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ABSTRACT

Let G be a finite group, c(G) denotes the number of cyclic subgroups of G and α(G) =
c(G)/|G|. In this thesis we go over some basic properties of alpha, calculate alpha for some
families of groups, with an emphasis on groups with α(G) = 3/4, as all groups with α(G) >
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1. INTRODUCTION

A group is a set closed under a binary operation which is associative, contains an

identity element, and every element has an inverse. Cyclic groups have the property that

the group can be generated by a single element. For example, the group of integers under

addition can be generated by the element 1.

Denoting the number of cyclic subgroups of a group G by c(G), we let α(G) =

c(G)/|G|. In 2018 Garonzi and Lima published a paper classifying all groups with α(G) >

3/4 [1], and Tărnăuceanu and Lazorec published a paper exploring some nilpotent groups

with α(G) = 3/4 [2]. It is therefore a natural question to wonder if a full classification of

groups with α(G) = 3/4 can be obtained.

In Section 2 we go over notation and preliminary group theory results. Section 3

contains an overview of some basic properties of alpha and a formula to compute the num-

ber of cyclic subgroups of a group, and in Section 4 we compute α(G) for various groups

and families of groups. In Section 5 we show some preliminary explorations of groups with

α(G) = 3/4, including all dihedral groups with this property, and we show that all nilpo-

tent groups with α(G) = 3/4 are 2-groups. Finally, in Section 6 we show all groups with

α(G) = 3/4 have n2 ≥ |G|/2 − 1, discuss Wall’s families of groups with many involutions,

Miller’s first family of groups with |G|/2 − 1 involutions, and show that if n8(G) ≥ 1 and

α(G) = 3/4 then G ∼= D16 × Cn
2 .
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2. PRELIMINARIES AND BASIC RESULTS

Remark 2.1. The cyclic group of order n is denoted Cn.

Definition 2.2. An involution is a group element of order 2.

Definition 2.3. The center of G is the subgroup of G containing elements that commute

with all elements of the group. The center is denoted Z(G).

Fact 2.4. The order of (g, h) ∈ G×H is the least common multiple of the order of g in G

and the order of h in H.

Remark 2.5. As usual, if N is a normal subgroup of G, we write N �G.

Definition 2.6. The symmetric group, denoted Sn, is the group of permutations of the

numbers {1, .., n}. Its elements can be represented as a product of disjoint cycles, where

the cycle (s1s2...sn) denotes the permutation sending s1 to s2, s2 to s3, ... , and sn to s1.

Example 2.7. The following permutation is an element of S9

 1 2 3 4 5 6 7 8 9

7 3 2 1 8 6 4 9 5

 .

In cycle notation it can be written as (174)(23)(589)(6) = (174)(23)(589), the one-cycle is

omitted by convention.

Definition 2.8. Dihedral groups, denoted D2n are the groups of symmetries of a regular

n-gon. D2n has order 2n and can be generated by the following relations:

〈r, s|rn = s2 = e, rs = sr−1〉.
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All of the powers of r represent rotations and the elements containing an s represent re-

flections.

Definition 2.9. Let G be a group and a, b ∈ G. a and b are conjugate if there exists an

element in G such that gag−1 = b. The conjugacy class of a is {gag−1|g ∈ G}. We denote

the number conjugacy classes in G by k(G).

Definition 2.10. The normalizer of S in the group G is defined as

NG(S) = {g ∈ G|gS = Sg} = {g ∈ G|gSg−1 = S}.

Theorem 2.11. Sylow’s theorems Suppose |G| = pnm with n > 0 and p doesn’t divide

m. Then

1. There exists a subgroup of G of order pn, called a Sylow p-subgroup of G.

2. All Sylow p-subgroups of G are conjugate to each other. That is, if H and K are

Sylow p-subgroups of G then there exists an element g ∈ G with g−1Hg = K.

3. Let np be the number of Sylow p-subgroups of G. Then the following hold:

• np divides m which is the index of the Sylow p-subgroup in G

• np ≡ 1 mod p

• np = |G : NG(P )| where P is any Sylow p-subgroup of G and NG denotes the

normalizer.

Definition 2.12. The commutator of a and b, denoted [a, b] is defined as [a, b] = aba−1b−1.

Definition 2.13. The number of cyclic subgroups of order k in G will be denoted nk(G).

3



3. SOME PROPERTIES OF ALPHA

Definition 3.1. We define

α(G) =
c(G)

|G|
,

where c(G) is the number of cyclic subgroups of G. Note that 0 < α(G) ≤ 1 (see Remark

4.4).

Definition 3.2. Euler’s totient function, denoted ϕ(n), calculates how many positive inte-

gers less than or equal to n are relatively prime to n. A formula is

ϕ(n) = n
∏
p|n

p prime

(1− 1

p
).

