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ABSTRACT 

  

HIV-1 is the etiological agent that cause AIDS. Since the 1980’s when HIV-1 was discovered, 

much has been discovered, however a cure for HIV-1 has eluded researchers. Effective 

therapeutics do exist but can have adverse side effects including HAND/HAD which leads to 

neurodegeneration in patients regardless of viral suppression. One area of research that holds the 

possibility of discovering new viral targets and therapeutics is host factor interaction within the 

replication process. One host factor that can cause a decrease in HIV-1 infectivity is SPTBN1. 

SPTBN1 is a cytoskeletal protein that was shown to bind to the capsid and nucleocapsid proteins 

of HIV. However, the exact mechanism of SPTBN1 involvement in HIV-1 infection is still 

unknown. Here we utilized siRNA to downregulate SPTBN1expression and ascertain the role it 

plays in HIV-1 infection. When SPTBN1 was downregulated, there was a 19.75% decrease in 

the infectivity of HIV-1. A mini-CsA washout assay was then performed to assay capsid 

uncoating at the early time points. At the 30 min time point there was a 9% decrease in uncoating 

and a decrease of 24% at 1hr when SPTBN1 expression was downregulated. From these results, 

the decrease in infectivity could be caused by the decrease in uncoating. However, it is still 

unknown if SPTBN1 plays a part in the other replication steps of HIV-1 and more research is 

needed to divulge the full role SPTBN1 plays in HIV-1 infection.  
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INTRODUCTION 

 

Human immunodeficiency virus 1 (HIV-1) is the etiologic agent that causes acquired 

immunodeficiency syndrome (AIDS; (1)). Since HIV-1 has been in the population, 38 million 

people are currently living with the virus and 33 million have expired due to AIDS (2, 3). AIDS 

is marked by the manifestation of multiple chronic infections, caused by the degradation of CD4+ 

T cells (4). When CD4+ T cells count decreases, the immune response to various pathological 

agents degrades, which ultimately leads to patient death (4, 5). Since the 1980s, when HIV-1 was 

discovered, much research has taken place to discover therapeutic agents, a cure for HIV-1 or a 

vaccine, but to date a cure or vaccine have eluded researchers (6, 7). However, a plethora of 

knowledge has been gained about HIV-1, to include viral factors and replication cycle of HIV-1, 

cellular factors aiding and inhibiting HIV-1, types of cells capable of facilitating infection, 

combination antiretroviral therapy (cART), and constant immune activation which leads to 

immune exhaustion and inflammation (1, 8–14). Despite this research, some aspects of infection 

remain elusive including the cellular factors which aid or inhibit HIV-1 (8, 15, 16).    

Once HIV-1 infects a cell, multiple cytokines and chemokines are released leading to 

activation of the immune system (10, 17, 18). Constant activation leads to inflammation and 

adverse effects (17, 18). For example, dementia-associated symptoms can develop in patients 

despite having HIV-1 controlled by cART (13). Patients on cART have low levels of viral 

production less than 50 viral copies per milliliter (19). This low level of production causes 

constant inflammation due to chronic immune activation (13, 19). When inflammation occurs in 

the central nervous system (CNS) varying severities of dementia can manifest, called HIV-1-

associated dementia (HAD), HIV-1-associated neurocognitive disorder (HAND) and finally 

https://paperpile.com/c/TxVBML/I7uuX
https://paperpile.com/c/TxVBML/5vUL3+BeXTG
https://paperpile.com/c/TxVBML/BFEIU
https://paperpile.com/c/TxVBML/4KgBN+BFEIU
https://paperpile.com/c/TxVBML/Auy3V+wHWfS
https://paperpile.com/c/TxVBML/I7uuX+qF7uw+ZOIWx+swzwl+yQc1k+oMLeb+POZjn+DmTx4
https://paperpile.com/c/TxVBML/qF7uw+1Loya+zgZpO
https://paperpile.com/c/TxVBML/swzwl+Vo0LP+aQilw
https://paperpile.com/c/TxVBML/Vo0LP+aQilw
https://paperpile.com/c/TxVBML/POZjn
https://paperpile.com/c/TxVBML/DJxen
https://paperpile.com/c/TxVBML/POZjn+DJxen
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HIV-1 encephalitis (HIVE; (13)). Microglial cells and astrocytes are the cells responsible for 

causing inflammation in the CNS (20, 21). Microglial cells are responsible for the clearance of 

cellular debris and phagocytosis of pathogens, and astrocytes make the framework of the brain 

and form the blood brain barrier (BBB; (21, 22)). The BBB is a highly selective membrane, 

which inhibits therapeutic drug translocation into the CNS (21). This inhibits therapeutic agents 

from acting on infected cells and leads to the formation of viral reservoirs in the CNS and the 

neurological symptoms of HAD/HAND (21). Microglial cells responses to infection and host 

factors involvement with infection are areas of research with the possibilities of finding other 

therapeutic interventions which can reduce HIV-1 replication in the CNS (23). Effective 

therapeutic agents are needed to help with HIV-1 strains that are resistant to some antiretroviral 

drugs. By investigating the role host factors play in HIV-1 infection, knowledge can be obtained 

about how host factors play a role in infection and the identification of a possible therapeutic 

target which reduces HAND/HAD (8, 13, 24). Host factors can be utilized in combination with 

other therapeutic agents to aid in stemming the small amount of HIV-1 production in the CNS.   

 

Inflammation and Infected Cell Types  

To cause disease, HIV-1 infects specific cell types including; CD4+ T cells, macrophages, 

dendritic cells (DC), microglial cells, and astrocytes (8, 11, 18, 25–27). CD4+ T cells are the 

primary target of HIV-1 and must become activated for infection to ensue (11). The first cell 

types infected however, are macrophages and dendritic cells (11). These cells migrate in the 

vasculature and various tissue parenchyma of the body to include: the lungs, gastrointestinal tract 

(GI) and below the epithelial layer (Figure 1;(11)). The main activity of macrophages is 

phagocytosis of pathogens and cellular debris. Macrophages are also responsible for 

https://paperpile.com/c/TxVBML/POZjn
https://paperpile.com/c/TxVBML/hBR8x+bv49h
https://paperpile.com/c/TxVBML/bv49h+x9WFp
https://paperpile.com/c/TxVBML/bv49h
https://paperpile.com/c/TxVBML/bv49h
https://paperpile.com/c/TxVBML/Oxm4P
https://paperpile.com/c/TxVBML/POZjn+qF7uw+ZV4p6
https://paperpile.com/c/TxVBML/yQc1k+aQilw+EPXxB+qF7uw+RFgGj+xBMlq
https://paperpile.com/c/TxVBML/yQc1k
https://paperpile.com/c/TxVBML/yQc1k
https://paperpile.com/c/TxVBML/yQc1k
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transportation and presentation of pathogen antigens or pathogen-associated molecular patterns 

(PAMPs) to CD4+ T cells (11). When tissue damage occurs, living cells signal that damage 

needs to be corrected (28–30). In the situation where pathogens are identified, the cell will signal 

an event to clear the infection. This signal is known as inflammation and is constituted by 

numerous agents (26, 31–35). The signaling agents responsible for inducing inflammation and 

other immunological functions include chemokines and cytokines (30, 36). Various chemokines 

and cytokines are released from cells depending upon the stimuli (30, 32, 37, 38). When any 

infectious event occurs, pathogenic protein binds to pathogen recognition receptors (PRR) which 

include toll-like receptors (TLR; (39)). Once bound, TLR propagates a signal pathway which 

releases interleukins, chemokines and interferons that are targeted for the type of infection, for 

this case HIV-1 infection. There are a total ten TLR, with TLR 3, 7, 9 responding to viral and 

other foreign genetic material (28, 40).  

Once TLR 3, 7, 9 are bound with viral or foreign DNA, IL-22, IL-6, IL-15, IL-8, IL-21, 

IL-10, interferon (INF) and IL-1β are released (14, 30, 32, 33, 38, 41). The dispersion of 

interleukins and other immune signals cause physiological properties to transpire which include; 

dilation of blood vessels, macrophage extravasation from the vasculature to the tissue 

parenchyma, and activation of the immune system (17, 36, 40, 42–44). Once in the parenchyma, 

macrophages eliminate cellular debris, clear infection, and stimulate repair.  If HIV-1 virions are 

within material that invades the parenchyma tissue it is one-way HIV-1 constitutes infection 

(11). Once infected, macrophage do not succumb to HIV-1, but instead migrate out of the 

parenchyma and transgress to a lymph node which is an area where CD4+ T cells and other 

immune cells conjugate (11, 43). Macrophage migration to a lymph node is thought to 

disseminate HIV-1 by activating CD4+ T cells and infecting them with HIV-1 (11, 43).  

https://paperpile.com/c/TxVBML/yQc1k
https://paperpile.com/c/TxVBML/QbDOv+A2bFT+lTmyF
https://paperpile.com/c/TxVBML/RFgGj+OLG2y+Zi2o7+uXMIC+RS24r+Fu9e4
https://paperpile.com/c/TxVBML/ccPOJ+lTmyF
https://paperpile.com/c/TxVBML/EOcpg+vaveS+lTmyF+Zi2o7
https://paperpile.com/c/TxVBML/1AMcT
https://paperpile.com/c/TxVBML/QbDOv+kx5Zo
https://paperpile.com/c/TxVBML/DmTx4+lTmyF+vaveS+f2sON+Zi2o7+uXMIC
https://paperpile.com/c/TxVBML/xNQPE+ccPOJ+kx5Zo+O5yvz+rvjLP+Vo0LP
https://paperpile.com/c/TxVBML/yQc1k
https://paperpile.com/c/TxVBML/O5yvz+yQc1k
https://paperpile.com/c/TxVBML/O5yvz+yQc1k
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Figure 1. Schematic of HIV-1 Dissemination Throughout the Body. The diagram shows how 

HIV-1 crosses the various mucosal and epithelial layers to infect immune cells in the tissue 

parenchyma. One of the first immune cells to become infected are macrophages and dendritic 

cells which will migrate throughout the body once infected. This is one theory in which HIV- 1 

spreads to multiple organ systems in a rapid succession. Once macrophages reach the CNS, HIV-

1 crosses the BBB, infects the resident microglial cells and astrocytes. The infection of resident 

cells of the CNS causes a viral reservoir to form which leads to HAD/HAND (45). 

 

 

Infected macrophages not only phagocytose pathogens but also release cytokines and 

chemokines associated with an immune response (21). Within the confines of a lymph node, 

cytokines released activate CD4+ T cells. Once activated, CD4+ T cells produce cytokines 

associated with the pathogen and activate the adaptive immune system (25, 46, 47). This is a 

complicated process that involves activation of B cells, natural killer cells and CD8+ T cells. 

Most patients experience flu-like symptoms during this acute phase of infection. One of the 

cytokines that is involved with orchestrating an immune response is IL-27 (8, 24, 42, 48). IL-27 

is an anti-inflammatory cytokine that is part of the IL-12 family of cytokines (49). The IL-12 

https://paperpile.com/c/TxVBML/Sl0S
https://paperpile.com/c/TxVBML/bv49h
https://paperpile.com/c/TxVBML/EPXxB+xLRQM+ydVQT
https://paperpile.com/c/TxVBML/qF7uw+ZV4p6+nVJRl+xNQPE
https://paperpile.com/c/TxVBML/7cuQq
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interleukin family is made up of combinations of α and β-chains with IL-27 containing a p28 

subunit along with an Epstein Barr-induced gene 3 (49). IL-27 has been shown to have inhibitory 

effects with HIV-1 infection in a variety of cells (8, 15, 16, 27, 49). The effects of IL-27 can be 

seen by the activation of the Jak/STAT pathway and MAP53 intermediate (27, 42, 48). IL-27 

along with many other interleukins interacts with a variety of immune cells and creates a 

systemic fight against HIV-1. Along with CD4+ T cells becoming activated they are also infected 

with HIV-1 (25, 50). HIV-1 infects T cells and is disseminated throughout the body when 

afflicted macrophages present viral antigen to activate adaptive immunity. As the macrophages 

travel to various parts of the body to present antigen to T cells, HIV-1 is being produced and is 

one way in which HIV-1 is dispersed though out the body. Once infected, CD4+ T cells perish to 

the virus and decrease in number (11). The decrease in CD4+ T cells, below 200 cells per 

milliliter, makes it difficult to fight off opportunistic infection and leads to the development of 

AIDS (1). Not only do macrophages travel to lymph nodes but to the CNS as well via the 

vascular system (51, 52). However, macrophages do not readily cross the BBB, but due to the 

systemic response which forms from activation of the adaptive immune system the BBB 

degrades slightly allowing macrophages to penetrate the CNS (43).       

 The BBB is a highly selective structure in the CNS to defend against toxins and other 

pathological agents (53, 54). Astrocytes in the CNS makeup the framework which holds the CNS 

together, forms the BBB and nourishes neurons (54). Astrocytes form the BBB when projections 

stem from the cell wrap around neurons and the capillary network feeding the CNS (54). This 

formation allows astrocytes to support neurons and allows in only essential elements that support 

neuronal cells (54). However, due to the systemic response caused by CD4
+
 T cells production 

of cytokines, the BBB around the vasculature degrades (53). HIV-1 infected macrophages 

https://paperpile.com/c/TxVBML/7cuQq
https://paperpile.com/c/TxVBML/7cuQq+zgZpO+qF7uw+1Loya+xBMlq
https://paperpile.com/c/TxVBML/xBMlq+nVJRl+xNQPE
https://paperpile.com/c/TxVBML/EPXxB+rhSju
https://paperpile.com/c/TxVBML/yQc1k
https://paperpile.com/c/TxVBML/I7uuX
https://paperpile.com/c/TxVBML/vZpv6+W6Tev
https://paperpile.com/c/TxVBML/O5yvz
https://paperpile.com/c/TxVBML/dxBRO+Ieowb
https://paperpile.com/c/TxVBML/Ieowb
https://paperpile.com/c/TxVBML/Ieowb
https://paperpile.com/c/TxVBML/Ieowb
https://paperpile.com/c/TxVBML/dxBRO
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migrating in the vasculature then pass the BBB and enter the CNS (51). While in the CNS, HIV-

1 virions bud off infected macrophages and infect microglial cells and astrocytes in the CNS. 

Therapeutic agents like cART cannot readily cross the BBB, preventing them from slowing viral 

replication and leading to the eventual degradation of neurons. This facilitates the formation of a 

viral reservoir and leads to symptoms of HAD/HAND (11).     

 Microglial cells are a subset of macrophages and are in the CNS (55, 56). Both cell types 

possess similar immune receptors, carry out the same physiologic function, are relatively long-

lived cells and resist HIV-1 (56, 57). Once infected, microglial cells cause inflammation by 

further increasing cytokines and chemokines concentration (58). Due to microglial cell resistant 

nature to HIV and longevity of the cell, it facilitates the establishment of a viral reservoir (21, 

22). As astrocytes and microglial cells become infected, they are a constant source of 

inflammation. When astrocytes become infected it leads to immune activation and causes the 

breakdown of the BBB (54). When astrocytes die, they can no longer nourish neurons and 

eventually the neuron itself dies (54). The death of neurons in the CNS causes neurological 

symptoms seen in HAD/HAND. Therapies are needed to reduce the amount of viral production 

in microglial cells and astrocytes, which reduces inflammation and neurological symptoms.    

