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ABSTRACT 

Embedded Atom Method (EAM) and Modified-EAM (MEAM) interatomic potentials were 
developed for zirconium diboride (ZrB2). The EAM and “Reference Free” (RF) version of the 
Modified Embedded Atom Method (RFMEAM) potentials have been fitted by utilizing Density 
Functional Theory (DFT)-based datasets including lattice deformations and high-temperature ab-
initio molecular dynamics (AIMD) simulation results. The occupancies of phonons for acoustic 
phonon modes from the density functional theory calculation shows that these modes of 
vibration, mostly due to heavier mass element (Zr), which occur below 8.711 𝑇𝑇𝑇𝑇𝑇𝑇, while a slight 
underestimation to that of DFT calculation predicted by EAM below 8.439 𝑇𝑇𝑇𝑇𝑇𝑇 and an 
overestimation predicted by RF-MEAM below 8.880 𝑇𝑇𝑇𝑇𝑇𝑇. Consequently, the frequency shifting 
of acoustic phonon modes for heavier mass element (Zr) on EAM and RF-MEAM potential 
models results in a similar frequency shifts on optical modes which is mostly due to lighter 
element (B); the frequency range for optical modes is 12.013 − 22.733 𝑇𝑇𝑇𝑇𝑇𝑇 for EAM and 
12.616 − 23.957 𝑇𝑇𝑇𝑇𝑇𝑇 for RF-MEAM models compared to the frequency range of 12.181 −
23.124 𝑇𝑇𝑇𝑇𝑇𝑇 by DFT calculation. In addition, the bulk modulus of ZrB2 for EAM and RF-
MEAM potential models are 263.81 𝐺𝐺𝐺𝐺𝐺𝐺 and 254.78 𝐺𝐺𝐺𝐺𝐺𝐺 compared to that of ground state 
DFT calculation of 238 𝐺𝐺𝐺𝐺𝐺𝐺. Overall, the results showed that the applicability of EAM and RF-
MEAM to modeling the interatomic potentials of the diboride system.  
 
 
KEYWORDS:  interatomic potential, molecular dynamics, thermal properties, zirconium 
diboride, ultra-high temperature ceramics 
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INTRODUCTION 

 

Literature Review 

Zirconium diboride is an ultra-high temperature composite (UHTC) of zirconium and 

boron that has many aerospace applications in extreme environments. The melting points of 

ceramics based on transition-metal borides, nitrides, and carbides are extremely high. High 

melting points (> 3000°𝐶𝐶), high thermal and electrical conductivity, chemical inertness against 

molten metals, and excellent thermal shock resistance are all characteristics of zirconium 

diboride[1-3]. Due to these fascinating properties zirconium diboride has wide range of 

applications in thermal protective structures for leading-edge components on hypersonic reentry 

space vehicle propulsion systems, furnace elements, refractory crucibles, and plasma-arc 

electrodes[1, 4]. Among the ultrahigh temperature ceramics, zirconium diboride has the lowest 

theoretical density, making it a desirable substrate for aerospace applications[1, 2, 4]. 

The synthesis of several ultrahigh temperature composites including zirconium diboride 

date back to late 1800, however, due to the lack of potential usage and technological 

advancement, its research interest only significantly grew during the space race in late 1950’s[5-

7]. In the United States, several assessment of ultrahigh temperature ceramics matrix composites 

of borides, nitrides, oxides and silicides etc. have been conducted over 1960’s to be used for gas 

turbines engine that withstand temperature of 1650°C in oxidizing environment[8]. The 

composites of oxides were mostly investigated because of its high resistant to oxidation but due 

to higher creep rates in polycrystalline oxide composites, other ceramic composites of borides, 

nitrides and silicides were explored[8]. In 1963, first major effort was carried out for composites 

of diboride with an aim in establishing the understanding of physical, thermodynamic and 
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oxidation characteristics of diboride in terms of composition, temperature and oxidation 

response[8, 9]. 

While many experimental studies have focused on zirconium diboride, relatively little 

computational modelling has been done on the atomistic scale. This is mainly due to lack of 

accurate interatomic potentials for ZrB2, which is in stark contrast to zirconium (Zr) metal. For 

metals like Zr, the lack of angular dependence for the metallic bonds, especially in a highly 

coordinated environment, has enabled development of many interatomic potential types, such as 

the Embedded Atom Method/Finnis-Sinclair (EAM/FS)[71-73]. The EAM approach, has been 

extended from the FS potential for Hf and Zr from William and Massobrio to become the first 

interatomic potential developed for ZrB2 and HfB2[64]. Daw et.al reparametrized and developed 

Tersoff style potential for the two diboride compounds by converting the FS potentials of 

elemental zirconium and hafnium into the 3-body Tersoff interatomic potential form[64, 74]. In 

their approach, the Tersoff style potential was chosen to address the relatively high degree of 

covalency in the hexagonal sheets of boron atoms that extend along the basal planes as well as 

the out-of-plane Zr-B and Hf-B bonds[64]. However, the much lower coordination number 

involved in the diborides that results from the presence of directional/covalent bonding increases 

the significance of angular dependency of the interatomic bonding, which cannot simply be 

ignored for ZrB2 and HfB2. In fact, as also observed by Daw et al., this has resulted in an 

inaccurate calculation of the elastic constants[64]. Daw et al. indicate that this might be a 

ramification of choosing FS potentials as the starting point for reparameterizations since they are 

better suited for non-directional metallic bonds. Recently, a ReaxFF type interatomic potential 

was developed for ZrB2 to study bond formation, dissociation, diffusion-based processes, and 

oxidation. However, the potential placed more emphasis in modeling chemical reactions at the 
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surface and has not been fully tested for bulk mechanical properties[75-77]. Most recently, 

Zhang demonstrated a machine learning algorithm to generate a spectral neighbor analysis 

potential (SNAP) potential for ZrB2[78]. The SNAP potential employed several types of 

molecular dynamics snapshots, crystalline lattice and aspect-ratio variations, and deformation 

datasets for training. 

 

Structure of Zirconium Diboride 

Zirconium diboride is a transition metal diboride that has hexagonal crystal structure with 

the lattice parameter 𝐺𝐺 = 3.18 Å and 𝑐𝑐 = 3.547 Å consisting of one zirconium and two boron 

atoms in a unit cell. The transition metal (zirconium) and boron are arranged as an alternating 

zirconium and boron layer with P6/mmm symmetry. Each of the zirconium atom in zirconium 

plane is surrounded by 6 other zirconium atoms and 12 out-of-plane boron atoms. The zirconium 

atoms in a zirconium layer have metallic bonding. In the boron layer, each boron atom is 

surrounded by three boron atoms forming 𝑠𝑠𝑝𝑝2 bond (covalent bond) in the plane. Additionally, 

the boron atom is surrounded by six zirconium atoms. Considering the nearest neighbor, first, 

second and third nearest neighbor for zirconium are at 2.547 Å (out of Zr plane), 3.173 Å (in the 

Zr plane) and 4.069 Å (out of Zr plane). Similarly, first, second and third nearest neighbor for 

boron are at 1.832 Å (in the B plane), 2.547 Å (out of B plane) and 3.664 Å (in the B plane). The 

structure representing zirconium diboride is given below in Figure 1. 
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Figure 1: Eight-unit cells (2x2x2) of zirconium diboride expanded along a, b and c orientation. 
Here, green circle represents zirconium atom and blue circle represent boron atom. Each of the 
unit cells in this figure represent different perspective of the 2x2x2 unit cell of zirconium 
diboride. 
 

Similarly, the transition metal (TM) zirconium in zirconium layer is exactly above the 

midpoint of hexagonal boron ring in boron layer. For the position of zirconium and boron atom 

in a unit cell, the zirconium atom is positioned at (0,0,0) and two boron atoms are positioned at 

(1/3, 2/3, ½) and (2/3, 1/3, ½). The zirconium metal could be replaced by other transition metal 

(TM) like Hf, Ti, Va, Nb and yet still retains the same structure (P6/mmm) as that of zirconium 

diboride[2]. However, the lattice parameter is changed in accordance with the size of transition 

metal being replaced for zirconium atom. For example, replacing zirconium atom by hafnium 

atom would lead in the increase of lattice parameter 𝐺𝐺 (due to Hf-Hf interaction) and 𝑐𝑐 (due to 

Hf-B interaction). The variation of lattice parameter 𝐺𝐺 is characterized by transition metal (TM)- 

transition metal (TM) interaction and the lattice parameter 𝑐𝑐 is characterized by TM-B 
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interaction. Due to TM-TM interaction along the plane and TM-B interaction out of the plane, 

the variations in lattice parameter 𝐺𝐺 and 𝑐𝑐 in changing transition metal are different, usually 𝑐𝑐 

increases or decreases more than 𝐺𝐺[2].The structural integrity in ZrB2 is related to Zr-Zr, Zr-B 

and B-B interaction or bond strength. The strength, hardness and stiffness in ZrB2 is contributed 

by B-B bond strength and Zr-B bonds formed by zirconium donating two electrons and each 

boron atoms in unit cell sharing one electron contributes to the melting temperature[2]. Also, 

remaining free valence electrons in Zr-Zr plane contributes for the thermal and electrical 

conductivities in ZrB2[2].  

 

Thermal Properties of Zirconium Diboride 

The unconventional structure of zirconium diboride and its unique properties at the 

atomic and electronic level contributes to the excellent thermal properties. Several works on 

zirconium diboride reports the melting point greater than 3000°𝐶𝐶[1, 2, 4, 10]. Being anisotropic 

material, zirconium diboride has different thermal properties along lattice direction 𝐺𝐺 and 𝑐𝑐. For 

instance, the thermal expansion of ZrB2 is different in the different lattice directions. The thermal 

expansion coefficient measures the rate at which the lattice expands by increasing the 

temperature. This anisotropic behavior on thermal expansion have been extensively studied. 

Previous work by Belikov reported the thermal expansion of polycrystalline zirconium diboride 

by X-ray diffraction along 𝐺𝐺 to be 6.63 ∗ 10−6 /𝐾𝐾 and that along 𝑐𝑐 to be 7.35 ∗ 10−6 /𝐾𝐾 for 

temperature range 300 − 1070 𝐾𝐾[11]. Keihn also reported similar expansion coefficient for 

zirconium diboride powder sample along 𝐺𝐺 to be 6.6 ∗ 10−6 /𝐾𝐾 and along 𝑐𝑐 to be 6.78 ∗

10−6 /𝐾𝐾 for temperature range 300 − 1023𝐾𝐾 and also, different expansion from temperature 

range 1027 − 2073𝐾𝐾 to be 8.62 ∗ 10−6/𝐾𝐾 and 7.65 ∗ 10−6/𝐾𝐾 for 𝐺𝐺 and 𝑐𝑐[12]. Further, 
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experimental study by Lonnberg modelled the thermal expansion coefficient for temperature 

range 300 − 1500𝐾𝐾 along 𝐺𝐺 by 𝛼𝛼𝑎𝑎 = 4.397 ∗ 10−6 + 4.494 ∗ 10−9 𝑇𝑇 and on 𝑐𝑐 by 𝛼𝛼𝑐𝑐 = 4.682 ∗

10−6 + 4.190 ∗ 10−9𝑇𝑇[13]. All of the study were for either polycrystalline or powder sample. 

The thermal expansion coefficient measurement on single crystal ZrB2 sample Okamoto also 

reported similar results of expansion along 𝐺𝐺 to be 6.66 ∗ 10−6/𝐾𝐾 and along 𝑐𝑐 to be 6.93 ∗

10−6/𝐾𝐾. Nonetheless, the thermal expansion for broad range of temperature for different 

polycrystalline sample is given below in Figure 2. 

 

 

Figure 2: Thermal expansion coefficient for micro crystalline and nano crystalline zirconium 
diboride sample along lattice direction 𝐺𝐺 and 𝑐𝑐 obtained from D.Y. Kovalev[11]. In X-axis is the 
temperature in Kelvin and Y-axis is the thermal expansion coefficient in per Kelvin. 
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Similarly, the ability of matter to conduct heat is known as thermal conductivity. Heat is 

transferred in solids by conduction, which is caused by electrons and phonons. The propagation 

of elastic waves, also known as phonons, is responsible for the transfer of heat energy between 

atoms in ceramics at low temperatures. The room temperature thermal conductivity of ZrB2 is 

95 𝑊𝑊/𝑚𝑚𝐾𝐾[14, 15]. Experimental studies have shown a large variation in thermal conductivity of 

zirconium diboride. Variations in manufacturing technique, impurities, contaminants, and grain 

sizes have all contributed to variations in thermal conductivity[16, 17]. The thermal conductivity 

of ZrB2 has been stated to be as low as 38 W/mK and as high as 95 W/mK for ZrB2 from 

different techniques[18, 19]. The mechanism by which phonons contribute to the thermal 

conductivity of ZrB2 type ceramics is close to that of other covalent and ionic bonded ceramics. 

In diborides, the phonon contribution to thermal conductivity is mostly insignificant in 

comparison to the electron contribution. At room temperature, the phonon contribution is 

normally 1/3 that of the electron contribution, decreasing to 1/8 at 1000°𝐶𝐶[16]. The metallic 

bonding in the ZrB2 crystal structure of diborides contributes to electron contribution to thermal 

conductivity. Electron contribution to thermal conductivity, is generated by free electron motion 

in the close packed layers of zirconium atoms and can be obtained theoretically by Wiedemann-

Lorenz-Franz law as 𝜆𝜆𝑒𝑒𝑒𝑒 = 𝐿𝐿𝐿𝐿𝑇𝑇 where, 𝐿𝐿 is Lorenz number and 𝐿𝐿 the electrical conductivity[20, 

21]. Several works have reported the thermal conductivity due to electron contribution is greater 

than 66% of total thermal conductivity of zirconium diboride[16, 22]. The thermal conductivity 

in ZrB2 for wide range of temperature is given below in Figure 3. 
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Figure 3: The electron (open circles) and phonon (triangles) contributions to ZrB2's overall 
thermal conductivity (squares) from Zhang[14]. The horizontal axis (x-axis) is temperature in 
Kelvin and vertical axis (y-axis) is thermal conductivity measured in 𝑊𝑊/𝑚𝑚𝑚𝑚. 
 

Thermal Properties in a Crystalline Solid 

The thermal properties in a crystalline solid structure are related to the electrons and 

lattice vibration (atomic vibration)[23]. At the ground state, atoms are held perfectly in static 

positions through stiff chemical bonds as shown below in Figure 4[23]. These chemical bonds 

are forces due to potential energy between atoms that hold them together in a crystal[23]. 

However, as temperature increases, the kinetic energy of atoms in a crystal increases and 
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consequently the atomic vibration increases. In a crystalline solid structure, the atoms vibrate 

within the crystal and these atomic vibration dictates many thermal properties like thermal 

expansion, specific heat capacity, lattice thermal conductivity and other thermodynamical 

parameters including entropy and free energy[23]. 

 

Figure 4: Representation of lattice vibration in a simple diatomic chain of unit cell length 𝐺𝐺. 
Here, spring represents the chemical bonds (forces between atoms) and 𝑢𝑢′𝑠𝑠 are small atomic 
displacement around equilibrium.  
 

Now, in the study of lattice vibration, the atomic motions are explained in terms of 

phonons, which are harmonic travelling waves that can be characterized by its frequency, 

amplitude and direction of travel. The phonons are dependent on forces between atoms. At low 

temperature harmonic theory of lattice vibration explains very well the thermal properties of 

crystalline solid, as pressure of gas of harmonic phonons is temperature independent because the 

frequency of phonon does not depend on the amplitude of the oscillation[24]. In the harmonic 

theory of lattice vibration, the oscillations of atoms are very small from the equilibrium sites 

which can be expressed in constructing the potential energy as[23] 

𝐸𝐸(𝑟𝑟) = 𝐸𝐸0 + 1
2!
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑟𝑟2

│𝑟𝑟=𝑟𝑟0  (𝑟𝑟 − 𝑟𝑟0)2                                    (1) 

Where, 𝐸𝐸0 is the potential energy at ground state i.e., at 0 𝐾𝐾 and the latter term in above equation 

is the potential energy due to small oscillation of atoms around equilibrium. The form of the 
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potential energy above is able to accurately explain some of the thermal properties like specific 

heat, Debye-Waller factor, thermal diffuse scattering etc. at the low temperature. However, the 

harmonic theory of lattice vibration is not able to explain other ubiquitous phenomenon like 

thermal expansion, thermal conductivity and deviation from harmonic expression for Debye-

Waller factor because these phenomenon are very significant at high temperature and since only 

small atomic vibration are taken in account but at high temperature these atomic vibration are 

considerable so anharmonic correction to energy expression which are higher order terms of 

atomic oscillation are added to essentially encompass these phenomenon[24]. The energy 

expression is then given by 

𝐸𝐸(𝑟𝑟) = 𝐸𝐸0 + 1
2!
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑟𝑟2

│𝑟𝑟=𝑟𝑟0  (𝑟𝑟 − 𝑟𝑟0)2 + 1
3!
𝜕𝜕3𝐸𝐸
𝜕𝜕𝑟𝑟3

│𝑟𝑟=𝑟𝑟0  (𝑟𝑟 − 𝑟𝑟0)3 + ⋯                            (2) 

Addition of anharmonic term in energy expression, the phonon gas acquires a finite 

temperature dependent pressure. This temperature dependent pressure explains the lattice 

thermal expansion of a crystal. From the thermodynamic expression, the linear expansion 

coefficient is given by 

𝛼𝛼 = 1
3𝑉𝑉

 �𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕
�
𝑃𝑃

= − 1
3𝑉𝑉

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝑉𝑉
�𝜕𝜕𝜕𝜕𝜕𝜕𝑉𝑉�𝜕𝜕

= 1
3𝐵𝐵

 �𝜕𝜕𝑃𝑃
𝜕𝜕𝜕𝜕
�
𝑉𝑉

                                            (3) 

Where, 𝐺𝐺,𝑇𝑇 and 𝑉𝑉 and B are the temperature, pressure, volume and bulk modulus of the given 

crystal structure. It is obvious from the above thermodynamic expression that the thermal 

expansion is related to temperature dependent pressure. Now, in crystalline solid this pressure is 

the phonon pressure acquired by atoms at the given temperature which is given by[24] 

𝐺𝐺 = 𝐺𝐺𝑝𝑝ℎ = − 𝜕𝜕
𝜕𝜕𝑉𝑉
�1
2

 ∑ ℏ𝜔𝜔𝑠𝑠(𝑚𝑚)𝑘𝑘,𝑠𝑠 � + ∑ �− ℏ𝜕𝜕𝜔𝜔𝑠𝑠(𝑘𝑘)
𝜕𝜕𝑉𝑉

� 1
𝑒𝑒𝛽𝛽ℏ𝜔𝜔𝑠𝑠(𝑘𝑘)−1𝑘𝑘,𝑠𝑠                                  (4) 

Where, 𝐺𝐺𝑝𝑝ℎ is phonon pressure, 𝜔𝜔𝑠𝑠(𝑚𝑚) is the phonon frequency in a reciprocal lattice vector 𝑚𝑚 

and 𝛽𝛽 = 1/𝑚𝑚𝐵𝐵𝑇𝑇 where, 𝑚𝑚𝐵𝐵 is Boltzmann constant and ℏ the reduced Planck’s constant. In the 
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above equation of phonon pressure, the second term i.e., the volume dependent phonon 

frequencies vanish, and the lattice thermal expansion coefficient is zero at all temperature if the 

potential energy expression has only harmonic term. From the above expression lattice thermal 

expansion is related to volume and temperature dependent phonon pressure. 