Proposition 3.3. The number of cyclic subgroups of a group G is given by

c(G) =
∑
x∈G

1

ϕ(|x|)
.

Proof. Let 〈a〉 ≤ G have order n. Then this group is generated by ai with i coprime to n.

Hence

c(G) =
∑
〈a〉≤G

1 =
∑
〈a〉≤G

ϕ(|a|)
ϕ(|a|)

=
∑
〈a〉≤G

∑
x,〈x〉=〈a〉 1

ϕ(|a|)
=
∑
〈a〉≤G

∑
x,〈x〉=〈a〉

1

ϕ(|x|)
=
∑
x∈G

1

ϕ(|x|)
.

4



Example 3.4. S3: the group of permutations of {1, 2, 3}

The order of S3 is 3! = 6. It has the following elements: {(1), (12), (13), (23), (123), (132)}

where (1) is the identity element. The order of an element of Sn is the least common mul-

tiple of the length of the cycles hence the elements have order 1, 2, 2, 2, 3, 3 respectively.

The cyclic subgroups of S3 are: 〈(1)〉, 〈(12)〉, 〈(13)〉, 〈(23)〉and 〈(123)〉. Hence as |S3| = 6

and c(S3) = 5, it follows that α(S3) = 5/6. Using the formula given in Proposition 3.3 the

same result is obtained:

c(S3) = 1 +
1

1
+

1

1
+

1

1
+

1

2
+

1

2
= 5,

so α(S3) = 5/6.

Proposition 3.5. If A and B are groups of coprime orders then c(A×B) = c(A)c(B) and

hence α(A×B) = α(A)α(B).

Proof.

c(A×B) =
∑

(x,y)∈A×B

1

ϕ(|(x, y)|)

We have |x| divides |A| and |y| divides |B|. |A| and |B| are coprime, so |x| and |y| are

also coprime and ϕ(|x||y|) = ϕ(|x|)ϕ(|y|). Furthermore, since |A| and |B| are coprime,

|(x, y)| = lcm(|x|, |y|) = |x||y|. Hence

∑
(x,y)∈A×B

1

ϕ(|(x, y)|)
=

∑
x∈A,y∈B

1

ϕ(|x|)ϕ(|y|)
=
∑
x∈A

1

ϕ(|x|)
∑
x∈B

1

ϕ(|x|)
=

∑
x∈A×B

1

ϕ(|x|)
= c(A)c(B).
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Therefore

α(A×B) =
c(A×B)

|A×B|
=
c(A)c(B)

|A||B|
= α(A)α(B).

Proposition 3.6. If N � G then α(G) ≤ α(G/N). Moreover α(G) = α(G/N) if and only

if ϕ(|g|) = ϕ(|gN |) for every g ∈ G, where |gN | denotes the order of the element gN in the

group G/N .

Proof. If a divides b then ϕ(a) ≤ ϕ(b), so

c(G/N) =
∑

gN∈G/N

1

ϕ(|gN |)
=
∑
g∈G

1

|N |ϕ(|gN |)
≥
∑
g∈G

1

|N |ϕ(|g|)
=
c(G)

|N |
.

So

α(G/N) =
c(G/N)

|G/N |
≥ c(G)

|N |
· 1

|G/N |
=
c(G)

|G|
= α(G).

Proposition 3.7. α(G) = α(G× Cn
2 ).

Proof. Let N = {1} × Cn
2 . Then let x = (g, t) ∈ G × Cn

2 . Now |x| =lcm(|g|, |t|) = |g| or

2|g|. Note that |xN | = |g| since (g, t)k = (gk, tk) ∈ N = 1 × Cn
2 if gk = 1. If |g| = |x|

then ϕ(|x|) = ϕ(|xN |). If |x| = 2|g|, ϕ(|x|) = ϕ(2|g|) = ϕ(2)ϕ(|g|) = ϕ(|g|). Hence

α(G× Cn
2 ) = α((G× Cn

2 )/N) = α(G) for every g ∈ G.

Corollary 3.8. If G ∼= Cn
2 , then α(G) = 1.

Definition 3.9. A group is a core group if it does not have C2 as a summand.

6



Proposition 3.10. If α(G) = α(G/N) then N is an elementary abelian 2-group.

Proof. By Proposition 3.7 if n ∈ N,ϕ(|n|) = ϕ(|nN |) = ϕ(|N |) = ϕ(1) = 1, which implies

n2 = 1.
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4. SOME GROUPS WITH KNOWN ALPHA

Definition 4.1. The number of divisors of n, including 1 and n, is denoted τ(n). For ex-

ample, the divisors of 6 are {1,2,3,6} so τ(6) = 4.

