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ABSTRACT 

In this study, an important aspect of the synthesis process for a-BxC:Hy was systematically 

modeled by utilizing the Reactive Molecular Dynamics (MD) in modeling the argon 

bombardment from the orthocarborane molecules as the precursor. The MD simulations are used 

to assess the dynamics associated with the free radicals that result from the ion bombardment. By 

applying the Data Mining/Machine Learning analysis into the datasets generated from the large 

reactive MD simulations, I was able to identify and quality the kinetics of these radicals. Overall, 

this approach allows for a better understanding of the overall mechanism at the atomistic level of 

Ar bombardment and the role of radical species towards the formation of the orthocarborane 

network and in turn the boron carbide thin films. 
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INTRODUCTION 

 

1.1 Boron Carbide 

Boron carbide is a high strength ceramic which can be used in so many applications due 

to some of the unique mechanical properties it possesses. It currently falls third to Diamond and 

cubic boron nitride as the hardest known material in nature alongside having a very low density 

(Raucoules et al., 2011). This combined property makes it ideal in instances where strength to 

weight ratio comes into play. Also, it has a high melting temperature above 2500 K which makes 

it thermally stable (Thévenot, 1990). In addition to its high abrasion resistance, the thermal 

stability and mechanical strength of boron carbide gives it the unique physical properties well 

suited for body armor components and abrasives. Due to Boron-10 having a high cross-section 

for neutron absorption, boron carbide becomes an important material for nuclear reactors and 

neutron detection(Blevins & Yang, 2020) (Bigdeloo & Hadian, 2009). Boron carbide also has 

several applications in the semiconductor industry; thin-film boron carbide can be used as 

insulators for low-dielectric-constant intra/interlayer dielectrics (Nordell et al., 2015), patterning 

materials for semiconductor devices and optical films. 

There a couple of growth techniques used to produce boron-carbide (Thévenot, 1990) 

(Suri et al., 2010). Some of these are hot pressing and pressureless sintering. These synthesis 

processes require high temperature sintering, which makes it an energy intensive process. A 

major limitation with this synthesis process is that it cannot be easily integrated with 

semiconductor device processing and oftentimes do not yield the desired electronic properties 

(Bandyopadhyay et al., 1984) (Wood & Emin, 1984). Also, these experimental studies are 
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conducted over a long time period for an extremely limited number of materials, and it imposes 

high requirements in terms of resources and equipment.  

 

 

1.2 Crystal Structure 

Materials which are rich in boron usually have an icosahedron crystal structure. An 

Icosahedron is a polyhedron that has 20 faces. An icosahedron is made up of 20 equilateral 

triangles and 30 edges, with 5 faces coming to a point at each of the 12 vertices. Figure 1.1 

shows the geometry of a regular icosahedron. 

 

 

Figure 1.1 Geometry of a regular icosahedron 

 

The ideal, most symmetric form of the structure of boron carbide is described as a 

rhombohedral unit cell that is made of one icosahedral B12 unit and one C-B-C chain. The first 

and third atoms of the chain are both connected to three different icosahedra. A typical 

icosahedron typically has 11 boron atoms and 1 carbon atom (B11C) or 12 boron atoms (B12). 
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The structure shows the formation of icosahedral configuration because of the valence electron 

deficiency of boron in the B-B and B-C covalent bonds. There are 6 polar sites in every 

icosahedron, 3 in each opposite end with 6 equatorial sites between them. A two-center bond 

directly bonds the atoms in the polar sites to the neighboring icosahedra parallel to the cell edge. 

Figure 1.2 shows the crystal structure of Boron Carbide 

 

Figure 1.2 Crystal Structure of Boron Carbide (Raucoules et al., 

2011)
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There are two ways of connecting the equatorial atoms; either by either by connecting 

them directly to their neighboring icosahedra or to the chains. In B11C, the carbon atoms are 

mainly in the polar sites, the chain is C-B-C for B11Cp and C-C-C for B12C3.   Carboranes are 

sometimes used by experimentalists as organic precursor to produce hydrogenated boron carbide 

(Billa et al., 2009) (Zhang et al., 1998)-(Schulz et al., 2008). The basic chemical formula of 

carboranes is B10C2H12 with the possible isomers being orthocarborane (o-carborane), 

paracarborane (p-carborane) and metacarborane (m-carborane). The icosahedral structures of 

these molecules are slightly distorted with ten boron atoms and two carbon atoms in their inner 

cage and twelve surrounding hydrogen atoms that points outwards and bonded with an atom of 

the inner cage (Gamba & Powell, 1996). The most dominant amongst these molecules is the 

orthocarborane.  

All the three isomers of Boron Carbide are solids at room temperature and pressure with 

crystal FCC structures that have cell dimensions of 9.86 Å and an atomic number of 4 

(Baughman, 1970). All the isomers have varying melting points and crystalline phases. 

Orthocarborane has the highest melting point of the three, with a melting point of 570K, 

followed by metacarborane at 546K and paracarborane at 534K. The formation of the crystal 

Figure 1.3 p-carborane, m-carborane and o-carborane molecules. The circles show the location 

of the C atoms26.   
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structures comes as a result of the presence of weak van der Waal forces. The phase transitions 

of o-carborane occur at 274K and 167K, that of m-carborane occur at 277K and 165K and p-

carborane at 303K and 240K (Leites, 1992). Phases I and II are orientally disordered for all the 

three compounds whereas phase III is orientally ordered (Baughman, 1970) 

1.3 Machine Learning 

One major limitation experimentalists in materials science face is conducting research 

over a long time frame with limited resources. These limitations have led to the need of 

introducing machine learning tools in the study and synthesis of amorphous boron carbide. 

Figure 1.3 shows the locations of the C atoms in carborane molecules 

This introduction will cut down the time and the high cost involved in materials synthesis. 

Machine Learning, in recent years, has proved to have superhuman abilities in various 

disciplines like image classification, image and speech recognition, fraud detection, amongst 

many others. Its introduction into the field of solid-state systems has been widespread of late. 

Previously, computational methods like density functional theory (DFT), Monte Carlo 

simulations, and molecular dynamics were what brought about the computational revolution in 

materials science (Schmidt et al., 2019).  

The continual increase in computing power and the development of more efficient codes 

have made way for computational high-throughput studies of large material groups in order to 

screen for ideal experimental candidates. The large-scale simulations alongside the experimental 

high through-put studies have been producing a large amount of data, making the use of machine 

learning methods in material science possible. Like the introduction of any novel approach in 

any field, machine learning has received a few criticisms in the field of material science. One of 

such main criticisms is the lack of knowledge and understanding arising from their use. This is 
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because machine-built models are sometimes too complex and alien for humans to understand. 

This notwithstanding, there has been numerous excellent reviews of machine learning in the 

fields of materials science and atomistic simulations. The Machine learning tool employed in this 

study is the Waikato Environment for Knowledge Analysis (Weka) which was developed by the 

University of Waikato in New Zealand. Weka is a collection of machine learning algorithms for 

solving real-world data mining problems. 

1.4 Molecular Dynamics Simulation 

Computer simulations in material science are mainly done to replicate the behavior of a 

complex system on a digital computer. It drastically cuts down on the cost, limitation in 

resources and time taken to undertake experiments. Simulations are classified into three main 

kinds according to the scale in which they are performed: atomic scale, the micro scale and the 

macro scale. The kind of simulation used in this study is the molecular dynamics which falls 

under the atomic scale. Simulations at this scale basically focuses on structure, mechanical 

properties, thermodynamic properties and kinetic properties of materials. In any classical 

molecular dynamics simulation, the trajectory of a system can be found by solving Newton’s 

equation of motion by using information of the object’s initial position, velocity and force. 

 

𝑚𝑖
δri

δt2 = 𝐹𝑖   

 

 

𝐹𝑖 = −
𝛿𝑈(𝑟1, … … , 𝑟𝑛)

𝛿𝑟𝑖
 

mi and ri in the equations above represent the mass and position of the ith object respectively. The 

potential of the system is any given configuration is represented by U. When the correct potential 

is used in solving the equation, the trajectory of a system with atoms, grains, mesoscale particles, 
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or even huge planets can be accurately calculated. From the derivation of the potential, U, force 

information on every particle can be calculated. The number of differential equations that need to 

be solved will correspond to the number of objects. Practically, when integration is used instead 

of differential equations, it reduces the time taken to solve the equation. In figure 1.4 below is a 

pictorial representation of modeling times and their length scales. 

 

 

 
Figure 1.4 Modeling time and length scales (Baishnab et al., 2020)  

 

 

−𝑚𝑖

𝑑𝑣𝑖

𝑑𝑡
=  ∑ 𝐹2

𝑗

(𝑟𝑖, 𝑟𝑗) +  ∑ 𝐹3

𝑗,   𝑘

(𝑟𝑖, 𝑟𝑗, 𝑟𝑘) + ⋯ … 

 

𝑑𝑟𝑖

𝑑𝑡
=  𝑣𝑖  
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In the equation above, F2 represents the force between two atoms and F3 is the force between 

three atoms. There is an adjustment on the force information as well as the positions of the atoms 

after each iteration.  