𝛼𝛼 = 1
3𝐵𝐵
∑ �− 𝜕𝜕ℏ𝜔𝜔𝑠𝑠(𝑘𝑘)

𝜕𝜕𝑉𝑉
� 𝜕𝜕
𝜕𝜕𝜕𝜕
� 1
𝑒𝑒𝛽𝛽ℏ𝜔𝜔𝑠𝑠(𝑘𝑘)−1

�𝑘𝑘,𝑠𝑠                                                 (5) 

Similarly, other thermodynamic properties i.e., the specific heat capacity is also a 

function of phonons. The specific heat capacity at constant volume is given by sum of individual 

phonon modes as  

𝐶𝐶𝑉𝑉 = ∑ �ℏ𝜔𝜔𝑠𝑠(𝑘𝑘)
𝑉𝑉

�𝑘𝑘,𝑠𝑠
𝜕𝜕
𝜕𝜕𝜕𝜕
� 1
𝑒𝑒𝛽𝛽ℏ𝜔𝜔𝑠𝑠(𝑘𝑘)−1

�                                         (6) 

Here, the distinction can be made of specific heat capacity at low and high temperature from the 

temperature derivative of phonon population in above equation. At low temperature, according to 

Bose-Einstein equation the phonon population (𝑛𝑛 = �𝑒𝑒𝛽𝛽ℏ𝜔𝜔𝑠𝑠(𝑘𝑘) − 1�
−1

)  only contains 

contributions from the acoustic modes so the exact formulation of density of states can be 

evaluated simply by considering a spherical shell volume in radius 𝑚𝑚 and 𝑚𝑚 + 𝑑𝑑𝑚𝑚 in reciprocal 

space and provided that the acoustic modes follow linear dependence on wave vector (𝜔𝜔 = 𝑐𝑐𝑚𝑚), 

where 𝑐𝑐 is velocity of sound[24]. 

𝑔𝑔(𝜔𝜔) = 3𝑉𝑉
2𝜋𝜋2𝑐𝑐3

𝜔𝜔2                                                           (7) 

The validity of the above relation holds within the theory of harmonic lattice vibration. This 

density of states contributes to the total energy of phonons and further specific heat capacity of 

ordered crystalline solid at low temperature. Thus, the heat capacity is written in the form 

𝐶𝐶𝑉𝑉 = 2𝑉𝑉𝜋𝜋2𝑘𝑘𝐵𝐵

5�𝑐𝑐ℏ𝑘𝑘𝐵𝐵
�
3  𝑇𝑇3 = 𝑁𝑁 12𝜋𝜋4𝑘𝑘𝐵𝐵

5
� 𝜕𝜕
𝜃𝜃𝐷𝐷
�
3

;𝜃𝜃𝐷𝐷 = �𝑐𝑐ℏ
𝑘𝑘𝐵𝐵
� �6𝜋𝜋

2𝑁𝑁
𝑉𝑉
�
1
3                                      (8) 
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Where, 𝜃𝜃𝐷𝐷 is the Debye temperature. In what follows from the above equation that the heat 

capacity at low temperature varies as 𝑇𝑇3. This relation establishes the fact that in metals the 

linear variation of heat capacity with temperature can be extracted from the phonon contribution 

to the heat capacity. Also, deeper understanding of thermodynamics of amorphous materials not 

following 𝑇𝑇3 law for specific heat can be understood taking this as a reference[24].  

 

Density Functional Theory 

As I discussed above in section thermal properties of crystalline solid that to successfully 

describe the thermal properties at least on the context of crystalline solid one would essentially 

need to account for the anharmonic corrections in the potential energy terms. Now, up to this 

point only lattice vibration i.e., the vibration due to atoms are considered to discuss the thermal 

properties of crystalline solid. However, the state of electron also plays significant role in 

determining the thermal properties in a crystalline solid. In the formalism of density functional, 

the ground state and other properties for the system of electrons can be determined from electron 

distribution alone. In 1927, Hartree devised a method to evaluate approximate wavefunction and 

energies for atoms and in the same year Thomas and Fermi proposed a statistical model to 

compute the energy of atoms by approximating the distribution of electrons in an atom[25]. The 

key idea here was to approximate the kinetic energy expression in Hamiltonian (total energy) by 

the functional of electron density and add two classic terms of nuclear-electron and electron-

electron interactions (these can be represented in terms of electron density) to compute the atom 

energy. Later, Dirac added the exchange energy correlation functional to account for the Pauli 

principle. In 1964, Hohenberg and Kohn finally formulated the density functional theory that 

turned complicated many electron wavefunction which contains 3𝑁𝑁 (𝑁𝑁 being number of 
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electrons for 3 spatial variables) variables into 3 spatial variables[26]. The reduction of this many 

body problems came only year later by Kohn and Sham by simplifying multi-electron problem 

into a problem of non-interacting electrons in an effective potential which includes interaction 

between electrons, the exchange and correlation interactions[25]. The total energy of an 𝑁𝑁𝑒𝑒𝑒𝑒 

electrons and 𝑁𝑁𝑎𝑎𝑎𝑎 atoms is given by the following equation 

𝑇𝑇 = 𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑒𝑒 + 𝑉𝑉𝑁𝑁−𝑁𝑁 + 𝑉𝑉𝑒𝑒−𝑒𝑒 + 𝑉𝑉𝑁𝑁−𝑒𝑒                                          (9) 

Herein, 𝑇𝑇𝑁𝑁 represents the kinetic energy for the nuclei, 𝑇𝑇𝑒𝑒 the kinetic energy for electrons, 𝑉𝑉𝑁𝑁−𝑁𝑁 

the potential energy for nucleus-nucleus interaction, 𝑉𝑉𝑒𝑒−𝑒𝑒 the potential energy for electron-

electron interaction, 𝑉𝑉𝑒𝑒−𝑒𝑒 the potential energy for nucleus-electron interaction.  Each representing 

energy in the above given equation are 

𝑇𝑇𝑁𝑁 = −�
ℏ2

2𝑀𝑀𝛼𝛼

𝑁𝑁𝑎𝑎𝑎𝑎

𝛼𝛼

∇2;𝑇𝑇𝑒𝑒 = −�
ℏ2

2𝑚𝑚
∇2; 

𝑁𝑁𝑒𝑒𝑒𝑒

𝑖𝑖=1

𝑉𝑉𝑁𝑁−𝑁𝑁 =
1
2
� �

𝑍𝑍𝛼𝛼𝑍𝑍𝛽𝛽𝑒𝑒2

4𝜋𝜋𝜖𝜖0�𝑅𝑅𝛼𝛼 − 𝑅𝑅𝛽𝛽�

𝑁𝑁𝑎𝑎𝑎𝑎

(𝛼𝛼≠𝛽𝛽)=1

𝑁𝑁𝑎𝑎𝑎𝑎

𝛼𝛼=1

;𝑉𝑉𝑒𝑒−𝑒𝑒

=  
1
2
� �

𝑒𝑒2

4𝜋𝜋𝜖𝜖0�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�

𝑁𝑁𝑒𝑒𝑒𝑒

(𝑖𝑖≠𝑗𝑗)=1

𝑁𝑁𝑒𝑒𝑒𝑒

𝑖𝑖=1

;𝑉𝑉𝑁𝑁−𝑒𝑒 =  −��
𝑍𝑍𝛼𝛼𝑒𝑒2

4𝜋𝜋𝜖𝜖0|𝑅𝑅𝛼𝛼 − 𝑟𝑟𝑖𝑖|

𝑁𝑁𝑎𝑎𝑎𝑎

𝛼𝛼=1

𝑁𝑁𝑒𝑒𝑒𝑒

𝑖𝑖=1

 

According to Hohenberg-Kohn, the Hamiltonian can be written in terms of electron density 

as[27]  

𝐸𝐸𝐻𝐻𝐻𝐻[𝑛𝑛] = 𝑇𝑇[𝑛𝑛] + 𝐸𝐸𝑖𝑖𝑖𝑖𝑎𝑎[𝑛𝑛] + ∫ 𝑑𝑑𝑟𝑟𝑉𝑉𝑒𝑒𝑒𝑒𝑎𝑎(𝑟𝑟)𝑛𝑛(𝑟𝑟) + 𝐸𝐸𝐼𝐼𝐼𝐼 

= 𝐹𝐹𝐻𝐻𝐻𝐻[𝑛𝑛] + ∫ 𝑑𝑑𝑟𝑟 𝑉𝑉𝑒𝑒𝑒𝑒𝑎𝑎(𝑟𝑟)𝑛𝑛(𝑟𝑟) + 𝐸𝐸𝐼𝐼𝐼𝐼                                          (10) 

Here, the kinetic energy 𝑇𝑇𝑁𝑁 and 𝑇𝑇𝑒𝑒 are fused to written in the expression 𝑇𝑇[𝑛𝑛] 𝑀𝑀𝛼𝛼 ,𝑚𝑚,𝑅𝑅𝛼𝛼 ,𝑅𝑅𝛽𝛽 , 𝑟𝑟𝑖𝑖 

are the mass of nucleus, mass of electron, position of 𝛼𝛼 nucleus, position of 𝛽𝛽 nucleus and 

position of electron. The core-core repulsion is represented as external potential by the term 

∫ 𝑑𝑑𝑟𝑟 𝑉𝑉𝑒𝑒𝑒𝑒𝑎𝑎(𝑟𝑟)𝑛𝑛(𝑟𝑟) and any other term accounting Hamiltonian in the energy 𝐸𝐸𝐼𝐼𝐼𝐼. By the 

Hohenberg-Kohn assumption that the system is still interacting meaning that the interaction 
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between nucleus-nucleus and electron-electron are still part of Hamiltonian formulation. It is still 

3𝑁𝑁(= 𝑁𝑁𝑒𝑒𝑒𝑒 + 𝑁𝑁𝑎𝑎𝑎𝑎) number of variables to account for. Since, considering the system as non-

interacting the coupled Schrodinger equation of 3N variable can be now separated into 3 

variables. This is because each energy for the electron and nucleus can be added to get the total 

energy. The Hamiltonian now then be written as[28]: 

𝐸𝐸𝐻𝐻𝐾𝐾 = 𝑇𝑇𝑠𝑠[𝑛𝑛] + ∫ 𝑑𝑑𝑟𝑟 𝑉𝑉𝑒𝑒𝑒𝑒𝑎𝑎(𝑟𝑟)𝑛𝑛(𝑟𝑟) + 𝐸𝐸𝐻𝐻𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒[𝑛𝑛] + 𝐸𝐸𝐼𝐼𝐼𝐼 + 𝐸𝐸𝑋𝑋𝑋𝑋[𝑛𝑛]                                    (11) 

Where, the Hartree energy is given by: 

𝐸𝐸𝐻𝐻𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒[𝑛𝑛] = 1
2
∫ 𝑑𝑑𝑟𝑟 𝑑𝑑𝑟𝑟

′𝑖𝑖(𝑟𝑟)𝑖𝑖�𝑟𝑟′�
|𝑟𝑟−𝑟𝑟′|

                                                 (12) 

Unlike energy expression 𝑇𝑇[𝑛𝑛] in Hohenberg Kohn which is interacting, the kinetic energy of 

electron and nucleus 𝑇𝑇𝑠𝑠[𝑛𝑛] in this system is non interacting and other forms of energy is 

embedded into Hartree energy 𝐸𝐸𝐻𝐻𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒[𝑛𝑛] and 𝐸𝐸𝐼𝐼𝐼𝐼. Also, energy due to spin for electron is 

considered in the energy 𝐸𝐸𝑒𝑒𝑐𝑐[𝑛𝑛], the exchange correlation energy. 

 

Ab-initio Molecular Dynamics 

The problem of motion of electron and nucleus is ab-initio molecular dynamics. This is 

the application to density functional theory to solve time evolution of electronic wave functions 

under potential energy surface. The above energy expressions from density functional theory 

constitutes the nuclear wave functions that are coupled to the electronic wave functions and are 

too complex to be solved directly. Therefore, some approximation has to be applied to the 

calculation of Hamiltonian (𝑇𝑇) that would substantially reduce the complexity in terms of 

number of variables to solve.  

Adiabatic and Born-Oppenheimer approximation assumes that the electron is very small 

compared to that of nucleus and immediately follows the nuclear motion or the potential energy 
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surface[29]. This approximation leads to immediate results for the Hamiltonian that the nucleus 

is decoupling from electrons that means the electronic and nuclear motions are separable and 

there is no exchange of energy between electrons and nuclei. Therefore, equation (9) becomes 

𝑇𝑇 = 𝑇𝑇𝑒𝑒 +  𝑉𝑉𝑒𝑒−𝑒𝑒 + 𝑉𝑉𝑖𝑖−𝑒𝑒 + 𝑉𝑉𝑖𝑖−𝑖𝑖                                         (13) 

Here, H is the Hamiltonian of a system at ground state. Now this Hamiltonian determines the 

time evolution of quantum mechanical state of electron-nucleus system Φ(𝑟𝑟,𝑅𝑅; 𝑡𝑡) through time 

dependent Schrodinger equation as 

𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝑎𝑎
Φ(𝑟𝑟,𝑅𝑅; 𝑡𝑡) = 𝑇𝑇Φ(𝑟𝑟,𝑅𝑅; 𝑡𝑡)                                     (14) 

Since, this quantum mechanical state can be decoupled to individual electronic and nuclear state 

by Born-Oppenheimer approximation as 

Φ(𝑟𝑟,𝑅𝑅; 𝑡𝑡) = Ψ(𝑟𝑟,𝑅𝑅)𝜒𝜒(𝑅𝑅; 𝑡𝑡)                                     (15) 

It is worth to mention that relative comparison has been made considering the size of 

nucleus and electron. Following the nuclear state of motion, the electronic state of motion is 

given by Ψ(𝑟𝑟,𝑅𝑅) and nuclear motion by 𝜒𝜒(𝑅𝑅; 𝑡𝑡) in above equation (15). Hence, from equation 

(14) and (15) one can solve the evolution of electronic state under this assumption using 

Hamiltonian constructed from density functional theory. The solution obtained for evolution of 

nuclear-electron system is entirely quantum mechanical up to this point and is not in the realm of 

classical molecular dynamics. Now, further assumption made by Ehrenfest states that the nuclear 

motion is semiclassical in a sense that the nuclei are relatively heavy, and a good approximation 

can be made considering the average nuclear motion instead of instantaneous nuclear motion 

which is a Newtons equation of motion[29]. This assumption leads the evolution of nuclear-

electron state in any material into the problem of classical molecular dynamics but the 

Hamiltonian or energy still from the density functional theory and thus the name ab initio 
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molecular dynamics. The equation of motion for ab initio molecular dynamics is then given 

by[29] 

𝑀𝑀𝛼𝛼
𝑑𝑑2𝑅𝑅𝛼𝛼
𝑑𝑑𝑎𝑎2

= −∇𝛼𝛼⟨Φ|𝑇𝑇|Φ⟩ (16) 

Where, 𝑀𝑀𝛼𝛼 is the mass of nucleus at 𝛼𝛼 and the operator ∇𝛼𝛼= 𝜕𝜕
𝜕𝜕𝑅𝑅𝛼𝛼

. The ⟨Φ|𝑇𝑇|Φ⟩ is bra-ket 

notation given by ⟨Φ|𝑇𝑇|Φ⟩ = ∫ 𝑑𝑑𝑟𝑟Φ∗(𝑟𝑟)𝑇𝑇Φ(𝑟𝑟).  

The construction of Born-Oppenheimer molecular dynamics is due to the approximation 

by Born-Oppenheimer and Ehrenfest[29]. In Born-Oppenheimer molecular dynamics, the 

electronic wave function is in its ground state, the orthogonality is enforced for time evolution of 

electronic wave function with Lagrange multiplier[29]. This condition is a physical requirement 

for the set of orbitals in order to be able to compute real and observable quantities[29]. The 

Lagrange multiplier has a special importance in this dynamic in a sense that the multiplier builds 

up validation of antisymmetric function of orbitals namely the wave functions associated with 

the individual electrons. The Lagrange multiplier is given by[29] 

𝐿𝐿𝐵𝐵𝐵𝐵 = 1
2
∑ 𝑀𝑀𝛼𝛼�̇�𝑅𝛼𝛼2𝛼𝛼 − ⟨Ψ0|𝑇𝑇|Ψ0⟩ + ∑ 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖,𝑗𝑗 ��ψ𝑖𝑖�ψ𝑗𝑗� − 𝛿𝛿𝑖𝑖𝑗𝑗�                                         (17) 

The first term in Lagrange multiplier is the kinetic energy of the nuclei, the second term 

corresponds to the Hamiltonian from Erhenfest, and Born-Oppenheimer approximation and the 

last term is a Lagrange function that address the orthonormality of the orbitals by introducing the 

multiplier 𝐴𝐴𝑖𝑖𝑗𝑗. The electron obeys Pauli Exclusion principle and follow Fermi-Dirac statistics. 