Theorem 4.2.

α(Cn) =
τ(n)

n
.

Proof. As all subgroups of Cn are cyclic and there is a subgroup corresponding to every

divisor of n, so c(G) = τ(n), hence

α(Cn) =
τ(n)

n
.

Theorem 4.3.

α(D2n) =
n+ τ(n)

2n
.

Proof. There are n elements of the form ris with i = 1, ..., n in D2n. Each of these ele-

ments has order two and generates one cyclic subgroup. Additionally, we have {1, r, ..., rn} ∼=

Cn which has τ(n) cyclic subgroups, hence c(D2n) = n+ τ(n) and

α(D2n) =
n+ τ(n)

2n
.

Remark 4.4. Since α(Cp) = 2/p for p prime, the bounds stated after Definition 3.1 are

8



the best possible.

Theorem 4.5.

α(S4) =
17

24
.

Proof. To find the number of cyclic subgroups of S4 we first look at the cycle structure,

order, and number of each kind of element in S4 (Table 1), and then apply Proposition

3.3.

Cycle Structure Order Number
4 4 4!/4 = 6

3 1 3 4!/(3 · 1) = 8
2 2 2 4!/(22 · 2!) = 3

2 1 1 2 4!/(2·12 · 2!) = 6
1 1 1 1 1 4!/(14 · 4!) = 1

Table 1: Table to compute c(S4)

c(S4) =
6

ϕ(4)
+

8

ϕ(3)
+

3

ϕ(2)
+

6

ϕ(2)
+

1

ϕ(1)
= 3 + 4 + 3 + 6 + 1 = 17.

Therefore α(S4) = 17/4! = 17/24.

Theorem 4.6.

α(S5) =
67

120
.

Proof. We proceed as above. The cycle structures, order, and number of each kind of ele-

ment in S5 is below (Table 2). Now dividing the number of elements over ϕ of the order of

9



Cycle Structure Order Number
5 5 5!/5 = 24

4 1 4 5!/(4 · 1) = 30
3 2 6 5!/(3·2) = 20

3 1 1 3 5!/(3·12 · 2!) = 20
2 2 1 2 5!/(22 · 2!) = 15

2 1 1 1 2 5!/(2 ·13 · 3!) = 10
1 1 1 1 1 1 5!/(15 · 5!) = 1

Table 2: Table to compute c(S5)

the elements we obtain

c(S5) =
24

ϕ(5)
+

30

ϕ(4)
+

20

ϕ(6)
+

20

ϕ(3)
+

10

ϕ(2)
+

15

ϕ(2)
+

10

ϕ(2)
+

1

ϕ(1)
= 67

so α(S5) = 67/5! = 67/120

Theorem 4.7. If G is a non-abelian group of order pq, with primes p < q (hence p|q − 1),

then

α(G) =
2 + q

pq
.

Proof. By Sylow’s theorem, G has one Sylow q-subgroup. As G is non-abelian, it has q Sy-

low p-subgroups as if it had only one, G would be abelian. Since p and q are prime, these

(and the trivial group) are the only cyclic subgroups of G, hence

α(G) =
q + 2

pq
.

10



Definition 4.8. The general affine group of degree 1 over Fp is

GA(1, p) = 〈a, b|ap = bp−1, bab−1 = ak〉

where k has order p− 1 in (Zp)×.

Theorem 4.9.

α(GA(1, p)) =
2 + p(τ(p− 1)− 1)

p(p− 1)
.

This result can be obtained using techniques similar to the ones employed above.

Proposition 4.10. Let p be a prime, then

α(Cn
p ) =

pn + p− 2

pn(p− 1)

Proof. Clearly Cn
p has one element of order 1 and pn − 1 elements of order p, so

c(Cn
p ) = 1 +

pn − 1

p− 1

and hence

α(Cn
p ) =

1 + pn−1
p−1

pn
=
pn + p− 2

pn(p− 1)

Proposition 4.11.

α(Cn
4 ) =

2n + 1

2n+1

11



Proof. Clearly Cn
4 has one element of order 1, and 2n − 1 elements of order 2, so it has

22n − 2n elements of order 4. Therefore

c(Cn
4 ) =

22n − 2n

ϕ(4)
+

2n − 1

ϕ(2)
+

1

ϕ(1)
=

22n − 2n

2
+ 2n − 1 + 1 = 22n−1 + 2n−1.

So

α(Cn
4 ) =

22n−1 + 2n−1

22n
=

2n + 1

2n+1
.