 

HIV-1 Virus, Proteins and Replication Cycle   

HIV-1 is a lentivirus and part of the Retroviridea family (1). There are two HIV viruses, 

each with multiple strains and subtypes (59, 60). The first species of HIV is HIV-1 and is related 

to Simian Immunodeficiency Virus (SIV) in chimpanzees (59). The second type of HIV is HIV-2 

and has many commonalities to SIV, however, it has origins in sooty mangabeys (60). HIV-1 has 

undergone much genetic mutation, which has led to the development of many subtypes (3, 59). 

https://paperpile.com/c/TxVBML/vZpv6
https://paperpile.com/c/TxVBML/yQc1k
https://paperpile.com/c/TxVBML/u9GfP+5QOAR
https://paperpile.com/c/TxVBML/26vdu+5QOAR
https://paperpile.com/c/TxVBML/uSU4e
https://paperpile.com/c/TxVBML/bv49h+x9WFp
https://paperpile.com/c/TxVBML/bv49h+x9WFp
https://paperpile.com/c/TxVBML/Ieowb
https://paperpile.com/c/TxVBML/Ieowb
https://paperpile.com/c/TxVBML/I7uuX
https://paperpile.com/c/TxVBML/WiJ92+KUOb8
https://paperpile.com/c/TxVBML/WiJ92
https://paperpile.com/c/TxVBML/KUOb8
https://paperpile.com/c/TxVBML/BeXTG+WiJ92
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HIV-1 M strain is the epidemic form, and the subtypes include A, B, C, D, F, G, H, J, and K (3). 

Fifty-one circulating recombinant strains (CRF) exist, and patients have been infected with two 

or more separate HIV strains (3). HIV strains recombine genetic material and can make new viral 

strains with higher propensity for progress into AIDS (3).    

HIV-1 is an enveloped virus containing two copies of single stranded RNA genome 

(Figure 2). The HIV-1 genome is 9.7 kb in length, encompassing three polyproteins and multiple 

accessory proteins (Figure 3;(61)). The polyproteins require multiple rounds of processing by 

host and viral proteases to activate 9 proteins with specific function (1). The Gag polyprotein 

contains structural proteins one of which is the capsid (CA; (1)). Gag is cleaved by the viral 

encoded protease enzyme (PR) to yield three separate functional proteins: matrix protein (MA) 

or p17, capsid protein or p24, and nucleocapsid (NC) or p7 (7). The matrix protein is located on 

the inside of the HIV-1 virion and has been implicated in viral assembly and nuclear import (27). 

The nucleocapsid is a protein that will surround the genomic material and is involved in the 

reverse transcription processes (28). The capsid monomers will arrange in an organized pattern 

to create the capsid core (29, 30). The capsid core is a conical, or bullet shaped structure that 

consists of 1000-1500 capsid monomers which form 250 hexamers and 12 pentamers (29, 30).  

The Env polyprotein contains proteins associated with the envelope of HIV-1 (1). Env is cleaved 

by host proteases at the host membrane to yield gp120 and gp41 (7). Gp41 is a transmembrane 

protein and gp120 is the protein that interacts with the receptor and co-receptor located on the 

host cell surface (7). Finally, Pol polyprotein encodes enzymatic proteins (1). Pol undergoes a 

subsequent cleavage to three proteins: reverse transcriptase (RT), integrase (IN) and the protease 

itself (7). The genomic structure can differ between HIV-1 and HIV-2 viral species. HIV-2 will 

contain Vpx, an accessory protein that will not be discussed due to the focus on HIV-1 (1). 

https://paperpile.com/c/TxVBML/BeXTG
https://paperpile.com/c/TxVBML/BeXTG
https://paperpile.com/c/TxVBML/BeXTG
https://paperpile.com/c/TxVBML/jB32p
https://paperpile.com/c/TxVBML/I7uuX
https://paperpile.com/c/TxVBML/I7uuX
https://paperpile.com/c/TxVBML/I7uuX
https://paperpile.com/c/TxVBML/I7uuX
https://paperpile.com/c/TxVBML/I7uuX
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Figure 2. Diagram of the HIV-1 Virion and Protein Location.  The graphic representation 

shows a HIV-1 virion with the location of the structural and accessory proteins. The structural 

proteins include gp120, gp41 integrase, capsid, nucleocapsid, protease, reverse transcriptase, and 

matrix protein. These proteins are directly involved in various processes that HIV-1 undergoes to 

infect permissive cells. The accessory proteins include Vif, Vpr, Nef and others. These proteins’ 

roles include assisting with viral processes, which include dampening the immune response and 

alteration of host proteins to assist with the infection process. (62) 
 

 

https://paperpile.com/c/TxVBML/wmK2i


 

 

9 
 

 

Figure 3. Schematic of the Viral RNA Genome of HIV-1. The diagram shows the viral RNA 

genome of HIV to include: the length in kilo base pairs, order of the polyproteins and the 

proteins that reside in them. The schematic also depicts the location of accessory within the RNA 

strand. The image also shows the name of each of the proteins and other viral proteins that HIV 

contains. The figure also shows the 5’ and 3’ LTR. (63) 

 

 

Polyproteins and their functional proteins are required for HIV-1 infection. However, 

these proteins are still not enough to cause efficient HIV-1 infection. HIV-1 contains accessory 

proteins or virulence factors, which increase infectivity by assisting with evading the immune 

system, down regulation of host proteins, shuttling of proteins from the nucleus to the cytoplasm, 

and regulation of viral protein production. Virulence factor or accessory proteins include viral 

protein R (Vpr), viral protein U (Vpu), negative regulatory factor (Nef), regulator of expression 

of virion protein (Rev), trans-activator of transcription (Tat) and finally, viral infectivity factor 

(Vif;(1, 64)). Vpr has been suspected in inactivating multiple host factors including UNG2, 

Dicer, IR3, ZIP, APOBEC3G and others (64). Thus, Vpr prevents an immune response to HIV-1 

allowing the virus to escape from host immunity and facilitating infection (64). Vpu has 

similarities to Vpr in that Vpu down regulates host immunity and increases the infectivity of 

HIV-1, by modulating host protein BST-2 which is an effector of the innate immune system (65). 

Nef will down regulate CD4 cellular receptors which will help the viral progeny bud from the 
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cells (66). This virulence factor will also prevent the cell from mounting an appropriate immune 

response by down regulating the immune receptor Human Leukocyte antigen (HLA; (66)). Rev 

is a critical factor in transportation of viral RNAs (67). RNA associated with HIV-1 is 

transcribed in the nucleus and transported to the cytosol by Rev (67). Transcripts are 

subsequently translated into viral proteins which associate with genomic material and assemble 

into virions that bud off the cell. Thus, Rev increases infectivity of HIV-1 by regulating the 

amount of RNA transported to the cytosol (67). Tat is responsible for increasing the amount of 

transcript produced from the integrated DNA of HIV-1 by activating RNA polymerase II (68). 

The last accessory protein, Vif, is used by HIV-1 to inactivate host factor APOBEC3H by 

targeting this protein for degradation (69). If Vif is missing from HIV-1, infection can still occur, 

but the extent of infection is greatly decreased.    

For HIV-1 to infect cells, a highly ordered and timed replication cycle occurs (Figure 4). 

This replication cycle can be divided into early and late stages (1, 70). The early stages include 

entry into a permissive cell, reverse transcription, uncoating, migration to the nucleus, nuclear 

import, and integration of viral genetic material with the host genome (1). The late stages of 

HIV-1 infection consist of production of viral protein and genetic material, virion assembly, 

budding off the cell and maturation of HIV-1 virions (1). The outcome of the early stages is to 

ultimately enter the cell and integrate with the host genome which establishes infection. The 

result of the late-stage processes is to produce mature virions which spread HIV-1 to other cells 

or individuals. Within each stage of the replication cycle significant events occur which facilitate 

infection. During the replication cycle viral proteins, accessory factors and host proteins play 

diverse roles which can either inhibit or aid infection (1, 9, 38, 70, 71).  
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Figure 4. HIV-1 Replication Cycle. This figure shows the replicative cycle of HIV-1. The cycle 

initiates with binding of the receptor and co-receptors. Subsequent replicative steps include 

fusion of the host and viral membranes followed by uncoating of the capsid core. As the capsid 

core degrades it travels to the nucleus of the cells and forms the RTC which facilities reverse 

transcription. Once HIV-1 reaches the nucleus the capsid core fully uncoats and forms the 

preinitiation complex. The PIC facilitates nuclear import of viral DNA into the nucleus. Once in 

the nucleus proviral DNA is integrated into the host genome via integrase. Transcription ensues 

followed by translation of viral proteins and DNA. Viral RNA and protein assemble, bud off the 

cell and mature, completing the replicative cycle. (72)  

 

 

Binding, Fusion, Uncoating and Reverse Transcription of HIV-1   

The initial step in the replication cycle occurs when HIV-1 binds to the CD4+ receptor 

and CCR5/CXCR4 coreceptors of susceptible cells (1, 61). From here the CD4+ receptor will be 

referred to as receptor and the CCR5/CXCR4 will be referred to as the co-receptor (1, 61). 

Binding initiates when gp120, which is integrated on the viral membrane, binds with the receptor 

and co-receptor (1, 61). Following binding of the receptor/coreceptor, fusion of HIV-1 ensues, 

https://paperpile.com/c/TxVBML/c4Jwk
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https://paperpile.com/c/TxVBML/I7uuX+jB32p
https://paperpile.com/c/TxVBML/I7uuX+jB32p


 

 

12 
 

and the viral and cellular membrane combine via a conformational change in gp41 (1, 61). The 

conformational change occurs when gp120 binds to the receptor/coreceptor and induces a change 

in gp41 to a 6-helical bundle structure (73). The creation of the 6-helical structure exposes the 

fusion-promoting peptide and initiates the combination of the two membranes (74). After the 

union of the two membranes the capsid core is released into the cytoplasm and uncoating along 

with migration to the nucleus ensues (61). Once HIV-1 binds to and starts to fuse with the cell it 

will encounter one of the first cellular components that can aid or inhibit infection, the cortical 

actin cytoskeleton (75, 76). Binding of HIV-1 to the receptor/coreceptor propagates a signal 

transduction pathway which leads to increased receptor stability and clustering (74). The 

clustering of the receptor and coreceptor leads to an increase in Env, the receptor and coreceptor 

interaction which promotes fusion of the two membranes (74). There are some reports that viral 

proteins can interact with cortical actin or hijack other proteins to alter cortical actin (74, 75, 77).  

 The other entry method that HIV-1 can take to enter the cell is by endocytosis (75). This 

method is commonly utilized in research to infect cells not normally permissible to HIV-1 

infection. This is accomplished by changing the envelope of HIV-1 to the vesicular stomatitis 

virus VSV-g envelope (VSV-g). The change in envelope allows HIV-1 virus to enter the cells via 

endocytosis rather than fusion of the host and viral membranes (75). The endocytic method is 

mediated by clathrin, and HIV-1 is taken up into endocytic vesicles (75). Once HIV-1 is in the 

endosome the virus eventually fuses in a coordinated process that will release the capsid core 

into the cytoplasm. This is one way in which HIV-1 can bypass the physical barrier of the 

cortical actin cytoskeleton at the membrane.     

Once the capsid core is in the cytoplasm the virion migrates to the nucleus via 

microtubules or the actin cytoskeleton (9, 71). The capsid core will eventually degrade or 

https://paperpile.com/c/TxVBML/I7uuX+jB32p
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disassemble in a process called uncoating (78). The average capsid has a length of 119 nm and a 

width of 61 nm (79). The capsid core is made up of 1000-1500 capsid monomers which arrange 

into 250 hexamers and 12 pentamers. The pentameric structures of the capsid core are located at 

the angles or curvatures and hexamers compose the rest of the capsid structure (78). The 

configuration of pentamers and hexamers allows for the bullet or conical morphology of the 

capsid core (Figure 5). Hexamers, along with pentamers are organized by adherence of multiple 

capsid monomers in a circular fashion at the Carboxy-terminal domain [CTD; (80)]. This forms a 

CTD-CTD junction and holds the structures together (80). The N-terminal domain (NTD) of 

pentamers/hexamers are located on the exterior aspect and facilitate linkage of multiple units 

(80). The joining of pentamers/hexamers form the capsid core allows structure stability and 

protects the genetic material of HIV-1. Since each individual capsid core has a varying number 

of monomers, the stability of the capsid core is different from virion to virion (81). This varying 

stability alters uncoating kinetics of HIV-1 and adds to the unknowns of the uncoating process. 

As the capsid core migrates to the nucleus the genomic RNA will be reverse transcribed 

into DNA in a process called reverse transcription (39). When hexamers/pentamers form they 

arrange in such a way that a small hole is created in the center of the structure (82). The 

centralized hole is called the IP6 hole and is composed of hydrophilic amino acids (82). The hole 

exists in two conformations, open and closed, which allows dNTPs into the capsid core (82). In 

the open confirmation dNTPs enter the capsid core and are incorporated into the newly 

synthesized strand of viral DNA (82). 
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Figure 5. Capsid Core. This image details the capsid structure, the hexamers are in orange and 

the pentamers are in yellow. Both of which are made from monomers and held together by the 

CTD-CTD junction.  In the middle of the hexamers, you can see the hole which allows dNTP 

into the core. It is held together at the NTD-NTD junction between each of the individual units 

(5).  
 

 

As viral RNA is transcribed into DNA, the triggering event is initiated which causes 

uncoating to begin (83). One proposed trigger that commences uncoating is strand transfer, in 

which the first 137 bp of the first 5’LTR is reverse transcribed and that strand of ssDNA will 

then be transferred to the second strand which helps facilitate reverse transcription in the second 

RNA strand (Figure 6;(83)). Other evidence notes that as viral RNA is reverse transcribed into 

DNA it causes a buildup of pressure (84). The increase in genomic material causes pressure to 

increase which puts stress on the capsid core (84). This increased stress causes the 

pentamer/hexamers to break away from the capsid core (84). Thus, the increased pressure from 

the accumulation of genetic material assists or causes the capsid core to fall apart (84). Both 

reverse transcription and uncoating are integrated with one another, in that if one process is 

altered then the other process is affected as well (80, 83, 84).   
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Figure 6. The Strand Transfer of HIV-1. This diagram shows how the first 137 bp of one of 

the RNA stands of HIV is reverse transcribed into DNA. The small fragment of DNA will 

transfer to the other strand of RNA and initiate the change to DNA. It is this transfer that is 

thought to initiate the uncoating process. Another avenue that could play a part in uncoating is 

the buildup of genomic material. Since this process occurs in the confines of the capsid core the 

accumulation of products can cause stress on the capsid core and cause it to disassemble and 

break apart. (85)    
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 Three separate models exist to describe when uncoating and reverse transcription takes 

place (Figure 7;(5)). The first model called immediate uncoating proposes that the capsid core 

degrades immediately after fusion (5). After the capsid core degrades, reverse transcription 

occurs and genomic material transverses the cell which ultimately integrates with the host 

genome (5). However, the immediate uncoating model has recently been discredited and research 

points to the other two proposed models. In the second proposed model of uncoating, called 

biphasic uncoating, the capsid core is released into the cytosol and transgresses to the nucleus 

(5). Figure 7 shows that during the migration, reverse transcription occurs inside the capsid core 

(5). After some relatively unknown initiating event, uncoating of the capsid occurs slowly by the 

dissociation of the capsid hexamers/pentamers (5). In the biphasic model the full degradation of 

the capsid core is completed close to the nuclear envelope (5). Full degradation of the capsid 

core allows the genetic material to undergo nuclear import and integrate into the host genome 

(5). The biphasic model also allows for some of the capsid hexamers and pentamers to remain in 

proximity to the nucleus to facilitate nuclear import (5). The last model of uncoating called NPC 

uncoating demonstrates that the capsid core remains intact until it reaches the nuclear envelope 

(5). Once the capsid core reaches the nucleus the core degrades, and viral DNA enters the 

nucleus (5). During this model reverse transcription occurs in the confines of the capsid core and 

allows for the capsid protein to aid in nuclear import (5).  

https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN
https://paperpile.com/c/TxVBML/4KgBN


 

 

17 
 

  

Figure 7. Models of Uncoating. This depiction shows the three models of uncoating. 

The first model of uncoating is called the immediate uncoating, it shows the capsid core 

immediately degrading upon entry into the cell. Reverse transcription then occurs, the RTC then 

migrates to the nucleus, undergoes nuclear import, and inserts with the host genome (A). The 

biphasic model of uncoating shows the capsid core being released into the cytoplasm upon entry 

into the cell.  The capsid core starts to migrate to the nucleus and reverse transcription occurs. 