Thus, the electronic wave function is an antisymmetric function of its orbitals of individual 

electrons. In above equation (17), Lagrange solves the associated equation of motion from Euler-

Lagrange equation for nuclear and electronic degrees of freedom. For nuclear degrees of 

freedom, the equation of motion is given by: 
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𝑑𝑑
𝑑𝑑𝑎𝑎

𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑅𝛼𝛼

− 𝜕𝜕
𝜕𝜕𝑅𝑅𝛼𝛼

= 0                                      (18) 

Similarly, for electronic degrees of freedom, the equation of motion is given by 

𝑑𝑑
𝑑𝑑𝑎𝑎

𝛿𝛿𝜕𝜕
𝛿𝛿𝜓𝜓𝑖𝑖

∗(𝑟𝑟)
− 𝛿𝛿𝜕𝜕

𝛿𝛿𝜓𝜓𝑖𝑖
∗(𝑟𝑟)

= 0                                  (19) 

So, to sum up the nuclear equation of motion for Born-Oppenheimer molecular dynamics can be 

written as[29]  

𝑀𝑀𝛼𝛼�̈�𝑅𝛼𝛼(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝑅𝑅𝛼𝛼

min
ψ
⟨Ψ0|𝑇𝑇|Ψ0⟩                               (20) 

And for electronic equation of motion as 

𝑇𝑇𝜓𝜓𝑖𝑖(𝑟𝑟) = ∑ 𝐴𝐴𝑖𝑖𝑗𝑗𝜓𝜓𝑖𝑖(𝑟𝑟)𝑗𝑗                                            (21) 

Now, above Born-Oppenheimer molecular dynamics includes the orbital orthonormality of 

electronic wave function through Lagrange multiplier[29]. The inclusion of orthonormality 

essentially forms the antisymmetric wavefunctions which is Pauli exclusion state. However, the 

Born-Oppenheimer molecular dynamics does not state approximation of antisymmetric 

electronic wavefunction[29]. Hartree-Fock molecular dynamics approximate the antisymmetric 

electronic wave function by single determinant also known as Slater determinant of the 

electronic orbitals 𝜓𝜓𝑖𝑖(𝑟𝑟𝑖𝑖) by[29] 

Ψ = 1
√𝑁𝑁!

 𝑑𝑑𝑒𝑒𝑡𝑡 �

𝜓𝜓1(𝑟𝑟1) 𝜓𝜓1(𝑟𝑟2) ⋯ 𝜓𝜓1(𝑟𝑟𝑁𝑁)
𝜓𝜓2(𝑟𝑟1) 𝜓𝜓2(𝑟𝑟2) ⋯ 𝜓𝜓2(𝑟𝑟𝑁𝑁)
⋮ ⋮ ⋱ ⋮

𝜓𝜓𝑁𝑁(𝑟𝑟1) 𝜓𝜓𝑁𝑁(𝑟𝑟𝑁𝑁) ⋯ 𝜓𝜓𝑁𝑁(𝑟𝑟𝑁𝑁)

�                               (22) 

In here, two operator associates electronic interaction, the first one is the coulomb operator that 

corresponds to electrostatic interaction between the orbitals as in  

ℒ𝑗𝑗(𝑟𝑟)𝜓𝜓𝑖𝑖(𝑟𝑟) = �∫ 𝑑𝑑𝑟𝑟′𝜓𝜓𝑗𝑗∗(𝑟𝑟′)
1

‖𝑟𝑟−𝑟𝑟′‖
𝜓𝜓𝑗𝑗(𝑟𝑟′)� 𝜓𝜓𝑖𝑖(𝑟𝑟)                             (23) 
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The second operator is the exchange operator that represent exchange energy as a result of Pauli 

Exclusion principle as in  

𝒦𝒦𝑗𝑗(𝑟𝑟)𝜓𝜓𝑖𝑖(𝑟𝑟) = �∫ 𝑑𝑑𝑟𝑟′𝜓𝜓𝑗𝑗∗(𝑟𝑟′)
1

‖𝑟𝑟−𝑟𝑟′‖
𝜓𝜓𝑖𝑖(𝑟𝑟′)� 𝜓𝜓𝑗𝑗(𝑟𝑟)                              (24) 

The identification of the coulomb and exchange operator in Hartree-Fock molecular dynamics 

provides more precision to that of Born-Oppenheimer molecular dynamics. With these operators 

added the Hamiltonian is now rewritten as  

𝑇𝑇𝐻𝐻𝐻𝐻 = 𝑇𝑇𝑒𝑒 + 𝑉𝑉𝑖𝑖−𝑖𝑖 + 2∑ ℒ𝑗𝑗(𝑟𝑟)𝑗𝑗 − ∑ 𝒦𝒦𝑗𝑗(𝑟𝑟)𝑗𝑗                              (25) 

Now, the Hamiltonian in equation (25) determines the Lagrangian for the electronic 

wavefunction by 

ℒ𝐻𝐻𝐻𝐻 = −⟨Ψ0|𝑇𝑇𝐻𝐻𝐻𝐻|Ψ0⟩ + ∑ 𝐴𝐴𝑖𝑖𝑗𝑗��𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗� − 𝛿𝛿𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗                          (26) 

The equation of motion is obtained similarly to equations (18)-(24) with Lagrange defined in 

(26). After Hartree-Fock molecular dynamics, several other abinitio molecular dynamics 

techniques were developed. Those methods efforts were aimed at correctly predicting the 

Hamiltonian by integrating energy from Kohn-Sham and exchange correlation[29]. Car-

Parrinello molecular dynamics is the most sophisticated technique currently being used in many 

abinitio molecular dynamics calculation software. Car-Parrinello molecular dynamics uses a 

version of the equation of motion that is similar to Born-Oppenheimer and Hartree-Fock 

molecular dynamics. However, such approaches do not take electron dynamics into account, 

resulting in electronic orbitals that are not complex molecular fields. As a result, by introducing a 

fictitious electronic kinetic energy concept, this approach incorporates the complex essence of 

electronic degrees of freedom[29]. With the additional assumption of including dynamic nature 

of electrons the extended Lagrangian in Car-Parrinello molecular dynamics is given by 

ℒ𝑋𝑋𝑃𝑃 = 1
2
∑ 𝑀𝑀𝛼𝛼�̇�𝑅𝛼𝛼2𝛼𝛼 + ∑ 𝜇𝜇��̇�𝜓𝑖𝑖��̇�𝜓𝑖𝑖�𝑖𝑖 + ⟨Ψ0|𝑇𝑇𝐻𝐻𝐾𝐾|Ψ0⟩ + ∑ 𝐴𝐴𝑖𝑖𝑗𝑗��𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗� − 𝛿𝛿𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗                     (27) 
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Where, 𝜇𝜇 acts as a fictitious electronic mass of inertia and 𝑇𝑇𝐻𝐻𝐾𝐾 is the Hamiltonian due to Kohn-

Sham approximation. Therefore, the nuclear and electronic equation of motion are given by[29] 

𝑀𝑀𝛼𝛼�̈�𝑅𝛼𝛼 = − 𝜕𝜕
𝜕𝜕𝑅𝑅𝛼𝛼

⟨Ψ0|𝑇𝑇𝐻𝐻𝐾𝐾|Ψ0⟩ + ∑ 𝐴𝐴𝑖𝑖𝑗𝑗
𝜕𝜕

𝜕𝜕𝑅𝑅𝛼𝛼
�𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗�𝑖𝑖,𝑗𝑗                                       (28) 

𝜇𝜇�̈�𝜓𝑖𝑖(𝑡𝑡) = −𝑇𝑇𝐻𝐻𝐾𝐾𝜓𝜓𝑖𝑖(𝑡𝑡) + ∑ 𝐴𝐴𝑖𝑖𝑗𝑗𝑗𝑗 𝜓𝜓𝑗𝑗(𝑡𝑡)                                 (29) 

 

Molecular Dynamics Simulation 

Molecular dynamics or classical molecular dynamics is another method for simulating 

solids (MD). The advantage is that it can handle particle numbers many orders of magnitude 

larger than ab initio approaches in a fraction of the time. Physical science can reliably predict a 

system's behavior if it is given adequate starting details. Furthermore, if all related mechanisms 

are understood, it can predict exact future actions. The above argument is exemplified by 

classical mechanics[30]. With the mass, position, and velocity of an object, Laplace determined 

the object's eternal trajectory by referring to the Newtonian equation of motion. The Newtons 

equation of motion is simply given by 

𝑚𝑚𝑖𝑖
𝜕𝜕2𝑟𝑟𝑖𝑖
𝜕𝜕𝑎𝑎2

= 𝐹𝐹𝑖𝑖 and 𝐹𝐹𝑖𝑖 = −𝜕𝜕𝜕𝜕(𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑛𝑛)
𝜕𝜕𝑟𝑟𝑖𝑖

                              (30) 

Here, 𝑚𝑚𝑖𝑖 is the mass of ith particle and 𝑟𝑟𝑖𝑖 is the position of ith particle. The derivative of potential 

U is used to calculate the force 𝐹𝐹𝑖𝑖. The trajectory of any particle can be deterministically 

predicted if the right potential U is known. And there are n simultaneous differential equations to 

solve. The above equation becomes a bit more complex in reality. Rather than attempting a series 

of different equations, one normally integrates over a timestep, adjusting the location and 

velocity as needed. It is given by the equation 

−𝑚𝑚𝑖𝑖
𝑑𝑑𝑣𝑣𝑖𝑖
𝑑𝑑𝑎𝑎

= ∑ 𝐹𝐹2�𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗�𝑗𝑗 + ∑ ∑ 𝐹𝐹3�𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗 , 𝑟𝑟𝑘𝑘�𝑘𝑘𝑗𝑗 + ⋯                                  (31) 
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Here, 𝑣𝑣𝑖𝑖 = 𝑑𝑑𝑟𝑟𝑖𝑖/𝑑𝑑𝑡𝑡. F2 denotes the force between two atoms, and F3 denotes the force between 

three atoms, and so on. This topic is much more complex than it seems because of the increasing 

number of summations in each force. Despite the complexity involved in equation (31) the 

molecular dynamics system always works since the system will eventually settle into equilibrium 

under external force and we can describe any macroscopic event for each of the atoms present. 

Furthermore, the system is ergodic meaning that the system can reach any microstate given a 

large enough time. The ergodicity states that regardless of time some fundamental properties of 

time do not change like the total energy of system and number of particles in the system due to 

periodic boundary condition. The set of observables or parameters which does not change over 

time are called ensembles. We can evaluate canonical ensembles with a variety of conditions 

using MD simulations, including constant volume, controlled pressure (variable volume), and 

controlled temperature. The temperature demands further care because it is difficult to regulate. 

The particles velocity must be taken into account. The thermostat is responsible for maintaining 

a given constant temperature. For a given system, if the temperature is too high then the 

thermostat extract heat from the system and if the temperature is too low than the desired value, 

the thermostat supply heat to the system from outside.  

Now the temperature in molecular dynamics simulation is given by 

𝐻𝐻𝜕𝜕𝑀𝑀𝐷𝐷
2

= 1
6𝑁𝑁

 ∑ ∑ 𝑚𝑚𝑖𝑖𝑣𝑣𝑖𝑖𝑗𝑗2
𝑑𝑑𝑟𝑟𝑖𝑖
𝑑𝑑𝑎𝑎

 3
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1                                     (32) 

The implication of equation (32) is that the temperature of a system can be regulated by 

controlling the average velocity of the system under proper distribution. Initial temperature can 

be set by assigning random velocities that match the Maxwell Boltzmann Distribution. Then, for 

the next move, Andersen's simple scheme can be followed[31]. For each time, the heat bath 

interacts with one particle, according to this scheme. The particle's velocity is then re-assigned at 
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random using the Gaussian distribution. As the device exceeds the target temperature, the 

frequency collision becomes a factor in the speed of convergence. By adding the additional force 

as a function of time, the Langevin scheme overcomes this constraint. It functions as a noise. 

However, this system has the downside of sometimes over-correcting. The Nose-Hover reduces 

the over correction by extending the Hamiltonian or the energy by introducing heat bath which is 

given by[32] 

𝑇𝑇𝑁𝑁𝐻𝐻 = ∑ 𝑚𝑚𝑖𝑖𝑣𝑣𝑖𝑖
2

2𝑠𝑠2
+ 𝑈𝑈(𝑟𝑟, 𝑞𝑞) + 𝑃𝑃𝑠𝑠2

2𝑄𝑄
+ 𝐿𝐿𝐾𝐾𝑇𝑇 log (𝑠𝑠) 𝑖𝑖                         (33) 

In equation (33), 𝑝𝑝𝑠𝑠 is the momentum of heat bath and 𝑄𝑄 is the fictious mass. 𝑠𝑠 is the scaling 

parameter and 𝐿𝐿 essentially is number of degrees of freedom. The equations that need to solve 

above equation (33) are given by 

𝑟𝑟�̇�𝚤 = 𝑚𝑚𝑖𝑖𝑣𝑣𝑖𝑖
𝑠𝑠

,        �̇�𝑣𝑖𝑖 = − 1
𝑚𝑚

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟𝑖𝑖

,       �̇�𝑠 = 𝑝𝑝𝑠𝑠
𝑄𝑄

= 𝜕𝜕𝑘𝑘�𝜕𝜕−𝜕𝜕𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑎𝑎�
𝑄𝑄

,       �̇�𝑝𝑠𝑠 = ∑ 𝑚𝑚𝑖𝑖𝑠𝑠�̇�𝑟𝑖𝑖2 − 𝐿𝐿𝑚𝑚𝑇𝑇𝑖𝑖                (34) 

Now to evaluate the time integral equation of motion, the position of the particle at time 𝑡𝑡 + ∆𝑡𝑡 

is given by 

𝑟𝑟𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡) = 𝑟𝑟𝑖𝑖(𝑡𝑡) + �̇�𝑟𝑖𝑖(𝑡𝑡)∆𝑡𝑡 + 1
2

 �̈�𝑟𝑖𝑖(𝑡𝑡)∆𝑡𝑡 + 1
2

 �̈�𝑟𝑖𝑖(𝑡𝑡)∆𝑡𝑡2 + 𝑂𝑂(∆𝑡𝑡3)                  (35) 

The equation (35) can also be rewritten using central difference formula using finite difference 

by 

𝑟𝑟𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡) ≈ 2𝑟𝑟𝑖𝑖(𝑡𝑡) − 𝑟𝑟𝑖𝑖(𝑡𝑡 − ∆𝑡𝑡) + 𝐻𝐻𝑖𝑖(𝑎𝑎)
𝑚𝑚𝑖𝑖

 ∆𝑡𝑡2 + 𝑂𝑂(∆𝑡𝑡3)                            (36) 

The algorithm above for equation (35) and (36) is also known as Verlet algorithm and have been 

mostly used for calculation position and force for the next time step. However, calculation of 

force expression become complicated so, separating long and short-range force greatly reduce 

the computational complexity. Considering the interaction of up to certain cutoff radius for 

nearest neighbor interaction also helps to reduce the computational complexity. Another is to be 
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mindful of the length scale and time restrictions. It would only take a few nanoseconds to 

complete a million-step run. Furthermore, the number of atoms is restricted to millions. This 

problem can be mitigated by using periodic images for homogeneous systems. The Verlet 

algorithm's inherent parameter is the size of the timestep. The calculation would take longer if 

smaller time step were used. Finally, I will talk about atomic interactions. Since it requires 

instantaneous electron change, classical molecular dynamics requires potential energy. As a 

result, no chemical bond breaking, or formation is needed in the simulation. 

Most significantly, potential energy is needed to run classical molecular dynamics. This 

could be done by fitting experimental data or ab-initio calculations into the appropriate 

relationships for parameters including volumes, strain, and many other mechanical properties. 

This is a time-consuming process, and the availability of potential for several elements is more 

difficult. Things get complicated when there are more than two components in a scheme. And 

since this mechanism is highly dependent on the input data, one possibility for a structure made 

up of the same elements but with different structures may not function satisfactorily outside of its 

original crystal structure or outside of targeted property. This is referred to as transferability, and 

it is also a top priority when it comes to developing potential energy. The aim of this research is 

to develop the interatomic potential for zirconium diboride for classical molecular dynamics. 

Having discussed the techniques being applied in ab-initio molecular dynamics and 

molecular dynamics simulation, the ab-initio molecular dynamics while being very precise in 

simulating system of materials it cannot simulate more than hundreds of atoms and the 

computational cost significantly increases with each atom increasing in the system. Also, the 

simulation cannot exceed more than femtoseconds to picoseconds. The schematic diagram for 

simulating different simulation is given in the Figure 5 below. 
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Figure 5: Schematic diagram showing different simulation in time and length scale.  

 

The benefit of atomistic simulation like molecular dynamics and Monte Carlo is that we 

can simulate millions of atoms with simulation size up to micrometer and time length from 

femtoseconds to nano or microseconds as compared to the quantum mechanical or ab-initio 

molecular dynamics simulation. Simulating in the larger scale allow us to mimic the 

experimental observation and help us to understand the fundamental principle. Several other 

techniques like mesoscopic simulation and other macroscopic simulation exist but the precision 

is compromised and that also depend on one or other way to atomistic scale. 
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Interatomic Potentials for Molecular Dynamics Simulation 

As I discussed in above section that the interatomic potential is a key ingredient for us to 

be able to perform molecular dynamics simulation for greater time scale and size, and explore 

different properties of materials like thermal or mechanical properties or to study the behavior of 

materials at different conditions like temperature, pressure, strain etc. The development of 

interatomic potential is entirely on the interest of which properties of material to fit or reproduce. 

Also, the development of potential also depends on the choice of material. There are several 

types of interatomic potential for classical molecular dynamics for wide range of materials 

available. 

From the ab-initio molecular dynamics simulation and molecular dynamics simulation it 

is quite obvious the approximations and measures taken to perform molecular dynamics 

simulation for the purpose of determining several material properties in large scale. What I 

meant by interatomic potential is embedded on how the approximations of Hamiltonian are made 

and relative treatment of electron and nucleus by Born-Oppenheimer from above sections. 

