O)(0-4C) 14 1 1 1 

0N-1N-2C=3O(0-4C) 14 Nan 0 0 

0C-1C-2P=3O(0=4C) 14 0.5 0.5 0.5 

0C-1N(0-2C-3S)(0=4C) 14 1 0.5 0.66667 

0C-1C(0-2C-3Br)(0=4O) 14 Nan 0 0 

0C-1C=2C-3F(0=4O) 14 0 0 0 

0C-1C-2C-3F(0-4F) 14 0.5 0.5 0.5 

0Si-1C 14 1 1 1 

0Si-1C(0-2C) 14 0.5 1 0.66667 

0P-1C(0-2C) 14 0.5 1 0.66667 

0C-1P-2C(0-3C) 14 0.5 1 0.66667 

0C-1C(0-2S)(0-3C) 14 Nan 0 0 

0C-1N-2N-3C(0-4C) 14 Nan 0 0 

0N-1C-2C=3N(0-4C) 14 Nan 0 0 

0C=1C-2N=3N(0-4O) 14 0.33333 1 0.5 

0O-1N=2C(0-3C) 13 Nan 0 0 

0C-1C=2O(0#3C) 13 1 0.5 0.66667 

0N-1C=2O(0-3O) 13 Nan 0 0 

0C-1C(0-2C-3F)(0-4C) 13 1 1 1 

0C-1C(0-2O-3S)(0-4C) 13 1 0.5 0.66667 

0C=1N-2O-3C(0-4C) 13 Nan 0 0 

0C-1N-2C-3S(0-4C) 13 Nan 0 0 

0C-1C-2O-3S(0=4C) 13 1 0.5 0.66667 

0C-1C(0-2C-3Cl)(0-4O) 13 Nan 0 0 

0C-1C-2C-3Br(0-4O) 13 Nan 0 0 

0P-1O(0-2O)(0=3O)(0-

4O) 13 1 0.5 0.66667 

0C-1S-2S(0-3C) 13 0 0 0 

0P-1C=2C(0-3C) 13 0.5 1 0.66667 

0C-1P=2O(0=3C) 13 0.33333 1 0.5 

0C-1P-2C-3C(0-4C) 13 0.5 1 0.66667 

0C-1S-2S-3C(0-4C) 13 0 0 0 

0P-1C-2C(1=3C)(0-4C) 13 0.5 1 0.66667 

0C=1C-2P-3C(0-4C) 13 0.5 1 0.66667 

0C-1P-2C=3C(0-4C) 13 0.5 1 0.66667 

0P-1C-2C=3C(0-4C) 13 0.5 1 0.66667 

0N=1C-2C=3O(0-4C) 13 Nan 0 0 
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0N-1C-2C-3S(0-4C) 13 0 0 0 