The atoms keep vibrating and will not stay at rest at their energy minimum. After the 

simulation runs for a good amount of time, Boltzmann distribution is sampled. This sampling is 

an efficient way of exploring the surface’s energy. Boltzmann distribution in this case refers to 

having the atoms arranged in a particular way which correlates with the system’s energy. Alder 

and Wainwright (Alder & Wainwright, 1957), in 1957, published the first simulation work where 

they sought to solve the classical equations of motion of several hundred particles by using fast 

electronic computers. The 32-particle system had square potentials which showed the phase 

transition through a hard sphere model. The hard sphere model makes overlapping of atoms in 

the system impossible, just like macroscopic metal balls. After directly solving Newton’s force 

equation, a system with three constant quantities is obtained. The three quantities are the number 

of atoms, volume, and energy. The energy of the system, its total and angular momentums do not 

change because it is an isolated system. This kind of system is termed the NVE or 

microcanonical ensemble. This system does not exchange energy or particles with its 

environment, therefore, does not have pressure and temperature control. 

However, in experimental setting, the synthesis or characterization parameters are 

quantities like temperature, pressure, or volume. The pressure is mostly kept constant, such as 

synthesis in a high vacuum chamber, high vacuum, or atmospheric conditions. In taking 

measurements of bulk modulus, volume is kept constant and in annealing of samples, 

temperature is kept constant. Aside NVE, different statistical ensembles can be used to mimic 

experimental conditions. These ensembles are NVT, which is constant temperature and constant 
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volume, NPT, which is constant temperature and constant pressure, NST, which is constant 

temperature and constant stress and then NPH, which is constant pressure and constant enthalpy. 

1.4.1 NVT Ensemble. Also known as the canonical ensemble, it has constant-

temperature and constant-volume. One advantage this ensemble has is that it allows the pressure 

of a system to be fixed for materials regardless of their phase. It is a good way to perform 

conformational exploration of molecules when done without periodic boundary conditions. This 

mostly comes in handy when dealing with chemical reactions in gaseous materials as system 

pressure is irrelevant. 

1.4.2 NPT Ensemble. This is the constant-temperature and constant pressure ensemble 

that enables a user to control both system pressure and temperature by allowing the volume to 

change and energy to flow in and out of the system. For the desired pressure to be obtained, the 

unit cell vectors have to be adjusted in every step. This is a nice way to fix the densities and 

equilibration volume of the system under a predetermined system pressure. Before undertaking 

any simulation with any material or interatomic potential, it is advisable to equilibrate the initial 

structure using NPT or NVT ensembles. 

1.4.3 NST Ensemble. The constant-temperature, constant-stress ensemble is mainly 

applied in the study of the stress-strain relationship in polymeric or metallic materials. It can be 

said to be an extension of the constant-pressure (NPT) ensemble. It allows the user to tune the 

xx, yy, zz, xy, yz and zx components of the stress tensor. 

1.4.4 NPH Ensemble. This is the constant-pressure, constant-enthalpy ensemble. Though 

this ensemble is equivalent to the NVE ensemble, it is a unique way of controlling the system’s 

pressure without controlling the system’s volume. Enthalpy H, (E + PV) remains constant when 

pressure is fixed without temperature control. 
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In performing simulations, it is very important to maintain a constant volume and 

pressure. A simple way that the pressure can be changed is using the piston-like mechanism. In 

controlling the temperature, the user must be extra careful and perform extensive calculations. 

Controlling the velocity may cause constraints on the volume and pressure since temperature 

depends on the velocity of all the particles. The theory behind the thermostat should be 

understood in order to comprehend the control of temperature. Thermostats are similar to heat 

baths. The temperature of materials is regulated by heat bath entity. Temperature in molecular 

dynamics can be defined by the equation (van Duin et al., 2001): 

 

𝑘𝑇𝑀𝐷

2
=  

1

6𝑁
 ∑ ∑ 𝑚𝑖𝑣𝑖𝑗

2

3

𝑗=1

𝑁

𝑖=1

 

k = Boltzmann constant 

TMD = temperature 

N = number of particles 

m = mass of particles 

v = velocity of particles 

 

for three-dimensional velocity components j=3. 

The purpose of the summation is to create a distribution. In simulation, the temperature 

can be controlled by restricting the average velocity within the proper distribution. Usually, the 

beginning temperature is set by assigning velocities at random under Maxwell-Boltzmann 

distribution. Another way to do this is by using the Anderson approach (Andersen, 1980). In this 

method, a particle is allowed to interact with the heat bath, in each time step, then a new velocity 
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is assigned under the Gaussian distribution. The time it takes to get to the targeted temperature, 

in this approach, depends on the number of collisions per unit time. This can be bypassed by 

introducing an additional force (Langevin thermostat). 

Another approach that offers a more accurate solution is the Nosé-Hoover thermostat. In 

this approach, an additional degree of freedom for heat bath is introduced. 

𝐻𝑛ℎ =  ∑
𝑝𝑖

2

2𝑚𝑖𝑠2
+ 𝑈(𝑟, 𝑞) +  

𝑝𝑠
2

2𝑄
𝑖

+ 𝐿𝑘𝑇. ln(𝑠) 

Hnh = heat bath 

L = number of independent momentum degrees of freedom 

Q = An imaginary mass  

ps = momentum of heat bath variable 

When s(t) =1, the original Hamiltonian is associated with four interrelated equations. 

ṙ =  
𝑚𝑖𝑣𝑖

𝑠
 

 

v̇ = −
1

𝑚𝑖
 

𝛿𝑈

𝛿𝑟𝑖
 

 

ṡ = 
𝑝𝑠

𝑄
 

 

ṗs =∑  𝑚𝑖𝑠𝑟̇𝑖
2 − 𝐿𝐾𝑇𝑖   

The last two equations refer to velocity control and they can be rewritten as: 

 

𝑑𝑠

𝑑𝑡
=  

𝐿𝑘(𝑇 − 𝑇𝑡𝑎𝑟𝑔𝑒𝑡)

𝑄
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The Verlet algorithm is the widely used algorithm for time integration of the equation of 

motion in molecular dynamics. Taylor expansion up to the third order can be used to explain this 

algorithm. When the position (r) of any particle for a certain time (t) with timestep 𝛿𝑡 is known, 

the equations of next and previous steps according to Taylor expansion are (respectively): 

 

𝑟𝑖(𝑡 + 𝛿𝑡) = 𝑟𝑖(𝑡) + 𝑟̇𝑖(𝑡)𝛿𝑡 +
1

2
𝑟̈𝑖(𝑡)𝛿𝑡2 +  𝑂(𝛿𝑡)3 

 

𝑟𝑖(𝑡 − 𝛿𝑡) = 𝑟𝑖(𝑡) − 𝑟̇𝑖(𝑡)𝛿𝑡 +
1

2
𝑟̈𝑖(𝑡)𝛿𝑡2 −  𝑂(𝛿𝑡)3 

Adding the two equations gives us the Verlet equation: 

𝑟𝑖(𝑡 + 𝛿𝑡) ≈ 2𝑟𝑖(𝑡) − 2𝑟𝑖(𝑡 − 𝛿𝑡) +
𝐹𝑖(𝑡)

𝑚𝑖
𝛿𝑡2 +  𝑂(𝛿𝑡)3 

It has been studied that the computation of force expression is the costliest calculation 

and most time-consuming (van Duin et al., 2001). Each particle in a group of particles, 

theoretically interacts with all other particles. For a system with n particles, the interaction 

equations would be n2. But most of the interactions can become negligible after a number of 

nearest neighbors. The most used approach is by selecting a desired cutoff point rc for each 

particle and putting into consideration only the forces of the particles that lie within the cutoff 

distance rc. The cutoff distance usually specifies the number of interactions of nearest neighbors’ 

that should be taken into consideration. Selecting a reasonable cutoff distance in classical 

molecular dynamics creates a balance between the cost of simulation and the expected accuracy. 

The particle-mesh algorithm is an approximation method that can be used to reduce the 

simulation load for long range forces like Coulomb interaction (Plimpton, 1995).  



 13 

Out of the numerous tools used in modeling, Classical Molecular Dynamics (CMD) is the 

widely used. Just like all other approaches, this method has its limitations. To begin with, atoms 

in CMD are treated as a point mass. Without regarding the quantum effect, CMD usually has 

very few errors. De Broglie’s hypothesis states that all particles can be treated as matter waves 

and the wavelength can be calculated from the equation λ = mv/h. Most atoms at room 

temperature have wavelengths of about 0.2 Å whilst their atomic distance usually ranges 

between 1 – 3 Å. When dealing with atoms like hydrogen or helium which are light in weight or 

when undertaking ultra-high temperature calculations, neglecting the quantum effect may lead to 

errors in results. Also, in order to achieve the desired accuracy with the Verlet algorithm, the 

maximum timestep used should be 1-2 femtoseconds. Typically, a fraction of a femtosecond is 

used. With the availability of complex computational facilities now, simulation can be continued 

for a few billion steps, which is going to calculate a system response for only a few 

microseconds. With CMD involving atomic scale modeling, although work can be done with 

millions of atoms, in reality, it is only going to be a cube with sides of a few hundred 

nanometers. For homogenous systems like crystalline materials, periodic boundary conditions 

can be used to suppress the issue whereas for non-homogenous systems like amorphous 

materials, it is very difficult to make (Multiscale Modeling and Analysis for Materials 

Simulation, 2011). Because of some these limitations, simulation results can most times be 

deceptive. In modeling, for example, heating or cooling of a material at a heating rate of 1K/ns is 

considered very slow (Sandoval & Urbassek) but in experimental setting, it is not possible to 

achieve a heating rate of 109 K/s. Likewise, for compression in simulation, a strain rate that is 

commonly used is 10-4/ps which converts to a rate of 108/s (Wen et al., 2018),(Li et al., 2018) but 

in experimental setting, a very high strain rate is considered 104 – 106 s-1 (Ramesh, 2008). CMD 
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works perfectly with Born-Oppenheimer approximation, where lighter electrons adjust with 

changes in the position of heavier nuclei. This is the reason why it is difficult for CMD to model 

formation and breaking of chemical bonds. The way of obtaining the interatomic potential is by 

using some fitting techniques (Duff et al., 2015)-(Brommer & Gähler, 2007) for parameters like 

elastic constants, thermal expansion from highly accurate density functional theory (DFT) 

calculations, or experimental data. One setback with these potentials is they are not transferrable. 