Starting from equation (15) that the electronic and nuclear motion are separable and, the 

electronic wave function depends on atomic positions only, we can write total many-body state 

by |Φ⟩ = |Ψ(R1,𝑅𝑅2, … ,𝑅𝑅𝑁𝑁𝑎𝑎𝑎𝑎�|𝜒𝜒⟩. So, the problem of coupled electronic and nuclear Hamiltonian 

system can be decoupled as 

𝑇𝑇�𝑒𝑒𝑒𝑒|Ψ⟩ = 𝐸𝐸𝑒𝑒𝑒𝑒(𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑁𝑁𝑎𝑎𝑎𝑎)|Ψ(𝑅𝑅1, … ,𝑅𝑅𝑁𝑁𝑎𝑎𝑎𝑎�                                  (37) 

𝑇𝑇�𝑎𝑎𝑎𝑎|𝜒𝜒⟩ = �𝐸𝐸 − 𝐸𝐸𝑒𝑒𝑒𝑒�𝑅𝑅1, … ,𝑅𝑅𝑁𝑁𝑎𝑎𝑎𝑎��|𝜒𝜒⟩                                   (38) 

Here, 𝑇𝑇�𝑒𝑒𝑒𝑒 = 𝑇𝑇𝑒𝑒−𝑒𝑒 + 𝑉𝑉𝑒𝑒−𝑒𝑒 + 𝑉𝑉𝑖𝑖−𝑒𝑒 (𝑅𝑅1, … ,𝑅𝑅𝑁𝑁𝑎𝑎𝑎𝑎) and 𝑇𝑇�𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑖𝑖−𝑖𝑖 + 𝑉𝑉𝑖𝑖−𝑖𝑖 are the Hamiltonian in 

the electron and nuclear system. Through the nucleus-electron interaction, the electronic 
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Hamiltonian and thus the electronic eigen equation are still parametrically depending on the 

atomic positions. Equation (38) can be rewritten as follows in coordination space. 

�−∑ ℏ2

2𝑀𝑀𝛼𝛼

𝑁𝑁𝑎𝑎𝑎𝑎
𝛼𝛼=1  ∇𝑅𝑅𝑎𝑎

2 + 𝑉𝑉𝐼𝐼𝐼𝐼𝑃𝑃(𝑅𝑅1, … ,𝑅𝑅𝑁𝑁𝑎𝑎𝑎𝑎)� χ = Eχ                            (39) 

Herein, 𝑉𝑉𝐼𝐼𝐼𝐼𝑃𝑃(𝑅𝑅1, … ,𝑅𝑅𝑁𝑁𝑎𝑎𝑎𝑎) is the interatomic potential that contains pair interaction and repulsive 

Coulomb interaction between all nuclei and electrons and is given by 

𝑉𝑉𝐼𝐼𝐼𝐼𝑃𝑃�𝑅𝑅1, … ,𝑅𝑅𝑁𝑁𝑎𝑎𝑎𝑎� = 1
2
∑ 𝑍𝑍𝛼𝛼𝑍𝑍𝛽𝛽

�𝑅𝑅𝛼𝛼−𝑅𝑅𝛽𝛽�
𝑒𝑒2𝛼𝛼,𝛽𝛽 + 𝐸𝐸𝑒𝑒𝑒𝑒(𝑅𝑅1, … ,𝑅𝑅𝑁𝑁𝑎𝑎𝑎𝑎)                        (40) 

So, in simpler terms the interatomic potential is the pair interaction or nuclear potential and 

possible Coulombic interaction associated with all electrons and nucleus. The energy due to 

possible electron-electron or nucleus-nucleus interaction is determined through rigorous density 

functional or ab-initio molecular dynamics calculation. The interatomic potential can be 

determined in theory by solving the electronic Schrodinger equation for the desired atomic 

positions. The electronic Schrödinger equation describes an electronic many-body structure that 

can be solved using ‘ab initio' techniques including Density Functional Theory (DFT), Hartree 

Fock (HF), Configuration Interaction (CI), and Coupled Cluster Analysis (CCA) (CC)[33, 34]. 

All of these ab initio techniques produce parametric Nel Self-Consistent Field (SCF) equations 

based on atomic positions. The time it takes to solve these SCF equations grows exponentially 

with the number of electrons in the device, making these techniques easily unmanageable. This is 

where semi-empirical approaches come into play. In these methods, the Inter Atomic Potential 

(IAP) is essentially fitted to experimental or ab initio results. 

The total energy of interatomic interaction of the Nat-atom system can also be extended in 

summations over many body terms in interatomic potential theory. The total energy is given by 

𝐸𝐸𝑎𝑎𝑡𝑡𝑎𝑎 = 𝐸𝐸0 + 1
2!
∑ 𝑉𝑉2(𝑅𝑅𝛼𝛼 ,𝑅𝑅𝛽𝛽)𝛼𝛼,𝛽𝛽 + 1

3!
∑ 𝑉𝑉3�𝑅𝑅𝛼𝛼 ,𝑅𝑅𝛽𝛽 ,𝑅𝑅𝛾𝛾� + ⋯𝛼𝛼,𝛽𝛽,𝛾𝛾                          (41) 
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Here, 𝐸𝐸0 stands for the reference energy (which is ignored in the following), and 𝑉𝑉𝑖𝑖 stands for the 

n-body interatomic potential function. Pair potentials are used when only pair interactions are 

included, and cluster potentials are used when higher order interactions are included. Pair 

potentials are usually used to model a small number of atomic rearrangements and have a 

restricted range of application. The addition of higher order interactions to cluster potentials 

improves on pair potentials. Angles between bonds are defined in three body and higher order 

terms, which are not present in pair potential descriptions. Cluster potentials are typically 

truncated at the three-body level in operation. Cluster potentials can accommodate a wider 

variety of atomic configurations than pair potentials, but they still fall short of offering a detailed 

definition of 𝐸𝐸𝑎𝑎𝑡𝑡𝑎𝑎. Using cluster potentials instead of pair potentials comes at a large cost in 

terms of computation time. The total energy 𝐸𝐸𝑎𝑎𝑡𝑡𝑎𝑎 can also be expanded in terms of functional by:  

𝐸𝐸𝑎𝑎𝑡𝑡𝑎𝑎 = 𝐸𝐸0 + 1
2
∑ 𝑉𝑉2�𝑅𝑅𝛼𝛼 ,𝑅𝑅𝛽𝛽� + ∑ 𝐹𝐹�∑ 𝑔𝑔2(𝑅𝑅𝛼𝛼 ,𝑅𝑅𝛽𝛽)𝛽𝛽 ∑ 𝑔𝑔3(𝑅𝑅𝛼𝛼 ,𝑅𝑅𝛽𝛽)𝛽𝛽,𝛾𝛾  𝑅𝑅𝛾𝛾 … �𝛼𝛼𝛼𝛼,𝛽𝛽                        (42) 

Here in the above equation (42), the higher order interactions are expressed as a functional 𝐹𝐹 of 

cluster terms 𝑔𝑔𝑖𝑖, rather than the total energy of interatomic interactions as a sum of pairs and 

higher. The functions 𝑔𝑔𝑖𝑖 are set of function that represent the local environment and the 

functional 𝐹𝐹 describe how the energy is influenced by 𝑔𝑔𝑖𝑖 in an atom. The cluster functionals are 

thought of when higher order interactions are accounted for. As a result, pair functionals 

generalize pair potentials and provide a much more precise description of inhomogeneous 

environments. When a cut-off radius is applied, the computational speed is comparable to the 

pair potential. Cluster functionals are similar to cluster potentials in that they generalize them. By 

explicitly using angular forces in the functions describing the local context, cluster functionals 

build on the precision of pair functionals. In addition, they can accommodate a broader range of 

inhomogeneous environments than cluster potentials. Since the atomic geometries can still be 
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visualized at these stages, and the computation time is significantly less than for higher order 

treatments, cluster functionals are normally limited to the three and four body levels. Depending 

on the number of interactions, the interatomic potentials can be categorized as pair interactions- 

pair interactions consist of pair potentials and pair functionals and cluster interactions-consisting 

of cluster potentials and cluster functionals. 

The most common type of interaction also known as pair interaction is always available 

in cluster interactions. Many common types of pair interactions or pair potentials exist that has a 

various mathematical formulation. For instance, repulsive wall potentials are used to model 

repulsive interaction that is more prominent at small interatomic separation i.e., less than 1 Å. 

These types of potentials are mostly used in the simulation of collision of energetic particles. 

There are several modifications in repulsive wall potentials based on fitting function in it and is 

given by 

𝑉𝑉(𝑟𝑟) = 𝑍𝑍1𝑍𝑍2
4𝜋𝜋𝜖𝜖0𝑟𝑟

 𝜒𝜒(𝑥𝑥)                                             (43) 

Here, 𝑥𝑥 = 𝑟𝑟/𝐺𝐺0 and 𝐺𝐺0 = 0.8853𝐺𝐺𝐵𝐵�̅�𝑍
−13. The quantity 𝐺𝐺𝐵𝐵 is Bohr radius and �̅�𝑍−

1
3 =

�𝑍𝑍1
1
2 + 𝑍𝑍2

1
2�

−�23�

 [35]. 𝜒𝜒(𝑥𝑥) is the fitting function in equation (43). Moliere, krypton-carbon and 

ZBL repulsive potential use the exponential type of fitting function like[36] 

𝜒𝜒(𝑥𝑥) = ∑ 𝐺𝐺𝑖𝑖𝑒𝑒−𝑏𝑏𝑖𝑖𝑒𝑒 4
𝑖𝑖=1                                      (44) 

Here, 𝐺𝐺𝑖𝑖 , 𝑏𝑏𝑖𝑖 are the fitting parameters. While Lenz-Jenson repulsive potential use other types of 

fitting parameters given by[37] 

𝜒𝜒(𝑥𝑥) = 𝑒𝑒−𝑞𝑞�1 + ∑ 𝐺𝐺𝑖𝑖𝑞𝑞𝑖𝑖4
𝑖𝑖=1 �; 𝑞𝑞 = 3.11126√𝑥𝑥                                 (45) 

Similarly, other type of pair interaction, also attractive well potentials explain attractive 

interaction between atomic pairs. At particle separations of around 1 − 4 Å, these types of 
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potentials define the attractive part of the interaction potential. These types of potentials have a 

very small range of applicability, which is a major disadvantage. For example, they can only 

describe crystal structures that are tightly packed. The Lennard-Jones and Morse potentials are 

the most commonly used and is given by the following equations[38, 39]: 

𝑉𝑉(𝑟𝑟) = 4𝜖𝜖 ��𝜎𝜎
𝑟𝑟
�
12
− �𝜎𝜎

𝑟𝑟
�
6
�                                 (46) 

𝑉𝑉(𝑟𝑟) = 𝐷𝐷𝑒𝑒
𝐾𝐾−1

�𝑒𝑒−(2𝐾𝐾)
1
2𝛽𝛽(𝑟𝑟−𝑅𝑅𝑒𝑒) − 𝑆𝑆𝑒𝑒−�

2
𝑆𝑆�
1
2𝛽𝛽(𝑟𝑟−𝑅𝑅𝑒𝑒)�                              (47) 

The Lennard-Jones potential was developed to describe noble gases, and it is based on the 

assumption that atoms in a solid noble gas are only slightly skewed from their stable electronic 

closed-shell configuration in the free state. Dipole interactions are proportional to 𝑟𝑟−6 when 

small distortions in the electronic closed-shell structure occur. The Van Der Waals forces 

between closed shell atoms are the product of these interactions. While for Morse potential, the 

parameter 𝐷𝐷𝑒𝑒 is the dimer energy, 𝑅𝑅𝑒𝑒 the equilibrium displacement and 𝛽𝛽 is usually fitted for 

bulk modulus.  

Now, the cluster potential is achieved by extending pair potential by including angular 

contributions. Among different forms of cluster potential, the simplified form of this potential by 

Tersoff implement environment dependent bond order or to say the information regarding bond 

angle or dihedrals[40]. Such potential is given by the equation 

𝑉𝑉�𝑅𝑅𝛼𝛼𝛽𝛽� = 𝑓𝑓𝑋𝑋�𝑅𝑅𝛼𝛼𝛽𝛽�[𝐺𝐺𝛼𝛼𝛽𝛽𝑓𝑓𝑅𝑅�𝑅𝑅𝛼𝛼𝛽𝛽� + 𝑏𝑏𝛼𝛼𝛽𝛽𝑓𝑓𝐼𝐼�𝑅𝑅𝛼𝛼𝛽𝛽�] (48) 

Herein, 𝑅𝑅𝛼𝛼𝛽𝛽 is the distance between atoms 𝛼𝛼 and 𝛽𝛽. A repulsive pair potential is represented by 

the function 𝑓𝑓𝑅𝑅, while an attractive pair potential is represented by the function 𝑓𝑓𝐼𝐼. The extra 

term 𝑓𝑓𝑋𝑋 is just a smooth cut-off feature that limits the potential's range. The coefficient 𝑏𝑏 now 

becomes a function of the local environment, which is the only new aspect of this potential. It is 
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thought to be a monotonically decreasing property of atom coordination and represents a 

measure of bond order. The parameter 𝐺𝐺𝛼𝛼𝛽𝛽 represents range-limiting terms. For the attractive and 

repulsive potential in above equation (48), the exponential function is used and for the cutoff 

function 𝐹𝐹𝑋𝑋, a step function in the form of sine is taken for certain cutoff range. The parameter 

𝑏𝑏𝛼𝛼𝛽𝛽 contains the angular information i.e., the bond angle between atom pairs 𝛼𝛼𝛽𝛽 and say other 

atom pairs 𝛼𝛼𝛾𝛾.  

 

Embedded Atom Method Interatomic Potential 

The Hohenberg and Kohn theorem states that the total electron density uniquely 

determines the external potential up to an additive constant, and vice versa[27]. The Embedded 

Atom Method (EAM) has its origins in density functional theory. The Stott-Zaremba corollary, 

as a result of this theorem, can be stated as follows: ‘The embedding energy of an impurity is 

calculated by the electron density of the host system before the impurity is added’[41]. The 

statement can be explained as follows: the electron density of an unaffected host determines its 

potential. If an impurity is added in the system, the total potential is then the sum of the 

potentials of the host and the impurity. Thus, the energy of the host with impurity is a function of 

the host and impurity potentials. The location and charge of the impurity nucleus determine the 

host electron density and impurity potential. So, the energy of the host with impurity is a 

function of the unaffected host electron density as well as the impurity form and position. The 

total energy can be expressed as follows: 

𝐸𝐸 = ℱ𝑍𝑍,𝑅𝑅[𝜌𝜌ℎ(𝑟𝑟)] (49) 

Here, 𝜌𝜌ℎ(𝑟𝑟) represent the unperturbed electron density of the host, 𝑍𝑍 and 𝑅𝑅 are type and position 

of the impurity. The functional form ℱ is not known and is independent of host but is universal. 
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Assuming that the energy depends only on the minimal environment immediately surrounding 

the impurity, or that the impurity encounters a locally uniform electron density as a basic 

approximation[42]. This simplification can be thought of as either a local approximation or the 

lowest order term involving the density's successive gradients. Since the assumption is that the 

energy only depends on limited environment around the impurity, so the impurity only has local 

electron density which is also the lowest order term that involve the successive gradient of 

density. 

Each atom in embedded atom method can be viewed as impurity in the host so the total 

energy can be written as: 

𝐸𝐸 = ∑ 𝐹𝐹𝛼𝛼[�̅�𝜌𝛼𝛼]𝛼𝛼                                     (50) 

Here, 𝐹𝐹 is the embedding energy and �̅�𝜌𝛼𝛼, the uniform density of host at position 𝑅𝑅𝛼𝛼 without atom 

𝛼𝛼. It is to note that the embedding function F and the functional ℱ are not the same thing. The 

concept of extreme locality, or total uniformity of the electron gas and background, results in 

unreasonable values for the electron gas or electron density in equation (50). A core-core 

repulsion must be added to accurately explain the energy, which is presumed to take the form of 

a short-range pairwise repulsion between cores here. With addition of core-core repulsion for a 

certain cutoff, the EAM energy is further improved so the total energy is given by  

𝐸𝐸𝑎𝑎𝑡𝑡𝑎𝑎 = 1
2

 ∑ 𝑉𝑉(𝑅𝑅𝛼𝛼𝛽𝛽)𝛼𝛼,𝛽𝛽 + ∑ 𝐹𝐹[�̅�𝜌𝛼𝛼]𝛼𝛼                            (51) 

Here, 𝑉𝑉(𝑅𝑅𝛼𝛼𝛽𝛽) is the core-core repulsion, 𝐹𝐹[�̅�𝜌𝛼𝛼] is embedding function and, �̅�𝜌𝛼𝛼 the electron 

density given by 

�̅�𝜌𝛼𝛼 = ∑ 𝜌𝜌(𝑅𝑅𝛼𝛼𝛽𝛽)𝛽𝛽                              (52) 

In general, 𝐹𝐹[�̅�𝜌𝛼𝛼] the embedding function has no specific form and is entirely dependent on the 

fitting procedure. Several embedding functional have been proposed. For example, the Tight 
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Binding Model for second moment approximation use the form 𝐹𝐹[𝜌𝜌] = −𝐴𝐴𝜌𝜌
1
2. Daw and Baskes, 

used the density form to evaluate embedding functional for the fitting procedure given by the 

equations[43] 

𝜌𝜌�𝑅𝑅𝛼𝛼𝛽𝛽� = 𝑍𝑍𝛼𝛼𝑍𝑍𝛽𝛽
𝑅𝑅𝛼𝛼𝛽𝛽

 ;𝑍𝑍(𝑟𝑟) = 𝑍𝑍0(1 + 𝛾𝛾𝑟𝑟𝜅𝜅)𝑒𝑒−𝑣𝑣𝑟𝑟                        (53) 

Here, 𝛾𝛾, 𝜅𝜅 and 𝑣𝑣 are adjustable parameters and 𝑍𝑍0 the number of valence electrons. Similarly, the 

density function by Voter-Chen use 𝜌𝜌(𝑟𝑟) = 𝑟𝑟6(𝑒𝑒−𝛽𝛽𝑟𝑟 + 29𝑒𝑒−2𝛽𝛽𝑟𝑟) for embedding function 

evaluation. Further, the electron density function used by Foiles is given by 

𝜌𝜌(𝑟𝑟) = 𝑟𝑟8(𝑒𝑒−𝛽𝛽𝑟𝑟 + 211𝑒𝑒−2𝛽𝛽𝑟𝑟)                                       (54) 

Now, instead of using electron density to determine the embedding functional, Johnson came 

with a universal form for the embedding functional given by[44] 