During migration, the core will start to degrade due to an unknown trigger. Once the core reaches 

the nucleus it will fully degrade and undergo nuclear import and inserts into the host genome 

(B). In the NPC model of uncoating the capsid core stays intact for the entire migration to the 

nucleus and RT proceeds in the core. Once the core reaches the nucleus the core will degrade, 

and the genetic material will undergo nuclear import and insert into the host genome (C; (5)). 

 

Nuclear Import, Integration and Production of Progeny Virions 

Following uncoating and reverse transcription, the preinitiation complex (PIC) assembles 

which allows the genomic material to undergo nuclear import (80). The intact capsid core cannot 

cross the nuclear envelope due to size restrictions and must degrade for nuclear import of viral 

DNA (5). Capsid monomers being found inside the nucleus of an infected cell suggest that the 

capsid protein it participates in nuclear import (86). Host nuclear envelope proteins NUP153 and 

NUP 358 are located on the nuclear pore and are thought to bind to capsid monomers and 
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facilitate entry into the nucleus (5). After HIV-1 has undergone nuclear import, integrase inserts 

the cDNA of HIV-1 into the host cell genome. 

In the later steps of HIV-1 replication, host replication machinery will transcribe the 

newly inserted HIV-1 DNA (1). Viral RNA produced leaves the nucleus by the regulation of Rev 

and is subsequently translated into proteins. Viral proteins which ultimately came from the insert 

genetic material of HIV-1 are packaged into virions along with viral RNA which then buds from 

the cell membrane and completes the replication cycle of HIV-1 (1).     

 

SPTBN1 Structure and Function as a Host Factor For HIV-1  

One cellular protein that has been shown to be associated with HIV-1 infection is spectrin 

beta non-erythrocytic 1 (SPTBN1). SPTBN1 is a host protein that associates with the actin 

cytoskeleton and acts as a scaffolding protein for actin filaments. This scaffolding allows actin 

filaments to be held together and form organized units for various functions throughout the cell 

(87–91). Three studies demonstrated that SPTBN1 is needed for HIV-1 infectivity in various cell 

lines (8, 15, 16). However, the studies implicate SPTBN1 facilitating different replicative steps 

from fusion, uncoating and possible migration of the capsid core to the nuclear envelope (8, 15, 

16). In the first study, Brass and colleagues performed a siRNA screen on Jurkat cells (CD4+) to 

investigate cytoskeletal host factors that are associated with wild type HIV-1 (16). Brass 

identified SPTBN1 as a host factor that facilitates HIV-1 infectivity as there was a decrease in 

the infectivity when this protein was downregulated. The role for SPTBN1 was not directly 

assessed in the study but the authors noted that the host factor could assist with fusion, 

uncoating, reverse transcription and viral trafficking of HIV-1 (16). The second study was 

performed by Gallo and colleagues, which looked at the role of SPTBN1 in HIV-1 infection in 
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HeLa cells (15). Researchers knocked down the expression of SPTBN1 along with ten other 

cytoskeletal proteins using siRNAs and subsequently infected the cells with wild type HIV-1 and 

VSV-G HIV-1 virus (15). VSV-g HIV-1 is the virus type used for this thesis. VSV-G HIV-1 

virus is a pseudotyped virus that enters the cell via endocytosis. When endocytosis occurs, VSV-

g HIV-1 fuses with the endosomal membrane rather than the cellular membrane, which is what is 

seen with wild type HIV-1. This virus also has a mutation in Env which disables the virus from 

forming properly. This allows VSV-G HIV-1 to only undergo a single round of infection and 

therefore a safer form of HIV-1 for use in research. Knockdown of SPTBN1 decreased 

infectivity by 20% when cells were infected with VSV-G HIV-1, whereas knockdown of 

SPTBN1 in cells infected with wild type HIV-1 decreased the infectivity more than 40 % (15). 

This suggested that the entry method of the virus plays a role in the infectivity and that SPTBN1 

plays a role in fusion of HIV-1. There was no further investigation of the role of SPTBN1 in this 

paper. These two papers showed that the downregulation of SPTBN1 decreases HIV-1 

infectivity with mounting evidence denoting its role in the fusion process. However, there 

remains a gap in knowledge in how or if SPTBN1 participates in fusion of HIV-1. This needs to 

be investigated to understand how host factors participate in various processes of HIV-1 and this 

is the third aim of my thesis.  

  Dai and colleagues found that when monocytes are differentiated into macrophages by 

IL-27, SPTBN1 was downregulated (8). The down regulation of SPTBN1 corresponded to a 

decrease in HIV-1 infectivity. Researchers differentiated monocytes into macrophages with M-

CSF (M-mac) or IL-27 (I-mac) and then infected with wild type HIV-1 (8). Following infection, 

the amount of HIV-1 infection was determined by tabulating the production of capsid protein 

produced in cell supernatant (8). I-mac cells showed a drastic decrease in the amount of capsid 
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protein produced over a 24-day period post infection when compared to the M-mac cells (8).   

When the two cell lines were infected with VSV-g GFP HIV-1, infectivity was analyzed by 

fluorescence assisted cytometry (FACS). FACS is a type of cytometry which utilizes a 

fluorescent label to denote an infected cell, specific protein expression, or other cell properties. 

When the labeled cells are placed in the flow cytometry the instrument can count and separate 

the cells based on the fluorescent label. From the number of cells that express a fluorescent label, 

information can be determined to include, the percent of cells that are infected, receptors 

expressed on the cells, and other aspects of the cells. The I-mac cells showed a decrease in 

infectivity of about 80% when compared to the M-mac cells.    

  The Dai study noted the different differentiation processes (CSF or IL-27) did not alter 

the physiological processes of the macrophages. Both I-mac and M-mac cells showed the same 

migration response/distance to chemotaxic agents SDF-1α or RANTES (8). The same trend was 

seen in the phagocytic ability when no difference was seen in the response to E. Coli (8). FACS 

showed the same receptors for differentiation at the same level between I-mac and M-mac cells 

(8). Finally, the immune response was tested by the Milliplex assay kit which tests the 

production of cytokines and other immune markers produced by the cell and showed no 

difference between the two cells (8). Researchers noted that both cell lines expressed the same 

amount of receptor and coreceptor which suggest that binding of HIV-1 is unaffected.  

 Dai conducted genome-wide gene expression analysis and found 178 genes were 

differentially expressed between the two cell lines, with 60 genes having decreased expression 

and 118 genes with increased expression. From here, heterokaryons were made by fluorescently 

labeling the cells and combining the two cell types. The I-mac cells were labeled red, and the M-

mac were labeled green. Heterokaryons, which were a combination of I-mac and M-mac, 
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appeared yellow. The heterokaryons were infected with VSV-g HIV-1 and showed an increase in 

HIV-1 infection when compared to homokaryons of I-mac cells. The results from the 

heterokaryon experiments pointed to a missing host factor in the I-mac cells that was essential 

for HIV-1 infection. Sixty downregulated candidate genes in the I-mac cells were cross 

referenced with 11 previously identified host factors. SPTBN1 was present on both groups. A 

Western blot and qPCR confirmed the decrease in SPTBN1 expression levels in the I-mac cells 

(8). To confirm SPTBN1 played a role in HIV-1 infection, researchers were able to rescue 

infection in I-mac cells by inserting a vector that contained SPTBN1 into I-mac cells (8).   

To determine how SPTBN1 was facilitating HIV-1 infection, researchers looked for a 

direct interaction between SPTBN1 and different HIV-1 proteins. Immunoprecipitation assays 

showed that SPTBN1 could bind to Gag. However, more importantly SPTBN1 bound the capsid 

protein and nucleocapsid protein of HIV-1. To confirm the interaction of SPTBN1 with Gag 

researchers fluorescently labeled the two proteins (8). When the fluorescent images of SPTBN1 

and Gag were merged the R value was calculated to be 0.724 which indicated the colocalization 

of the two proteins. To demonstrate the interaction between HIV-1 and SPTBN1, both were 

labeled with a fluorescent dye. In the M-mac cells 75% of the virions were associated with 

SPTBN1 and 13% of the virions were associated with SPTBN1 in the I-mac cells. When 

SPTBN1 was downregulated, I-mac cells showed an alteration in the architecture of the actin 

cytoskeleton in which more than 50% of the F-actin fibers were replaced with granular or 

punctate actin. This alteration in the actin cytoskeleton related to a drastic decrease in HIV-1 

infectivity. The disturbance in the actin cytoskeleton corresponded to a decrease in infectivity 

with not only HIV-1, but with herpes and influenza viruses as well.    
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 The exact mechanism of SPTBN1 influence on HIV-1 still eludes researchers (8,15,16). 

However, a role for SPTBN1 in HIV-1 infection is proposed to involve the actin cytoskeleton 

and various parts of the replication cycle to potentially include fusion, viral trafficking, and 

uncoating (8,15,16). Some of the research indicates that SPTBN1 assists with uncoating based on 

the Dai publication showing an interaction with the capsid protein and the nucleocapsid (8). 

Other possible roles for SPTBN1 in HIV-1 infection include fusion (15,16). This evidence is 

based in that HIV-1 viruses with different envelope proteins are affected differently by the 

downregulation of SPTBN1 (15). SPTBN1 seems to play a bigger role in WT HIV-1 infection 

compared to VSV-g HIV-1 (15). SPTBN1 could also assist with viral trafficking. Since SPTBN1 

can associate with the actin cytoskeleton and the capsid protein, it could act as an adapter 

protein, attaching the capsid core to the actin cytoskeleton to assist in migration through the 

cytoplasm (8,16). One unlikely area in which SPTBN1 could possibly play a role is in reverse 

transcription. No evidence has been presented that SPTBN1 plays a role in this replication 

process. However, due to the close association of uncoating with reverse transcription, this 

process could be indirectly affected.  

 It is clear from previous studies that SPTBN1 is cell specific and virus strain dependent 

(8,15). In the Dai publication IL-27 did not affect the expression level of SPTBN1 in 293T and 

HeLa cells (8). The same publication showed that in CD4+ T-cells and dendritic cells the 

downregulation of SPTBN1 had no effect on HIV-1 infectivity (8). In macrophages however, 

SPTBN1 seems to play a bigger role in the infection process than other cell lines (8,15). 

SPTBN1 knockdown severely depleted HIV-1 infection in macrophages, whereas in its 

knockdown in HeLa cells, it was only inhibited by 20-40% (8,15). In the Gallo paper, SPTBN1 

down regulation affected WT HIV-1 more than the pseudotyped HIV-1. 
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  The discrepancy in the effect of SPTBN1 downregulation in macrophages compared to 

other cell lines and the differences in VSV-g HIV and WT-HIV infectivity need to be better 

understood if the mechanism of action for SPTBN1 with HIV-1 can be understood. By 

understanding how the down regulation of SPTBN1 decreases the infectivity of HIV-1 it could 

lead to possible therapeutic agent or target. This therapeutic method could reduce cytokine 

production, inflammation, and the incident of HAD/HAND in patients.   

There are two types of spectrin proteins in mammalian cells, erythrocytic and non-

erythrocytic (Figure 8). Erythrocytic is known as alpha spectrin or SPTA and is found in 

erythrocytes (92). SPTA gives structural integrity to erythrocytes to deform and endure high 

shear stress as it migrates through the vasculature (91, 92). The non-erythrocytic spectrin is 

found in all other cells and is called beta spectrin or SPTBN (92). Areas of the body which 

contain the highest amount of beta spectrin are cells of the brain, lungs, and adipose tissue (93). 

Beta spectrin performs many functions in the body to include interaction with the actin 

cytoskeletal and cell structure. Both spectrin types can be found at loci NC_000002.12 

(54456327..54671446) on chromosome 2 (93). SPTBN1 protein can go by many aliases; ELK, 

HEL 102, and SPTBNII and βII (93). Spectrin is a protein that is composed of two separate 

subunits, α 280 kDA and β 247 kDA (92). Each of the subunits of spectrin will have multiple 

isoforms. The β subunit has 5 isoforms and α has 2 isoforms (93). The various isoforms can 

recombine which allows for remarkably diverse functionality in the cell (92, 93). Most spectrin 

proteins are highly associated with the actin cytoskeleton in some fashion (87, 88, 90, 91, 94). 

This can include binding of the cytoskeleton to the membrane, vesicle trafficking and 

cytoskeletal scaffolding. The two subunits interact in a head-to-head formation, with multiple 

residues that allow for various binding sights and cellular function (Figure 8, 92). The fully 
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formed spectrin protein has a linear length of 37 nm. Spectrin protein can expand and contract 

from 47 nm to 190 nm based upon physiological properties of the cell including ionic strength, 

protein concentration, addition, or removal of a section of the plasma membrane, and reduction 

in temperature (92, 95). Each unit of spectrin is 106 amino acids (AA) long that form into an α-

helix structure (Figure 8). The α-helix then folds into a triple helix with linkers that facilitate the 

turn to another helix (95). The third helix is a partial helix which will interact with one another 

and finish the triple helix formation in the spectrin tetramer (95). This conformational 

arrangement allows spectrin tetramers to expand and contract (95). This ability is coined the 

Chinese finger trap model and allows spectrin to have structural reliance in the cell (95). Each 

subunit has a repeat section, the α-subunit has a repeat of 20 units and the beta subunit has 16 

repeats (Figure 8; (92)).  
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Figure 8. Spectrin Proteins. Two spectrin proteins are found in mammalian cells. Both spectrin 

types consist of two subunits β and α that are orientated in a head-to-head fashion (A). The 

schematic shows the erythroid type of spectrin and the various domains. The erythroid type 

contains a CH domain which binds to actin filaments, the EF domain which binds calcium, 

involved in signaling protein calmodulin, and can bind troponin-C (B). The schematic shows the 

non-erythroid type of spectrin this type of spectrin has the same domains as the erythroid with 

the addition of PH domain which can bind to various other proteins. (C) A ribbon diagram of 

spectrin. It shows a triple helix structure that shows two complete helixes, and half helix that will 

combine to the other half helix to complex the molecule. The orientation of this protein creates a 

hole in the middle that can get smaller in diameter as the molecule elongates or constricts. (95) 

 

Different domains and repeats give SPTBN1 the ability to carry out a variety of functions 

throughout the cell (92). SPTBN1 has a PH domain found near the end of the protein which is 

involved in binding of specific proteins to facilitate signal transduction, cell proliferation and 

cellular motility. The beta subunit of SPTBN1 has two CH domains that are associated with the 

actin cytoskeleton. Other cellular factors that have the capacity to interact with SPTBN1 include 

phospholipids, PI (4,5), TGf-β, and SMAD3/4 adapter (92). The proteins capable of interacting 

with SPTBN1 are embedded in the cell membrane and involved in cell signaling and migration. 

Thus, SPTBN1 acts like an adaptor molecule linking structures in the plasma membrane to the 
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actin cytoskeleton (92). Other reports state that SPTBN1 is involved in cell to cell contact in that 

it will anchor E-cadherins to the plasma membrane (94). Another function of SPTBN1 is that it 

acts like a rung on a ladder and cross links actin filaments together (89). The crosslinking guides 

the elongating fiber of actin to the plasma membrane (89). In neurons SPTBN1 is involved in the 

membrane periodic skeleton (MPS) (90). The MPS is made up of F-actin rings that form around 

the entire length of the neuronal axon (90). Where SPTBN1 comes into play is that it organizes 

the F-actin rings into uniform spaces apart (90). If SPTBN1 is missing, the spacing is disrupted 

which causes manifestations of neurocognitive symptoms (90).  

 SPTBN1 has many functions throughout the cell, with some functions that are critical to 

cell physiology. In SPTBN1 knock down experiments in mice, the loss of SPTBN1 correlated 

with a decreased in nerve conductivity and grip strength (89). In a separate publication, authors 

showed that SPTBN1 is involved in retrograde signaling in neurons (88, 89). There are actin 

filaments that span the length of the axon which allows for intraneuronal signaling (88, 89).  

When SPTBN1 was down regulated neurons were unable to send a signal back to the soma of 

the cell due to disruption of the actin cytoskeleton causing disrupted intraneuronal signaling and 

neural degradation (87,88). Another vital process that involves SPTBN1 is DNA repair (96). 