A typical example is how parameters for Ni in Ni-Al may not work for Ni-Al-Co. Potentials are 

mostly very element specific and are suitable for only some studies. Developing a potential for 

modeling purposes takes a long time and it comes with its limitations. The interatomic potential 

used in this study is the reactive force field (ReaxFF). This potential has a lot of advantages over 

the traditional force field. 

The molecular dynamics simulations in this study were performed using the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Plimpton, 1995). This simulator 

was developed by Sandia National Laboratories, which is a US Department of Energy 

laboratory. The reason for choosing LAMMPS over all the other credible codes like MDACP 

(Watanabe et al., 2013), (Watanabe et al., 2011), MDSPASS (Iskandarov et al., 2011)and IMD 

(Stadler et al., 1997) is because LAMMPS has all the methods required for this study since most 

codes are developed to fit particular studies. The NAMD (Phillips et al., 2005) code for instance, 

was developed specifically for biomolecular studies.  
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1.4.5 LAMMPS 

LAMMPS is a molecular dynamic simulator that can model atoms or particles in all the 

three main states of matter. It can model particles up to a few hundred million in two-

dimensional and three-dimensional systems. It can handle simulations on atomic, microscopic, 

mesoscopic and continuous scales. Due to its wide range of applicability, it has been used in 

modeling metals, semiconductors, biomolecular and granular systems.  

LAMMPS has been programmed to work most efficiently on parallel computing in 

supercomputers or shared memory boxes that use message-passing techniques although it runs 

perfectly in serial with one core on personal computers. It is designed to function on systems that 

support the Message Passing Interface (MPI). 

Previous versions of LAMMPS were written in Fortran (F77 and F90) but the recent 

version is written in C++ programming language. Since there mostly arises the need for upgrades 

in the code, it is developed in a manner where such upgrades and modifications can be easily 

executed. This compatibility mode makes it easy to keep up with the inclusion of newly 

developed force fields, pair styles and several other components of the analysis. This user-

friendly interface also makes it possible for users to add relevant features to an existing code. In 

defining the interactions among a group of particles, LAMMPS makes use of Newton’s 

equations of motion. These particle types are mainly electrons, charged/uncharged atoms, 

molecules, or radical grain. 
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1.4.6 PACKMOL 

PACKMOL is a code that creates an initial point for simulations by packing molecules in 

defined regions of space. In this study, random structures with variable sizes of simulation cells 

were created by using PACKMOL.  

PACKMOL can create a predefined simulation cell which has initial coordinate point of 

molecules. In order to achieve the expected structure, ranges of spatial restrictions can be put in 

place when producing the coordinates. An example is the minimum distance between molecules 

and their orientation in the three-dimensional space. The interaction of the large repulsive van 

der Waals forces can be limited at the beginning of the simulation due to the minimum distance 

limitation. By only specifying the coordinates of one molecule or unit, a user can make complex 

mixtures of different material phases by packing millions of molecules. There are a good number 

of output files that PACKMOL supports. Some of these are XYZ, TINKER, PDB and MOLDY.  

1.4.7 ReaxFF  

Prior to the introduction of atomic-scale modeling, the in-depth study of novel materials 

used to be a herculean task since it is very expensive and difficult to come by the experimental 

equipment. Simulation methods that involve quantum-mechanics have recently been wide-used 

for different kinds of materials due to their easy access, high level of results accuracy and then 

having user friendly interfaces. One limitation with this is the computational approach that 

comes with it. It makes it applicable to a smaller number of systems. These systems usually are 

not enough to fully comprehend the behavior of a material as compared to a system with larger 

molecules or amorphous structure. The development of empirical force fields (EFF) was in a 
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quest to overcome these limitations. Data sets that are obtained from either quantum mechanics 

or experimental are fitted against the parameters of EFFs. This makes the fitted data parameters 

less credible than the original data. 

Methods involving EFF have been successful in condensed phase systems, but they could 

not describe reactive systems and bond energy to the dissociation limit. This is as a result of how 

EFFs are trained. They are trained where bonds remain close to their equilibrium. Reactive force 

field (ReaxFF) is a force field which permits the breakage and formation of bonds. It is a bond 

order-based force field. It makes use of the bond order obtained from the empirical distance 

between atoms. Unlike EFFs, ReaxFF is very transferrable and works best with all the three main 

phases of matter. The ReaxFF code was written to include (1) continuous forces and energy 

including reactions, (2) one particular element has only one type of force field atom, (3) no pre-

defined reactive site is required (van Duin et al., 2001). The ability of ReaxFF to transfer its 

parameters to similar compounds has made possible an avenue to a different modeling scale 

which was impossible before. An example is how the parameters of oxygen atoms in solid metal 

oxide can be transferred and used in liquid water or gaseous O2 molecules (Senftle et al., 2016). 

This makes it easy to model variable aspects of a system with more than one phase. Another 

practical example is the transition from the gaseous phase (Argon and orthocarborane) to the 

solid phase (amorphous hydrogenated boron carbide) in this study. 

1.4.8 Methodology: ReaxFF is developed to include both reactive and non-reactive 

reactions in its descriptions whilst avoiding bond order formation and polarizable charge 

description. ReaxFF operates on the energy equation: 

Esystem = Ebond + Eover + Eangle + Etors + Evdwaals + Ecoulomb + Especific (Senftle et al., 2016) 
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Ebond = the bond forming energy which is gotten from bond order and related to interatomic 

distance 

Eover = Over coordination energy; stops over coordination of atoms 

Eangle = Angle strain 

Etors = torsional energy 

Evdwaals = van der Waal energy of every atom 

Ecoulomb = Coulombic interaction 

Especific = specific energy terms; unrelated to terms above 

ReaxFF has components that are dependent on bond order and others which do not. The code 

calculates bond order directly from interatomic separation. The bond order calculation follows 

the following equation: 

𝐵𝑂𝑖𝑗 = 𝐵𝑂𝑖𝑗
𝜎 + 𝐵𝑂𝑖𝑗

𝜋 + 𝐵𝑂𝑖𝑗
𝜋𝜋 

Can also be written as 𝐵𝑂𝑖𝑗 = exp [𝑝𝑏𝑜1(
𝑟𝑖𝑗

𝑟𝑜
𝜎)𝑝𝑏𝑜2] +  exp [𝑝𝑏𝑜3(

𝑟𝑖𝑗

𝑟𝑜
𝜋)𝑝𝑏𝑜4] +  exp [𝑝𝑏𝑜5(

𝑟𝑖𝑗

𝑟𝑜
𝜋𝜋)𝑝𝑏𝑜6]      

BO in the equations above represents the bond order between the atoms i and j and rij is 

the interatomic distance. The Pbo terms are obtained empirically whereas ro represents the bond 

length at equilibrium. There is a continuous transition between the pi and sigma bonds. Because 

of this continuity, forces that exist between the atoms can be calculated from taking the 

derivatives of the potential energy surface. The covalent interactions that the formula describes 
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makes the force field to correctly provide reaction barriers. Information on angle strain and bond 

energy is obtained from the bond order correction. Calculation of the coulombic interaction is 

done in each iteration from a charge equilibrium feature. Figure 1.5 below depicts an overview 

of the energy component of ReaxFF. 

 

 

 

Figure 1.5 Energy components of ReaxFF (Car & Parrinello, 1985) 
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1.5 Quantum Calculation 

Due to the already discussed limitation pertaining to the use of quantum mechanical 

calculations, most of the calculations in this study is done with classical molecular dynamics 

using ReaxFF. That regardless, quantum mechanical calculations were used to determine the 

extent where the force field can be applied to hydrogenated boron carbide. In calculating the 

substitution of core nuclei and valence electron exchange-correlation term, the density functional 

theory (DFT) which is a form of QM calculation was used. DFT is able to define multiple 

electron interactions in atoms by using spatially dependent electron density functionals. DFT 

since the 1970s was extensively used in many science disciplines although it did not live up to 

the level of expected accuracy. This, however, was no longer the case after some modifications 

were made to the theory in the 1900s. 