Theorem 4.12. For every 1 ≤ β ≤ βk the number of cyclic subgroups of order pβ in the

finite abelian p-group

Cβ1
p × ...× Cβk

p

is

gkp(β) =
pβhk−1p (β)− pβ−1hk−1p (β − 1)

pβ − pβ−1

where

hk−1p (β) =



p(k−1)β if 0 ≤ β ≤ β1

p(k−2)β+β1 ifβ1 ≤ β ≤ β2

...

pβ+β1+...+βk−1 ifβk−1 ≤ β

(4.1)

Proof. See pages 10-12 of [5].

12



Proposition 4.13. Up to isomorphism all finite abelian 2-groups with α = 1/2 are of the

form C8 × Cn
2 for n ∈ N.

Proof. Let m ∈ N and G be a finite abelian 2-group of order 2m such that α(G) = 1/2. If

G ∼= C2d1 × C2d2 × ...× C2dk

where 1 ≤ d1 ≤ d2 ≤ ... ≤ dk then

dk + 1

2dk
= α(C2dk ) = α(G/(C2d1 × C2d2 × ...× C2dk−1 × {1})) ≥ α(G) =

1

2
.

This leads to dk ≤ 3 and hence exp(G) ≤ 8. If exp(G) = 2 then G ∼= Ck
2 , which implies

α(G) = 1. If exp(G) = 4 then α(G) = 1/2 leads to the following conditions:


2m = 1 + n2(G) + 2n4(G)

2m−1 = 1 + n2(G) + n4(G).

(4.2)

Solving for n2(G) we obtain n2(G) = −1, a contradiction. Hence exp(G) = 8 and

G ∼= Cn
2 × Ca

4 × Cb
8 with a, b, n ∈ N.

Note that at least one of a and b must be strictly positive or we would have α(G) = 1.

13



Similarly, the following set of conditions hold:


2m = 1 + n2(G) + 2n4(G) + 4n8(G)

2m−1 = 1 + n2(G) + n4(G) + n8(G).

(4.3)

The above equations imply that

n4(G) + 3n8(G) = 2m−1,

so 1 + n2(G) = 2n8(G). By Theorem 4.12 the number of cyclic subgroups of order 2 and 8

are

n2(G) = 2n+a+b − 1

and

n8(G) = 2n+2a+2b−2(2b − 1)

respectively. Then we obtain

1 + n2(G) = 2n8(G)

if and only if

2n+a+b = 2n+2a+2b−1(2b − 1)

if and only if

1 = 2a+b−1(2b − 1)

14



if and only if a = 0 and b = 1. Therefore G ∼= Cn
2 × C8, n ∈ N and

α(G) = α(Cn
2 × C8) = α(C8) =

1

2
.

15



5. GROUPS WITH α = 3/4

All groups with α > 3/4 have been classified by Garonzi and Lima (2018) [1], using

results from the paper “On groups consisting mostly of involutions” by Wall (1970) [6]. It

is a natural question to examine the groups where α = 3/4.

A partial classification of nilpotent groups with α = 3/4 was published by Tar-

nauceanu and Lazorec (2018) [2].

Definition 5.1. A group G is nilpotent if it has a lower central series of finite length, i.e.

{1} = G0 �G1 � ...�Gn = G with Gi+1/Gi ≤ Z(G/Gi).

The following useful characterization of nilpotent groups is well known.

Theorem 5.2. A finite group is nilpotent if and only if it is a product of its Sylow sub-

groups.

Proposition 5.3. If G is nilpotent and α(G) = 3/4 then G is a 2-group.

Proof. We have G ∼=
∏

p Sp where the Sp are the Sylow p-subgroups of G. By Proposition

3.5, α(G) =
∏

p α(Sp). Now, finite p-groups contain normal subgroups with index pi for all

possible i. Taking i = 1 we have Np � Sp with Sp/Np
∼= Cp. Therefore by Proposition 3.6,

α(Sp) ≤ α(Cp) =
2

p
<

3

4

if p ≥ 3. Thus |G| cannot have any prime factor greater than 2, i.e. G is a 2-group.

Therefore we tried to find a complete classification of groups with α = 3/4, starting

with a computational analysis using the GAP computer algebra system [5]. What follows

are our preliminary investigations.

Proposition 5.4. The only dihedral groups with α = 3/4 are D16 and D24.

16



Proof. The number of cyclic subgroups of the dihedral group D2n is τ(n) + n. Therefore

α =
3

4
⇔ τ(n) + n

2n
=

3

4
⇔ τ(n) =

n

2
.

We know that n and n/2 are divisors of n (the latter as n is even). The next largest pos-

sible divisor is n/3 so we can bound τ(n) by n/3 + 2 (with equality when every number

between 1 and n/3 divides n). Hence

τ(n) =
n

2
≤ n

3
+ 2⇒ 3n ≤ 2n+ 12⇒ n ≤ 12

so all possible values of n are: 2, 4, 6, 8 or 12. As τ(2) = 2, τ(4) = 3, τ(6) = 4, τ(8) =

4, τ(10) = 4, τ(12) = 6; it follows that

τ(n) =
n

2
⇔ n ∈ {8, 12}.