SPTBN1 is involved in stabilization of stalled replication forks (96). This stabilization causes the 

replication fork to stay open and prevent structural collapse during the repair mechanism (96). 

Therefore, downregulation of SPTBN1 causes an increase in the amount of replication fork 

collapse (96). The increase of collapsed replication forks increased the propensity of cancer in 

hepatocytes in mice (96). Since SPTBN1 is involved with linking F-actin with proteins 

embedded in the membrane of the cell it can possibly be involved in the Hippo signaling 

pathway (87). In mammalian cells the pathway is involved with growth control and 
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tumorigenesis. The authors proposed that it is an upstream regulator of the pathway however, 

this is not well understood (87). Finally, other reports show that SPTBN1 is involved in 

trafficking of vesicles. Therefore, the possibility exists that fusion, uncoating and migration to 

the nucleus of HIV-1 require SPTBN1 interaction with the actin cytoskeleton. This involvement 

could be why there is a disparity when different virus strains are used in different experimental 

procedures. If SPTBN1 is going to be used as a therapeutic target for HIV-1, it will have to be 

targeted in specific cells so that the effect on other activities is reduced and noninfected cells 

remain unaffected.    

 

The Role of the Cytoskeleton in HIV-1 Infection  

 The cytoskeleton is an essential structure in the cell that is utilized for various functions 

from vesicle transport, endocytosis, stability, and cell motility (71, 98, 99). The cytoskeleton 

consists of three fibers of different sizes; microtubules which are 25nm in diameter, intermediate 

filaments which are 10nm in diameter and microfilaments (actin filaments) which are 7-9nm in 

diameter. Microtubules are the largest filament of the cytoskeleton and are composed of α and β 

tubules. The tubules then assemble in a head to tail fashion which allows the structure to acquire 

a tube morphology and range from 20 to several hundred nanometers long (71, 100).  

Microtubules assemble at microtubule organizational centers (MTOC) which are located 

throughout cells and have two directional ends which extend to different areas of the cells (100). 

The positive end is directed to the cell membrane and the negative end is directed to the nucleus 

of the cell (100). Microtubules have two motor proteins that migrate in opposite directions to 

facilitate movement of various cargo throughout the cell (71, 101). Dynein, which is directed to 

the negative end of the tubule, and Kinesin, which is directed to the positive end of the 
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microtubule. Since microtubules can polymerize with directionality and utilize motor proteins, 

viruses, including HIV-1, can utilize the structure to carry out various infection processes (12, 

71, 101, 102).  

Two important infection processes that involve microtubules are viral trafficking and 

uncoating (71, 101). The two motor proteins are thought to traffic capsid cores to the nucleus and 

the opposite directionality of the motor proteins is how the viral capsid navigates obstacles that 

are encountered in the cell (Figure 9; (71)). Dynein and Kinesin are also proposed to assist with 

disassembly of the capsid core (Figure 9; (101)). The motor proteins pull on the capsid core in 

opposite directions; increasing the stress and causes the core to disassemble (71). However, the 

motor proteins associated with microtubules cannot directly bind to the capsid core of HIV-1 and 

require adaptor proteins to link the two proteins together. FEZ is the adaptor protein that will link 

Kinesin to the capsid core and BICD2 is the adaptor protein that will link Dynein to the capsid 

core (102). Other parts of the cytoskeleton play a major role in the infection process of HIV-1 

including fusion, uncoating, and transport. Actin filaments or F-actin plays a role in fusion, 

transport and uncoating. However, HIV-1 components cannot interact with actin filaments. There 

may be other adaptor proteins like FEZ and BICD2 which associates with F-actin and binds to 

HIV-1 proteins. This could be how SPTBN1 facilities infection in that it is able to link the actin 

cytoskeleton to the HIV-1 proteins.     
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Figure 9. Microtubule Involvement with HIV-1. Adaptor proteins FEZ1 and BICD2 bind to 

the microtubule motor proteins, allowing the capsid core of HIV to migrate to the nucleus and 

navigate obstacles. This is also a theory on how the capsid core breaks apart and degrades. Motor 

proteins attach to the capsid core by adapter protein and move in opposite direction. When the 

proteins move in opposite direction it will put stress on the capsid core and cause it to degrade 

(102). 

 

 

 Mammalian cells have two types of actin, globular or G- actin and filamentous actin or F-

actin (98). Both G-actin and F-actin can revert between one another to maintain pools of each 

form within the cells. Each type of actin contains a Mg2+ complex with an ATP or ADP binding 

site to facilitate the change between forms (98, 99). The reversion between forms is orchestrated 

by ionic strength of various cations. When Mg2+, Na+, K+ are lowered, F-actin transforms into 

globular actin, the reverse occurs when the ionic strength is increase (97, 98). When G-actin 

converts to F-actin, the globular orientation reforms to make filaments which consist of fibers 

which are organized into filamentous bundles (97, 100). F-actin bundles make a double helix in 

which fiber bundles wrap around one another and repeat every 36 nm (97). Each actin filament 

contains a positive and a negative ended terminus where other actin filaments will attach (99). 

The end termini contain binding sites for multiple proteins that facilitate the elongation or 
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degradation of the actin fibers (9, 74, 98, 99, 103). When cofilin, profilin or the multiunit protein 

ARP2/3 complex binds actin it will elongate/degrade or sprout branch fibers (9, 104, 105). This 

allows for diverse functions to include formation of contractile rings during telekinesis, forming 

the cellular cortex, internal support for microvilli, formation of lamellipodia/filopodia, cell 

trafficking and phagocytosis (9, 70).   

 The positive end of the actin filament comprises the ATP binding cleft and is the site of 

elongation of the actin filament (99). Elongation is initiated by internal/external signals from the 

cell which cause G-actin to revert to F-actin and elongation of the F-actin filaments. Three 

phases of elongation proceed and include the nucleation phase, elongation phase, and steady 

state phase (99). In the nucleation phase, F-actin will combine in two or three subunits which 

then act as nucleation or starting points for the elongation of actin fibers (97). The elongation 

phase is based on intracellular concentrations of ATP, below a certain concentration fiber will 

not elongate. Elongation of actin fibers occurs at both ends but 10 times faster at the positive end 

than at the negative end (98, 99). When a subunit of F-actin is added, ATP is hydrolyzed to ADP 

and phosphate group. The F-actin strand will elongate in this fashion until the pool of G-actin is 

depleted. After the G-actin pool is diminished F-actin will degrade back down into G-actin so 

that the balance is restored. This equilibrium is the final stage of the elongation process and is 

termed steady-state-phase. When the ATP is hydrolyzed into ADP it is released from the positive 

end and travels to the negative end of the filament. The movement and binding of ADP releases a 

subunit from the negative end of the actin filament. The released subunit then migrates to the 

positive end of the filament and gets incorporated into the growing stand. The migration of actin 

filaments from the negative end to the positive end is termed treadmilling and is an efficient way 

to elongate a strand of actin without depleting the G-actin pool. Other proteins that can cause 
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actin remodeling is the Arp2/3 complex (9). The Arp2/3 complex is a multiprotein complex that 

contains 7 subunits and attaches to the actin filament. Once attached the complex Arp2/3 adds 

actin filaments to the side of the main actin fiber. These actin fibers that protrude from the main 

filament are called branch filaments. These branches can then be exploited to transport cargo 

throughout the cell. On its own the Arp2/3 complex is a very weak activator of actin and will 

need to be associated with nuclear promoting factors (NPF) and other signaling factors for 

efficient actin remodeling.  

Treadmilling is accelerated by the action of profilin, cofilin and capping proteins (Figure 

10). Profilin is a protein capable of binding to G-actin. Once bound, profilin rapidly dissociates 

ADP from the binding sight. The dissociation allows ATP to readily bind the profilin-ATP 

complex, which is located at the positive end of F-actin. Thus, profilin speeds up binding of 

subunits to the positive end and extension of actin filaments. Cofilin action in treadmilling is to 

bind the F-actin subunits and cause a conformational change in the twist of the filament. This 

change destabilizes actin and causes the negative end of the filament to break apart. The 

dislocated subunit subsequently binds to profilin and facilitates the movement of the subunit to 

the positive end of the actin filament. Treadmilling is further regulated by a family of proteins 

called capping proteins. Capping proteins inhibit the addition of subunits to both the positive and 

negative end of actin. The first protein in this family is called Cap Z which binds the positive end 

of actin and prevents the addition of subunits. Thus, Cap Z regulates the amount of elongation 

that occurs in the F-actin fiber. WASp and Rac1 are NPFs that can activate the Arp2/3 complex. 

NPFs work by binding the actin subunit through the WCA domain, which then activates the 

Arp2/3 complex by a conformational change in the Arp2 and Arp3 proteins. The Arp2/3 

complex then binds to the side of an actin filament by the WH2 domain and establishes a 
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nucleation point at the positive end of the filament. The nucleation angle of the branching 

filament and the main actin filament is 70 degrees. Rac1 becomes activated when the CD4 

receptor is bound (9). Once bound by Gp120 a messenger protein Gα is sent which activates 

Rho-GTPase which then activates Rac1. Rac1 will activate the Arp2/3 complex and cause branch 

fibers from the actin filament (9). WASp can nucleate actin fibers and cause branch fibers as 

well (9). This protein is activated by a Ras related GTP-binding protein Cdc42, the protein will 

cause a conformational change in WASp which will expose the WH2 domain facilitate actin 

binding (9). Cdc42 has been shown to interact with SPTBN1 and could influence the replication 

process of HIV-1 (9). The activation of cofilin and profilin cause the actin filaments to 

disassemble and elongate. This occurs at the same time the Arp2/3 complex is activated. Cofilin 

and profilin cause modeling of actin and facilitate the branch fibers produced by the Arp2/3 

complex.   

   HIV-1 uses F-actin and associated proteins in many aspects of infection. The first way 

it can use the actin cytoskeleton is during fusion of the receptors and co-receptors (70). As stated 

earlier, the binding of the CD4 receptor sends a signal cascade that activates the Arp2/3 complex. 

The second process of HIV-1 infection that can utilize F-actin is entry and subsequent fusion of 

the membranes (70). During entry, the bound CD4 receptor sends a signal cascade that causes 

reorientation of the actin cytoskeleton. The reorientation of F-actin helps HIV-1 infection by 

reorganization of the receptor (70). The reorientation of receptors helps with fusion of the 

membrane by clustering receptors and limiting their lateral movement (70). Once the receptor is 

bound, Filament A is recruited to the sight of entry and binds to the tail of the receptor. The 

stabilization of the receptor helps with the conformational change in gp41 and fusion of the two 

membranes (70). The rearrangement of actin to stabilize the receptors and assist with fusion 
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makes for a convenient way for HIV-1 to migrate to the nucleus. Elongation and disassembly of 

actin is used to facilitate intracellular transport of vesicles and other products. Previously, the 

capsid core of HIV-1 was thought to be propelled to the nucleus by actin nucleation and the Arp 

2/3 complex. However, the Arp2/3 complex cannot bind to the capsid core directly and must 

have an adapter molecule of some type. Since SPTBN1 can bind to actin and the capsid core, and 

can act as a crosslinking protein for actin, SPTBN1 might be involved in viral trafficking by the 

actin cytoskeleton.   

 

     

Figure 10. Actin Treadmilling. The diagram shows how treadmilling of the actin cytoskeleton 
allows the cell to move forward or propel cargo throughout the cell. The negative ended subunits 
will break off and migrate to the positive end of the actin filament. Once the subunit is attached 
to the positive end it elongates the strand and propel the cell or cargo forward (B). The figure 
will also demonstrate how cofilin will degrade the negative end of the filament which also the 
subunit to migrate to the positive end (A). The figure also demonstrates how the Arp2/3 complex 
attaches to the main actin filament and polymerizes actin to make branch fibers (96). 
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Specific Aims and Hypothesis 

 The role of SPTBN1 in HIV-1 infection remains virtually unknown and unresearched in 

microglial cells. Understanding the role of SPTBN1 plays in HIV-1 infection will lead to better 

understanding of host factor interaction in HIV-1 infection, and possibly provide therapy options 

that decrease the incidence of HAD/HAND.   

The first aim of my thesis is to test the effect of SPTBN1 on HIV-1 infectivity of 

microglial cells. This will be conducted by siRNA knockdown of SPTBN1 in a cultured 

microglial cell line. Cells will then be infected with VSV-g GFP reporter HIV-1 virus. Flow 

cytometry will be used to determine the amount of infection by tabulating the number of green 

cells. The percentage of infected cells will be compared between cells transfected with a 

SPTBN1 siRNA and cells transfected with a control non targeting siRNA. Downregulation of 

SPTBN1 will be confirmed by quantitative RT-PCR. I hypothesize that SPTBN1 down 

regulation in microglial cells will decrease HIV-1 infectivity. Previous studies that also knocked 

down SPTBN1 saw a decrease in HIV-1 infectivity, regardless of the cell line and HIV-1 virus 

utilized (8,15,16). I expect the same trend in microglial cells.      

The second aim of my thesis is to investigate the effect of SPTBN1 on uncoating kinetics. 

Since SPTBN1 binds to capsid core protein, there holds the possibility that it participates in some 

fashion with uncoating of HIV-1. This will be tested by performing a cyclosporin A (CsA) 

washout assay. The CsA washout assay contains media that has CsA which will inhibit TRIM-

CypA. TRIM-CypA binds to the capsid core and prevents the uncoating process. If CsA is in the 

media, then uncoating will be uninhibited. If the CsA is removed, then all uncoating will stop. 

Calculations can then be performed to determine the amount of uncoating that has occurred. The 

calculation will consist of taking the infectivity at a later point (5 hr) and setting it to 100, 
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meaning that we denoted this time point as 100% of the capsid cores have uncoated. The 

infectivity at the earlier 30 min and 1 hr time points will be divided by the infectivity at the 5 hr 

time. This will determine the percent of the capsid cores that have uncoated at that time. First, 

microglial cells will be transfected with siRNAs targeting SPTBN1 or a control siRNA. After 

knockdown, microglial cells are infected with VSV-g GFP HIV-1 in the presence of CsA or 

EtOH only (control). After infection, media that contains CsA is removed at various times, 

which halts uncoating in the cell. Flow cytometry is used to determine the percentage of infected 

cells, which is utilized to calculate the percent of uncoating by the calculation above. 

 I hypothesize that when SPTBN1 is down regulated, uncoating of HIV-1 capsid core will 

be decreased. According to the Dai publication, SPTBN1 was shown to bind to the capsid 

protein and nucleocapsid of HIV-1. However, due to SPTBN1 being an adaptor protein, other 

infection processes of HIV-1 could be affected by SPTBN1 knockdown, without affecting 

uncoating. For example, SPTBN1 can play a part in other early replication process by acting as 

an adapter protein which links actin to the capsid core. In the same publication when SPTBN1 

was downregulated, an alteration in the actin cytoskeleton occurred. There are other publications 

that demonstrate that HIV-1 can use actin to facilitate entry, fusion, uncoating and trafficking to 

the nucleus.  

The third aim of my thesis is to determine if vial fusion of HIV-1 is affected by the down 

regulation of SPTBN1. SPTBN1 was shown to interact with the structures of the actin 

cytoskeleton which could possibly affect the entry process of the VSV-g HIV, due to actin’s 

interaction with the host membrane (15,16). Fusion must also be tested to confirm the result of 

the CsA washout assay. Fusion will be tested by the BlaM fusion assay. This assay consists of a 

dye that will change from green to blue when cleaved by the beta lactamase enzyme. The dye is 
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inserted inside the cell, and the cell infected with a HIV-1 virus that has a beta lactamase 

attached to Vpr. Once the HIV-1 virus fuses, Vpr is released and causes the change in color. This 

assay will start by transfecting microglia cells with siRNAs targeting SPTBN1 or a control 

siRNA. Two days after transfection the cells will be counted, pelleted, and resuspend in CCF2-

AM (fluorescent dye) loading solution for 1 hr, after which the cells pelleted washed and 

incubated in development media for 16 hr (107). The prepared cells will then be infected with 

HIV-1 that contains the beta lactamase. Flow cytometry will be used to determine the amount of 

fusion that has occurred. My hypothesis is that when SPTBN1 is down regulated then fusion of 

HIV-1 will be decreased which will be marked by a fluorescent different from the control group. 