DFT has a relatively higher accuracy than classical MD and has potential files available 

for each element on the periodic table. Also, it provides details of the electronic structure of 

elements, which is not the case with CMD. DFT operates on the following Hamiltonian equation: 

𝐻𝑁𝑉𝐸 =
1

2
∑ 𝑚𝑖

𝑁

𝑖=1

𝑟𝑖
2 + 𝐸[𝜑(𝑟1, 𝑟2, … , 𝑟𝑁)] 

The main concept of the equation is that a system’s potential energy can be derived from 

their electron structure at each step. The Kohn-Sham single-electron wavefunctions for the 

ground state is denoted by 𝜑(𝑟1, 𝑟2, … , 𝑟𝑁). Information on force is given by the ground state 
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energy data. From this information, one iteration can be completed by moving the atoms to the 

next step. This DFT-based approach is called ab-initio molecular dynamics (AIMD).  

 

𝐻𝐶𝑃 = 𝐻𝑁𝑉𝐸 +
1

2
∑ 𝜇

𝑗

∫ | 𝜓𝑗(𝑟)|2𝑑𝑟 + 𝐿𝑜𝑟𝑡ℎ𝑜 

 

The above equation is what the Car-Parrinello method, the first AIMD approach is based 

on. The first term, HNVE is taken from the previous equation and the next term refers to the 

imaginary mass’ kinetic energy, 𝜇, which is also an expression of the electronic degrees of 

freedom. The last term, Lortho refers to the orthogonality of the wave function of the single 

electron. The equation of motion is now written as: 

 

{
𝜇𝜓𝑖(𝑟) =  −𝐻𝐶𝑃𝜓𝑖(𝑟) +  ∑ 𝜓𝑗(𝑟)Λ𝑗,𝑖

𝑗

𝑚𝑖𝑟̈𝑖 =  𝐹𝑖

} 

 

By bypassing the Kohn-Sham equations through self-consistent computation, the level of 

accuracy will not be altered although several codes in use currently utilize more efficient 

diagonalization algorithm of the Kohn-Sham matrix. There are quite a number of open-source 

and commercial codes which are similar to CMD. Some of the popular open-source codes are 

Quantum ESPRESSO (Giannozzi et al., 2009), Siesta (Soler et al., 2002) and ABINIT (Gonze et 

al., 2002) whereas some of the commercial codes are VASP (Kresse & Furthmüller, 1996b), 

Gaussian (Expanding the limits of coputational chemistry) and CPMD ((IAS), 2017). The code 

employed in this study is the Vienna Ab-initio Simulation Package (VASP). It has potentials 
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suited for all the elements on the periodic table and it also used in the study of a wide variety of 

materials. It also studies the surfaces and interfaces of their phases. The libraries VASP operates 

on is the fast Fourier transform (FFT) and linear algebra. 
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COMPUTATIONAL DETAILS 

 

2.1 Energy Minimization and Bond Dissociation Energy 

In a previous work done by Baishnab et al., (Baishnab et al., 2020), they performed the 

quantum mechanical calculations in their study using the Vienna Ab-initio Simulation Package 

(VASP) (Kearley et al., 2006). VASP was used in setting the plane wave basis and projector-

augmented wave (PAW) based pseudo-potentials. (Kearley et al., 2006), (Kresse & Joubert, 

1999)-(Kresse & Furthmüller, 1996a).  The ultra-soft pseudopotential was used in the calculation 

involving the valence electron exchange-correlation term and substitution of core nuclei. To 

improve on the local spin density (LSD) description of atoms and molecules, the version of 

generalized gradient approximation (GGA) exchange-correlation function of DFT that was used 

is the Perdew Burke Erzerhof (PBE). The k-space matrix was created with the Monkhorst-Pack 

scheme.  

Quantum mechanical calculations were carried out on several components like the 

energies of bond dissociation and energies of ground state of important compounds like 

orthocarborane, BH3, CH4, B2H4, and others. In calculating the ground state energies, a cell that 

was as big to fit a single molecule of the mentioned compounds was selected. The cell also had 

to have very little interaction between the molecule and its periodic image. For the molecule of 

orthocarborane, a cell with 12 Å at the edges was selected whereas a cell having 6 Å at the edges 

was selected for the BH3 molecule. With the energy minimization calculations, the K-points they 

used were 4 4 4. 
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In generating a bond dissociation energy curve, the structurally minimized molecule was 

taken and an atom of a relevant bond was slowly distanced till a point where the bond can be 

said to be fully broken. The system’s total energy was calculated at different distances of an 

atom and then generate points of distance vs energy. Whiles carrying out this process, all the 

other atoms of the molecule are fixed at their initial positions. When calculating the B-H bond 

dissociation energy for orthocarborane, the structurally minimized orthocarborane molecule was 

obtained first. Whiles all other atoms were kept fixed at their initial positions, the distance 

between one boron atom connected with a hydrogen atom was varied and the energy at all 

distances were calculated. The ReaxFF potential was also used to undertake similar calculations. 

 

 

2.2 Argon bombardment      

The main aim of this phase of the study is to comprehend the results of ion bombardment 

on orthocarborane molecules. The bombardment in this study takes place in a gaseous phase 

which is the mixture of bombarding ion and Orthocarborane (Schulz et al., 2008), (Nordell et al., 

2015). Before the simulation could take place, an initial structure had to be created and a 

molecule of orthocarborane had to be made. In making the orthocarborane, two boron atoms in a 

uniform B12 icosahedral structure were replaced with two carbon atoms. I then added 12 outward 

pointing hydrogen atoms to form an icosahedra. The structure of the orthocarborane comes out 

slightly distorted due to the presence of carbon and also unidentical lengths of BH and CH 

bonds. This structure was then minimized with LAMMPS to generate the second structure at 0K. 

The LAMMPS command used in minimizing the structure is  

 

minimize 0.0 1.0e-8 1000 100000 
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minimize etol ftol maxiter maxeval 

etol = stopping tolerance for energy (unitless) 

ftol = stopping tolerance for force (force units) 

maxiter = max iterations of minimizer 

maxeval = max number of force/energy evaluations (LAMMPS documentation)  

Figure 2.1 shows the structures of the orthocarborane molecule before and after relaxation. 

 
a.                                                                      b. 

Figure 2.1 Orthocarborane molecule: (a) before relaxation and (b) after relaxation (Baishnab et 

al., 2020) 

 

Minimizing the initial structure is by changing the coordinates of the atoms to find the 

minimum potential energy. The minimizer stops the movement of atoms in a particular iteration 

and allows relaxation of overlapping atoms in instances of very large energy and forces. When 

any of the stopping conditions are met, minimization comes to an end. 

The next step was creating a bigger gaseous mixture structure of argon atoms and 

orthocarborane molecules. The initial simulation cell had a 100 Å edge length. A thousand 

relaxed orthocarborane units alongside varied number of argons (highest being 25) were 
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randomly packed inside the cell. The molecules were kept at a minimum distance of 2 Å apart 

from one another. PACKMOL was used in building the structure. Figure 2.2 shows the initial 

structure for argon bombardment. 

 

 

 

 

Figure 2.2 Initial structure for argon bombardment (atoms are not represented with their 

relative sizes) 
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The cell size was extended by 1 angstrom in all six directions. This was done to prevent the 

atoms from overlapping at the edge of the simulation cell. Minimization was performed one 

more time before the argon bombardment. In figure 2.3, there is a pictorial representation of the 

2D view of the initial simulation cell. 

 

Figure 2.3 Initial simulation cell 2D view with after the edge correction (atoms are not 

represented with their relative size) 
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Another important aspect of the simulation was the kinetic energies of the atoms. To 

begin with, a single argon atom was modeled unto a single orthocarborane and the outcome was 

observed. The kinetic energy ranged from a few electron volts to up to a few hundred electron 

volts. At lower kinetic energies (typically 30 eV and below), there were no significant effect of 

the bombardment observed (fig. 2.1a). There was no ejection of species at this kinetic energy. On 

the contrary, the orthocarborane molecules saw a significant damage at kinetic energies 100 eV 

and beyond Higher kinetic energies detached different species from the orthocarborane. (fig. 

2.1b) When the energy is tuned to few hundreds of electron volts, a single argon atom is able to 

break several molecules through severe collisions and the ejected species as well, having high 

energy are also able to damage neighboring molecules. The highest kinetic energy that was used 

in this study was 600 eV (Kinetic energy of argon in experimental setup) and the energies were 

varied in increments of 50 eV. The time step used in modeling high kinetic interactions of such 

nature should not be above 0.1 fs (Jensen et al., 2012). The time step used in our study was 0.05 

fs and it relatively gave better results than 0.1 fs. The simulations were performed for 5 ps and it 

was enough time for the orthocarborane molecules to absorb kinetic energy of the argon atoms. 

The simulation was an NVE (constant number of particles, volume, and energy) process. After 

each NVE simulation, An NVT (constant number of particles, volume, and temperature) process 

is carried out to cool the structure to room temperature (300K). The Noose-Hoover thermostat is 

used to control the process of cooling in LAMMPS.  
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Figure 2.4 shows the collision of various pairs after 150 fs at 30 eV and 190 eV.  

 

After the bombardment, I started analyzing the pair distribution functions of the various 

pairs at different times. The time evolution for the species that were created after the 

bombardment. At different points in the simulation, the distances of the various species changed, 

hence it required using different cut-off distances in counting the number of species. 