Definition 5.5. A group G is simple if G 6= {e} and its only normal subgroups are {e}

and G.

Proposition 5.6. Let I(G) denote the number of elements g ∈ G such that g2 = 1. Then

I(G)

|G|
≥ 2α(G)− 1.

In particular α(G) = 1 if and only if G is an elementary abelian 2-group.

17



Proof. If g ∈ G then g2 = 1 if and only if ϕ(|g|) = 1 so

c(G) =
∑
x∈G

1

ϕ|x|
≤ I(G) +

1

2
(|G| − I(G)) =

1

2
(I(G) + |G|).

The result is then obtained by dividing both sides by |G|.

Definition 5.7. We denote the probability that two elements in a group G commute (i.e.

commuting probability) by cp(G) = |S|/|G×G|, where S is the set of pairs (x, y) ∈ G×G

such that xy = yx. Note that cp(G) = k(G)/|G| where k(G) is the number of conjugacy

classes of G (see Section 6 of Garonzi-Lima [1]).

Proposition 5.8. If α(G) ≥ 1/2 then cp(G) ≥ (I(G)/|G|)2.

Proof. By Lemma 1 of Garonzi and Lima’s paper [1], cp(G) ≥ (I(G)/|G|)2 for all G. The

result follows from Proposition 5.6.

Definition 5.9. Let V be a vector space over the field F . The general linear group of V ,

denoted GL(V ), is the group of all automorphisms of V , with composition of functions as

the operation.

The general linear group of degree n over F , GL(n, F ), is the group of all invertible

n× n matrices over a field F .

Note: if dim(VF ) = n then GL(V ) ∼= GL(n, F ).

Definition 5.10. A representation of a group G on a vector space V over C is a group

homomorphism from G to GL(V ).

Definition 5.11. A representation ρ is faithful if ρ : G→ GL(V ) is injective.

Proposition 5.12. Let G be a non-abelian simple group. Then k(G) ≤ |G|/12.
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Proof. If k(G) < |G|/12 then we are done. Therefore, assume k(G) ≥ |G|/12. From rep-

resentation theory we know that G has k(G) distinct irreducible representations with de-

grees

d1 = 1 ≤ d2 ≤ ... ≤ dk(G)

satisfying

d21 + ...+ d2k(G) = |G|.

Since G is non-abelian, only the trivial representation of G has degree 1, so d2 ≥ 2. Fur-

thermore, d2 ≤ 3, since if d2 ≥ 4 then

|G| = d21 + ...+ d2k(G) ≥ 1 + 42 + ...+ 42 = 1 + 16(k(G)− 1).

But k(G) ≥ |G|/12 implies that |G| ≤ 45. This is a contradiction, because the smallest

non-abelian simple group has order 60. Hence d2 = 2 or 3. Since G is simple, the corre-

sponding representation of G is faithful so G is isomorphic to a subgroup of GL2(C) or

GL3(C). These groups are known [3], and the only simple groups on this list are A5 of or-

ders 60 and PSL(2, 7) 168. If G ∼= PSL(2, 7) then

6 = k(G) ≥ |G|
12

= 14,

a contradiction. If G ∼= A5, then

5 = k(G) =
|G|
12
.
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Proposition 5.13. Let G be a non-abelian simple group, then

α(G) <
1

2
+

1

4
√

3
≈ .64434

Proof. Since cp(G) ≤ 1/12 for non-abelian, simple groups, by Proposition 5.6,

(2α(G)− 1)2 ≤ cp(G) ≤ 1/12.

Hence

2α(G)− 1 ≤ 1√
12

and solving for α(G) we obtain

α(G) ≤ 1

2
+

1

4
√

3
.

Remark 5.14. Better upper bounds for α exist, Garonzi and Lima have shown that if G

is non-solvable then α(G) ≤ α(S5) = 67/120 ≈ .5583. [1]

Corollary 5.15. If G is a simple group then α(G) 6= 3
4
.

Proof. If G is non-abelian, the result follows from Proposition 5.11. If G is abelian, then

G ∼= Cp with p prime, so α(G) = 2/p 6= 3/4.

Definition 5.16. A group G is solvable if there are subgroups

1 = G0 < G1 < ... < Gk = G
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such that Gi is normal in G and Gi/Gi−1 is an abelian group for i = 1, 2, ...., k.

Corollary 5.13 can be generalized as follows:

Proposition 5.17. If α(G) = 3/4 then G is solvable.