The recruitment of actin fibers to the receptor/coreceptor will stabilize and prevent lateral 

movement. The stabilization of the receptor will help with the conformational change in gp41 

which facilitates fusion of the two membranes. In the absent of SPTBN1 the actin cytoskeleton 

may not stabilize the receptors appropriately and cause altered fusion kinetics of HIV-1. 
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MATERIAL AND METHODS 

 

Culture and Maintenance of 293T and TCN14 Cells   

           Culturing HEK 293T cells was accomplished by growing cells in a 10 cm culture dish 

(Corning) that contained 10 ml of media. The plate was then placed in an incubator set at 37°C 

and 5% CO2. Media utilized to grow HEK 293T cells was DMEM (Corning) with 50 ml of fetal 

bovine serum (FBS; Atlas biological) and 5 ml of penicillin streptomycin glutamine (PSG; 

Corning) at 1 X concentration. This media will now be referred to as DMEM++. The HEK 

293T cells were split every three to four days depending on the growth of the cells. When the 

cells were split it depended on the confluence of the plate which indicates the percent of the plate 

that was covered by cells. When the plate was 80 to 100% confluent, the plate was split to 

another 10 cm culture plate.  

When HEK 293T cells were split, DMEM++ media was aspirated from the dish and 1 ml 

of trypsin (Corning) was added to the plate. The trypsin was removed with another milliliter of 

trypsin added and subsequently removed. After the second removal of trypsin, HEK 293T cells 

were placed in an incubator set at 37°C and 5% CO2 for two or three mins to allow the cells to 

dislodge from the plate. While the plate was incubating, 10 ml of DMEM++ was added to a 

new 10 cm culture plate. Once the cells dislodged from the old plate, 10 ml of DMEM++ was 

added back to the dish. Cells were broken up by pipetting the media up and down 3 to 4 

times. From the old plate, 1 ml of cells were transferred to the new plate and placed 

in an incubator at the same standards.   

 TCN14 cells are derived from the CHME3 microglial cell line to express the restriction 

factor TRIM-Cyp (106). The human microglial cell line CHME3 was obtained from the Naghavi 

https://paperpile.com/c/TxVBML/Oxn9
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Lab at Northwestern University and does not require IRB approval for use (107). TRIM-Cyp is a 

protein that binds to the intact capsid core of HIV-1. By inserting TRIM-Cyp into microglial 

cells the uncoating process of HIV-1 can be studied by utilizing the CsA washout assay. TCN14 

cells were grown in a 10 cm culture dish and in an incubator with the setting at 37°C and 5% 

CO2. The media utilized to grow TCN14 cells was DMEM media with 25 ml of FBS (Atlas 

biological), 5 ml of PSG at 1 X concentration, and 5 ml of sodium pyruvate (NaPyr; 

Corning). This media will now be referred to as CHME3 media. Every 3 to 4 days TCN14 cells 

were split to continue the cell line. When TCN14 cells were split it was based on the confluence 

of the plate which is the percent of the plate that is covered by cells. When cells were 80 to 100% 

confluent TCN14 cells were transferred to a new 10 cm culture dish.    

To split TCN14 cells CHME3 media was removed, and 5 ml of 1 X PBS (Corning) was 

added to the plate to neutralize remaining media. The 5 ml of 1 X PBS was removed and 3 ml of 

trypsin was added to the plate. The plate was then placed in an incubator set at 37°C and 5% CO2 

for 2 or 3 min until the cells dislodged from the plate. While the plate was incubating, 10 ml of 

CHME3 media was added to a new plate. After the TCN14 cells dislodged from the plate, 7 ml 

of CHME3 media was added back to the old culture dish. The media was pipetted up and down 4 

to 5 times to dislodge the remaining cells adhered to the plate. After TCN14 cells were 

dislodged, 1 ml of cells were transferred to a new plate and placed in the incubator set at 37°C 

and 5% CO2.  

 

Making VSV-g-HIV-GFP Virus  

          VSV-g pseudotyped HIV-GFP virus is an isolated virus that will be infectious for a single 

round of infection. The virus will enter the cell via endocytosis and once the virus has 

https://paperpile.com/c/TxVBML/ZpVc
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intergraded into the genome it will not produce mature HIV-1 virion. This is due to a mutation in 

the Env gene which does not allow the virus to produce the envelope of the virus and leads to the 

single round infectivity. The VSV-g pseudotyped HIV-GFP was made in HEK 293T cells over 

four-days. On day one, a 100% confluent plate of HEK 293T cells were split in a 1:5 ratio (two 

ml of DMEM++ media/cells were transferred to one of the new plates) and will be called the 

experimental plate. To another plate, 1 ml of cells were transferred to keep the cell line going 

and both plates were then placed in an incubator.   

On day two, cells in the experimental plate were transfected with two plasmids. The first 

plasmid contained the genome of HIV-1 with a mutation in the Env gene. The second plasmid 

contained the VSV-g envelope. The VSV-g envelope came from the vesicular stomatitis virus 

and allows the HIV-1 virion to enter the cell via endocytosis. It is this plasmid that allows HIV-1 

to be infectious for a single round. The transfection mix used to transfect HEK 293T cells 

consisted of 1 ml DMEM media with no FBS or PSG, 6 µg of HIV-GFP plasmid, 4 µg of CMV-

VSV-g plasmid and 40 µl of PEI (Corning). After the transfection mix was made, it was 

incubated at room temperature for 15 min. The transfection mix added to the experimental plate 

in a drop wise manner. The cells were left to incubate for 24 hr.  

      On day three, the media was removed and 10 ml of DMEM
++ 

was added to the experimental 

plate. The plate was placed back into the incubator. On the fourth day, HIV-1 was harvested. 

Media was taken off by a 10 ml pipette and placed in a 15 ml conical tube (Fisherbrand). Media 

was then placed in a 20 ml syringe that is attached to a 0.45 µm filter apparatus. The filter 

apparatus was then attached to a 50 ml conical vial. Media that contained virus was filtered into 

the 50 ml conical vial. The filtered virus was aliquoted into 9 cryovials. The cryovials were 
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placed and stored in a cryo-freezer set at -80°C. Safety requirements were followed in 

compliance with the biosafety protocols approved by Missouri State University.   

 

Testing Infectivity of VSV-g Pseudotyped HIV-GFP Virus   

 Testing of HIV-GFP was a four-day process which began with a 100% confluent plate 

that was split by adding 1 ml of cells to the new culture dish to continue the cell line and placed 

in an incubator. The rest of the cells were placed in a 15 ml conical vial, counted with a 

hemocytometer, and pipetted into a 96-well plate at 6,000 cells per well. The plate was then 

placed in an incubator overnight. On the second day the 96-well plate (Falcon) was infected with 

VSV-g-HIV-GFP. The viruses being tested was the VSV-g HIV and a stock virus utilized as a 

positive control. To infect HEK 293T cells two solutions were made. The first solution made was 

1 X media which was made by 4 ml of DMEM++ media and 2 µl of polybrene. The second 

solution 2 X media was made with 1 ml of DMEM++media and 1 µl of polybrene. The polybrene 

in each of the solutions aids in infection of VSV-g-HIV. The 96-well plate was removed from 

the incubator and the DMEM++ media was removed. One hundred microliters of 1 X media was 

added to all the wells that contained cells except for the first well in each row. One hundred 

microliters of 2 X media was added to the first well in each row. In the first well of each row, 

100 µl of VSV-g-HIV-GFP virus was added. To the first well in the second row, 100 µl of 

positive control virus was added. To the last row, HIV-1 was not added and utilized as a negative 

control. A serial dilution was made by taking 100 µl of sample from the first well and 

transferring it to the following well. This trend was carried out across the plate. The last 100 µl 

from the well was discarded in 10% bleach. The plate was then place in an incubator overnight.   
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 On the third day, media from the wells was removed and 200 µl of DMEM++ was added 

to each of the wells. The plate was placed back into the incubator. On the fourth day cells were 

harvested and fixed in solution. The plate was removed from the incubator and media was 

removed. To each well 100 µl of trypsin was added and the plate was placed in an incubator for 2 

to 3 min. After incubation, the plate was removed, and the cells were resuspended. After the cells 

were resuspended, 100 µl of cell fix was added to the wells. Cell fix was made by one-part 

paraformaldehyde (Chem Cruz) and one-part 1 X PBS. The plate was wrapped in parafilm and 

foil and placed at 4°C. After an overnight incubation, the number of infected cells in the fixed 

samples was determined by flow cytometry. Infected cells were identified based on the GFP 

signal that was expressed by infected cells. The cells expressed GFP when they are infected with 

HIV due to the GFP gene being integrated in the genome of HIV. Once the genomic material of 

HIV integrates in the host the cell will express GFP. The percent infectivity was calculated as a 

percent by the Csampler software on the flow cytometer (BD Accuri C6sampler).  

 

SiRNA Knockdown of SPTBN1  

SPTBN1 knockdown in TNC14 cells consisted of a two-day protocol. On the first day, a 

confluent plate of TCN14 cells was split and 1 ml of cells was transferred to a newly prepared 

plate to continue the cell line. The remaining cells were counted via a hemocytometer and plated 

to 1.7 x 10
5
 cell per well in a 6-well dish (Falcon). On the second day, cells in the 6-well dish 

were transfected with a pool of siRNA for SPTBN1. To transfect TCN14 cells, the tissue culture 

hood along with all equipment was wiped down with RNase Away (Invitrogen) and UV-treated 

for 15 min. While the hood was being sanitized, the pool of siRNA along with all reagents was 

removed from the -20°C freezer and thawed on ice. The siRNA was centrifuged, and cells were 
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checked to make sure the 6-well plate was 60 to 80% confluent. For each siRNA condition, two 

Eppendorf tubes (Fisherbrand) were used, tube 1 and tube 2. To tube 1, 50 µl of OPTIMEM 

(Gibco) and 4 µl of lipofectamine were added. To tube 2, 100 µl of OPTIMEM and 3 µl of 

siRNA were added. Both tubes were left to incubate for 5 min at room temperature. The siRNA 

conditions used for this experiment was Spectrin beta non-erythrocytic 1 (SPTBN1), Trim-Cyp 

for a positive control, non-Target 4 (NT4) for a negative control and no siRNA as a negative 

control. The orientation of the plate can be found in (Figure 11). After the 5 min incubation 

period, tube 1 was added to tube 2 and then incubated for 20 min. During the 20 min incubation, 

CHME3 media was removed and 1 ml of OPTIMEM was added to each of the wells. After the 

20 min incubation period the contents of the Eppendorf tube was added to the well in a drop wise 

manner. The 6-well plate was placed back in the incubator. After 4 hr the plate was removed and 

1 ml of CHME3 media without PSG was added to each well and placed back in the incubator. 

The SPTBN1 knockdown TCN14 cells were then utilized in the infectivity and a mini-uncoating 

assay.    

 

   SPTBN1      NT4 (- control)     Cells   

   Trim-Cyp (+ control)    No siRNA     Empty  

Figure 11. Schematic of Knockdown Plate.  The figure shows the orientation of a 6-well of 

where the knockdown cells are located, and which are controls for the experiment. Trim-Cyp is 

used as a negative control and NT4 was utilized as a positive control.   

 

HIV-1 Infectivity of SPTBN1 Knockdown Cells   

To test HIV infectivity, the day after the knock down procedure was performed, cells 

were transferred to a 96-well plate (Falcon). To transfer TCN14 cells, media in the 6-well plate 

was removed and 2 ml of 1 X PBS was added to each well to neutralize any remaining media.  

The 1 X PBS was aspirated, and 1 ml of trypsin was added to each of the wells. The plate was 
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place in an incubator for 2-3 min to allow the cells to dislodge from the plate. After incubation, 1 

ml of CHME3 media was added to the wells and each siRNA condition was separated into 15 ml 

conical vials. Each siRNA condition was counted by a hemocytometer and plated at 6,000 cells 

per well. The cell/media solution was transferred to a 96-well plate at 100 µl per well and placed 

in an incubator.  

The next day, cells were infected with VSV-g pseudotyped HIV-GFP. To infect TCN14 

cells, a spinoculation mix was made up of polybrene, CsA 2.5 µm (Sigma-Aldrich) or EtOH, 

HIV-GFP and CHME3 media. Four master mixes of the spinoculation mix were made: tube 1 

contained CsA with HIV-GFP, the second tube contained EtOH with HIV-GFP, the third tube 

contained CsA with no HIV and the fourth tube contained EtOH with no HIV. The two non-HIV 

containing tubes were utilized as negative controls. The media utilized for each condition were 

left cold to prevent fusion of HIV during spinoculation. The plate was removed from the 

incubator and CHME3 media was removed. One hundred microliters from each tube was added 

to three wells each. The setup of the plate can be seen in (Figure 12). The plate was placed in a 

centrifuge cooled at 16°C and spun at 1200 g for 1 hr. After inoculation, the spinoculation mix 

was aspirated and replace with warm CHME3 media of the same type but did not contain HIV- 

GFP. The plate was placed in the incubator overnight. The following day media was removed 

and replaced with 200 µl of CHME3 media. On the final day, cells were harvested and fixed with 

cell fix solution. First, media was removed and 100 µl of trypsin was added to the wells. The 

plate was placed back in the incubator for 2-3 min to allow the cells to dislodge from the plate. 

After the cells were dislodged 100 µl of cell fix was added to the wells. Cell fix solution 

contained one-part paraformaldehyde and one-part 1 X PBS. The plate was sealed with parafilm 

and wrapped in foil and placed in the fridge overnight. After an overnight incubation, the number 
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of infected cells in the fixed samples was determined by flow cytometry. Infected cells were 

identified based on the GFP signal, which has an excitation wavelength of 510 nm and   

expressed by infected cells. The cells expressed GFP when they are infected with HIV due to the 

GFP gene being integrated in the genome of HIV. Once the genomic material of HIV integrates 

in the host the cell will express GFP. The percent infectivity was calculated as a percent by the 

C-sampler software on the flow cytometer (BD Accuri C6sampler). When the siRNA 

knockdown cells were analyzed, the infectivity can be determined, and samples were normalized 

to NT4.  

 

  Empty     CsA- HIV    CsA-HIV    CsA-HIV    EtOH-HIV    EtOH-HIV    EtOH HIV   Empty  

  Empty     CsA    CsA    CsA    EtOH    EtOH    EtOH    Empty  

Figure 12. Plate Set up of Testing Infectivity. Below shows the orientation of the 96-well 

plate. Each of the conditions were done in triplicate and consisted of CsA with HIV, EtOH with 

HIV, CsA without HIV and EtOH without HIV. Both conditions that contained no HIV were 

utilized as negative and EtOH were used as a positive control. 