2.3 Free radicals and Orthocarborane interaction  

The bombardment of the argons gave a head way to further studies in this work. Now the 

free radicals from the bombardment interacted with the undamaged orthocarborane and this 

interaction was analyzed. The species formed were as a result of the energy the argons possessed 

and also the place of impact with the molecules. Some of the formed species were BH, CH, BH, 

H2, BH3, CH2 and CH3. Free boron, hydrogen and carbon atoms became available after few 

hundred femtoseconds into the bombardment. All the other species, but BH3 and H2 did not have 

a neutral charge and were active at different levels. I packed 1000 random units of 

a b 

Figure 2.4 Snapshot after 150 fs of collision (a) 30 eV, (b) 190 eV 
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orthocarborane and varied the number of free radicals whiles equilibrating them at different 

temperatures. To. Begin with, a cubic cell with 92 angstroms at all sides was created and isolated 

carbon and boron atoms were put in it. A distance of 2 angstroms was maintained between the 

atoms and molecules. For every carbon that was that was chosen, 5 as much boron were also 

taken, since this is their ratio in the orthocarborane molecule. The number of boron was varied 

from 50 to 200 and that of carbon was varied from 10 to 400. The simulations were performed at 

300K, 500K, and 800K. Figure 2.5 shows the initial structure for o-carborane and free radicals. 

Figure 2.5 Initial structure for orthocarborane and free radicals (free boron and carbon atoms) 
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In our quest to keep the simulations organized, the radicals were modeled in ordered 

pairs. For example, BH and CH, BH2 and CH2, BH3 and CH3. What this means is that, in place 

of 1000 molecules of orthocarborane of isolated B and C, I put in BH and CH, BH2 and CH2, or 

BH3 and CH3. The ratio of boron to carbon was kept constant in all cases and the number of 

varied radicals also remained just like before. I used ReaxFF to relax all the free radicals 

individually at 0K after which they were equilibrated at 300K, 500K and 800K. This simulation 

was done under the NVT ensemble with a time step of 0.25 fs with 106 steps, spanning through a 

total time of 250 ps. 
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RESULTS & DISCUSSION 

 

3.1 Radical Species Analysis  

  The overall goal of the simulation study is to understand the dynamics taken place during 

the Ar bombardment onto the ortho-carborane precursor to generate a range of free radical 

species which will react to one another or with the remaining precursors to form aggregates. The 

chemical reactions during the Ar bombardment generally involve complex and multi-step 

processes, and thus in this study the focus of the simulation study mainly looks at on the major 

chemical reaction event. This is defined by examining the number of gas species produced 

during the reactive molecular dynamics (MD) simulations.   

  In addition, the study concentrates on examining two main variables:  

1) The effect of concentration of ortho-carbonate gases i.e., the ratio of the number of ortho-

carbonane relative to the number of Ar gases.   

2) The energy level of Argon bombardment that initiates the chemical reactions. 

The main reason why these variables were chosen for MD simulations is because they 

can be controlled experimentally(Nordell et al., 2015). The concentration ratio of ortho-

carborane/Ar gas mixture can be adjusted from the flow rate of, and solution concentration of 

ortho-carbonate/Ar mixture introduced into the chamber as gas molecules. Similarly, the energy 

level the ionic Ar bombardment for this plasma-enhanced chemical vapor deposition can be 

experimentally controlled through radio frequency (RF) power and the pressure 

concentration(Nordell et al., 2015). 

The previous modeling study has also evaluated the role of energy level(Baishnab et al., 2020), 

but the concentration ratio used was relatively high e.g. 1000 ortho-carborane for 25 Ar gas (40 
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to 1) ratio. In addition, the MD simulations used to model the Ar bombardment processes were 

only up to 100,000 time steps (each step is ¼ fs) resulting observations up to about 

25 ps(Baishnab et al., 2020). In the case of a high ratio of the o-carborane/Ar concentration, the 

previous study showed that there is a relatively fast transfer of the kinetic energy from Argon gas 

to the o-carborane. In fact, after only a few ps of simulations (1ps = 10,000 steps), almost all 

reactions have completed(Baishnab et al., 2020). This is mainly because the Ar gas no longer 

retains its energy due to the collisions with many o-carbonates. 

In this study, the concentration ratio is lowered to 800-25 (36 to 1) and 100-25 (4-1) in 

comparison to the previous study(Baishnab et al., 2020). The first ratio of 36-1 is quite close to 

the previous study (Baishnab et al., 2020) so that I can compare the results. The second ratio is 

much closer to the experimentally used ratio. The goal here is to see if there is any trend caused 

by changing the concentration ratio.  For each ratio, I varied the initial kinetic energy of Argon 

gas by assigning the initial velocity. For simplicity, similar to the previous study(Baishnab et al., 

2020), the values of some of the axial velocities were assigned randomly, then the total square 

root of the whole velocity is set constant to maintain the same kinetic energy. The simulation 

was done under NVE ensemble and thus the total energy (kinetic + potential energy) was kept 

constant.  Figures 3.1 and 3.2 show plots of timestep vs species count for 100 orthocarboranes at 

50eV and 350 eV 
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Figure 3.1 A plot of timestep vs species count for 100 orthocarboranes at 50eV  
 

 

 

 

 

 

 
Figure 3.2 A plot of timestep vs species count for 100 orthocarboranes at 350eV 
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Figures 3.3 and 3.4 show plots of timestep vs species count for 100 orthocarboranes at 500 eV 

and 600 eV 

 

 
Figure 3.3 A plot of timestep vs species count for 100 orthocarboranes at 500eV 

 

 

 

 

 

 
Figure 3.4 A plot of timestep vs species count for 100 orthocarboranes at 600eV 
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Figures 3.5 and 3.6 show plots of timestep vs species count for 800 orthocarboranes at 50 eV and 

350 eV 

 

 
Figure 3.5 A plot of timestep vs species count for 800 orthocarboranes at 50eV 

 

 

 

 
Figure 3.6 A plot of timestep vs species count for 800 orthocarboranes at 350 eV 
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Figures 3.7 and 3.8 show plots of timestep vs species count for 800 orthocarboranes at 500 eV 

and 600eV 

 

 
Figure 3.7 A plot of timestep vs species count for 800 orthocarboranes at 500eV 

 

 

 

 

 
Figure 3.8 A plot of timestep vs species count for 800 orthocarboranes at 600eV 
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Figures 3.1-3.4 are plots of the major species produced during the bombardment 

of Ar onto 100 o-carborane with the initial kinetic energy level of 50, 350, 500 and 

600 eV respectively. Figures 3.5-3.8 show the number of species generated 

from Ar bombardment also with the same range of energy onto 800 o-carbonare.   A number 

of observations can be made based on these figures:  

In general, the species with the large counts produced by 100 o-carborane are made of 

free radicals especially at the high energy levels. Figures 3.1-3.4, all for 100 o-carborane cases, 

show the larger counts belong to H, B and BH radicals. Even for the case of 50 eV, I can still see 

the H radicals form in competition with BH3 neutral gas. This can be understood by the fact that 

at low concentration ratio, the Ar gas can retain its kinetic energy for a longer time period as it 

only encounters smaller sizes of o-carborane molecules or agglomerates. Thus, there are more 

opportunities to break up bonds and this results in more radicals generated. In each case, with the 

exception of the 50 eV, a steady rise of counts for B, H and additional radicals like BH is seen. 

In the case of 50 eV, as the initial energy is already low, parts of the free radicals generated 

started to react to one another and formed more stable molecules like BH3.  Overall, the case of 

100 o-carborane shows the dominant species of free radicals produced during 

the Ar bombardment. 

This trend contrasts with the case of 800 o-carborane as shown in Figures 3.5-3.8 where 

at longer simulation periods, the steady growth of stable molecules such as H2 and BH3 instead 

can be seen. The formation of these stable molecules is consistent with the previous finding 

by Baishnab, et.al. (Baishnab et al., 2020). Here, the large amount of o-carbonare within the 
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system effectively slows down the energetic Ar gases and thus the free radicals can now interact 

with one another forming more chemically stable molecules.   

In the case of 800 o-carborane for effectively all energy levels, the rise of H free radicals 

initially can be seen similar to the case of 100 o-carborane. But the difference is that it only lasts 

for a short amount of time.  Figure 3.6 gives a good example. This is the case of 800 o-

carborane with the energy level of 350 eV. Initially, the gas species are dominated by the 

formation of H gases. However, after around 80,000 steps (20 ps), there is a drastic decline. This 

is due to the rapid rise in the relatively more stable gas molecules including H2 and BH3 (and 

also BH2). Beyond this point forward, the more stable gases dominate the population. This initial 

increase in H was also observed by the previous study (Baishnab et al., 2020), but in the current 

study, the MD simulations were extended up to 800,000 – 1,000,000 steps allowing the rest of 

the radicals to interact and more reactions to occur.   

Overall, the results of 800 o-carborane confirmed the previous finding about the major 

reactions producing the stable gases. This means for the more concentrated system like that of 

800 o-carborane system or 1000 o-carborane system, it will be observed that the majority of the 

species are comprised of these steady molecules.   

Unlike the previous study, this study however also found out that when the concentration 

ratio is lowered on the other hand, more free radical population can be observed in the 

population. In fact, stable gases like H2 or BH3 are much less than in population. This was not 

previously observed in the prior study.  Figures 3.9 and 3.10 show plots of timestep vs species 

count for H at 100 orthocarboranes and BH3 at 800 orthocarboranes at variable energies.  
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Figure 3.9 A plot of timestep vs species count for H at 100 orthocarboranes and variable 

energies. 