𝐹𝐹[𝜌𝜌] = −𝐹𝐹0 �1 − 𝑛𝑛 ln � 𝜌𝜌
𝜌𝜌𝑒𝑒𝑒𝑒
�� � 𝜌𝜌

𝜌𝜌𝑒𝑒𝑒𝑒
�
𝑖𝑖

                                (55) 

Here, 𝜌𝜌𝑒𝑒𝑞𝑞 is the equilibrium value of the electron density 𝜌𝜌 and 𝐹𝐹0 and 𝑛𝑛 can be determined by 

𝐹𝐹0 = 𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑓𝑓                                      (56) 

𝑛𝑛 = �
Ω𝐵𝐵

𝐼𝐼𝛽𝛽2𝐸𝐸𝑓𝑓
                                      (57) 

In equations (56) and (57), the parameter 𝐸𝐸𝑐𝑐 and 𝐸𝐸𝑓𝑓 are the cohesive energy and monovacancy 

formation energy. Ω is the equilibrium atomic volume, 𝐵𝐵 the bulk modulus and 𝐴𝐴 =

2𝐶𝐶44/(𝐶𝐶11 − 𝐶𝐶12) the anisotropic ratio. Similarly, the density function for the Johnson is given 

by 

𝜌𝜌(𝑟𝑟) = 𝜌𝜌𝑒𝑒 �
𝑟𝑟1
𝑟𝑟
�
𝛽𝛽

                          (58) 

Here, 𝜌𝜌𝑒𝑒 is atomic electron density at the nearest neighbor.  
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Reference Free Modified Embedded Atom Method Interatomic Potential 

The reference free modified embedded atom method (RF-MEAM) potentials are derived 

from the MEAM formalism where the energy 𝐸𝐸 for a given system of 𝑁𝑁 atoms in the RF-MEAM 

is represented by[45-47]: 

𝐸𝐸 = ∑ 𝐸𝐸𝛼𝛼𝑖𝑖
𝑒𝑒𝑚𝑚𝑏𝑏(𝜌𝜌𝑖𝑖) + 1

2
∑ 𝜙𝜙𝛼𝛼𝑖𝑖,𝛼𝛼𝑗𝑗(𝑟𝑟𝑖𝑖𝑗𝑗)𝑁𝑁
𝑖𝑖≠𝑗𝑗

𝑁𝑁
𝑖𝑖=1                                   (59) 

Where 𝑁𝑁 denotes the total number of atoms in the crystal structure, 𝐸𝐸𝛼𝛼𝑒𝑒𝑚𝑚𝑏𝑏(𝜌𝜌) is the embedding 

energy function, 𝜙𝜙𝛼𝛼𝑖𝑖,𝛼𝛼𝑗𝑗(𝑟𝑟𝑖𝑖𝑗𝑗) is the pair potential between atoms 𝑖𝑖 and 𝑗𝑗 with separation 𝑟𝑟𝑖𝑖𝑗𝑗, and 𝜌𝜌𝑖𝑖 

is the background density at site 𝑖𝑖. The embedding energy function, pair potential and 

background density are described using: 

𝐸𝐸𝛼𝛼𝑒𝑒𝑚𝑚𝑏𝑏(𝜌𝜌) = 𝐺𝐺𝛼𝛼𝜌𝜌
1
2 + 𝑏𝑏𝛼𝛼𝜌𝜌2 + 𝑐𝑐𝛼𝛼𝜌𝜌3                         (60) 

𝜌𝜌𝑖𝑖 = 2𝜌𝜌𝑖𝑖(0)
1+𝑒𝑒−𝜏𝜏𝑖𝑖

                                     (61) 

𝜏𝜏𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖
(𝑒𝑒) �𝜌𝜌𝑖𝑖

(𝑒𝑒)

𝜌𝜌𝑖𝑖
(0)�

2

 3
𝑒𝑒=1                            (62) 

Here, 𝐺𝐺𝛼𝛼, 𝑏𝑏𝛼𝛼 and 𝑐𝑐𝛼𝛼 are parameters needed to be optimized. 𝜌𝜌𝑖𝑖
(𝑒𝑒) and 𝜌𝜌𝑖𝑖

(0) are contributions to 

background density 𝜌𝜌𝑖𝑖 with and without angular contributions. Setting 𝜌𝜌𝑖𝑖
(𝑒𝑒) to zero retains the 

standard EAM formalism. In addition, the background density without and with angular 

contributions are modeled using: 

𝜌𝜌𝑖𝑖
(0) = ∑ 𝑓𝑓𝛼𝛼𝑗𝑗

(0)(𝑟𝑟𝑖𝑖𝑗𝑗)𝑁𝑁
𝑗𝑗≠𝑖𝑖                             (63) 

�𝜌𝜌𝑖𝑖
(𝑒𝑒)�

2
= ∑ 𝑓𝑓𝛼𝛼𝑗𝑗

(𝑒𝑒)�𝑟𝑟𝑖𝑖𝑗𝑗�𝑓𝑓𝛼𝛼𝑘𝑘
(𝑒𝑒)(𝑟𝑟𝑖𝑖𝑘𝑘)𝑁𝑁

𝑗𝑗,𝑘𝑘(≠𝑖𝑖) 𝐺𝐺(𝑒𝑒)(cosθjik)                             (64) 

Where, 𝑓𝑓𝛼𝛼𝑖𝑖
(𝑒𝑒>0) are partial background density contributions and 𝐺𝐺(𝑒𝑒)(𝑥𝑥) (𝑙𝑙 = 1,2,3, 𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑗𝑗𝑖𝑖𝑘𝑘) 

is the Legendre polynomial up to order 3, which introduces the effect of bond angle into the RF-
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MEAM formalism. Similarly, the partial background density contributions and pair potential can 

be further expressed as a function of the fitting parameter 𝐺𝐺𝛼𝛼 , 𝑏𝑏𝛼𝛼 and 𝑐𝑐𝛼𝛼 which is given by: 

𝑓𝑓𝛼𝛼𝑖𝑖
(𝑒𝑒)(𝑟𝑟) = ∑ 𝐺𝐺𝛼𝛼𝑖𝑖

(𝑖𝑖,𝑒𝑒)�𝑟𝑟𝛼𝛼𝑖𝑖
(𝑖𝑖,𝑒𝑒) − 𝑟𝑟�

3
Θ(𝑟𝑟𝛼𝛼𝑖𝑖

(𝑖𝑖,𝑒𝑒) − 𝑟𝑟)2
𝑖𝑖=1                           (65) 

𝜙𝜙𝛼𝛼𝑖𝑖,𝛼𝛼𝑗𝑗
(𝑒𝑒) (𝑟𝑟) = ∑ 𝑏𝑏𝛼𝛼𝑖𝑖,𝛼𝛼𝑗𝑗

(𝑖𝑖) �𝑠𝑠𝛼𝛼𝑖𝑖,𝛼𝛼𝑗𝑗
(𝑖𝑖) − 𝑟𝑟�

3
Θ(𝑠𝑠𝛼𝛼𝑖𝑖,𝛼𝛼𝑗𝑗

(𝑖𝑖) − 𝑟𝑟) 2
𝑖𝑖=1                        (66) 

Where, 𝑛𝑛 is the total number of terms to be included in the electron density and pair potential, 

𝑟𝑟𝛼𝛼𝑖𝑖
(𝑖𝑖,𝑒𝑒)and 𝑠𝑠𝛼𝛼𝑖𝑖,𝛼𝛼𝑗𝑗

(𝑖𝑖)  are parameters needed to be optimized, and Θ(𝑟𝑟𝛼𝛼𝑖𝑖
(𝑖𝑖,𝑒𝑒) − 𝑟𝑟), Θ(𝑠𝑠𝛼𝛼𝑖𝑖,𝛼𝛼𝑗𝑗

(𝑖𝑖) − 𝑟𝑟) are step 

functions in the form Θ(𝑟𝑟′ − 𝑟𝑟) with cutoff for 𝑟𝑟′ > 𝑟𝑟. 

 

Computational Tools for Interatomic Potential Development 

To develop interatomic potential, one would require fitting parameters associated with 

embedding energy and pair potential in the energy formulation of embedded atom method 

(EAM) and reference free embedded atom method (RF-MEAM) potential. Now, these 

parameters are fitted from the experimental data for different properties of materials like bulk 

modulus, elastic constants, lattice constants, thermal expansion etc. or using abinitio molecular 

dynamics calculation. 

There are many computational techniques on density functional theory (DFT) with a wide 

variety of DFT codes based on choice of system and type of simulation we want to perform. For 

instance, plane wave DFT is quite good for simulating small crystal structure since the 

calculation relies in reciprocal space (Fast Fourier Transform) by expanding Kohn-Sham orbitals 

in terms of plane waves with periodic boundary conditions[48]. In this type of technique, plane 

wave basis set depends on the value of kinetic energy cutoff for the given system and grid 

spacing. The computational cost for 𝑁𝑁 number of atoms is typically in the order of 𝑂𝑂(𝑁𝑁3) for 
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this type of technique. Many DFT software’s like Vienna Abinitio Simulation Package (VASP), 

Quantum Espresso, ABINIT, Cambridge Serial Total Energy Package (CASTEP) etc. are 

available that use plane wave DFT technique. Localized-orbital DFT or chemists DFT 

computational technique utilize more localized or fast decaying orbitals to perform calculations 

for the given system. This type of technique is not strict in terms of boundary condition as like 

plane wave DFT and periodicity can be switched off. The molecular dynamics calculation is 

rarely performed using this technique since basis function move with atoms, so it develop Pulay 

force on the system leading to inaccurate description of nucleus or electron. Further, for very 

small system this technique is usually faster than plane wave DFT because the computational 

cost is very low even using hybrid functional but, the cost increases quite rapidly if the accuracy 

is preferred. Some common examples of codes utilizing this technique include NWCHEM, ADF, 

TURBOMOLE etc. 

Similarly, other technique like linear scaling DFT performs calculation on a linear scale 

𝑂𝑂(𝑁𝑁) by adding additional approximation to that of density functional theory[48]. This type of 

technique is suitable for couple of thousands of atoms but, the accuracy may be greatly 

compromised. Some common software that uses this technique are ONETEP, SIESTA, BigDFT 

etc. 

Vienna Abinitio Simulation Package (VASP) is most widely used DFT and abinitio 

molecular dynamics codes for computing quantum mechanical calculation from the first theory. 

It is a plane-wave DFT code that uses pseudopotential of type Local Density Approximation 

(LDA) and Generalized Gradient Approximation (GGA) for calculating exchange-correlation 

energies[49-51]. It uses various potentials such as norm-conserving, ultra-soft, or PAW potential 

to solve many-body Kohn-Sham equations self-consistently. The matrix diagonalization 
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algorithms are very effective even with a limited plane-wave basis package. Symmetry analysis 

decreases the number of degrees of freedom, resulting in faster computation. Born-Oppenheimer 

molecular dynamics and structure relaxation are both possible with VASP. Many physical 

properties can be calculated directly by VASP without the need for external data. The VASP 

code can be used to simulate molecular dynamics for a few hundred atoms. These runs, however, 

necessitate extremely high memory requirements, which are difficult to meet on standard 

computers. This computation will take several weeks on a normal computer. A large device 

storage with more than hundreds of giga bytes is needed for medium cutoff energy and k-point 

spacing. 

Several interatomic potential development codes exist based on types of potential. Rapid 

advancement and usage of machine learning and artificial intelligence divides the type of 

potential into two: functional or analytic interatomic potential and machine learning potential. 

Functional or analytic interatomic potential have certain analytic assumption on the potential 

energy surface and utilize the parameters in these analytic form in formulating interatomic 

potential to express the total energy of the crystal structure. While machine learning potential 

does not presume any analytic form of the potential energy surface but, rather tries to make 

correlation from the given large datasets between the crystal structure and potential energy 

surface and, once the correlation has been established then it is applicable for other test datasets 

and molecular dynamics simulation. There are wide range of interatomic potential development 

codes for functional form like POTFIT, MEAMfit, COMB, REBO etc., to develop potential for 

wide variety of materials. Recently, many machine learning interatomic potential codes based on 

neural network have been developed like aenet, Amp, ANI, DeepMD, PINN etc, are available 

for the purpose of describing many physical properties and chemical interactions. Many 
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databases like Materials Cloud, Materials Project, NOMAD, AFLOW etc, are available for 

variety of materials from organic, inorganic, metallic and others that can be implemented to 

study wide range of properties based on machine learning. 

MEAMfit is an interatomic potential development code that allows us to develop 

functional form of interatomic potential, specifically, embedded atom method (EAM) and 

reference free modified embedded atom method (RF-MEAM) potential[46]. MEAMfit code is 

very simple to use and has direct integration of VASP output that can be used as an input to 

generate EAM and RF-MEAM potential. In this code, the energy and force data from VASP 

output i.e., from vasprun.xml file is used as an input data to fit the parameters in the EAM and 

RF-MEAM potential.  MEAMfit creates a fitdbse file that includes the trajectories when it runs 

for the first time. These files must be customized to meet the precise specifications. The 

optimization functions that MEAMfit use to find the best solution is shown below. 

𝑅𝑅2 =
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                                          (67) 

Here n represents the number of trajectories in vasprun.xml files. 𝐸𝐸𝑝𝑝𝑡𝑡𝑎𝑎𝑖𝑖  and 𝐸𝐸𝐷𝐷𝐻𝐻𝜕𝜕𝑖𝑖  are the total 

energy from the generated potential and from the DFT data for given 𝑛𝑛𝑎𝑎ℎ structure. 𝐹𝐹𝛽𝛽,𝑝𝑝𝑡𝑡𝑎𝑎
𝑖𝑖,𝑖𝑖  and 

𝐹𝐹𝛽𝛽,𝐷𝐷𝐻𝐻𝜕𝜕
𝑎𝑎𝑣𝑣𝑎𝑎  denote the force obtained from the potential and ab-initio data for the given structure. The 

cartesian components on atom 𝑖𝑖 of 𝑛𝑛𝑎𝑎ℎ structure is represented by 𝛽𝛽. 𝑊𝑊𝑖𝑖 is the measure of 

relative weight to which energy, force and stress data are given for parameter to fit. Typically, 

only considering energy data from the vasprun.xml file a fitted potential generate energy within 

10% error of DFT data.  

The conjugate gradient (CG) algorithm and the genetic algorithm (GA) are used in 

MEAMfit[46]. The optimization function (R) is minimized using the CG algorithm. The first 
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potential is created by randomly initializing each potential parameter within the defined bounds. 

Parameters initialization for pairwise coefficients are randomly seeded from the range [-10, 10]. 

This range is the default value set by MEAMfit code. In the pairwise functions, random values 

are provided for cut-off radii. These random values are derived from the fitting database's 

smallest interatomic distance (0.9 Å) and the user-specified maximum cut-off radius. The 

randomly seeded potential will go for CG-optimization once minimization begins, and the value 

R falls below 10. Once ten potentials have been developed using this method, GA is used to 

combine pairs of potentials at random. 

One can obtain the global minimum, which is difficult to obtain using only randomly 

seeded potentials using genetic algorithm. This optimization helps to benefit from previous ones. 

Although the first value of the potential parameter is provided at random, these starting values 

can be set using the existing potential. POTFILE=potparas in MEAMfit will get the starting 

values for the subsequent optimization from the setting file. MEAMfit generates EAM file 

compatible to that in LAMMPS and CAMELION formats once the optimization is complete. 
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COMPUTATIONAL DETAILS 

 

Zirconium Diboride Crystal Structures for Ab-initio Simulation 

To do computation for density functional theory and ab-initio calculation, the structure of 

zirconium diboride must be generated. Since it is essential to sample at different volume of the 

zirconium diboride crystal structure at different temperature to properly capture the phonon 

vibrations and explain thermal properties. I used 2x2x2 super cell (eight-unit cells) of zirconium 

diboride crystal structure for all my sample for VASP ab-initio molecular dynamics calculation 

using Materials Project with kinetic energy cutoff of 520 eV shown below in Figure 6[52]. 

Figure 6: 2x2x2 (8-unit cells) super cell of zirconium diboride 
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I used Open Visualization Tool (OVITO) along with Visualization for Electronic and 

Structural Analysis (VESTA) for crystal structure manipulation to create crystal structure for 

different volumes. Different volumes were made either by scaling up or down by consecutive 2% 

increasing and decreasing the relaxed structure. Table 1 below shows the number of volume 

configurations made for the zirconium diboride crystal structure. 

 

Table 1: Constant volume and temperature (NVT) VASP calculation of the sample structures for 
different volume scaling of relaxed crystal structure 
Sample number Volume change Ensemble for VASP 

1 ±2% NVT 

2 ±4% NVT 

3 ±6% NVT 

5 ±8% NVT 

6 ±10% NVT 

7 ±12% NVT 

   

Here, the changes in crystal structure made in this way are only the lattice parameters i.e., 

𝐺𝐺 and 𝑐𝑐 of zirconium diboride crystal structure. However, I retained the angle of cell as that of 

relaxed structure for this sampling. Figure 7 below shows the lattice parameters of the zirconium 

diboride after scaling down volume by 2%. 
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Figure 7: 2x2x2 super cell (a) top, (8-unit cells) of zirconium diboride with 2% volume reduced, 
resulting lattice parameter 𝐺𝐺 = 3.172 Å and 𝑐𝑐 = 3.393Å, (b) bottom left, front view of the 2% 
volume reduced (c) bottom right, top view of the 2% volume reduced zirconium diboride 
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Similarly, I also generated the crystal structure varying only one lattice parameters, either 

𝐺𝐺 or 𝑐𝑐. To vary the lattice parameter 𝐺𝐺, firstly, I fixed the lattice parameter 𝑐𝑐 i.e., to 3.545Å and 

generated 100 structures by changing lattice parameter 𝐺𝐺 by 0.1Å. Also, for generating structures 

with varying 𝑐𝑐, I fixed the lattice parameter 𝐺𝐺 to 3.18Å and change lattice parameter 𝑐𝑐 by 0.1Å. 