 

Mini-CsA Washout Assay and Construction of Primers   

 To perform a mini-CsA washout assay, knockdown cells were first transferred from a 6-

well plate to a 96-well plate. The transferring of cells was conducted by the same protocol as 

testing infectivity of SPTBN1 knockdown cells. With the mini-uncoating, eighty wells were 

needed to complete the assay for all timepoints and controls. The conditions tested in cells were 

conducted in the presence of CsA and EtOH. The various knockdown of TCN14 cells consisted 

of SPTBN1, CypA, NT4, and no siRNA. The orientation of conditions and siRNA knockdown 

can be seen in (Figure 13). CsA was utilized to inactivate Trim-Cyp, in the presents of CsA 

Trim-Cyp will not bind to the capsid core and uncoating will occur. When CsA is removed Trim-

Cyp can bind to the capsid core and halt the uncoating process. The removal of CsA at various 

time points allowed uncoating to be tabulated at various times. EtOH is used to dissolve CsA and 
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was used as a control. The NT4 knockdown cells were transfected with a siRNA that does not 

target any RNA in the cell and was used as a positive control. After the cells were separated by 

siRNA conditions and plated at 6,000 cells per well, the plate was placed in the incubator 

overnight. The following day the cells were infected with HIV by the same protocol as testing 

infectivity of SPTBN1 knockdown cells. Once the wells were infected, the plate was placed in 

the incubator.  At time points 30 min, 1 hr and 5 hr time points, CsA media was removed and 

replaced with 200 µl of CHME3 media. The mini-uncoating assay can be conducted at the same 

time as testing infectivity to save on resources. Media on the negative controls were replaced at 

the same time as the 5 hr time point. If conducting the infectivity assay at the same time, the 

wells utilized for infectivity were changed with media at the same time as the negative control 

and 5 hr time point. After the media was replaced, the plate was placed back in the incubator. On 

the following day, CHME3 media was aspirated and replaced with fresh CHME3 media. The 

plate was then placed back into the incubator overnight. The next day TCN14 cells were 

harvested by the same protocol in testing infectivity of SPTBN1 knockdown cells. The following 

day flow cytometry was performed and followed the same protocol as stated in testing infectivity 

of SPTBN1 knockdown cells. 
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    CsA    EtOH  

  30 min    SPTBN1    SPTBN1    SPTBN1    SPTBN1    SPTBN1    SPTBN1  

  1 hr    SPTBN1    SPTBN1    SPTBN1    SPTBN1    SPTBN1    SPTBN1  

  5 hr    SPTBN1    SPTBN1    SPTBN1    SPTBN1    SPTBN1    SPTBN1  

  30 min    NT4    NT4    NT4    NT4    NT4    NT4  

  1 hr    NT4    NT4    NT4    NT4    NT4    NT4  

  5 hr    NT4    NT4    NT4    NT4    NT4    NT4  

  Neg con.    SPTBN1    SPTBN1    SPTBN1    SPTBN1    SPTBN1    SPTBN1  

  Neg con.    NT4    NT4    NT4    NT4    NT4    NT4  

Figure 13. Mini-Uncoating CsA Washout Plate. Below shows the orientation of the CsA 

washout plate. CsA was used to bind to Trim-Cyp and facilitate uncoating. When CsA is 

removed Trim-Cyp can bind to the capsid core and halt uncoating. The knockdown cells were 

also conducted in the presents of EtOH and was used as a negative control. At the 30 min, 1 hr, 5 

hr time points the media was removed and 200 µl of CHEM3 was added. At the 5 hr time mark 

the negative control had the media removed and replaced. The same setup was conducted for 

CypA and no siRNA. 

 

 

To make primers for SPTBN1, the amino acid (AA) sequence of the protein, mRNA, and 

genomic sequence of SPTBN1 was found in the NCBI database (NM_003128.3). The first hit for 

each was chosen and recorded along with the e-number, app number, percent identity. The 

sequence of each was placed in a word document for future analysis. Once the sequences were 

found the domains of each was found utilizing PROSITE. The genomic sequence was placed 

into MEGA X to find the introns and exons. The section was analyzed to find areas that were 

close together and not in the domains of the genomic DNA or the mRNA sequence of SPTBN1. 

The sequences were placed into primer 3D and primers were made and recorded. The annealing 

was set 54-62°C, CG content was set between 20-80% and the length was set between 24-30 BP. 

The reverse was made by reversing and complementary BP of the sequence in the cDNA and 

gDNA sequence. The sequence of both primer sets can be found in (Figure 14). 
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  Primers                     Sequence  

  Forward primer SPTBN1   5’-GCA CAC TAC ATT TGA GCA TGA C-3' 

  Reverse Primer SPTBN1   5’-GTT CTC GCG CTT CTG GAT A-3' 

  Forward Primer GAPDH   5’-GCA CCG TCA AGG CTG AGA AC-3' 

  Reverse Primer GAPDH   5’-GCC TTC TCC ATG GTG AA-3' 

Figure 14. Primer Sequences. In the diagram it shows the sequence of the forward and revere 

primers for SPTBN1 and GAPDH.  

 

 

Confirmation of Primer and Determining Annealing Temperature SPTBN1 and GAPDH   

To confirm the annealing temperature of primers utilized for SPTBN1 and GAPDH, the 

hood was first wiped down with Rnase and UV-treated for 15 min. All equipment utilized for the 

experiment followed the same standard. The materials were thawed on ice and included the 

forward/reverse primers for SPTBN1 or GAPDH, Go-Taq DNA Polymerase (Promega), ddH2O, 

and pGEMTeasy-SPTBN1 plasmid (6.2960 µg/µl) or the pGEMTeasy-GAPDH plasmid (0.8994 

µg/µl). The sequence of the primer (Integrated DNA Tech) sets can be found in Figure 14. Once 

the hood was sanitized a master mix was made, for one reaction 12.5 µl of 2.5 X Go-Taq DNA 

polymerase, 0.5 µl of 20 µM forward/reverse primers for SPTBN1 or GAPDH, 5 µl of 

pGEMteasy SPTBN1 or pGEMteasy GAPDH plasmid and 6.5 µl of ddH2O. Twenty-five 

microliters were placed in PCR tubes and placed in a thermocycler (Bio-Rad). Each of the 

reaction conditions were done in triplicate. The denaturing step was set at 95°C for 0.5 min, the 

annealing temperature was set as a gradient from 57-67°C for 0.5 min, the elongation 

temperature was set at 65°C for 0.5 min. After PCR was complete, the product which was 20 µl 

was ran on a 3% agarose gel made with 1 X TAE and EtBR. The buffer used to run the gel was 1 

X TAE and was ran on 110 V for 45 min. The gel was imaged utilizing Gel logic 2000 imager.  

  

 

Primer Efficiency and Confirming siRNA Knockdown  
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To determine primer efficiency, plasmid pGEMteasy SPTBN1 or pGEMteasy GAPDH 

was placed in the nanodrop to determine the quantity and quality of the plasmids. The quantity of 

SPTBN1 plasmid was 6.2960 µg/µl and GAPDH plasmid was 8.99 µg/µl. For each plasmid, 

dilution was made from 10-1-10-8 which correspond to concentration from 0.62960-6.2960 x 10-8 

µg/µl for SPTBN1 and 0.899-8.99 x 10-8 µg/µl for GAPDH. For qPCR, all materials were 

collected and stored on ice which included Ssofast (Bio-Rad), nuclease free water (Promega), 

forward/reverse primer for SPTBN1 or GAPDH, and plasmid DNA dilutions for SPTBN1 or 

GAPDH. After the materials were thawed a master mix was made, that contained (per reaction) 

10 µl of Ssofast, 0.5 µl of forward/reverse primer for SPTBN1 and GAPDH, 5 µl of DNA 

dilutions for SPTBN1 and GAPDH, and 4 µl of ddH2O. Each reaction was done in triplicate. 

There was a well that contained 5 µl of ddH2O instead of DNA and utilized as a negative 

control. To each well 15 µl of master mix was added along with 5 µl of DNA dilution. The wells 

were sealed and centrifuge at 300 g for 1 min. The reactions were placed in the thermocycler 

(Bio-Rad). Denaturing was set at 95°C for 30 sec, annealing was set at 60°C for 30 sec and the 

elongation was set at 65°C for 30 sec. The number of cycles ran in the thermocycler was 45 and 

the data was exported to excel. To determine primer efficiency, a Cq mean was conducted by 

averaging the Cq dilution triplicate and plotting it on a scatter plot with the DNA dilutions. A 

trendline was added to the graph along with the slope and the R2 value. To get the primer 

efficiency (E) value, the equation E =10 (- 1/slope) - 1 was utilized. The E value for GAPDH 

was 0.74 and 1.05 for SPTBN1. 

 To confirm SPTBN1 knockdown in TCN14 cells, the procedure started with the transfer 

of cells from a 10 cm dish to a 6-well plate and consisted of a 5-day process. The first day started 

with the transferring of cells to a 6-well plate from a 10 cm dish by the previously described 
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procedure in knockdown of TCN14 cells. The following day, cells were transfected by a siRNA 

(SPTBN1, NT4, no siRNA) by a previously described procedure in knockdown of TCN14 cells. 

On the third day media was changed and placed back in the incubator overnight. On the fourth 

day wells were harvested and infected with HIV-GFP. The cells were infected to determine how 

the amount of knockdown correlates with HIV infection. Cells were harvested by adding 1 ml of 

trypsin and allowing cells to dislodge from the plate for 2-3 min. TCN14 cells were then 

removed from the well and placed in a 15 ml conical vial and counted by a hemocytometer. 

Some of the cells were plated at 6,000 cells per well and was placed back in the incubator and 

utilized to test for infectivity. The rest of the cells were utilized to obtain RNA and monitor the 

amount of SPTBN1 knockdown.   

         The RNA easy kit from Qiagen was used to obtain RNA. Cells were counted in a 

hemocytometer and 5.0 x 106 cells were placed in a 15 ml conical vial. The vial was centrifuged 

to pellet cells and the supernatant was poured off without disturbing the pellet. The pelleted cells 

were resuspended with 350 µl of RTL/BME buffer (Qiagen) and the contents were transferred to 

an Eppendorf tube. To the tube, 70 µl of EtOH was added to the lysate and mixed. The lab area 

was prepared for RNA work by wiping down the bench with RNase. Seven hundred microliters 

of sample were transferred to a RNeasy spin column (Qiagen) and place in a 2 ml collection tube 

(this includes any precipitate that may have formed). The spin column was centrifuged for 15 sec 

at 10,000 rpm and the flow through was discarded. Ten microliters of DNase stock were added to 

70 ml of buffered solution RDD, the solution was then mixed by inverting the tube. The newly 

made solution was centrifuged to bring the liquid to the bottom of the tube. The DNase solution 

was added directly to the RNeasy spin column membrane and incubated for 15 min at room 

temperature. Following the incubation period, 350 µl of RW1 buffer was added to the RNeasy 
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spin column and centrifuge for 15 sec at 10,000 rpm. The flow though was discarded. In the 

subsequent step, 500 µl of RPE buffer was added to the spin column and centrifuged for 2 min at 

10,000 rpm. The spin column was transferred to a new 2 ml collection tube and the old tube was 

discarded. The spin column was centrifuge at max for 1 min, after which the flow through was 

discarded. The spin column was then transferred to a 1.5 ml collection tube and 30-50 µl of 

RNase-free water was placed directly to the spin column membrane. The spin column was 

centrifuged for 1 min at 10,000 rpm to elute RNA. The RNA was labeled and stored at -4ᐤC in 

sample box. The RNA extracted was reverse transcribed into cDNA later.  

To make cDNA, the fume hood was wiped down with RNase and UV treated for 15 min. 

All equipment utilized for the experiment followed the same protocol. After the hood was treated 

two separate master mixes were made, Rt (+) and Rt (-). The common components for each mix 

consist of 4 µl of AMV buffer, 2 µl MgCl2, 2 µl of 20 µM dNTPs, 1 µl of RNasin, 2 µl of 

oligodT, 4 µl of 20 µM knockdown RNA samples (SPTBN1, NT4, no siRNA) and H2O utilized 

to 20 µl. The amounts listed for each component was for one reaction. The component that 

changed between the two-master mixes was AMV RT, the Rt (+) contained 4 µl of the solution 

and the Rt (-) master mix contained an extra 4 µl of H20. For each siRNA knockdown condition, 

16 µl was aliquoted into microcentrifuge tubes and allowed to incubate for 1 hr at 42°C. After 

the incubation period the made cDNA was stored in -20°C.  

     To determine the amount of SPTBN1 knockdown, qPCR was ran on the Rt (+) and Rt (-) 

cDNA. To conduct PCR a master mix was made which consisted of 10 µl of Ssofast, 0.5 µl of 20 

µM forward and reverse primers for GAPDH and SPTBN1, 8 µl of H2O. The amounts listed 

were for one reaction and each reaction condition was done in triplicate. After the master mix 

was made, 19 µl of the mix was aliquoted into PCR tubes along with 1 µl cDNA. The orientation 



 

 

51 
 

of the tube and samples can be found in (Figure 15). The tubes were sealed the tubes were spun 

in a centrifuge at 300 g for 1 min and transferred to a thermocycler. PCR was ran on the samples 

utilizing the protocol found in primer efficiency. After PCR was complete the data was exported 

to excel, and the triplicate of each run was averaged together. The ΔCq was determined for each 

of the samples by taking the NT4 +RT sample and subtracting the SPTBN1 knockdown cells. 

This was done with GAPDH and SPTBN1 primers. The E value for both SPTBN1 and GAPDH 

had one added to the number which is part of the formula for the Pfaffl method. The ΔCq was 

then taken to the power of the efficacy that was just calculated. The same process was done using 

SPTBN1 primers. The number calculated using SPTBN1 primer was divided by the number 

calculated using GAPDH primers to get the amount of knockdown seen in SPTBN1 knockdown 

cells. 

 

 

Tube strip   Tube strip condition  

1   SPT Rt (+)     SPT Rt (-)    NT4 Rt (+)    NT4 Rt (-)    Non Rt (+)    Non Rt (-)        H2O    Empty  

2   SPT Rt (+)     SPT Rt (-)   NT4 Rt (+)   NT4 Rt (-)   Non Rt (+)   Non Rt (-)        H2O   Empty 

3   SPT Rt (+)     SPT Rt (-)   NT4 Rt (+)   NT4 Rt (-)   Non Rt (+)   Non Rt (-)        H2O   Empty 

 

Figure 15. Orientation of KD Confirmation. Orientation of the tube strips that was utilized for 

confirming knockdown of SPTBN1 and performed in triplicate. In the first two wells contains 

knockdown cells for SPTBN1, the following two wells contained knockdown cells for the non-

target 4 sequence. The following two wells were transfected with no siRNA, the last tube 

contained H2O which was utilized as a control. The Rt (+) samples were the samples that were 

reverse transcribed into DNA. The Rt (-) sample had no reverse transcriptase in the reaction and 

were not made into DNA and was utilized as a control. 
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RESULTS 

 

SPTBN1 Knockdown Effect on Infectivity  

 siRNAs were utilized to knockdown SPTBN1 so that its role in various process of HIV-1 

replication can be explored. The infectivity of HIV was tested in TCN14 cells which are CHME3 

cells that have Trim-Cyp inserted. To test the infectivity of HIV-1, SPTBN1 was knocked down 

by a pool of four siRNAs. A control no siRNA treatment utilized water instead of a siRNA to 

make sure that the siRNA transfection process does not affect the cell. A non-targeting siRNA 

(NT4) was used as a negative control to make sure that a siRNA does not affect the cell and 

interfere HIV-1 replication. Once the cells were transfected with the siRNAs, TCN14 cells were 

infected with HIV-GFP and flow cytometry used to determine the amount of GFP, and therefore 

infectivity in each condition. For one run SPTBN1 knockdown, the infectivity was 27.57%, 

while NT4 control and no siRNA controls were 35.05% and 42.77%, respectively (Table 1A). To 

determine the percent of cells that were infected with HIV and to compare samples, the data was 

normalize to NT4 control. For one run, SPTBN1 cells infectivity was 78.6%, when compared to 

the NT4 control, the no siRNA sample was at 108% when compared to the NT4 control (Table 

1A). The experiment was conducted two times and averaged together to get averaged infectivity 

for each condition (Table 1B and Figure 16). These results show that when SPTBN1 is down 

regulated there is a decrease in the amount of HIV infectivity. When the normalized data from 

the SPTBN1 condition was compared to the NT4 control there was a decrease of 19.75% in the 

amount of infectivity of HIV- GFP (Table 1B and Figure 16). 
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Figure 16. Graph of Normalized Infectivity with SiRNA Knockdown. Average infectivity 

seen by the knockdown cells. The data were normalized to the NT4. Error bars shows the 

standard error in each sample.  N = 2.    
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Table 1. Effects of HIV Infectivity in SPTBN1 Knockdown Cells. Part A shows the 

unnormalized raw infectivity data which indicates the percent of cells that were infected with 

HIV. The second part of the table show the normalized data from infected cells by dividing 

the infectivity of the SPTBN1 cell by the infectivity of the NT4 control. Part B shows the 

average of the normalized data of the 2 separate runs in SPTBN1 knockdown cells when 

compared to the NT4 control.   