 

 
Figure 3.10 A plot of timestep vs species count for BH3 at 800 orthocarboranes and variable 

energies. 
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Figures 3.11 and 3.12 show plots of timestep vs species count for B10C2H12 at 100 and 800 

orthocarboranes with variable energies 

 

 
Figure 3.11 A plot of timestep vs species count for B10C2H12 at 100 orthocarboranes and variable 

energies. 

 

 

 
Figure 3.12 A plot of timestep vs species count for B10C2H12 at 800 orthocarboranes and variable 

energies 
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Figures 3.9 - 3.12 are plots of the dominant species for each concentration of 

orthocarborane at various temperatures. Figures 3.9 and 3.10 are plots to compare the species 

counts of H and BH3 with respect to time at various energy levels. From the plots, it can be 

concluded that there is generally a significant drop in species count as the energies increase. This 

is mainly due to the vigorous activity of the Ar since it becomes more active at higher energy 

levels and therefore knocks off more atoms which in turn produces more radicals. This is the 

same case for the o-carborane count as well (Fig 3.11 and 3.12). At 50eV, the Ar atoms are not 

as active since they have low energy and therefore the number of o-carborane knocked off are 

not as many as it is in the case of 600eV.   

 

3.2 Machine Learning Analysis on Species 
 

To gain more insights into the dynamics of the gas population, I performed 

Machine Learning analysis as implemented in the Weka code. I implemented the M5P 

algorithm for the classification. In short, the algorithm combines the best decision tree model and 

from which specific linear regression models can be assigned. This approach is suitable to 

describe the chemical reactions as the counts of species generated can be highly dependent of 

one another. For simplicity, I only focused on applying ML algorithm to predict the amount of 

the major products produced in both cases, namely the free radicals of H and/or B for the 100 o-

carborane case and the stable gases of H2 and/or BH3. From the previous figures, I can see that 

the free radicals of H and B grow quite concurrently. Similarly, the number of stable gases of H2 

and BH3 also increases in the same manner. Thus, there is a strong interdependency between 

these pairs of gases. Thus, in the ML models, I made two separate sub models; one with both 

gases present and another when only one of them (e.g., only H2 without the BH3) is present. The 
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main idea here is to test the interdependency of the quantity of these gases with the rest of the 

radical species. All models, unless mentioned otherwise, use 10-fold cross validation. In figure 

3.13 below, I have a plot of Predicted H with B (100 o-carborane, 600eV) 

 

     
Figure 3.13 A plot of Predicted H with B (100 o-carborane, 600eV) 
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In figure 3.14 I show a plot of Predicted H without B (100 o-carborane, 600eV) 

Figure 3.14 A plot of actual vs predicted values of H without B (100 o-carborane, 600eV) 

 

Figures 3.13 and 3.14 show the comparison between the actual versus predicted for the 

case of free radical H from the 100 o-carborane case with 600 eV. In both cases, the results are 

very good with a correlation factor of close 1.0. The appendix lists the M5P model developed for 

H radicals. Here, it can be seen that indeed the H content is highly dependent of the amount of B 

when B is included as a free variable. This is expected due to the apparent concurrent growth 
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observed. When the B variable is removed, it can be seen that the M5P model can still predict the 

amount of H radical quite accurately, revealing the dependency of H radical amount to firstly the 

BC radical and secondly to either H2 or C. This finding supports the fact that in the case of the 

100 o-carborane, the formation of the radicals like H is highly dependent on the rest of radicals 

including those that combine B and C such as BC or BCH. In figures 3.15 and 3.16, I show plots 

of actual vs predicted values of H2 with and without BH3 (800 o-carborane, 600eV) 

 

 
Figure 3.15 A plot of actual vs predicted values of H2 with BH3 (800 o-carborane 
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Figure 3.16 A plot of actual vs predicted values of H2 without BH3 (800 0-carborane, 

600eV) 

 

Figures 3.15 and 3.16 show the comparison between the actual versus predicted for the 

case of stable molecules of H2 with or without the inclusion of BH3 as a variable. Not 

surprisingly, when BH3 is added, as also detailed in Appendix, it can be seen the M5P model is 

consisted of BH3 as a major determining factor. This is consistent with what is expected based on 

the similar type of growth of the two species. When the BH3 is removed on the other hand, a 

more complex M5P model is seen. The model shows the decision tree is determined now by the 

amount of the mixed B and C radicals such as BCH2, H and a series of BHx radicals. While the 

role of H and BHx radicals are quite expected, the major role of mixed radicals was not initially 

expected. This suggests that even with the highly concentrated system like 800 o-carborane, 

there is still dependency toward mixed radicals. Similar to the case of 100 o-carborane, they are 
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quite hidden/masked because of the dominant effect of either B or BH3. ML algorithms allow us 

to see more insights into the dynamics of the gaseous formations.  

I also tested the M5P models toward the H radicals for the case of 800 o-carborane. As shown in 

the previous figures, the initial increase of H radicals followed by a drop. This was suspected due 

to the rise in the BH3/H2 content in the gas population. Figure 3.15 shows the M5P model for H 

radicals. As expected, the decision trees are dominated by either H2 or BH3 contents, followed by 

BH2 or BCH2. In figures 3.17 and 3.18, I show plots of H predicted with H2 and BH3 included 

and not included using Machine Learning. 

 

 
Figure 3.17 A plot of H predicted with H2 and BH3 included using Machine Learning 
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 Figure 3.18 A plot of H predicted without H2 and BH3 using Machine Learning. 

 

Lastly, I used the whole training set to test the M5P algorithm to model the amount of H 

radicals with the simulation time. Figure 3.17 is with the BH3 and H2 included. Figure 3.18 is 

when both gases are removed as variables. The first model (figure 3.17) gives the best model as 

expected.  But the second model shows a reasonably accurate prediction as well. As shown in 

Appendix, a model complex model that involves mixed B and C radicals can be used to replace 

the more obvious variables of BH3 and H2 to help predict the H content.   

In summary, using machine learning algorithm, quantitative models that show the 

interdependence of the amount of these gases can be developed. In the future, these models can 
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be converted into kinetic models to predict the overall chemical reactions during a complex 

process such as ionic bombardments.        
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CONCLUSION 

 

I was successful in modeling the argon bombardment process using ReaxFF as the 

potential force field using MD simulations. Enhancing on previous works done on this project, I 

run the simulation relatively longer (almost ten times). This enabled us to see and successfully 

track radical species that mainly causes the densification process and also those that showed up 

after a longer time. Again, modeling the simulation at lower energies that represent experimental 

setting has given us a fair view of how the interaction will happen experimentally. The 

simulation gives a fair understanding on the role hydrogen content plays in the densification 

process which in turn affects the mechanical properties of thin films. Since the energy of argon 

has an effect on the quantity of hydrogen gas formed and the entire densification process at large, 

one can control the hydrogen content in thin films by choosing the right initial power input. 

Machine Learning tools were also used in tracking and predicting the codependency of the 

radical species on one another. It was used in predicting the radical species which would have 

been difficult to just eyeball. It had a very accurate prediction accuracy.   
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APPENDIX 

 

LAMMPS input scripts 

Structural minimization scripts 

units  real 

 

boundary        p p p 

 

atom_style  charge 

read_data 100_ortho_25_argon.BCH 

 

 

######################################################hybrid potentials  

####################################################################ReaxFF 

Potential 

pair_style hybrid reax/c lmp_control lj/cut 11.0  
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pair_coeff  * * reax/c ffield.reax.hcb B C H NULL 

 

##lj 

pair_coeff  1 4 lj/cut 0.150885 3.4265 

pair_coeff  2 4 lj/cut 0.115303 3.385 

pair_coeff  3 4 lj/cut 0.13283 3.054 

pair_coeff  4 4 lj/cut 0.23983 3.4 

 

mass 1 10.811 

mass 2 12.0107 

mass 3 1.00794 

mass 4 39.948 

 

##############################################################################

######### 
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group PKA type 4 

 

velocity  all create 2.0 893267 rot yes dist gaussian 

 

neighbor  0.3 bin 

neigh_modify    every 1 delay 0 check yes 

restart 5000 restart.*.dens17 

 

#Outputs and Run 

thermo   100 

thermo_style custom step temp pe etotal press vol pxx pyy pzz lx ly lz xy xz yz 

 

dump        1 all custom 100 dump_total_600_eV.reax.amorphous_b4cH id type q x y z 

 

fix             1 all qeq/reax 1 0.0 10.0 1e-6 param_bch.qeq 
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fix             4 all reax/c/species 1 1 10 species_600_eV.out element B C H Ar cutoff 1 4 1 cutoff 2 

4 1 cutoff 3 4 1 cutoff 4 4 1 

fix             2 all nvt temp 2 2 100.0 

timestep        0.05 

 

run   5000 

 

#Starting PKA run 

#First unfix 

unfix            2 

 

 

############################################################ 

group PKA1 id == 2401 

group PKA2 id == 2402 

group PKA3 id == 2403 
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group PKA4 id == 2404 

group PKA5 id == 2405 

group PKA6 id == 2406 

group PKA7 id == 2407 

group PKA8 id == 2408 

group PKA9 id == 2409 

group PKA10 id == 2410 

group PKA11 id == 2411 

group PKA12 id == 2412 

group PKA13 id == 2413 

group PKA14 id == 2414 

group PKA15 id == 2415 

group PKA16 id == 2416 

group PKA17 id == 2417 

group PKA18 id == 2418 

group PKA19 id == 2419 
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group PKA20 id == 2420 

group PKA21 id == 2421 

group PKA22 id == 2422 

group PKA23 id == 2423 

group PKA24 id == 2424 

group PKA25 id == 2425 

 