Proof. If α(G) = 3/4, then by Proposition 5.8 cp(G) > 1/4. From Theorem 11 in [2] if G

is finite with cp(G) > 3/40 then either G is solvable or G ∼= A5 × T for some abelian group

T . However,

α(A5 × T ) ≤ α(A5) =
38

60
<

3

4
,

a contradiction. Therefore G is solvable.

Proposition 5.18. If G is the non-abelian group of order pq, where p and q are prime

and p|(q − 1) then α(G) 6= 3/4.

Proof. By Theorem 4.9

α(G) =
q + 2

pq
=

3

4
.

If α(G) = 3/4 then 8 = q(3p − 4), so q must divide 8, and hence we obtain the following

possibilities for (p, q): (1, 8), (2, 4), (4, 1). However, none of these is a pair of primes, hence

α(G) 6= 3/4.

Proposition 5.19. If G ∼= GA(1, p), then α(G) 6= 3
4
.

Proof. Assume G ∼= GA(1, p). Then G has p conjugacy classes and order p(p− 1) so

cp(G) =
p

p(p− 1)

1

p− 1
.
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By Proposition 5.6 if α(G) = 3/4 then cp(G) ≥ (2(3/4) − 1)2 = 1/4. Hence p ∈ {2, 3, 5}.

But by Theorem 4.9 α(GA(1, 2)) = 1, α(GA(1, 3)) = 5/6, and α(GA(1, 5)) = 3/5. Hence

α(G) 6= 3/4.

6. WALL’S AND MILLER’S GROUPS WITH MANY INVOLUTIONS

In 1919, Miller published a paper classifying all groups containing |G|/2 − 1 involu-

tions into 15 families [4]. In a paper published in 1970, Wall classified all groups contain-

ing at least |G|/2 involutions into four families [6]. In this section we explore the connec-

tion between these families and groups with α = 3/4.

Proposition 6.1. For a group G, if α = 3/4, then n2(G) ≥ |G|/2− 1.

Proof. We have
|G|∑
k=1

nk(G) = c(G) =
3|G|

4

and
|G|∑
k=1

nk(G)ϕ(k) = |G|.

Subtracting we obtain
|G|∑
k=3

(ϕ(k)− 1)nk(G) =
1

4
|G|

so
|G|∑
k=3

2(ϕ(k)− 1)nk(G) =
1

2
|G|.

Now if ϕ(k) ≥ 2, then 2(ϕ(k)− 1) ≥ ϕ(k). Hence

1

2
|G| =

|G|∑
k=3

2(ϕ(k)− 1)nk(G) ≥
|G|∑
k=3

ϕ(k)nk(G),
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so

1 + n2(G) +
1

2
|G| ≥

|G|∑
k=1

ϕ(k)nk(G) = |G|.

If n2(G) = |G|/2 − 1, G belongs to one of the families described by Miller. If

n2(G) > |G|/2− 1, G belongs to one of the families described in Wall’s paper.

If nk(G) 6= 0 for any k 6= 1, 2, 3, 4, 6 the inequalities above are strict and G is in one

of the families described in Wall’s paper.

We will now describe Wall’s four families of groups containing more than |G|/2 − 1

involutions.

Let G = G0×Cn
2 where G0 is a core group. Then G0 belongs to one of the following

families:

1. The core group G0 has the presentation

〈a ∈ A, t | t2 = 1, tat−1 = a−1 ∀a ∈ A〉

where A is a finite core abelian group. Note that |G0| = 2|A|.

2. The core group G0 is the product of two dihedral groups of order 8.

3. The core group G0 has the presentation

G0 = 〈c, x1, y1, ..., xr, yr|c2 = x2i = y2i = 1, all pairs of generators commute

except[xi, yi] = c〉
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4. The core group G0 has the presentation

G0 = 〈c, x1, y1, ..., xn, yn|c2 = x2i = y2i = 1, all commute except [c, xi] = yi〉.

6.1 Wall’s First Family

Proposition 6.2. The groups in Wall’s First Family with α = 3/4 are of the form G =

D16 × Cn
2 or D24 × Cn

2 .

Proof. Let G0 = Ao C2 where A is abelian. The action is x 7→ x−1. Let C2 = 〈t〉, we have

(at)2 = atat = atat−1t2 = aa−1t2

so (at)2 = 1 for all a ∈ A. This gives |A| cyclic subgroups of order 2. Hence

c(G0) = c(A) + |A| = c(A) +
|G0|

2

and

α(G0) =
c(A) + |A|

2|A|
=

3

4
⇒ α(A) =

1

2
.