In addition, I also varied the cell angle of 2x2x2 super cell of zirconium diboride to better predict 

mechanical properties like elastic constants. This cell deformations are achieved by evaluating 

elastic constants of the relaxed structure of zirconium diboride using VASP. The relaxed 2x2x2 

structure of zirconium diboride is given below in Figure 8. I used 2x2x2 super cell of zirconium 

diboride to calculate elastic constants using IBRION=6. The kinetic energy cutoff of 600 eV was 

used and Monkhorst-Pack scheme of 11x11x11 for this calculation. The calculation was 

performed based on the plane wave basis projector augmented wave method with Perdew-Burke-

Ernzerhof (PBE) parametrization of generalized gradient approximation of exchange correlation 

functional as implemented in VASP[49, 51]. Thus, generated deformed cells were then used as a 

sample for AIMD calculation. There are 21 deformations of 2x2x2 super cells deformed along Zr 

or B plane and to the plane perpendicular to it. 
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Figure 8: Undeformed 2x2x2 super cell of zirconium diboride (a) top left, with basal 
angle i.e., angle between 𝛼𝛼 and 𝛽𝛽 (b) top right, angle between Zr or B basal and perpendicular 
plane i.e., angle between 𝛼𝛼 and 𝛾𝛾 (c) bottom, angle between Zr or B basal and perpendicular 
plane i.e., angle between 𝛽𝛽 and 𝛾𝛾. Here red arrow in the figure represents x-axis (lattice vector 
a1), green represents y-axis (lattice vector a2) and blue represents z-axis (lattice vector a3). 𝛼𝛼 is 
angle between lattice vector a1 and a2, 𝛽𝛽 angle between lattice vector a1 and a3 and 𝛾𝛾 the angle 
between lattice vector a2 and a3. 
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Here in the above undeformed 2x2x2 super cell of zirconium diboride in Figure 8, the 

cell angles are as it is in the hexagonal closed pack structure i.e., 120°, 90° and 90°. Figure 9 

below shows the deformed super cell of size 2x2x2 with lattice parameter 𝐺𝐺 = 3.14044 Å, 𝑐𝑐 =

3.54519 Å and 𝐺𝐺 = 3.172168, 𝑐𝑐 = 3.54519 Å. 

 

 
 

 
Figure 9: Deformed 2x2x2 super cell of zirconium diboride (a) top left, deformation along basal 
plane i.e., on angle 𝛼𝛼 (b) top middle, no deformation on angle 𝛽𝛽 (c) top right, no deformation on 
angle 𝛾𝛾 (d) bottom left, cell angle deformed by 0.01° on 𝛼𝛼 (e) bottom middle, no change on 
angle 𝛽𝛽 (f) angle 𝛾𝛾 changed to 89.504° 
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Ab-initio Simulation with VASP for Zirconium Diboride 

After having sampled the structure of zirconium diboride for different volumes and 

deformations I discuss the procedure to obtain the behavior of these structures using ab-initio 

molecular dynamics with Vienna Abinitio Simulation Package (VASP). The objective of doing 

ab-initio molecular dynamics on the crystal structure is to acquire energy, force, and strain 

information at high temperature. At far from its melting temperature the atomic vibrations are 

mostly harmonic so firstly, I used constant volume and temperature (NVT) canonical ensemble 

to sample this information at relatively lower temperature of 1000K and 1500K from its melting 

point at 3500K. VASP allows different type of thermostat to achieve the NVT ensemble. Noose-

Hover thermostat was used to get the temperature with ISIF=2 and MDALGO=2 settings in 

VASP. The kinetic energy cutoff was set to 520 eV which was 30% above the maximum energy 

cutoff for the recommended potential for Zr and B. This setting for energy was chosen 

throughout all abinitio molecular dynamics (AIMD) calculation of NVT ensemble. Similarly, the 

Monkhorst-Pack scheme of 4x4x4 was used in all the NVT ensemble including 1000K and 

1500K sample. The precision was set to accurate and self-consistent field convergence of 1.0E-6 

eV was used. Similarly, Gaussian smearing with smearing width of 0.03 eV was set for partial 

occupancies of set of orbitals. There are several ways of getting samples for different 

configurational space within the structure and canonical NVT ensemble temperature that would 

address the harmonic and anharmonic vibrations in the crystal structure. However, the general 

strategy here is to first match the thermal fluctuation due to harmonic vibration and consequently 

move to higher temperature for the given configurational space for sampling the anharmonic 

contribution[53]. I adopt this strategy and further simulate NVT ensemble at temperature 2000K, 

2500K, 3000K, 3500K and 4000K for all given structures with volume scaling and deformations. 
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For the samples with varying lattice parameter, ground state calculation was performed 

with energy cutoff of 600 eV and Monkhorst-Pack scheme of 4x4x4. The precision set to Normal 

and self-consistent field convergence of 1.0E-4 eV was used. Gaussian smearing with width 0.03 

eV was used. This type of sampling is like the volume scaling but also add to the variation of 

energy in changing only one lattice parameter 𝐺𝐺 or 𝑐𝑐 of the zirconium diboride crystal structure. 

Further, 50 sample structures of zirconium diboride with size 2x2x2 were taken by randomly 

displacing the atoms. The random displacement of atoms were performed using Phonopy and the 

magnitude of displacement of atoms was 0.1 Å[54]. Of these structures with randomly displaced 

atoms, ground state calculation was performed using ISIF=6. This setting allows us to fix 

position of the atoms and perform structure optimization on cell geometry. The kinetic energy 

cutoff of 600 eV was used along with gaussian smearing width of 0.03 eV and self-consistent 

field convergence of 1.0E-4 eV. 

The effort to add possible sampling on deformations, NVT sampling by varying different 

lattice parameters (𝐺𝐺 or 𝑐𝑐 only) and including cell geometry optimized structures by randomly 

displacing atomic positions in the volume scaling sample is to address for higher order force 

constants (third order and more) accounting anharmonicity and to better match the mechanical 

properties of the zirconium diboride including ground state and higher temperature bulk modulus 

and elastic constants. 

 

MEAMfit for EAM and RF-MEAM Potential for Zirconium Diboride 

The next step after ab-initio calculation of the zirconium diboride sample crystal structure 

is to fit the energy, force, and stress information. For each of the ab-initio VASP calculation, 

vasprun.xml file is generated that consists of energy, force and stress information of molecular 
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dynamics run. 891 trajectories were generated for NVT ensemble with 1000K and 1500K and 

4257 trajectories from 2000K, 2500K, 3000K, 3500K and 4000K sample. These trajectories 

were with volume scaling from vaprun.xml file. Each trajectory from the structures were 

generated from varying lattice parameters and randomly displacing the atoms. MEAMfit code 

allows us to fit the ab-initio VASP data to develop EAM and RF-MEAM potential[46]. The 

detailed working of the MEAMfit code is given in the introduction section. Fitdbse file was 

generated based on the given trajectories above. The fitdbse file contains the number of 

vasprun.xml files, number of trajectories in each of the vasprun.xml files and the weight to put 

on energy, force, and stress information for each of the vasprun.xml files. The weight is relative 

amount of energy, force, and stress data to put during fitting process. In fitting EAM and RF-

MEAM potential, full weight is given to all the energy, force, and stress trajectories in the 

vasprun.xml files i.e., 𝑤𝑤𝑖𝑖 = 1. Running MEAMfit again generates the separation histogram file 

and settings file. The separation histogram file contains the distribution of atoms/atomic pairs as 

a function of distance from the vasprun.xml files. The distribution of atomic pairs as a function 

of distance will be presented in the result. Similarly, in the settings, each EAM and RF-MEAM 

potential fit has the option to choose cutoff radius. This cutoff radius is the maximum distance up 

to which neighbor interaction is counted. MEAMfit has an option to consider the pair interaction 

using NTERMS tag. For each of the EAM and RF-MEAM potential, the cutoff radius was set to 

4.4 Å and NTERMS to 3. This means that considering pair interaction, the interaction by third 

nearest neighbor term is counted within the interatomic distance of 4.4 Å. Similarly, another 

important parameter is NTERMS_EMB that accounts for contribution of nearest neighbor to 

construct electron density. The NTERMS_EMB was also set to 3 for each of the EAM and RF-

MEAM potentials. Setting up these parameters MEAMfit runs the fitting but before running the 
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fitting scheme another parameter OPTFUNCCG was set as the default value of 10. The 

OPTFUNCCG determines the threshold value for conjugate gradient minimization during the 

random sampling process.  
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RESULTS 

 

EAM Potential for Zirconium Diboride 

For both EAM and RF-MEAM potential, total number of 5348 trajectories obtained from 

ab-initio molecular dynamics via NVT ensemble and structural optimization/relaxation. From the 

AIMD runs with NVT ensemble at least 50 trajectories with 1 femto-second (fs) were obtained. 

The INCAR files for NVT sampling, structural optimization and deformations are given below in 

the APPENDIX. The statistical sampling for all the pairs is given below in Figure 10. 

 

Figure 10: Percentage distribution of (zirconium-zirconium) Zr-Zr pair for all DFT samples 
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Mostly, the distribution peaks at 3.00261 Å. This suggests that the Zr-Zr pairs are available more 

around its equilibrium distance of 3.17 Å and less at smaller and larger interatomic separation. 

The variation of Zr-Zr pairs is directly correlated with the sampling of volume taken and since 

nearly 70% of samples are at high temperature and high volume or deformation, the distribution 

is skewed towards the right and has sampling more at larger distance than its equilibrium value 

of 3.17 Å[52]. Similarly, for the Zr-B pairs in Figure 11, at least second nearest neighbors are 

found in the sample as the percentage distribution of sample peaks at two values of 2.53 Å and 

3.97 Å. As Zr-B interatomic separation is out of the Zr/B plane, the pair separation distance 

indicates that the Zr and B plane is quite intact even at the higher temperature since the 

equilibrium distance for Zr-B pair at ground state is 2.55234 Å and 4.078 Å (for first and second 

nearest neighbor). 

 

Figure 11: Percentage distribution of B-B pair for all DFT samples 
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Now, for the B-B pairs, the separation is sparser when it comes to second and third nearest 

neighbor in Figure 12. This is because the second neighbor and third nearest neighbor is 

relatively close at 3.18049 Å and 3.6725 Å of the boron ring at boron plane. The first nearest 

neighbor at 1.82 Å and the evenly distributed peak suggest that equal volume expansion and 

reduction of sampling present for the first nearest neighbor.  The quality of the fit was determined 

by comparing 

 

 

 

 

 

 

 

 

 

 

Figure 12: Percentage distribution of boron-boron (B-B) pairs for all DFT samples 

 

the energy and force from the ab-initio simulation to the energy and force from the MD 
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potentials. The first approach towards the validity of potential development is to match these 

energy and force data. 

Figure 13(a) represent the energy fit obtained from the EAM potential and DFT 

calculation with a slope of 0.9884. This indicates that the energy values obtained from the EAM 

potential follows well to the DFT datasets. Linear regression analysis with regression coefficient 

of 𝑅𝑅2 = 0.991 also suggest that the energy data from the EAM potential and DFT calculation 

matches well.  

 
Figure 13 (a): Energy fit obtained from EAM potential to that of DFT (b) force fit data along x 
component (a-axis) (c) force fit data along y-component (b-axis) (d) force fit data along z 
component (c-axis) 
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In what follows, similar analysis on each of the forces along x, y and z direction with regression 

coefficients 0.9519 (slope 1.0208), 0.9549 (slope 1.0326) and 0.9231 (slope 0.9171) in Figure 

13(b), Figure 13(c) and Figure 13(d) indicates that the EAM potential is able to correctly 

reproduce the force values of the DFT datasets with a reasonable quantification of its parameters. 

Similarly, the value of the optimization function obtained from MEAMfit code was 0.25, which 

is in agreement with the fit obtained from regression. Divergence was observed for higher force 

values along y-axis and z-axis near 10 eV/A. This may be possibly due to the limited number of 

points that were used for the larger force ranges. These data with higher positive force values are 

due to data with higher temperature sampling at 4000K. The vibration of atom at this 

temperature is comparatively higher causing high pressure of 75.8577 kbar and therefore higher 

force. I used more of the trajectories at 4000K into the sample to further fit higher force value 

and look up into the atomic vibration using phonon dispersion. For the fits with a larger sampling 

population (smaller force level), much better cartesian force fitting was obtained as shown in 

Figure 13. The parameters of the EAM potential for ZrB2 are given below in Table 2 (a) and 

Table 2 (b). 

 
Table 2 (a): Parametrization of the ZrB2 EAM potential for embedding functions  

 
 
 
 
 
 
 
 

 𝒂𝒂(𝒆𝒆𝒆𝒆) 𝒃𝒃(𝒆𝒆𝒆𝒆) 𝒄𝒄(𝒆𝒆𝒆𝒆)  

𝐸𝐸𝑍𝑍𝑟𝑟𝑒𝑒𝑚𝑚𝑏𝑏 10.064496271 2.572625271E-2 -2.000342775E-4  

𝐸𝐸𝐵𝐵𝑒𝑒𝑚𝑚𝑏𝑏 6.345006591E-4 1.621390756E-3 -1.160965790E-5  



53 

 
 
 
Table 2 (b): Parametrization of ZrB2 EAM potential for pairwise functions 

 

The pairwise components of the EAM potential are shown in Figure 14 below. The 

relaxed DFT calculation for 𝐵𝐵 − 𝐵𝐵 equilibrium positions, for example, is located at 1.83221 Å 

whereas the minimum is at  1.82 Å. Similar outcomes are also shown for Zr-B and Zr-Zr 

interatomic distances. The use of varied c/a ratio samples allows sampling of variations in Zr-B 

interatomic distance without necessarily altering the Zr-Zr or B-B interatomic planar distance 

 𝒂𝒂(𝟏𝟏) 𝒃𝒃(𝟏𝟏)Å 𝒂𝒂(𝟐𝟐) 𝒃𝒃(𝟐𝟐)Å 

𝑓𝑓𝑍𝑍𝑟𝑟
(𝑒𝑒=0) -0.970695245 1.678835710 -8.215461786 1.897361031 

𝑓𝑓𝐵𝐵
(𝑒𝑒=0) -4.795525007 3.155530117 1.025042683 4.302700579 

𝜙𝜙𝑍𝑍𝑟𝑟,𝑍𝑍𝑟𝑟 70.353791434 4.133650447 4.320597369 2.961195564 

𝜙𝜙𝑍𝑍𝑟𝑟,𝐵𝐵 562.65657584 3.342879995 -0.95492960 1.613735876 

𝜙𝜙𝐵𝐵,𝐵𝐵 -186.083135395 2.624860851 5.945053708 1.903614237 
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Figure 14: Pair potential for different atomic pairs in zirconium diboride using EAM potential 

 

within the crystal structure. This also highlights the importance of utilizing larger sampling data 

and a wider range of pair interactions. For all of the atomic pairs i.e., Zr-Zr, Zr-B and B-B the 

shape of potential around minimum is harmonic and quadratic in nature so the potential is able to 

capture the harmonic vibration of the atom pairs. The harmonic motion is predominant below the 

midway of melting point in zirconium diboride. As we can see that the interatomic potential 

energy minimum for Zr-B pair is -1.463 eV which is greater than Zr-Zr pair and B-B pair. The 

Zr-B pair interaction strongly contributes to the melting temperature[2]. However, only the Zr-Zr 

pair interaction is weak compared to Zr-B and B-B pair and this degrades the strength and 
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stiffness of zirconium diboride. Further insight into the electron density in Figure 15 presents the 

fact that density for boron is compromised below the interatomic separation of 1.6 Å. The 

electron density below interatomic separation of 1.6 Å for boron is mainly at the repulsive side 

of B-B interaction since the equilibrium distance for 

 

 

 

 

 

 

 

 

 

 

 
Figure 15: Normalized electron density as a function of interatomic separation 

 

B-B pair is at 1.82 Å. The repulsive forces are predominant either in high pressure sample or 

reduced volume sample at high temperature i.e., the sample at 4000K. The effect of this ill-

behaved density is that it is not able to capture the vibration of atom, especially, the boron atom 

at higher temperature where the anharmonic vibration exceeds the harmonic vibration. However, 

for larger interatomic separation the electron density for boron is well behaved and capture the 

decay of electron density as a function of interatomic separation. The shape of embedding 

function for zirconium in Figure 16 resembles that of electron density. 
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Figure 16: Normalized Embedding function for zirconium as a function of electron density 

 

The normalized embedding function for both zirconium and boron are plotted against the 

normalized electron density in Figure 16 and Figure 17 respectively. As the electron density is 

just the linear combination of the electron density of neighboring atoms, the embedding function 

follows the shape of electron density given by Daw and Baskes for zirconium in EAM 

potential[43]. As the shape of density by Daw and Baskes is just the exponential decay coupled 

with quantity for number of valence electrons and some adjustable parameters, the functional too 

has similar nature given below in Figure 17.  
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Figure 17: Normalized embedding function for boron as a function of electron density 
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RF-MEAM Potential for Zirconium Diboride 

            Similar to the energy fitting in EAM, the regression coefficients were 0.9991 (slope 

1.0002), 0.9702 (slope 0.9982), 0.979 (slope 1.0119), 0.96 (0.991) for energy, force along x-axis, 

y-axis and z-axis, respectively in Figure 18(a), Figure 18(b), Figure 18(c) and Figure 18(d). The 

results show that the RF-MEAM potentials fit better than EAM potential when compared to DFT 

energy and force datasets. Here, for the energy fit to the DFT data, similar regression value is 

obtained as that for EAM potential. However, the distinction can be made to the force fitting. 