##############################################################################

#### 

velocity PKA1 set -0.093421963 0.4946317 -0.189871321 units box 

velocity PKA2 set -0.139243516 0.347723005 -0.386185521 units box 

velocity PKA3 set -0.399808671 0.231396691 -0.275767835 units box 

velocity PKA4 set -0.514487782 -0.15490504 -0.027313939 units box 

velocity PKA5 set -0.04688941 0.291898419 0.449484148 units box 

velocity PKA6 set 0.235841762 -0.241773637 -0.418764221 units box 

velocity PKA7 set 0.148291693 -0.28918918 0.428740591 units box 
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velocity PKA8 set 0.331223185 0.422913633 0.029573001 units box 

velocity PKA9 set -0.201536712 -0.256911739 0.427572933 units box 

velocity PKA10 set -0.331223185 0.370791828 0.205533267 units box 

velocity PKA11 set -0.451201104 -0.227714197 -0.184399321 units box 

velocity PKA12 set 0.37372317 0.04716364 -0.384117019 units box 

velocity PKA13 set 0.465917886 -0.243794817 0.113683389 units box 

velocity PKA14 set -0.47935762 0.240534278 -0.042412684 units box 

velocity PKA15 set 0.435247611 0.306832639 -0.076501968 units box 

velocity PKA16 set 0.456246172 0.285050829 0.00497558 units box 

velocity PKA17 set 0.5376679 0.010226022 0.015746691 units box 

velocity PKA18 set -0.07487452 0.027882498 0.532029767 units box 

velocity PKA19 set 0.393465097 0.289130711 0.225893668 units box 

velocity PKA20 set 0.338571622 -0.354569871 -0.221559845 units box 

velocity PKA21 set 0.446018595 0.197370991 0.22704935 units box 

velocity PKA22 set -0.111855581 0.46464158 0.247054312 units box 

velocity PKA23 set -0.359989344 0.356232135 -0.181509338 units box 
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velocity PKA24 set -0.345816927 -0.224461303 0.345640099 units box 

velocity PKA25 set -0.451201104 -0.227714197 -0.184399321 units box 

 

##############################################################################

##### 

compute mype all pe/atom 

##############################################################################

##### 

 

 

fix              2 all nve 

run              100000 

unfix 2 

ReaxFF potential file 

Reactive MD-force field                                                          

 39       ! Number of general parameters                             

   50.0000 !Overcoordination parameter             
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    4.3822 !Overcoordination parameter             

   21.2839 !Valency angle conjugation parameter    

    3.0000 !Triple bond stabilisation parameter    

    6.5000 !Triple bond stabilisation parameter    

   53.9706 !C2-correction                          

    1.0053 !Undercoordination parameter            

    9.0000 !Triple bond stabilisation parameter    

    7.6280 !Undercoordination parameter            

   14.5067 !Undercoordination parameter            

  -10.0198 !Triple bond stabilization energy       

    0.0000 !Lower Taper-radius                     

   10.0000 !Upper Taper-radius                     

    2.8793 !Not used                               

   33.8667 !Valency undercoordination              

   25.6125 !Valency angle/lone pair parameter      

    1.1177 !Valency angle                          
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    1.9645 !Valency angle parameter                

    6.1431 !Not used                               

    6.6623 !Double bond/angle parameter            

    0.1809 !Double bond/angle parameter: overcoord 

    3.9954 !Double bond/angle parameter: overcoord 

   -2.4837 !Not used                               

    4.8815 !Torsion/BO parameter                   

   10.0000 !Torsion overcoordination               

    2.3276 !Torsion overcoordination               

   -1.2327 !Conjugation 0 (not used)               

    1.7905 !Conjugation                            

    1.5591 !vdWaals shielding                      

    0.1000 !Cutoff for bond order (*100)           

    2.8921 !Valency angle conjugation parameter    

    1.6356 !Overcoordination parameter             

    5.6937 !Overcoordination parameter             
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    2.5067 !Valency/lone pair parameter            

    0.5000 !Not used                               

   20.0000 !Not used                               

    5.0000 !Molecular energy (not used)            

    0.0000 !Molecular energy (not used)            

    1.6052 !Valency angle conjugation parameter    

4    ! Nr of atoms; cov.r; valency;a.m;Rvdw;Evdw;gammaEEM;cov.r2;# 

            alfa;gammavdW;valency;Eunder;Eover;chiEEM;etaEEM;n.u.                

            cov r3;Elp;Heat inc.;n.u.;n.u.;n.u.;n.u.                             

            ov/un;val1;n.u.;val3,vval4                                           

 C    1.3647   4.0000  12.0000   1.9091   0.1597   0.8712   1.2018   4.0000 

      9.5729   2.7769   4.0000  35.6314  79.5548   5.7254   6.9235   0.0000 

      1.2661   0.0000  -0.0526   5.0514  29.6014  11.9957   0.8563   0.0000 

    -17.6107   2.9280   1.0564   4.0000   2.9663   1.6737   0.1421  14.0707 

 H    0.6650   1.0000   1.0080   1.6054   0.0601   0.7625  -0.1000   1.0000 

      9.3943   4.3633   1.0000   0.0000 121.1250   3.8196   9.8832   1.0000 
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     -0.1000   0.0000  -0.1611   3.5942   2.8307   1.0000   1.0698   0.0000 

    -18.1553   3.0626   1.0338   1.0000   2.8793   1.2669   0.0139  12.4538 

 B    1.2568   3.0000  10.8110   1.2701   0.1586   0.5400   0.9900   3.0000 

     10.0865   2.0000   3.0000  31.9142  80.0000   2.3294   5.0957   0.0000 

     -1.3000   0.0000  -2.3700  13.1142   3.5132   0.4765   0.0000   0.0000 

     -7.3948   3.5000   1.0564   3.0000   2.8413   1.8463   0.2767  16.2666 

 X   -0.1000   2.0000   1.0080   2.0000   0.0000   1.0000  -0.1000   6.0000 

     10.0000   2.5000   4.0000   0.0000   0.0000   8.5000   1.5000   0.0000 

     -0.1000   0.0000  -2.3700   8.7410  13.3640   0.6690   0.9745   0.0000 

    -11.0000   2.7466   1.0338   6.2998   2.8793   0.0000   0.0000   0.0000 

 6      ! Nr of bonds; Edis1;LPpen;n.u.;pbe1;pbo5;13corr;pbo6       

                         pbe2;pbo3;pbo4;n.u.;pbo1;pbo2;ovcorr                    

  1  1 142.9877 117.7932  70.0184   0.2152  -1.0820   1.0092  50.0568   0.1436 

         0.1120  -0.1904   8.5003   1.0000  -0.0966   5.9567   1.0000   0.0000 

  1  2 167.5082   0.0000   0.0000  -0.4457   0.0000   1.0000   6.0000   0.6385 

        18.9826   1.0000   0.0000   1.0000  -0.0093   8.5218   0.0000   0.0000 
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  2  2 187.8546   0.0000   0.0000  -0.3116   0.0000   1.0000   6.0000   0.6810 

         8.6056   1.0000   0.0000   1.0000  -0.0186   5.7036   0.0000   0.0000 

  1  3  87.2046  87.2719   0.0000   0.6389  -0.5211   1.0000  18.9617   0.3999 

         3.3394  -0.0684  14.3527   1.0000  -0.2034   7.1462   1.0000   0.0000 

  2  3 156.4418   0.0000   0.0000  -0.4687  -0.3000   1.0000  25.0000   0.5711 

         4.9151   0.0000   0.0000   1.0000  -0.0448   5.0368   1.0000   0.0000 

  3  3  95.8586   0.0000   0.0000   0.4809  -0.2500   1.0000  25.0000   0.4061 

         0.4195  -0.2000  15.0000   1.0000  -0.1125   5.2754   1.0000   0.0000 

  3    ! Nr of off-diagonal terms; Ediss;Ro;gamma;rsigma;rpi;rpi2    

  1  2   0.0456   1.7209  10.4263   1.0384  -1.0000  -1.0000 

  1  3   0.1479   1.6161  10.0027   1.5561   1.2444  -1.0000 

  2  3   0.0493   1.5271  10.7353   1.1092  -1.0000  -1.0000 

 11   ! Nr of angles;at1;at2;at3;Thetao,o;ka;kb;pv1;pv2;val(bo)      

  1  1  1  77.0860  49.1556   0.7273   0.0000   0.0933  15.5317   1.0400 

  1  1  2  70.3831  11.5011   7.4039   0.0000   0.0337   0.0000   1.0400 

  2  1  2  69.7271  12.9817   2.0676   0.0000   0.0839   0.0000   1.0400 
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  1  2  2   0.0000   0.0000   6.0000   0.0000   0.0000   0.0000   1.0400 