If A contains a Cp (p prime), then there is an N so that A/N = Cp, hence

α(A) ≤ α(Cp) =
2

p

so 1/2 ≤ 2/p, which implies p ≤ 4, and thus p = 2 or p = 3.
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Note that neither C9 nor C16 is a subgroup of A. If they were then

1

2
= α(A) ≤ α(C9) =

1

3
or

1

2
≤ α(C16) =

5

16
.

Since G0 has no C2 as a summand, and neither does A. Let

A ∼= Cm
4 × C l

8 × Cn
3 .

We claim that if l > 0, then A ∼= C8. Suppose A ∼= C8 × N with N 6= 0 . Now

N 6∼= Ck
2 so α(A) < α(A/N) by Proposition 3.10, so

1

2
= α(A) < α(A/N) = α(C8) =

1

2
,

giving a contradiction. So we may assume A ∼= Cm
4 × Cn

3 . If n = 0, then A ∼= Cm
4 , and

hence by Proposition 4.11

α(A) =
2m + 1

2 · 2m
>

1

2
.

Similarly, if m = 0, then A ∼= Cn
3 , and hence by Proposition 4.10

α(A) =
3n + 1

2 · 3n
>

1

2
.

If m,n ≥ 1 note that C4 × C3 = C12 and α(C12) = 1/2. If |A| > 12, then there is an N in

A that is not an elementary abelian 2-group with A/N = C12 so by Proposition 3.6

1

2
= α(A) < α(C12) =

1

2
.
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In conclusion, A = C8 or C12 and hence G0 = D16 or D24.

6.2 Wall’s Second Family

Proposition 6.3. The core group in Wall’s Second Family has α = 25/32.

Proof. The core group in Wall’s second family are of the form D8 × D8. This group con-

tains

• 1 element of order 1: e.

• 35 elements of order 2: (e, ∗), (∗, ∗), (∗, e), where ∗ is arbitrary of order 2.

• 28 elements of order 4.

Applying Proposition 3.3 we obtain

c(D8 ×D8) =
1

ϕ(1)
+

35

ϕ(2)
+

28

ϕ(4)
= 1 + 35 + 14 = 50.

Hence

α(D8 ×D8) =
50

64
=

25

32
>

3

4
.

6.3 Wall’s Third Family

Proposition 6.4. None of the groups in Wall’s Third Family have α = 3/4.
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Proof. The core groups in Wall’s third family have the following presentation

G0 = 〈xi, yi, c|x2i = y2i = c2 = 1, all commute except xiyix
−1
i = c〉.

Let w = xe11 y
f1
1 ...x

en
n y

fn
n c

g be a word in canonical form. If w doesn’t contain both an xi

and a yi, then all the terms commute and hence w2 = 1. If w has exactly one xi-yi pair,

then (xiyi)
2 = xiyixiyi = c, so w has order 4. If there are two such pairs in w, then

(xiyixjyj)
2 = (xiyi)

2(xjyj)
2 = cc = 1. Similarly, if w has an odd number of pairs, then

w has order 4. If there is an even number, then the order is 2 (with the exception of the

identity element).

Let f(n) be the number of words of the form xe11 y
f1
1 ...x

en
n y

fn
n having order 2 or less.

Then the number of elements of order 2 or less in G0 is 2f(n), where the factor of 2 ac-

counts for whether or not the word contain a c.

Choose a subset I of {1, 2, ..., n} of size 2i and let J be its complement. There are(
n
2i

)
ways of choosing I, and

w =
∏
i∈I

xibi
∏
i∈J

xeii y
fi
i

where (ei, fi) = (0, 0), (0, 1), (1, 0) but not (1, 1).

Therefore we have

f(n) =

bn/2c∑
i=0

(
n

2i

)
3n−2i.

By the binomial theorem

(3 + 1)n =
n∑
i=0

(
n

i

)
3n−i
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and

(3− 1)n =
n∑
i=0

(−1)i
(
n

i

)
3n−1.

Adding these equations gives

4n + 2n =

bn/2c∑
i=0

(
n

2i

)
3n−2i = 2f(n)

which is the number of elements of order 2 or less. Therefore the number of elements of

order 4 is

2 · 4n − (4n + 2n) = 4n − 2n.

Finally, the number of cyclic subgroups of G0 is

4n + 2n +
4n − 2n

2
=

3

2
4n + 2n−1

so

α(G0) =
3
2
4n + 2n−1

2 · 4n
=

3

4
+

2n−2

4n
>

3

4
.

Therefore none of the groups in this family has α = 3/4.

6.4 Wall’s Fourth Family

Proposition 6.5. None of the groups in Wall’s Fourth Family have α = 3/4.