Because the EAM was not able to capture higher force values along y and z-axis, the regression 

value of force component along x, y, and z-axis with regression coefficient 0.9702, 0.979 and 

0.96 is greater than that for EAM potential. This shows that RF-MEAM is able to better capture 

the higher forces value of high temperature sample at 4000K. Also, an optimization value of 0.23 

was obtained from MEAMfit, which is consistent with regression analysis since this is the square 

average of the energy and force fits. Figure 18 compares the energy and cartesian force fitting 

between RF-MEAM and DFT calculations. The RF-MEAM values fit better than the EAM data, 

especially at higher force values. While low statistical samplings remain because the same data 

were used, the additional parameters employed in RF-MEAM help delineate the force 

contributions that result from the angular dependency. Table 3 (a), Table 3 (b) and Table 3 (c) 

below shows the parametrization of zirconium diboride for RF-MEAM potential. The addition of 

extra angular term in the parametrization with angular dependence contribution for 𝑙𝑙 = 1, 𝑙𝑙 = 2 

and 𝑙𝑙 = 3 fine tune the electron density for zirconium and boron that was absent in EAM 

potential. This also introduces the effect of bond angle in pairwise function and additional 

background density prefactors model the electron density at high temperature regime which I 

will be discussing below. 
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Figure 18: (a): Energy fit obtained from RF-MEAM potential to that of DFT (b) force fit data 
along x component (a-axis) (c) force fit data along y-component (b-axis) (d) force fit data along z 
component (c-axis) 
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Table 3 (a): Parametrization of ZrB2 RF-MEAM potential for embedding functions  

 

Table 3 (b): Parametrization of ZrB2 RF-MEAM potential for pairwise functions  

 

 

 

 

 

 𝒂𝒂(𝒆𝒆𝒆𝒆) 𝒃𝒃(𝒆𝒆𝒆𝒆) 𝒄𝒄(𝒆𝒆𝒆𝒆)  

𝐸𝐸𝑍𝑍𝑟𝑟𝑒𝑒𝑚𝑚𝑏𝑏 0.468879747 -1.080724965E-3 1.075181169E-8  

𝐸𝐸𝐵𝐵𝑒𝑒𝑚𝑚𝑏𝑏 1.999724253 1.061089499E-3 -5.946560991E-8  

 𝒂𝒂(𝟏𝟏) 𝒃𝒃(𝟏𝟏)Å 𝒂𝒂(𝟐𝟐) 𝒃𝒃(𝟐𝟐)Å 

𝑓𝑓𝑍𝑍𝑟𝑟
(𝑒𝑒=0) 2.379212158 2.002392789 6.975737719 2.179132926 

𝑓𝑓𝑍𝑍𝑟𝑟
(𝑒𝑒=1) -20.844456639 2.675448658 9.484100315 3.274452548 

𝑓𝑓𝑍𝑍𝑟𝑟
(𝑒𝑒=2) 1.861463237 2.001695505 0.170608968 4.300691942 

𝑓𝑓𝑍𝑍𝑟𝑟
(𝑒𝑒=3) -5.838191610 3.185531811 6.271272076 3.529929373 

𝑓𝑓𝐵𝐵
(𝑒𝑒=0) 2.065914315 2.002840591 1.464261431 3.701294261 

𝑓𝑓𝐵𝐵
(𝑒𝑒=1) 7.391006372 3.030072001 -0.800069262 4.300925564 

𝑓𝑓𝐵𝐵
(𝑒𝑒=2) 15.476480540 3.639311263 -15.892792579 3.602294698 

𝑓𝑓𝐵𝐵
(𝑒𝑒=3) 15.113564318 3.662862215 -33.742956749 3.120952802 

𝜙𝜙𝑍𝑍𝑟𝑟,𝑍𝑍𝑟𝑟 1.070660743 3.612628484 1.457329486 1.775642616 

𝜙𝜙𝑍𝑍𝑟𝑟,𝐵𝐵 3.543207871 2.789923749 -1.736467135 2.159654436 

𝜙𝜙𝐵𝐵,𝐵𝐵 11.209743335 1.981329643 -0.459566690 2.757900033 
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Table 3 (c): Parametrization of ZrB2 RF-MEAM potential for density prefactors 

 

The pairwise components of the RF-MEAM potential are shown in Figure 19 below. The 

relaxed DFT calculation for 𝐵𝐵 − 𝐵𝐵 equilibrium positions, for example, is located at 1.82 Å 

whereas the minimum is at  1.7823 Å for RF-MEAM potential. This might seem erroneous for 

the reason that minimum for EAM is quite accurate at 1.83221 Å to that of DFT calculation 

rather than RF-MEAM potential. However, the shape of pair potential weigh even more. Since 

the equilibrium distance is with respect to ground state calculation. The shape of interatomic 

potential dictates forces at higher temperature. In the EAM potential, the shape is largely 

harmonic at higher value of interatomic separation, even up to 2.3 Å. But, for the RF-MEAM 

potential, it introduces fair amount of anharmonicity from 1.9 Å. Now, for the Zr-Zr and Zr-B 

pair potential, even though the minimum has not been achieved, the components for this part 

have largely been suppressed and provide more emphasis on the electron density. 

 Zr B 

𝑡𝑡𝛼𝛼
(1) -5.94322349 17.692141145 

𝑡𝑡𝛼𝛼
(2) 2.119537031 -0.334007432 

𝑡𝑡𝛼𝛼
(3) -40.455207045 0.831323720 
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Figure 19: Pair potential for different atomic pairs in zirconium diboride using RF-EAM 
potential 

 

Here, the electron density formalism is described by Daw and Baskes for the RF-MEAM 

potential[45]. Figure 20 below gives the variation of electron density for RF-MEAM potential as 

a function of interatomic separation. Unlike the electron density of boron in EAM potential, the 

electron density in RF-MEAM potential below 1.6 Å is well behaved. This electron density for B 

is decreasing as a function of interatomic separation and is a moderate fall as we would expect. 

Since, B-B bonding in zirconium diboride is covalent and symmetric in a plane with hexagonal 

structure and this would mean the distribution of electron is not abrupt and decrease smoothly as 

distance increases. The electron density for RF-MEAM potential alleviates the unconventional 

electron density for boron in EAM potential. To the other side, there is no significant 
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improvement of electron density for zirconium over EAM potential. The EAM potential was able 

to only capture the electron density up to 1.895 Å but here, the RF-MEAM potential is able to 

capture density up to 2.1784 Å. In both the potential, there is a steepest decline in electron 

density for zirconium.  

 

Figure 20: Normalized electron density as a function of interatomic separation for RF-MEAM 

 

The embedding function for zirconium and boron is given below in Figure 21 and is quite 

opposite to that of EAM potential. The parameters 𝐺𝐺, 𝑏𝑏 and 𝑐𝑐 that determines the embedding 

function are different and especially the value of 𝑏𝑏 is negative for RF-MEAM potential. This 

signifies that more of pair potential part is embedded into the embedding function. 
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Figure 21: Normalized Embedding function for zirconium and boron as a function of electron 
density for RF-MEAM potential 
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DISCUSSIONS 

 

Following the fitting process, EAM and RF-MEAM potentials were evaluated using a 

variety of computational methods for thermal and high-temperature mechanical properties. 

MEAMfit converts EAM and RF-MEAM potential into a LAMMPS-readable format. To execute 

the simulations, multiple molecular dynamics codes other than LAMMPS were employed, 

including phonopy, phonolammps, AICON and alamode[55-61]. To test the effectiveness of the 

developed potential several thermal properties like phonon dispersion, phonon density of states, 

thermal expansion, specific heat capacity, phonon relaxation time and thermal conductivity of 

zirconium diboride were evaluated. Similarly, I also tested the mechanical properties of 

zirconium diboride, especially the bulk properties of zirconium diboride like elastic constants, 

bulk modulus and high temperature elastic properties. All the properties measured were either 

compared to DFT calculation or to the experimental values.  

 

Thermal Properties of Zirconium Diboride 

Phonon Dispersion and Density of States. The vibrational properties of zirconium 

diboride including phonon dispersion curve and density of states were calculated using 

phonolammps and phonopy. Phonon dispersion curve using DFT was computed using density 

functional perturbation theory as implemented in VASP and phonopy[49-51, 54]. IBRION=8 

was used to determine hessian matrix to evaluate force constants based on 2x2x2 supercell for 

the relaxed unit cell. For phonon dispersion using EAM potential, firstly relaxed unit cell of 

zirconium diboride is used to calculate force constants using 2x2x2 supercell by phonolammps. 
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After phonolammps evaluates force constants, phonon dispersion was obtained using phonopy 

with tetrahedron method and Monkhorst-Pack scheme of 8x8x8.  

Figure 22 compares the phonon dispersion curves for conventional symmetry points 

along the first Brillouin zone of hexagonal lattice given below. The phonon dispersion curve 

consists of 9 dispersion curve, 3 phonon dispersion curves for each atom in a unit cell of 

zirconium diboride. 3 phonon modes which are below 9 THz represents acoustic phonon modes 

and in fact one longitudinal acoustic and two optical acoustic. These phonon modes occurring 

below 9 THz frequency is given by the heavier element, because phonon frequency is inversely 

proportional to mass �𝜔𝜔 ∝ 1
𝑚𝑚
�. So, in zirconium diboride the low frequency modes are given by 

zirconium. Similarly, the higher frequency modes are given by boron in zirconium diboride. 

These non-zero high frequency modes are in fact optical phonon modes occurring above 9 THz 

and below 25 THz in Figure 22 below. In general, the zirconium diboride is vibrating below 25 

THz frequency range as can be seen using both the DFT calculation (blue curve) and that using 

EAM potential (orange curve). The in-phase vibration of Zr atoms (acoustic phonon modes) for 

EAM potential are in good agreement with the DFT calculated values which are below 9 𝑇𝑇𝑇𝑇𝑇𝑇 in 

Figure 22 of the phonon dispersion curve. This means that EAM potential is able to capture quite 

precisely the vibration of zirconium atom only along x-, y- and z-axis respectively. Likewise 

reasonable frequency range was observed for optical phonon modes by EAM potential. EAM 

potential slightly overestimates the higher frequency optical phonon modes greater than 20 THz. 

These two phonon modes are boron vibrating in xy plane and out of xy plane while zirconium 

atom being fixed. Similarly, EAM potential also has a reasonable representation of phonon bands 

below 15 THz and these phonon modes are zirconium dominated boron vibration. This boron 
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vibration occurs in boron in the xy plane when zirconium vibrates in xy plane. The other phonon 

modes below 15 THz is boron vibration in xy plane while zirconium vibrates along z-axis. 

Now remaining two optical phonon modes greater than 13 THz and less than 20 THz are 

highly angular dependent zirconium and boron vibration in which all the angles between B-Zr-B 

triplets are changing. One of the phonon modes at this frequency range is zirconium dominated 

boron vibration in which case zirconium and boron are both vibrating along z-axis but opposite 

in direction. Similarly, other phonon mode is the boron vibrating along yz plane, but two boron’s 

in opposite direction and zirconium along z-axis. The EAM potential is clearly not able to 

capture these phonon modes. Since because EAM potential lacks angular dependence terms the 

 

Figure 22: Phonon dispersion curve for EAM potentials compared with DFT calculation 
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frequencies are not correctly reproduced along the symmetry points in first Brillouin zone of 

hexagonal lattice. The EAM potential highly overestimates the vibrational frequencies for the 

phonon modes. Now, in contrast to EAM potential for the given same sample the RF-MEAM 

potential is able to follow the vibrational frequencies in the frequency range 15 THz to 20 THz but 

slightly overestimate it in Figure 23. The additional angular contribution and addition of 

background density prefactors in the parametrization of RF-MEAM potential sense the B-Zr-B 

triplet accurately by changing the electron density for boron and thereby the embedding function. 

The correction in phonon frequency in range 15 THz to 20 THz helps in better understanding of 

the thermal expansion and high temperature elastic constants. 

 

Figure 23: Phonon dispersion curve for RF-MEAM compared with DFT calculation 
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To understand the high temperature behavior of EAM potential I studied phonon 

dispersion curve. While same sampling was used for both EAM and RF-MEAM, the phonon 

curve in Figure 24 uses the NVT high temperature sample up to 2500K. Inclusion of high 

temperature data greater than 2000K and up to 4000K drastically changes the entire optical 

phonon modes of vibration. While frequencies for acoustic phonon modes remains same for the 

high symmetry points in first Brillouin zone because these are vibrations by heavier zirconium 

elements. The zirconium dominated boron vibration (at 15-20 THz) and only boron vibration 

(greater than 20 THz and up to 25 THz) do not agree well with phonon dispersion curve obtained 

from DFT. 

 

Figure 24: Phonon dispersion curve for potential generated with inclusion of higher NVT 
temperature sample up to 4000K 
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Firstly, all in-plane boron vibration is same along high symmetric path and the two 

phonon modes are almost identical for zirconium dominated boron vibration. At higher 

temperature there is more vibration and higher variations of pairs and triplets for B-Zr-B pairs 

are present. The inability to match these angular variations given the angular variation in high 

temperature data present a challenge for EAM potential to replicate thermal properties greater 

than 2000K. This suggest other approach must be addressed to properly account the behavior of 

anharmonicity at temperature greater than 2000K so that parameters in EAM potential can sense 

the angular variations.  

The total density of states in Figure 25 shows slight shifting of the in-phase Zr vibrations 

by 0.3 THz, which resulted in a significant rise in occupancies of phonon modes near 16 𝑇𝑇𝑇𝑇𝑇𝑇 

and 20 𝑇𝑇𝑇𝑇𝑇𝑇. 

 
Figure 25: Density of states for zirconium diboride by EAM potential compared to that of DFT 
calculation 
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The optical phonon frequency modes operating at 14 𝑇𝑇𝑇𝑇𝑇𝑇 and 16 𝑇𝑇𝑇𝑇𝑇𝑇 in DFT calculations now 

shifts to a higher value by about 3 𝑇𝑇𝑇𝑇𝑇𝑇 in the EAM potential.  Figure 26 and Figure 27 shows 

the total and partial phonon density of states, which are consistent with the phonon dispersion 

results. These results also provide better insight into the shift of the optical phonon modes by 

showing that EAM overestimates specific B-vibrational frequencies at 14 𝑇𝑇𝑇𝑇𝑇𝑇 and 16 𝑇𝑇𝑇𝑇𝑇𝑇 in 

DFT calculation. 

 

Figure 26: Density of states for zirconium diboride by RF-MEAM potential compared to that of 
DFT calculation 

 

The phonon occupancies are in line with the DFT calculation for acoustic phonon modes. 

The density of states in Figure 26 shows that optical phonon modes (only boron vibration) has 
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Figure 27: Partial density of states (a) top left, for Zr with EAM potential (b) top right for B with 
EAM potential (c) bottom left, for Zr with RF-MEAM potential (d) bottom right for B with RF-
MEAM potential 
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frequency mode by zirconium is vibrating or has a contribution on phonon occupancies on higher 

frequency mode for both the EAM and RF-MEAM potential. Figure 27 on top left and bottom 

left compares the normalized phonon occupancies by zirconium against DFT calculation for both 
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EAM and RF-MEAM potential. While there is significant phonon occupancy of zirconium near 

20 THz frequency range as compared to the DFT calculation for EAM potential, this might have 

resulted higher boron vibration around that frequency range on the top right of Figure 27. Unlike 

EAM potential no significant higher frequency vibration for zirconium is available for RF-

MEAM potential as compared to DFT calculation. So, the phonon occupancy for boron 

dominated vibration follows the DFT calculation. 

Thermal Expansion of Zirconium Diboride. For the thermal expansion or lattice 

expansion of zirconium diboride, LAMMPS code was used[58]. I used 10x10x10 super cell of 

zirconium diboride for simulating isothermal constant pressure and temperature (NPT) ensemble 

to find the lattice expansion at each temperature points. Metallic unit was used with a timestep of 

1 fs for one million runs. The lattice parameters obtained are then normalized in a unit cell value 

and are plotted against the temperature. Figure 28 compares the lattice expansion using EAM 

potential as a function of temperature. The thermal expansion coefficient measures the rate at 

which the lattice expands by increasing the temperature. This anisotropic behavior on thermal 

expansion have been extensively studied. Several experimental studies have shown the lattice 

expansion at the order of ~10−6 /𝐾𝐾 for different monocrystalline and polycrystalline sample for 

different temperature range[11-13, 62, 63]. The lattice expansion fitting shows that fair level of 

anisotropy with different lattice expansion coefficient was obtained. The lattice parameters were 

modelled with linear variation in temperature for both the EAM and RF-MEAM potential. The 

trendline below in Figure 28 represents the lattice estimation with temperature. The coefficient of 

linear expansion for lattice parameters 𝐺𝐺 and 𝑐𝑐 are given by the slope of trendline and the 

intercept represent the lattice parameter at room temperature. Here, large offset is seen in the 

lattice parameter 𝑐𝑐 as compared to experimental values. This may presumably be due to 
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activation of zirconium phonon modes at higher frequency which sweep the boron atoms along 

z-axis, since the higher phonon occupancy of atom specific zirconium at higher frequency (near 

20 THz)  

 

Figure 28: Lattice constant as a function of temperature using EAM potential 

 

value in Figure 27(a). The lattice coefficient expansion for lattice parameter 𝑐𝑐 is greater than that 

for lattice parameter 𝐺𝐺 indicates that EAM potential is able to capture fair level of anisotropy in 

zirconium diboride. The lattice parameter using EAM potential at room temperature is obtained 

as 𝐺𝐺 = 3.5387 Å and for 𝑐𝑐 = 3.1723 Å. Similarly, the plot of lattice parameter as a function of 

temperature for RF-MEAM potential is shown in Figure 29. The lattice estimate with 

temperature is represented by the trendline in Figure 28. The slope of the trendline determines 

the coefficient of linear expansion for lattice parameters a and c, whereas the intercept represents 
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the lattice parameter at room temperature. The offset in lattice parameter has been reduced by 

using RF-MEAM potential and may presumably be due to absent of higher frequency mode of 

zirconium atom as was seen on EAM potential. 

 

Figure 29: Lattice constant as a function of temperature compared to that from reference 
Okamoto et.al 
 

Specific Heat Capacity of Zirconium Diboride. The specific heat capacity of zirconium 

diboride is modelled using phonopy and phonolammps. Computation of specific heat capacity of 

zirconium diboride was done following phonon dispersion. So, the process is similar to that of 

phonon dispersion. The thermal properties were set to true using phonopy to estimate the specific 

heat capacity from temperature range of 200K to 2000K. Specific heat capacity is a function of 

phonons and temperature and is given by sum of individual phonon modes as in equation (5). 