  1  2  1   0.0000   3.2164   7.2937   0.0000   0.0000   0.0000   1.0400 

  2  2  2   0.0000  27.9213   5.8635   0.0000   0.0000   0.0000   1.0400 

  2  3  2  65.0000  25.0000   2.0000   0.0000   2.0000   0.0000   1.0400 

  1  1  3  61.5194  22.1710   1.6392   0.0000   2.0969   0.0000   1.0400 

  1  3  3  68.9652  20.0561   0.9409   0.0000   0.4993   0.0000   1.0400 

  3  1  3  76.7750  21.9876   0.9829   0.0000   0.1046   0.0000   1.0400 

  1  3  1   0.0000  23.2250   1.0000   0.0000   1.0000   0.0000   1.0400 

  6    ! Nr of torsions;at1;at2;at3;at4;;V1;V2;V3;V2(BO);vconj;n.u;n 

  1  1  1  1   0.0000  35.6556   0.2614  -6.3913  -1.7021   0.0000   0.0000 

  1  1  1  2   0.0000  61.9992   0.3134  -6.6967  -1.8570   0.0000   0.0000 

  2  1  1  2   0.0000  46.5929   0.3206  -5.5976  -1.0363   0.0000   0.0000 

  0  1  2  0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000 

  0  2  2  0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000 

  0  1  1  0   0.0000  12.4562   0.0000  -3.6133  -1.2327   0.0000   0.0000 
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Machine Learning decision tree for 100 o-carborane at 600eV 

=== Run information ===  

  

Scheme:       weka.classifiers.trees.M5P -M 4.0 -num-decimal-places 4  

Relation:     bk16-weka.filters.unsupervised.attribute.Remove-R1  

Instances:    100500  

Attributes:   9  

              B  

              BH  

              BC  

              C  

              B2  

              H2  

              BCH  

              B2C  

              H  

Test mode:    10-fold cross-validation  

  

=== Classifier model (full training set) ===  

  

M5 pruned model tree:  

(using smoothed linear models)  

  

B <= 183.5 :   

|   H2 <= 32.5 :   

|   |   BCH <= 6.5 : LM1 (10930/1.101%)  

|   |   BCH >  6.5 : LM2 (9429/2.514%)  

|   H2 >  32.5 :   

|   |   C <= 14.5 : LM3 (9334/2.042%)  

|   |   C >  14.5 : LM4 (12045/2.575%)  

B >  183.5 :   

|   B <= 385.5 :   

|   |   B <= 270.5 : LM5 (9425/2.659%)  

|   |   B >  270.5 : LM6 (11496/1.709%)  

|   B >  385.5 :   

|   |   B <= 527.5 : LM7 (20692/2.106%)  

|   |   B >  527.5 : LM8 (17149/2.068%)  

  

LM num: 1  

H =   

1.5426 * B   

+ 0.8425 * BH   

+ 0.0021 * BC   

+ 0.001 * C   

+ 0.0061 * H2   
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+ 0.0133 * BCH   

+ 0.0012 * B2C   

+ 0.6335  

  

LM num: 2  

H =   

0.0017 * B   

+ 1.7998 * BH   

+ 0.0021 * BC   

+ 0.001 * C   

+ 2.2504 * H2   

+ 0.015 * BCH   

+ 4.9219 * B2C   

+ 13.3895  

  

LM num: 3  

H =   

1.644 * B   

+ 1.5168 * BH   

+ 1.2578 * BC   

+ 0.0004 * C   

+ 0.0012 * H2   

+ 0.002 * BCH   

+ 0.0022 * B2C   

+ 19.4005  

  

LM num: 4  

H =   

1.4436 * B   

+ 0.7572 * BH   

+ 2.2683 * BC   

+ 0.0005 * C   

+ 0.0012 * H2   

+ 0.002 * BCH   

+ 0.0022 * B2C   

+ 130.586  

  

LM num: 5  

H =   

1.1937 * B   

+ 0.0002 * BH   

+ 0.0004 * BC   

- 0 * C   

+ 0.0006 * H2   

+ 0.0007 * BCH   

+ 0.0003 * B2C   
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+ 397.3597  

  

LM num: 6  

H =   

0.5827 * B   

+ 0.0002 * BH   

+ 0.0004 * BC   

- 0 * C   

- 1.9897 * H2   

+ 0.0007 * BCH   

+ 0.0003 * B2C   

+ 706.0909  

  

LM num: 7  

H =   

0.5943 * B   

+ 0.0002 * BH   

+ 0.0004 * BC   

- 0 * C   

+ 0.0005 * H2   

+ 0.0007 * BCH   

+ 0.0003 * B2C   

+ 595.0817  

  

LM num: 8  

H =   

0.5994 * B   

+ 0.0002 * BH   

+ 0.0004 * BC   

- 0 * C   

+ 0.0005 * H2   

+ 0.0007 * BCH   

+ 0.0003 * B2C   

+ 593.7369  

  

Number of Rules : 8  

  

Time taken to build model: 1.18 seconds  

  

=== Cross-validation ===  

=== Summary ===  

  

Correlation coefficient                  0.9998  

Mean absolute error                      5.1581  

Root mean squared error                  6.6076  

Relative absolute error                  1.9044 %  
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Root relative squared error              2.145  %  

Total Number of Instances           100500       

  

  

Machine Learning decision tree for 800 o-carborane at 600eV 

=== Run information ===  

  

Scheme:       weka.classifiers.trees.M5P -M 4.0 -num-decimal-places 4  

Relation:     Book211-weka.filters.unsupervised.attribute.Remove-R1  

Instances:    88974  

Attributes:   9  

              BH3  

              B7H4  

              B3CH5  

              BCH2  

              H2  

              B2CH3  

              BH2  

              H  

              B2CH2  

Test mode:    10-fold cross-validation  

  

=== Classifier model (full training set) ===  
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M5 pruned model tree:  

(using smoothed linear models)  

  

BH3 <= 209.5 :   

|   BH3 <= 105.5 :   

|   |   BH2 <= 48.5 :   

|   |   |   BH3 <= 8.5 : LM1 (2716/1.498%)  

|   |   |   BH3 >  8.5 :   

|   |   |   |   BH3 <= 16.5 : LM2 (1015/2.047%)  

|   |   |   |   BH3 >  16.5 : LM3 (1243/2.564%)  

|   |   BH2 >  48.5 :   

|   |   |   BH3 <= 65.5 : LM4 (3368/2.724%)  

|   |   |   BH3 >  65.5 : LM5 (3983/3.059%)  

|   BH3 >  105.5 :   

|   |   BH3 <= 166.5 :   

|   |   |   BH3 <= 141.5 : LM6 (4580/3.134%)  

|   |   |   BH3 >  141.5 : LM7 (3195/1.529%)  

|   |   BH3 >  166.5 :   

|   |   |   H <= 151.5 : LM8 (3662/2.602%)  

|   |   |   H >  151.5 : LM9 (7458/1.66%)  

BH3 >  209.5 : LM10 (57754/3.433%)  

  

LM num: 1  

H2 =   

0.0164 * BH3   

+ 0.001 * B2CH3   

+ 0.0057 * BH2   

+ 0.1105 * H   

+ 0.0013 * B2CH2   

- 1.6721  

  

LM num: 2  

H2 =   

0.0426 * BH3   

+ 0.001 * B2CH3   

+ 0.0112 * BH2  

+ 0.3092 * H   

+ 0.0013 * B2CH2   

- 32.2573  

  

LM num: 3  

H2 =   

2.3019 * BH3   

+ 0.001 * B2CH3   

+ 0.9756 * BH2   

+ 0.0006 * H   
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+ 0.0013 * B2CH2   

- 40.003  

  

LM num: 4  

H2 =   

0.8958 * BH3   

- 0.0984 * B2CH3   

+ 0.894 * BH2   

- 0.0001 * H   

+ 0.0043 * B2CH2   

+ 10.9239  

  

LM num: 5  

H2 =   

1.0792 * BH3   

+ 0.0028 * B2CH3   

+ 0.0048 * BH2  

- 0.0001 * H   

+ 1.2349 * B2CH2   

+ 66.0366  

  

LM num: 6  

H2 =   

0.5317 * BH3   

- 0.0002 * B2CH3   

+ 0.0011 * BH2   

- 0.614 * H   

- 0.0008 * B2CH2   

+ 330.1513  

  

LM num: 7  

H2 =   

0.0049 * BH3   

- 0.0002 * B2CH3   

+ 0.0011 * BH2   

- 0.6031 * H   

- 0.0008 * B2CH2   

+ 404.2896  

  

LM num: 8  

H2 =   

1.3494 * BH3   

- 0.0002 * B2CH3   

+ 0.0011 * BH2   

- 1.1575 * H   

- 0.0024 * B2CH2   
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+ 221.0257  

  

LM num: 9  

H2 =   

0.0024 * BH3   

- 0.0002 * B2CH3   

+ 0.0011 * BH2   

- 0.532 * H   

+ 0.3576 * B2CH2   

+ 392.5987  

  

LM num: 10  

H2 =   

0.5007 * BH3   

- 0.6895 * B7H4   

+ 0.0002 * B2CH3   

+ 0.0002 * BH2   

- 0.2527 * H   

+ 0.0004 * B2CH2   

+ 287.1497  

  

Number of Rules : 10  

  

Time taken to build model: 0.94 seconds  

  

=== Cross-validation ===  

=== Summary ===  

  

Correlation coefficient                  0.9995  

Mean absolute error                      2.9605  

Root mean squared error                  3.7059  

Relative absolute error                  3.2097 %  

Root relative squared error              3.1227 %  

Total Number of Instances            88974       
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