Proof. The core groups have the presentation

G0 = 〈c, x1, y1, ..., xn, yn|c2 = x2i = y2i = 1, all commute except [c, xi] = yi〉.
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Since we have cxicxi = yi, cxi = xiyic. Let w be a word in xis and yj’s. Then w2 = 1. If

w has no xi’s then (wc)2 = 1. If w has any xi’s let w be the word obtained by replacing

each xi with xiyi. Then cw = wc, as the c commutes with yi and cxi = xiyic. So (wc)2 =

wcwc = wwc2 = ww 6= 1. Since ww is a word in yi’s and the yi’s have order 2, ww has

order 2, so wc has order 4.

We have one element of order 1. The 22n − 1 non-identity words containing no c

have order 2. The 2n word of the form wc where w contains no xi have order 2. The re-

maining 22n − 2n words have order 4. Therefore there are 22n − 2n of the form wc with w

containing an xi that have order 4. Hence

c(G0) = 1 + (22n − 1) + 2n +
22n − 2n

2
= 3 · 22n−1 + 2n−1.

Therefore

α(G0) =
3 · 22n−1 + 2n−1

22n+1
=

3

4
+

1

2n+2
>

3

4
.

Hence the groups in this family don’t have α = 3/4.

Therefore, Wall’s first family is the only family containing groups with α(G) = 3/4,

namely, D16 and D24.

Theorem 6.6. If α(G) = 3/4 and G contains an element of order 8, it is of the form

D16 × Cn
2 for n ≥ 0.

Proof. Since we have nk(G) 6= 0 for k 6= 1, 2, 3, 4, 6, by the remark after Proposition 6.1,

G belongs to one of Wall’s families. The only groups in Wall’s families with α(G) = 3/4

are D24 × Cn
2 and D16 × Cn

2 . However, D24 has no elements of order 8. Therefore G ∼=
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D16 × Cn
2 .

6.5 Miller’s First Family

Proposition 6.7. All the groups in Miller’s First Family have α = 3/4.

Proof. The core groups in Miller’s first family are

G0 = 〈x1, ..., xn, y1, ..., yn, t|x2i = y2i = t4 = 1, all commute except [t, yi] = xiyi〉.

Note that since

t2yit
−2 = txiyit

−1 = xixiyi = yi,

t2 commutes with all xi and yi. Let w be a word in xi’s and yi’s. We now compute c(G0).

The elements of each order are the following:

• Order 1: 1.

• Order 2: If w 6= 1, then w has order 2. Words of the form wt2 have order 2 since w

and t2 have order 2 and they commute.

• Order 4: Let w denote the word obtained by replacing each yi with xiyi. Then

(wt)2 = wtwt = wtwt−1t2 = wwt2

where ww is a word in xi’s and yi’s. Hence wwt2 has order 2 and therefore wt has

order 4. Similarly wt3 has order 4.
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Hence

c(G0) =
2 · 22n

1
+

2 · 22n

2
= 3 · 22n

and

α(G0) =
3 · 22n

4 · 22n
=

3

4
.
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7. CONCLUSION

Classifying groups with a specific number of cyclic subgroups, and understanding

their properties, is still an area that requires further work. Our research has built upon

work by Tărnăuceanu, Lazorec, Garonzi, and Lima and provided greater insight into groups

with α = 3/4. In addition to the work already presented, we used GAP to explore groups

with α = 3/4, see the Appendix (Table 3). Interestingly, we did not find any core groups

of order 512 that had α = 3/4.

By Proposition 6.1 the only groups with α = 3/4 left to be discovered are “de-

scribed” in Miller’s paper. Unfortunately, we were only able to fully characterize three of

Miller’s families. Further work translating Miller’s paper into modern mathematical terms

is the key to understanding all groups with α = 3/4. To conclude this thesis, we have in-

cluded a result that we hoped we’d be able to prove.

Conjecture 7.1. If α(G) = 3/4 and G is not nilpotent, then G ∼= D24 × Cn
2 .
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8. APPENDIX

Here’s a table showing the core groups with α(G) = 3/4 up to order 512 that we

found using GAP. If the groups belong to one of Miller’s first 3 families the corresponding

family is indicated in the table.

GAP ID Family Description
(4,1) Miller’s 1st Family C4

(16,3) Miller’s 1st Family
(16,7) Wall’s 1st Family D16

(16,13) Miller’s 2nd Family
(24,6) Wall’s 1st Family D24

(64,60) Miller’s 1st Family
(64,73)
(64,215) Miller’s 3rd Family
(64,216)
(64,266)

(128,1135) Miller’s 3rd Family
(128,1165)
(128,2216)
(128,2230)
(256,7667) Miller’s 1st Family
(256,56091)

Table 3: Core groups up to order 512 found with GAP

Remark 8.1. (16,13) is the only core group in Miller’s second family; (64,215) and (128,1135)

are the only core groups in Miller’s third family.
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