 

A) 

Sept 23, 2019, infectivity assay 

 Sample SPTBN1 NT4 (control) No siRNA  

Percent infectivity 27.57 35.07 42.77 

Sept 23, 2019, infectivity assay- data normalized  

SPTBN1 NT4 No siRNA  

79% 100% 122%  

  
B)   

Averaged normalized infectivity assay (duplicated experiment) 

  Sept 23 2019 Oct. 18 2019 Average 

SPTBN1 79% 81.5% 80.25% 

NT4 100% 100% 100% 

No siRNA 122% 94.6% 108.3% 
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Confirming the Annealing Temperature of Primers  

Once the infectivity was determined, we next sought to confirm knockdown of SPTBN1 

in TCN14 cells by utilizing quantitative PCR. The reason for calculating the annealing 

temperature and primer efficacy is to use the Pfaffl method which will allow a comparison to be 

made between a housekeeping gene (GAPDH) and SPTBN1 knockdown. This method will also 

control for the varying number of cells between SPTBN1, NT4, and no siRNA samples. To 

confirm the annealing temperature, qPCR was conducted on pGEM plasmids that contained 

either SPTBN1 or GAPDH sequence. When qPCR was conducted the annealing temperature was 

set as a gradient from 57-67°C (Figure 17). The qPCR products were separated by 

electrophoresis on an agarose gel, and the predicted value was determined to be 125 bp. The 

band where there was a decrease in the intensity was where the annealing temperature was no 

longer optimal (Figure 17). This was due to primers not binding optimally due to the increased 

temperature. The band before this decrease was the optimal annealing temperature for SPTBN1 

and GAPDH because it was able to produce the most product. The optimal annealing 

temperature for both SPTBN1 and GAPDH was determined to be 60°C (Figure 17).   
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Determining Primer Efficacy for SPTBN1 and GAPDH 

After the annealing temperature was confirmed at 60°C, the primer efficiency was 

calculated. To obtain the primer efficiency, a pGEM plasmid containing either SPTBN1 or 

GAPDH sequence was diluted from 10^ -1 to 10^ -8. The dilutions were ran through quantitative 

PCR in triplicate (Table 2A, Table 3A, Figure 18, Figure 20A). The Cq value for each reaction 

of the triplicate was then averaged (Table 2B and Table 3B). These data points were plotted on a 

scatter plot and a line of best fit was drawn (Figure 19A and Figure 20B). The primer efficiency 

was calculated by inputting the slope of the line of best fit into the equation 10^(-1/slope) -

(Figure 19B and Figure 20C). For SPTBN1, the primer efficiency was 1.05 (Figure 19B). 

GAPDH primers had an efficiency of 0.77 (Figure 20C). 

 

 
Figure 17. Annealing Temperature Confirmation for SPTBN1 and GAPDH primers.  

Gels used to determine the annealing temperature for SPTBN1 (A) and GAPDH (B) primers. 

PCR was run with each primer set with the predicated value of 125 and a gradient of different 

annealing temperatures (temperature shown at the top of the gel). PCR products were run out 

on the gel. The base pairs used for the ladder are found in the left-hand side of the gel.  
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Figure 18. Amplification Curve for SPTBN1 Primers to Determine Primer Efficiency. 

Amplification curve of qPCR of each DNA dilutions for SPTBN1. Each dilution was done 

in triplicate and span from 0.8994-8.994x10^-8 µg/µl.  
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Table 2. Primer Efficiency of SPTBN1 Primers. Part A shows the raw data obtained from 

one run. Each dilution was done in triplicate and water was utilized as a negative control. 

Part B shows the averaged data for each DNA dilution. The data will then be utilized to 

obtain a primer efficacy for SPTBN1. 

A) 

Cq for SPTBN1 

Well  Fluor Cq 

A01 SYBR 9.31 

A02 SYBR 9.18 

A03 SYBR 9.05 

A04 SYBR 12.12 

A05 SYBR 12.16 

A06 SYBR 12.24 

A07 SYBR 14.85 

A08 SYBR 15.12 

B01 SYBR 15.46 

B02 SYBR 18.15 

B03 SYBR 18.24 

B04 SYBR 18.02 

B05 SYBR 21.59 

B06 SYBR 21.75 

B07 SYBR 21.63 

B08 SYBR 24.51 

C01 SYBR 25.75 

C02 SYBR 25.38 

C03 SYBR 28.05 

C04 SYBR 28.19 

C05 SYBR 28.22 

C06 SYBR 38.19 

B)  

Averaged Cq for SPTBN1 

Dilution (10^-X) Cq mean 

8 9.18 

7 12.16 

6 15.14 

5 18.13 

4 21.65 

3 25.21 

2 28.15 
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A)     

 
 

B)  

Primer efficiency calculation SPTBN1 (Pfaffl method)  

Slope R2  Efficacy Calculation  

Y=-3.1971x + 34.503 0.9988 10^ (-1/-3.197)-1= 1.05 

 

Figure 19. Primer Efficacy Calculation and Graph for SPTBN1 Primers. (A) Scatter plot 

of the averaged Cq value for each DNA dilution for SPTBN1. The graph also shows the 

equation which yield the line of best fit. The graph also has the R^2 value which indicates 

how well the plotted points line up with the line of best fit. (B) The primer efficacy was 

calculated by inputting the slope obtained from the line of best fit into an equation utilized by 

the Pfaffl method.  
 

y = -3.1971x + 34.503

R² = 0.9988

0

5

10

15

20

25

30

0 2 4 6 8 10

C
y
cl

es
 

Dilutions 10^x



 

 

59 
 

 

Table 3. Primer Efficacy for GAPDH Primers. Part A shows the Cq from qPCR of 

GAPDH DNA dilutions. Part B shows the averaged Cq mean for each GAPDH dilution 

sample. The data from the averaged DNA dilution were used to obtain the primer efficacy for 

GAPDH. 

A) 

Cq for GAPDH  

Well  Fluor 

A01 SYBR 

A02 SYBR 

A03 SYBR 

A04 SYBR 

A05 SYBR 

A06 SYBR 

A07 SYBR 

A08 SYBR 

B01 SYBR 

B02 SYBR 

B03 SYBR 

B04 SYBR 

B05 SYBR 

B06 SYBR 

B07 SYBR 

B08 SYBR 

C01 SYBR 

C02 SYBR 

C03 SYBR 

C04 SYBR 

C05 SYBR 

C06 SYBR 

B) 

Average Cq for GAPDH 

Dilution (10^-x) CQ mean 

8 5.27 

7 9.71 

6 14.68 

5 17.95 

4 21.15 

3 26.38 

2 27.43 
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A) 

 
 

B)   

 
 

 

C) 

Primer efficacy calculation GAPDH (Pfaffl method)  

Slope R2 Efficacy Calculation 

Y=-4x + 37.752 0.9907 10^ (-1/-4)-1= 0.77 

 

Figure 20. Primer Efficacy Calculation and Graph of GAPDH Primers. (A) The qPCR 

amplification curve of each GAPDH DNA dilutions. Each dilution was done in triplicate and 

span from 0.629-6.29x10^-8 µg/µl. (B) The graph of the averaged Cq for each DNA dilution 

for the GAPDH primers. The slope and R^2 value which were obtained from the line of best 

fit which was drawn between the plot dilution points for GAPDH. (C) The primer efficacy 

was calculated by putting the calculated slope into an equation utilized by the Pfaffl method.   
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Confirming Knockdown of SPTBN1  

After the primer efficiency was determined for SPTBN1 and GAPDH primers, the 

amount of knockdown in TCN14 cells can be determined. RNA was extracted from the cells and 

reverse transcribed to cDNA. A control for RT-PCR was used in which some RNA was not 

reverse transcribed into cDNA by neglecting to add reverse transcriptase (RT) to the reaction. 

This control set is referred to as RT- (Table 4A). qPCR was performed on the cDNA utilizing 

SPTBN1or GAPDH primer sets. Each sample was tested in triplicate, and the data averaged 

(Table 4A, Table 4B, Table 5A and Table 5B). Based on the Pfaffl method, SPTBN1 was 

knocked down by 38.7% in the siRNA knockdown samples (Table 4B and 6). When the 

infectivity was tested in the knockdown cells, it correlated to a decrease of 37.58% (Table 6 and 

Figure 21). 
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Table 4. Confirming Knockdown of SPTBN1. SPTBN1 was quantified utilizing the Pfaffl 

method. Part A shows the Cq from qPCR conducted on cDNA made from knockdown and 

control cell types. Each sample contained a RT+ and RT- sample, which was used as a 

control. Part B quantifies the level of knock down, calculated by the Pfaffl method. The ΔCt 

was calculated by taking the averaged Cq from the Rt+NT4 condition and having the RT+ 

SPTBN1 subtracted from it. The efficacy used for the Pfaffl method is calculated by adding 

1.00 to the primer efficacy of GAPDH. The number utilized for the Pfaffl method was 

calculated by taking the primer and taking it to the power of the ΔCt. 

A) 

Knockdown confirmation SPTBN1 

Sample SPTBN1 

primers 

Wells  Cq Average (Cq) 

RT+ SPTBN1 

knockdown  

Well 1 40.18 29.28 

Well 2 29.21 

Well 3 29.35 

RT- SPTBN1 

knockdown  

Well 1 38.26 36.73 

Well 2 36.12 

Well 3 35.86 

RT+ NT4 knockdown  Well 1  27.51 26.77 

Well 2  26.32 

Well 3 26.49 

RT- NT4 knockown  Well 1 39.09 37.46 

Well 2 35.86 

Well 3 37.44 

RT+ no siRNA 

knockdown 

Well 1 26.34 26.22 

Well 2  26.10 

Well 3  26.24 

RT- no siRNA 

knockdown 

Well 1 37.64 36.81 

Well 2 36.25 

Well 3  36.54 

H2O sample  Well 1 36.51 35.27 

Well 2 33.81 

Well 3 35.49 

 

B) 

Calculating knockdown of SPTBN1 (Pfaffl method) 

dCt Eff. SPTBN1  SPTBN1 GAPDH KD SPTBN1 

26.77 - 29.28=-2.51 1+1.05=2.05 2.05^-2.51=0.165 0.268944 0.165/0.268=0.613 
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Table 5. Confirming Knockdown using GAPDH. GAPDH primers were utilized so a house 

keeping gene can be analyzed and comparison made to SPTBN1. Each sample had a RT+ and 

RT- which was used a control. Each sample condition was done in triplicate and water was 

used a negative control. Part A shows the Cq value of each n. The triplicated condition were 

averaged together. Part B shows the ΔCt calculation followed by the efficacy used by the 

Pfaffl method. The ΔCt was calculated by taking the averaged Cq from the Rt+NT4 condition 

and having the RT+ SPTBN1 subtracted from it. The efficacy used for the Pfaffl method is 

calculated by adding 1.00 to the primer efficacy of GAPDH. The number utilized for the 

Pfaffl method was calculated by taking the primer and taking it to the power of the ΔCt. 

A) 

Knockdown confirmation GAPDH 

Sample GAPDH 

primers 

Wells  Cq Average 

(Cq) 

RT+ SPTBN1 

knockdown  

Well 1 23.78 22.78 

Well 2 22.37 

Well 3 22.20 

RT- SPTBN1 

knockdown  

Well 1 34.22 34.34 

Well 2 34.28 

Well 3 34.54 

RT+ NT4 knockdown  Well 1  20.49 20.48 

Well 2  20.57 

Well 3 20.39 

RT- NT4 knockown  Well 1 34.60 34.49 

Well 2 34.32 

Well 3 34.55 

RT+ no siRNA 

knockdown 

Well 1 20.20 20.47 

Well 2  20.51 

Well 3  20.72 

RT- no siRNA 

knockdown 

Well 1 34.24 33.98 

Well 2 33.65 

Well 3  34.07 

H2O sample  Well 1 32.80 33.10 

Well 2 32.80 

Well 3 33.80 

 

B)  

Calculation for GAPDH sample  

dCt Eff. GAPDH GAPDH 

20.48-22.78=-2.30 1.00+0.77= 1.77 1.77^-2.30= 0.268944 
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Determining the Effect of SPTBN1 Knockdown on Uncoating 

Table 6. Infectivity in SPTBN1 Knockdown Cells. Infectivity of HIV in confirmed 

knockdown cells. SPTBN1 had a decreased expression and the raw infectivity data was the 

amount of cells that are infected when FACS was conducted. To compare the data was 

normalized to NT4. 

Raw infectivity data (% infectivity) 

SPTBN1 NT4 (control) No siRNA 

6.00 9.61 10.48 

 Normalized infectivity data (% infectivity)  

SPTBN1 NT4 (control) No siRNA  

62.42 100 109.06 

   

 

 

Figure 21. Infectivity with SPTBN1 Knockdown. The graph represents the infectivity of 

the SPTBN1 knock down to the NT4 control. The data is normalized to NT4. N=1.  
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Once the knockdown of SPTBN1 was confirmed we proceeded to the second aim of my 

thesis, which was to determine if the uncoating process of HIV is altered by the down regulation 

of SPTBN1. To accomplish this, a mini-CsA washout assay was performed (108). This assay 

works by first having cells that can express TRIM-Cyp. When this protein is expressed, it will 

bind to the capsid core of HIV and prevent uncoating which leads to a noninfected cell (108). 

The assay calls for the use of CsA which will is able to bind to TRIM-Cyp and prevent binding 

to the capsid core of HIV (108). In the present of CsA uncoating occurs in the cells. When CsA 

is removed TRIM-Cyp can bind to the remaining cores and prevent uncoating. By removing 

media that contains CsA at various times post-infection the amount of uncoating that occurs can 

be found by determining the amount of infectivity at each time point. The infectivity at each time 

point was then divided by the 5 hr time point (denoted 100%) to get the percent uncoating at 

each time point. In the CsA washout assay EtOH was used as a carrier control, as EtOH was used 

to dissolve CsA. In the carrier control, uncoating will not occur and HIV infection will be 

inhibited. 

To determine if early uncoating was affected, CsA was removed at 30 min, 1 hr, and 5 hr 

post infection. Each of the time points and conditions were done in triplicate for each of the 

knockdown cells and averaged to obtain the raw data (Table 7A). To calculate the amount of 

uncoating that took place at each time point, it was assumed that all uncoating took place by the 

5 hr time point, based on previous experiments (106). The percent infectivity at each time point 

(30 min and 1 hr) was then divided by the 5 hr time to give the percent at each time point (Table 

7B). The experiment was done in duplicate and the percent uncoating was averaged between 

these experiments (Table 7C and 7D). At the 30 min time point 19% of the capsid core in the 

SPTBN1 knockdown sample uncoated, compared 28% in the NT4 control sample and 27% in 

https://paperpile.com/c/TxVBML/lJ6Z3
https://paperpile.com/c/TxVBML/lJ6Z3
https://paperpile.com/c/TxVBML/lJ6Z3
https://paperpile.com/c/TxVBML/Oxn9
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the NT4 control (Table 7C and 7D). At 1 hr 34% of the capsid core uncoated in the SPTBN1 

knockdown cells, while 58% of the capsid cores uncoated in the NT4 control and 54% of the 

capsid cores uncoated in the no siRNA control (Table 7C and 7D). In general, there was a 

decrease in the amount of capsid cores that have uncoated at both time points in the SPTBN1 

knockdown cells (Table 7D and Figure 22). There was a decrease of 9% at the 30 min time point 

and at the 1 hr time point there was 24% decrease in the amount of uncoating in SPTBN1 cells 

(Figure 22). These results show that the uncoating process was affected by the downregulation of 

SPTBN1. 
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Table 7. SPTBN1 Knockdown Affects on Uncoating. The percent of uncoating was 
obtained from the mini-CSA washout assay. Part A. The raw data of the amount of infectivity 
obtained in the mini-CSA washout assay at each time point in the various knockdown cell 
types. Part B. The percentage of the capsid core that have uncoated at each time point. At the 
5 hr time point all uncoating should have taken place and will be utilized to obtain the 
percent of capsid core in other time points. To obtain the amount of uncoating the amount of 
infectivity at the 30 min and 1 hr time point was divided by the infectivity obtained at the 5 
hr time point. Part C. The amount of uncoating at each time point in the various runs. Part D. 
The averaged amount of uncoating. 
A) 

Uncoating data percent of cells infected Sept. 23 2019 

Time point  SPTBN1 NT4 No siRNA 

30 min 3.38 7.86 7.05 

1 hr 7.35 15.68 12.05 

5 hr 29.96 37.00 33.88 

B) 

Percent uncoating Sept. 23 2019 

Time point  SPTBN1 NT4 No siRNA 

30 min 11 21 21 

1 hr 25 42 36 

5 hr 100 100 100 

C) 

Uncoating data (% uncoating) 

  Sept. 23 2019 Oct. 18 2019 

Time SPTBN1 NT4 No siRNA SPTBN1 NT4 No siRNA 

30 min 11 21 21 27 36 34 

1 hr 25 42 36 44 47 72 

5 hr 100 100 100 100 100 100 

D) 

Averaged uncoating data (%uncoating)  

Time SPTBN1 NT4  No siRNA 

30 min  19 28 27 

1 hr 34 58 54 

5 hr  100 100 100 
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Figure 22. Mini-CsA Washout Assay Bar Graph. The average percent of uncoating 

at the 30 min and 1 hr after infection is represented in a bar graph. The error bars are 

the standard error in each sample type. N = 2 
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DISCUSSION 

 

HIV-1 is a viral agent that leads to the development of AIDS and eventual death in 

patients (1). Therapies exist to control HIV-1 replication, but due to the rapid mutation rate of 

HIV-1 and lack of adherence to medication, ART drugs can become ineffective (72). HIV strains 

that are resistant to ART make treating patients difficult and can cause the patient to progress 

quickly into AIDS. Some limitation of ART therapy includes the inability to target viral revivor 

especial in the CNS which is due to the highly selective nature the BBB (54). The BBB is made 

up of astrocytes and cells responsible for the immune response in the CNS are microglial cells 

(54). When microglial cells become infected with HIV, they cause inflammation to occur (58). 