Figure 30 below shows the specific heat capacity of zirconium diboride using EAM potential 

y = 2E-05x + 3.1627

y = 3E-05x + 3.4974

3.10

3.15

3.20

3.25

3.30

3.35

3.40

3.45

3.50

3.55

3.60

0.00 200.00 400.00 600.00 800.00 1,000.00 1,200.00 1,400.00 1,600.00

L
at

tic
e 

co
ns

ta
nt

(A
ng

st
ro

m
)

Temperature(K)

a-expt-Okamoto

c-expt-Okamoto

a-RF-MEAM

c-RF-MEAM

Linear (a-RF-MEAM)

Linear (c-RF-MEAM)



76 

against the DFT calculation and Tersoff  potential[64]. The specific heat capacity using EAM 

potential has a wider difference as we go below 700K in the Figure 30 and the difference is low 

above 700K. The sampling used at high temperature obviously replicate the vibrations since 

   

 

 

Figure 30: Specific heat capacity (Cv) as a function of temperature from DFT and EAM 
 

 
the fitting procedure parametrize accordingly is also able to follow at low temperature where the 

sampling has not been introduced to fitting in the potential development. This is also due to the 

inconsistencies in the optical phonon modes obtained in EAM potential at the frequency range of 

15 THz – 20 THz. However, we can see from Figure 31 that while there are still some 

differences at low temperature, but RF-MEAM potential is able to capture the phonon modes at 

this frequency range accurately as compared to EAM potential so, the difference due to specific 

heat capacity at low temperature is reduced. 
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Figure 31: Specific heat capacity (Cv) as a function of temperature from DFT and RF-MEAM 
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Figure 32: Phonon relaxation time and lattice thermal conductivity using EAM and RF-MEAM 
(a) top left, relaxation time for normal phonon process using EAM (b) top right, relaxation time 
for normal phonon process using RF-MEAM (c) bottom left, thermal conductivity using EAM 
(d) bottom right, thermal conductivity using RF-MEAM 
 

four major scattering mechanisms including normal three-phonon process, Umklapp process, 

boundary scattering and isotopes disorder scattering. I used AICON to calculate the phonon 
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of the phonon are considered for thermal conductivity, but AICON uses optical branches as well. 

At high temperature, optical branch contributes around 20% -40% for thermal conductivity. 

Figure 32 (a) and (b) represent the normal phonon relaxation time for zirconium diboride as a 

function of temperature. The normal phonon process follows fifth power of temperature and are 

more dominant in low temperature regime. Figure 32 above shows that the relaxation time 

obtained from both the potentials are of the order of pico seconds at 500 𝐾𝐾. The normal phonon 

process quickly decays and Umklapp phonon process dominate where the scattering rate falls 

exponentially from Aspen-Palmer and Morelli[65, 66].  

I also compared the lattice conductivity of zirconium diboride using the method 

formulated in the AICON code[56]. Thermal conductivity was computed using both the 

potentials and are compared with that of DFT calculation. While no such large difference is 

observed in the thermal conductivity from DFT, and potentials as seen from the Figure 32 (c) 

and (d). However, experimental value of thermal conductivity by Zhang is about 10 W/mK low 

as compared to DFT and potential calculation at temperature of 500K[14]. This is due to the 

polycrystalline sample of zirconium diboride being used. The difference decreases at high 

temperature because phonon thermal conduction becomes low since more of the electronic 

thermal conductivity at high temperature.  

 

Mechanical Properties of Zirconium Diboride 

Five independent elastic constants exist in hexagonal crystals. There are three distinct 

elastic shear constants and consequently three shear type anisotropy ratios for anisotropic 

crystals like zirconium diboride[67]. The Cij matrix principal minors are all positive-definite for 
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anisotropic hexagonal crystals, thus there are three independent stability criteria for hexagonal 

crystals given by[67] 

𝐶𝐶11 > 𝐶𝐶12                                (i) 

𝐶𝐶44 > 0                                         (ii) 

(𝐶𝐶11 + 𝐶𝐶12)𝐶𝐶33 > 2𝐶𝐶122                        (iii) 

These ground state elastic constants calculation was performed using DFT calculation and was 

evaluated using LAMMPS for both the EAM and RF-MEAM potential. The DFT calculation of 

elastic constants was performed using VASP. IBRION=6 was used to calculate elastic constants 

using a 2x2x2 super cell of zirconium diboride. For this computation, a kinetic energy cutoff of 

600 eV and a Monkhorst-Pack scheme of 11x11x11 were employed. The computation was done 

using the plane wave basis projector augmented wave method and the Perdew-Burke-Ernzerhof 

(PBE) parametrization of the generalized gradient approximation of exchange correlation[49-51]. 

The ground state elastic constants calculation for both EAM and RF-MEAM potential along with 

DFT calculation is given below in Table 4.  

 

Table 4: Ground state elastic constant and bulk modulus using EAM and RF-MEAM potential 
  C11(GPa)  C12(GPa)  C13(GPa)  C33(GPa)  C44(GPa)  B(GPa)  

DFT 554  61  123  428  246  238  

RF-MEAM  536.24 84.322 152.33 424.63 250.19 254.78 

EAM  574.40  165.23 140.16 334.38  212.47 263.81 

Tersoff  422 156 171 320 119 240 

 

Further, I also perform high temperature elastic constant calculation using LAMMPS. 

Figure 33 below is a plot of all elastic constants for different temperature using EAM potential. 
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As expected, the EAM potential is able to explain most of the elastic constants due to 

compressive stress and compressive strain because of sampling at different volumes; for 

instance, the value of 𝐶𝐶11 obtained from EAM potential is 574.40 𝐺𝐺𝐺𝐺𝐺𝐺 and that by DFT 

calculation is 554 𝐺𝐺𝐺𝐺𝐺𝐺 and similarly, 𝐶𝐶13 by EAM potential is 140.16 𝐺𝐺𝐺𝐺𝐺𝐺 and that by DFT 

calculation is 123 𝐺𝐺𝐺𝐺𝐺𝐺. The elastic constants due to shear stress and shear strain also closely 

resemble the DFT calculation as 𝐶𝐶44 by EAM potential and DFT calculation are 212.47 𝐺𝐺𝐺𝐺𝐺𝐺 and 

246 𝐺𝐺𝐺𝐺𝐺𝐺. The values of elastic constants and bulk modulus of ZrB2 by EAM potential, DFT 

calculation, and that by Dawson (Tersoff potential) are shown in Table 4[64]. The EAM results 

fare better than the ones predicted by the current Tersoff potential. This is presumably due to the 

more complex interactions that are considered in the EAM calculations as opposed to the 3-body 

interaction considered by the Tersoff method. The shear-related elastic constants such as 𝐶𝐶12 and 

𝐶𝐶44, while they are generally more accurate than those predicted using Tersoff, remain a 

challenge.  Moreover, due to the limited statistics for the high force data along the y-axis, a 

larger divergence in 𝐶𝐶12 i.e., higher in comparison to that of experimental reference as also 

observed. The elastic constants at the ground state as obtained using the RF-MEAM interatomic 

potentials are also shown in Table 4. Significant improvement was noted in the elastic constant 

predictions using RF-MEAM compared to EAM, especially 𝐶𝐶12  and 𝐶𝐶13 obtained by utilizing 

the RF-MEAM when compared to DFT results. In the RF-MEAM potential, 𝐶𝐶12 was 84.332 

GPa.  
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Figure 33: Variation of elastic constants with temperature compared to that of Okamoto using 
EAM potential 
 

The same elastic constant was highly overestimated by the EAM potential at 165.23 GPa 

relative to the DFT results calculated from the DFT based of 61 GPa. Thus, using RF-MEAM 

has eliminated the large over estimation in Figure 34 of shear-stress related 𝐶𝐶12 (green color 

plots) by about 70 GPa that occurred with EAM, in this case, has been alleviated by almost 80 

GPa utilizing RF-MEAM. In addition, the elastic constants as a function of temperature are also 

much closer to those observed experimentally as shown in Figure 33. This shows the benefits of 

adding the angular dependency as a part of RF-MEAM formulism, especially considering the 

relatively limited shear deformation related sampling utilized for the optimization procedures.     
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Figure 34: Variation of elastic constants with temperature compared to that of Okamoto using 
RF-MEAM potential 
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CONCLUSION 

 

I present a review of my study for the development of EAM and RF-MEAM interatomic 

potential for zirconium diboride in this chapter and will summarize the effectiveness of both the 

EAM and RF-MEAM potential, shortcoming in our approach on sampling as well as fitting and 

will talk about our future steps for creating robust potentials. 

The overarching goal of this project is to develop an EAM and RF-MEAM potential for 

thermal properties of zirconium diboride through energy and force-fitting method using 

MEAMfit. The approaches used in this study were as follows: 1) design structures that would 

allow to evaluate the energy, forces and capture vibrations associated with high temperature 

system, 2) execute DFT/AIMD calculations to obtain force and energy data for a specific system, 

and then, lastly, 3) fit the obtained DFT data to a specific potential function to build the desired 

potential. The overall results give a consistency on matching energy, force and stress dataset of 

the DFT calculation. Some inconsistencies, however, were observed in higher force fit along y- 

and z-axis for EAM potential. This may be due to the EAM potential not being able to capture 

high temperature vibration as evidenced by phonon dispersion curve after introducing high 

temperature data beyond 2500K. All of the thermal properties evaluated using EAM and RF-

MEAM potential suggest that EAM and RF-MEAM potential is applicable in describing thermal 

properties of zirconium diboride. Phonon dispersion, thermal expansion and elastic constants 

calculation shows that RF-MEAM potential is effective over EAM potential. While the EAM 

potential is unable to capture higher temperature vibration by introducing higher temperature 

sample data beyond 2500K. Volume sampling technique has to be addressed for the high 

temperature sample in EAM potential if it were to capture anharmonic vibration above 2000K. 
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Since all of the volume sampling were done to get phonon pressure that would get the correct 

harmonic vibration (second order) as well as higher order vibration (third order and so on). 

Different strategy has to be applied for volume sampling at high temperature in developing EAM 

potential. As we expand and contract volumes in a hope that it would add higher order vibration 

as much as possible in the energy and force sample. This could also be done other way i.e., since 

the harmonic energy is proportional to square of displacement and similarly the anharmonic 

energy could be energy due to higher order displacement. So, we could instead displace atoms in 

zirconium diboride using cubic and quartic function and relax the structure based on this 

displaced atomic position. The relaxed structure would then be used as AIMD simulation at high 

temperature.  

Overall, our general approach on developing interatomic potential by firstly fitting the 

energy and force data at relatively low temperature and then further go on adding high 

temperature data to fit the potential seems to work well. As far as the fitting strategy as 

concerned, force fitting was found to be more effective than fitting a combined the elastic 

constant DFT dataset with the free energy fitting.  

For our future studies, we will be focusing on solving the current issue with the volume 

sampling at higher temperature and possibly explore other sampling technique. Further, we will 

be working other form of diboride including high entropy diborides with five different metals in 

a metallic plane in zirconium diboride. Recent advances on artificial intelligence and machine 

learning proposes a promising application on molecular dynamics and interatomic potential 

development. Given the sufficient amount of data collected for zirconium diboride I would like 

to explore interatomic potential development for zirconium diboride and high entropy alloy 

diboride using machine learning. 
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FUTURE WORKS 

 

For the future, I would like to work on interatomic potential development using machine 

learning. Machine learning potential does not assume any analytic form of the potential energy 

surface, it instead tries to establish a correlation between the crystal structure and the potential 

energy surface using large datasets, and once the correlation is established, it can be applied to 

other test datasets and molecular dynamics simulations. One of the most difficult difficulties in 

molecular modeling is precisely and effectively representing the interatomic potential energy 

surface (PES). Traditionally, direct application of quantum mechanics models, such as density 

functional theory (DFT) models, or empirically built atomic potential models, such as the 

embedded atomic method (EAM), have been used. The former technique is constrained by the 

size of the system that can be handled, whereas the latter class of methods is constrained by the 

model's correctness and transferability. The PES is represented by the Deep Potential model as a 

total of "atomic" energies that are symmetrically dependent on the coordinates of the atoms in 

each atomic environment[68, 69]. It is a Python/C++ tool that reduce computation time to create 

a deep learning model of interatomic potential energy and force field and perform molecular 

dynamics (MD). This raises new hopes for resolving the accuracy-versus-efficiency conundrum 

in molecular simulations. DeePMD-kit has applications ranging from finite molecules to 

extended systems, as well as metals. 

The DeepMD-kit works on three folds, prepare the data, train the dataset and test the 

data. Also, other code such as alamode and phonolammps along with phonopy can be interfaced 

with the DeePMD-kit to model different materials properties using molecular dynamics 

simulation. To create the deep potential, I used the same sample data for creating EAM and RF-
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MEAM potential. The input data format used by deep potential is python numpy format. Dpdata 

code was used to convert the all the AIMD data set into python numpy format. The detailed code 

for preparing the dataset is given below in the APPENDIX.  

For training deep potential, the number of neighboring atoms for each zirconium and 

boron was set to 87 and 93. Smooth cut off radius of 6.2 Å was used and for the model the 

neuron size was set to 25, 50 and 100. For fitting ResNET of neuron size 240, 240, 240 was 

used. The learning rate was set to exponential and the potential was trained up to two million 

batches. Figure 35 below shows the phonon dispersion curve using deep potential. The deep 

potential clearly replicates the DFT calculation and has a good representation of optical phonon 

modes. The deep potential is able to replicate the zirconium dominated boron vibration in the 

frequency range of 15-20 THz. 

 
Figure 35: Phonon dispersion curve using Deep Potential compared to that of DFT 
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APPENDIX 

 

VASP calculation 

Ground state relaxation 

PREC=accurate 

ALGO=FAST 

ISPIN=2 

ICHARG=1 

NELM=100 

NELMIN=3 

IBRION=2 

EDIFF=0.000002 

NSW=200 

ISIF=3 

ENCUT=520 

LREAL=AUTO 

ISMEAR=-5 

SIGMA=0.05 

LWAVE=true 

LPEAD=false 

LCALCPOL=false 

LCALCEPS=false 

EFIELD_PEAD=0, 0, 0 
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LEFG=false 

LRHFATM=false 

LMAXTAU=0 

Elastic constant 

PREC=High 

NSW=1 

ISIF=3 

IBRION=6 

NFREE=2 

ENCUT=600 

POTIM=0.01 

EDIFF=1E-8 

EDIFFG=-1E-8 

LREAL=Auto 

ISMEAR=-5 

SIGMA=0.03 

Phonon calculation 

PREC=Accurate 

ENCUT=500 

IBRION=8 

EDIFF=1E-8 

KPAR=9 

IALGO=38 
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ISMEAR=0 

SIGMA=0.1 

LREAL=.FALSE. 

ADDGRID=.TRUE. 

LWAVE=.FALSE. 

LCHARG=.FALSE. 

NVT calculation 

PREC=NORMAL 

EDIFF=1E-3 

ENCUT=520 

EDIFFG=-1E-3 

NCORE=4 

NELM=40 

NELMIN=20 

NSW=500 

POTIM=1.00 

ISIF=2 

IBRION=0 

ISYM=0 

TEBEG=1500 

TEEND=1500 

SMASS=0 

MDALGO=2 
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LWAVE=.FALSE. 

phonolammps 

units           metal 

boundary        p p p 

atom_style      atomic 

read_data       data.zrb2 

pair_style      eam/alloy 

pair_coeff      * * ZrB.eam.alloy_1 Zr B 

neighbor        0.5 nsq 

phonopy 

ATOM_NAME=Zr B 

DIM=2 2 2 

MP=8 8 8 

BAND=0.0 0.0 0.0 0.666667 0.333333 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.5 

0.666667 0.333333 0.5 0.0 0.0 0.5 

FORCE_CONSTANTS=READ 

NPT calculation 

units           metal 

boundary        p p p 

atom_style      atomic 

read_data       data.zrb2 

pair_style      eam/alloy 

pair_coeff      * * ZrB.eam.alloy_1 Zr B 
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neighbor        0.5 nsq 

 

units       metal 

boundary    p   p   p 

atom_style  atomic 

 

# ----------------------- ATOM DEFINITION ---------------------------- 

read_data ZrB2_10x10x10 

 

# ------------------------ FORCE FIELDS ------------------------------ 

mass 1 91.224 

mass 2 10.811 

 

pair_style      eam/alloy 

pair_coeff      * * ZrB.eam.alloy_1 Zr B 

 

# ------------------------- SETTINGS --------------------------------- 

compute csym all centro/atom fcc 

compute peratom all pe/atom 

 

###################################### 

# EQUILIBRATION 

reset_timestep  0 
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timestep 0.001 

velocity all create 300 12345 mom yes rot yes 

fix 1 all npt temp 1000 1000 1 iso 0 0 1 drag 1 

#fix 1 all nvt temp 1000.0 30.0 10.0 

#fix 1 all nve 

 

# Set thermo output 

thermo 1000 

thermo_style custom step temp lx ly lz press pxx pyy pzz pe 

dump myDump all atom 10 dump_NPT_500K.atom 

# Run for at least 10 picosecond (assuming 1 fs timestep) 

run 1000000 

MEAMfit  

TYPE=EAM 

CUTOFF_MAX=4.4 

NTERMS=3 

NTERMS_EMB=3 

TYPE=RF-MEAM 

CUTOFF_MAX=4.4 

NTERMS=3 

NTERMS_EMB=3 

DeepMD input 

{ 
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    "_comment": " model parameters", 

    "model": { 

"type_map": ["Zr", "B"], 

"descriptor" :{ 

    "type":"se_a", 

    "sel":[87, 93], 

    "rcut_smth":6.20, 

    "rcut":6.00, 

    "neuron":[25, 50, 100], 

    "resnet_dt":false, 

    "axis_neuron":16, 

    "seed":1, 

    "_comment":" that's all" 

}, 

"fitting_net" : { 

    "neuron":[240, 240, 240], 

    "resnet_dt":true, 

    "seed":1, 

    "_comment":" that's all" 

}, 

"_comment":" that's all" 

    }, 
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    "learning_rate" :{ 

"type":"exp", 

"decay_steps":5000, 

"start_lr":0.001, 

"stop_lr":3.51e-10, 

"_comment":"that's all" 

    }, 

 

    "loss" :{ 

"start_pref_e":0.02, 

"limit_pref_e":1, 

"start_pref_f":1000, 

"limit_pref_f":1, 

"start_pref_v":0.2, 

"limit_pref_v": 1, 

"_comment":" that's all" 

    }, 

 

    "_comment": " traing controls", 

    "training" : { 

"systems":["../../data/"], 

"set_prefix":"set",     

"stop_batch":2000000, 
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"batch_size":1, 

 

"seed":1, 

 

"_comment": " display and restart", 

"_comment": " frequencies counted in batch", 

"disp_file":"lcurve.out", 

"disp_freq":100, 

"numb_test":10, 

"save_freq":1000, 

"save_ckpt":"model.ckpt", 

"load_ckpt": "model.ckpt", 

"disp_training":true, 

"time_training":true, 

"profiling":false, 

"profiling_file":"timeline.json", 

"_comment":"that's all" 

    }, 

 

    "_comment":"that's all" 

} 
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