0C-1P-2C=3C(0=4C) 13 0.5 1 0.66667 

0N-1C=2N(1-3Cl)(0=4C) 13 1 1 1 

0C-1C=2C-3F(0-4O) 13 0 0 0 

0C-1C-2F(1-3F)(0-4O) 13 1 1 1 

0C=1O(0-2C=3N)(0-4O) 13 Nan 0 0 

0C-1C-2C#3N(0=4O) 13 Nan 0 0 

0S-1C(0-2C=3C)(0=4O) 13 0 0 0 

0N-1C=2C(1-3O)(0=4C) 12 Nan 0 0 

0C-1N=2C-3N(0-4O) 12 1 0.33333 0.5 

0C-1C(0-2C-3Cl)(0-4C) 12 Nan 0 0 

0C-1C-2N-3O(0-4C) 12 Nan 0 0 

0C-1O-2N=3C(0-4C) 12 Nan 0 0 

0C-1C-2C#3C(0=4C) 12 Nan 0 0 

0C-1N(0-2C-3F)(0=4C) 12 Nan 0 0 

0C-1C(0-2C-3N)(0=4O) 12 1 1 1 

0C-1C-2O(1=3O)(0#4C) 12 1 1 1 

0C-1C-2Cl(1-3Cl)(0-4O) 12 Nan 0 0 

0C-1C-2Cl(1-3Cl)(0=4O) 12 Nan 0 0 

0C-1C(0-2C=3O)(0=4N) 12 Nan 0 0 

0N-1S(0-2C) 11 Nan 0 0 

0N-1C(0-2O)(0-3C) 11 Nan 0 0 

0N-1S-2C(0-3C) 11 Nan 0 0 

0N-1S=2O(0-3C) 11 1 0.33333 0.5 

0C-1N-2C(1-3O)(0-4C) 11 Nan 0 0 

0N-1S-2C(1=3O)(0-4C) 11 Nan 0 0 

0N-1S=2O(1=3O)(0-4C) 11 Nan 0 0 

0C-1Cl(0-2O) 11 1 0.5 0.66667 

0C-1S(0-2S) 11 0 0 0 

0O-1C-2Cl(0-3C) 11 1 0.5 0.66667 

0S-1C-2S(0-3C) 11 Nan 0 0 

0C-1P-2O-3C(0-4C) 11 1 1 1 

0C-1O(0-2C-3F)(0-4C) 11 1 1 1 

0C-1C-2P-3O(0=4C) 11 0.5 0.5 0.5 

0C-1C(0-2C-3F)(0-4O) 11 1 1 1 

0C-1C=2O(1-3N)(0-4O) 11 0.66667 1 0.8 

0C-1C-2C-3Br(0=4O) 11 Nan 0 0 

0C-1C-2F(1-3F)(0-4F) 11 0.66667 1 0.8 

0C-1C-2Cl(1-3Cl)(0-4Cl) 11 0 0 0 
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0C=1N(0=2O) 11 1 1 1 

0P-1C(0-2C)(0-3C) 11 1 1 1 

0N-1C=2N(0-3N) 11 Nan 0 0 

0C-1P-2C(1-3C)(0-4C) 11 1 1 1 

0C-1C-2C(1-3S)(0-4C) 11 Nan 0 0 

0C=1C(0-2P=3O)(0-4C) 11 0.33333 1 0.5 

0C=1C-2P=3O(0-4C) 11 0.5 1 0.66667 

0C#1C-2C=3O(0-4C) 11 0 0 0 

0N-1N=2C-3N(0-4C) 11 Nan 0 0 

0C=1N-2C=3N(0-4O) 11 1 1 1 

0N=1C-2C-3O(0-4C) 10 Nan 0 0 

0C-1O-2C-3O(0-4O) 10 0 0 0 

0C-1C-2C-3S(0-4N) 10 Nan 0 0 

0C-1C(0-2C-3O)(0-4F) 10 1 1 1 

0C-1N=2C-3Cl(0-4Cl) 10 1 0.5 0.66667 

0C-1C(0-2C-3C)(0-4Br) 10 1 0.5 0.66667 

0C-1O(0-2N)(0-3C) 10 Nan 0 0 

0C-1O-2N(0=3C) 10 Nan 0 0 

0C-1P-2O(0=3C) 10 0.33333 1 0.5 

0P-1C(0-2C=3C)(0-4C) 10 1 1 1 

0O-1C-2C(1-3N)(0-4C) 10 Nan 0 0 

0N-1C-2C(1-3O)(0-4C) 10 Nan 0 0 

0C-1C-2O(1-3N)(0-4C) 10 Nan 0 0 

0C=1C-2O-3N(0-4C) 10 Nan 0 0 

0C-1N(0-2C-3S)(0-4C) 10 0 0 0 

0N-1N-2C-3N(0-4C) 10 Nan 0 0 

0N=1C-2N-3N(0-4C) 10 Nan 0 0 

0C-1O-2N=3C(0=4C) 10 Nan 0 0 

0C-1N-2C-3N(0-4O) 10 Nan 0 0 

0C-1N(0-2C-3Cl)(0=4O) 10 Nan 0 0 

0C-1C-2C#3N(0-4N) 10 Nan 0 0 

0N=1C=2O(0-3C) 9 1 1 1 

0C-1C#2C(0=3C) 9 Nan 0 0 

0C-1O(0=2O)(0-3O) 9 1 1 1 

0C=1O(0-2Cl)(0-3O) 9 1 1 1 

0C=1C(0-2O-3N)(0-4C) 9 Nan 0 0 

0C=1N-2N=3C(0-4C) 9 Nan 0 0 

0O-1C=2C(1-3N)(0-4C) 9 Nan 0 0 

0O-1C-2C-3F(0-4C) 9 Nan 0 0 
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0C=1O(0-2C-3S)(0-4C) 9 1 1 1 

0C-1P-2O(1=3O)(0=4C) 9 0.33333 1 0.5 

0N-1C=2N-3N(0=4C) 9 Nan 0 0 

0C=1N-2C-3C(0=4O) 9 1 1 1 

0C-1C=2N-3N(0=4O) 9 Nan 0 0 

0C=1C-2C-3S(0-4N) 9 0 0 0 

0C-1C(0-2C-3O)(0=4N) 9 Nan 0 0 

0C-1C=2C-3Cl(0=4N) 9 Nan 0 0 

0C-1C(0-2C-3C)(0-4S) 9 Nan 0 0 

 

Appendix C. Structure prediction results. 
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