The inflammation leads to the symptoms of HAD/HAND. The inability to target microglial cells 

leads to a viral revivor to form in the CNS, inflammation to occur, and leads to the formation of 

HAND/HAD. Other therapies are needed to assist with controlling HIV replication and reducing 

the incidence of HAD/HAND. Host factors are an area of research that holds the possibility of 

assisting ART therapies. Targeting host factors with other medication or other processes can help   

control the low levels of HIV-1 virions being produced and can reduce the level of virion 

formation in viral revivors in the CNS. Investigating the role host factors play in HIV infection 

will lead to a better understanding of the infection process which could lead to better therapies or 

a cure to HIV-1 (8, 15, 16).  

SPTBN1 is a host factor which holds the possibly of reducing HIV-1 replication (8, 15, 

16). SPTBN1 is involved with structural support and organization of the actin cytoskeleton (9, 

90). SPTBN1 was also shown to bind to the capsid core of HIV-1 (8). However, further 

experimentation of SPTBN1 interaction with HIV-1 was not investigated, the goal of my thesis 

https://paperpile.com/c/TxVBML/I7uuX
https://paperpile.com/c/TxVBML/c4Jwk
https://paperpile.com/c/TxVBML/Ieowb
https://paperpile.com/c/TxVBML/Ieowb
https://paperpile.com/c/TxVBML/uSU4e
https://paperpile.com/c/TxVBML/qF7uw+1Loya+zgZpO
https://paperpile.com/c/TxVBML/qF7uw+zgZpO+1Loya
https://paperpile.com/c/TxVBML/qF7uw+zgZpO+1Loya
https://paperpile.com/c/TxVBML/TwEWi+ZOIWx
https://paperpile.com/c/TxVBML/TwEWi+ZOIWx
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was to better understand how SPTBN1 interacts with HIV-1 infection. The hope was to not only 

gain more information about host factor and viral interaction but pinpoint the exact role SPTBN1 

plays in the infection process.  

The first aim of my thesis was to investigate the infectivity of HIV when SPTBN1 is 

downregulated. When SPTBN1 is downregulated the infectivity of HIV should decrease in 

TCN14 cells. This aim was accomplished by first downregulating SPTBN1. To confirm 

SPTBN1 knockdown, qRT-PCR was utilized, and data analyzed using the Pfaffl method, which 

allows comparisons to be made based on the expression of a housekeeping gene (GAPDH) and a 

target gene (SPTBN1). This method controls for the different number of cells in each sample set 

and the primer efficiency for each gene. To start confirming knockdown, the annealing 

temperature for each primer set was determined by qPCR and the optimal temperature for both 

primer sets was found to be 60°C (Figure 17). The primer efficiency for SPTBN1 was 1.05 and 

for GAPDH primers efficacy was 0.77 (Table 2 and 3; Figure 19 and 20). The primer efficiency 

was determined so that we could obtain the ΔCt of the experimental group. To confirm 

knockdown of SPTBN1, RNA was extracted from TCN14 cells that were transfected with 

siRNA (SPTBN1, NT4, or no siRNA). Quantitative RT-PCR was performed to determine the 

expression level of SPTBN1 and GAPDH in each knockdown sample. SPTBN1 was knocked 

down 39.70% in the SPTBN1 siRNA samples (Table 7). 

After confirming SPTBN1 was knocked down in the microglial cell experiential group, 

HIV infectivity was tested. TCN14 cells were transfected with pools of siRNAs targeting 

SPTBN1, or control nontargeting RNA and infected with HIV-GFP. The number of infected 

cells in each experimental condition was obtained by a flow cytometer and was done in 

duplicate. Each run was then averaged together and normalized to the NT4 control. In these 
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experiments the infectivity of HIV-GFP was decreased by 19.75% in SPTBN1 knockdown cells, 

when compared to the control cells (Table 1; Figure 16). This result showed that SPTBN1 plays 

a role in HIV-1 infection in TCN14 cells. However, the role SPTBN1 plays in the infection 

process is still unknown.   

The results obtained from Aim 1 correlated with what was obtained from three previous 

publications. In the Gallo publication SPTBN1 knockdown correlated to a decrease in HIV 

infectivity when wild type and VSV-g pseudotyped HIV was utilized (15). However, there was a 

difference seen in the infectivity between viral types. When knockdown cells were infected with 

WT HIV there was a decrease of about 60%, when cells were infected with VSV-g HIV there 

was a decrease between 20-40%. This is in line with my result which showed a decrease of 

19.75% when TCN14 cells were infected with VSVg-HIV-GFP.  

Previous publications saw a difference in the infectivity between viral types which points 

to a possibility of SPTBN1 playing a role in the uncoating process of HIV. The Dai publication 

showed that when monocytes are differenced into macrophages by IL-27 it decreased the 

expression of SPTBN1 which correlated to a decreased infectivity (8). The amount of decrease 

seen in the differentiated monocytes was 80% when compared to the control. The publication 

also demonstrated that when SPTBN1 was down regulated it caused an alteration in the actin 

cytoskeleton which not only affected the infectivity of HIV-1, but HSV-2 and influenza. Finally, 

the Brass publication depicted that SPTBN1 could play a role in uncoating along with other 

processes of infection (16). The decrease in infectivity in the publication was 24% which was 

similar to my result. My results and other publications show that the downregulation of SPTBN1 

correlates to decreased infectivity of HIV. However, the exact role SPTBN1 plays in the 

infection process is still unknown but could be involved fusion, uncoating or viral trafficking of 
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HIV. The Dai publication however did demonstrate that SPTBN1 can bind to the capsid core of 

HIV and interact with the actin cytoskeleton which somehow facilities infection. SPTBN1 

interaction with the capsid core suggests that one likely role it plays in the infection process is 

uncoating. Aim 2 of my thesis was to see if SPTBN1 plays a role in the uncoating process. 

In Aim 2, I sought to determine the uncoating rate in SPTBN1 knockdown cells. A mini-

CsA washout assay was performed on transfected cells to measures the uncoating process over 

time in control and SPTBN1 knockdown cells. The CsA-washout assay is based on removal of 

media which contains CsA (108). By removing CsA, uncoating is halted, which will also affect 

the infectivity (108). The CsA media was removed at various time points (30 min, 1 hr, 5 hr) and 

the percent of uncoating was obtained by taking the amount of infectivity at 30 min and 1 hr then 

dividing it by the infectivity at the 5 hr time point. At the 30 min time point, uncoating was 

inhibited by 9% and at the 1 hr time point uncoating was inhibited by 24% in the SPTBN1 

knockdown cells when compared to the control (Table 7; Figure 22). The data obtained from the 

mini-CsA washout assay shows that there is a decrease in the amount of uncoating when 

SPTBN1 was downregulated and that SPTBN1 plays a role in uncoating. 

SPTBN1 plays a role in uncoating by decreasing the amount of capsid cores that have 

uncoated and the amount of infectivity when SPTBN1 was down regulated. This information 

adds to the knowledge of host factor interaction with HIV infection. However, much more 

research is needed to denote how SPTBN1 participates in other processes of HIV regulation and 

how the downregulation of SPTBN1 affects later time points (2-6 hr) of uncoating. Since the 

stability of the capsid cores varies between virions, testing at the later time points allows me to 

have a better understand of how the downregulation of SPTBN1 will affect uncoating kinetics in 

https://paperpile.com/c/TxVBML/lJ6Z3
https://paperpile.com/c/TxVBML/lJ6Z3


 

 

73 
 

TCN14 cells and if the decrease seen in the early time points will carry over in the later time 

points.   

 When altering the replication process of HIV, it will lead to a change in infectivity. As 

the results showed, decreasing the amount of uncoating that occurs leads to a decrease in 

infectivity. There was only a decrease of 19.75% when the infectivity was assessed in SPTBN1 

knockdown cells (Figure 16). The decrease in infectivity correlated with a 9% decrease in 

uncoating at 30 min and a 24% decrease at 1 hr (Figure 22). The downregulation of SPTBN1 

plays a role in uncoating however, other factors may be at work that affect infectivity, including 

fusion and viral trafficking. SPTBN1 might participate in fusion of the viral and host membranes 

due to this process reliance on the actin cytoskeleton. Evidence that fusion can be affected is 

seen in the different ways WT and VSV-g HIV gain entry to the cell. WT enters the cell the via 

fusion and VSV-g gains access by endocytosis. When the Gallo publication accessed the 

infectivity in both viral types there was decreased in both, however there was more of a decrease 

seen in the WT virus. Since the only difference in the replication cycle of WT and VSV-g virus 

is fusion, this need to be accessed to understand why there is a difference and does SPTBN1 play 

a role in this replicative step. Viral trafficking might also be affected. While capsid cores rely 

more on microtubules for transport to the nucleus, the actin cytoskeleton might act as an 

alternative transport pathway when other paths are blocked.  

Aim 3 of my thesis was to investigate if SPTBN1 is associated or participates in the 

fusion process of HIV. However, due to COVID-19 related regulations and hardships I was 

unable to evaluate this process and the role SPTBN1 plays in fusion. To test the fusion process of 

HIV-1 a kinetic fusion assay would have been performed. This assay works by inserting a dye 

that has a beta lactam ring into the cells and subsequently infect the cell with a HIV virus that 
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has a beta lactamase in the virion. Once the cell is infected with the HIV- beta lactamase virus 

the dye will change color and by taking samples at various time point we can see if the down 

regulation of SPTBN1 affects fusion of HIV. When SPTBN1 is downregulated in the TCN14 

cells the amount of fusion will also decrease.       

 

Future Directions and Optimizing Knockdown 

In my thesis knowledge has been gained about the role SPTBN1 plays in the infection 

process. However, much remains unknown regarding SPTBN1 participation in other replication 

steps of HIV-1. One question which needs to be answered is weather further knockdown of 

SPTBN1 will increase the affects in the infectivity and uncoating assays. I obtained a 

knockdown of 39.75% when SPTBN1 was downregulated in TCN14 cells. My goal will be to 

obtain 80% knockdown which is seen in the Dai publication (8). I can optimize siRNA 

knockdown by changing the siRNA utilized or the transfection protocol. A more complete 

knockdown may yield more information about the role SPTBN1 plays in uncoating, fusion, and 

viral trafficking of HIV-1 (8, 15, 16).  

Here, I performed a mini-CsA washout assay, but a full CsA-uncoating assay needs to be 

conducted. The full CsA-washout assay will test uncoating at time points starting at 0 hr up to 6 

hr which is different than the mini-CsA washout assays which only tested uncoating at the 30 

min and 1 hr time point. The full CsA washout assays will show if the decrease in uncoating 

already seen in the early time points will carry over to the later time points of uncoating. The full 

CsA washout assay will give us a better understanding of how SPTBN1 plays a role in uncoating 

and how its downregulation affects uncoating kinetics.  

https://paperpile.com/c/TxVBML/zgZpO+1Loya+qF7uw
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Since fusion relies on the actin cytoskeleton and SPTBN1 has a direct role in the actin 

cytoskeleton, fusion is another important replication process which SPTBN1 could affect HIV 

infectivity. A fusion assay in the knockdown will tell me if uncoating is truly affected or if the 

decrease seen was due to fusion being affected which led to altered uncoating. The evidence for 

this is seen in the infectivity difference between the WT HIV and VSV-g HIV in the Gallo 

publication. The two viruses enter the cell via different mechanism which points to SPTBN1 

playing a role in fusion. Fusion experiments will need to be carry out with WT HIV and VSV-g 

HIV which are virus that have different entry pathways fusion and endocytosis, respectively. 

This will be done by a Blam fusion assay and a kinetic fusion assay. This experiment will 

demonstrate if SPTBN1 is involved in fusion and if there is a difference between the two virus 

types. This could lead to new viral targets associated with the fusion process that could be 

targeted for therapeutics and reduce the amount of viral replication which could decrease the 

incident of HAD/HAND.  

The last replication process where SPTBN1 can play a role is viral trafficking. The actin 

cytoskeleton can play a role in multiple steps of the replication process (9, 70, 75, 104). 

However, microtubules are responsible for the majority of capsid core being trafficked to the 

nucleus. Infectivity of HIV-1 was decreased when SPTBN1 was down regulated along with an 

alteration in the actin cytoskeleton which affected not only HIV-1 and other viruses. Actin could 

act as an alternative pathway to traffic capsid cores, making actin and SPTBN1 one pathway that 

might traffic the virus from the membrane to the nucleus.  

The final question which needs to be answered is how microglial cells respond to IL-27. 

The Dai publication showed that when macrophages were stimulated with IL-27, SPTBN1 was 

decreased which led to a decrease in HIV infectivity. By testing TCN14 cells response to IL-27 it 

https://paperpile.com/c/TxVBML/ZOIWx+zgLGU+t5AIj+saeRq
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will show if this interleukin can be used as a therapy to control HIV-1 infection but also allow 

for a better understand the role host factors plays in HIV infection. To test how IL-27 will affect 

TCN14 cells, the cells will be stimulated with IL-27 which is in the media and the expression of 

SPTBN1 will be determined by qRT-PCR. For the control, CSF will be utilized and should not 

affect the expression of SPTBN1. 

 From my data, there remains room to increase the amount of knockdown of SPTBN1 in 

TCN14 cells. There was only a 39% decrease in SPTBN1 expression, by increase the amount of 

knockdown this will hopefully further decrease the infectivity and the amount of uncoated capsid 

cores. There are multiple ways to increase the amount of knockdown including trying other 

transfection agents, such as lipofectamine 3000 from ThermoFisher or HiPerFect Transfection 

Reagent from Qiagen. Another item which can be change is trying a new set of siRNA which 

target different sequences within SPTBN1, or we can use a short hairpin RNA instead of fully 

processed siRNAs. Another way to possibly knockdown SPTBN1 is with IL-27, similar to the 

Dai publication (8). However, it is unknown if SPTBN1 can be downregulated by IL-27 in 

TCN14 cells and how much of an affect it will have. A complete knockout cell line could be 

made by using CRISPR or shRNA and used to determine the role SPTBN1 plays in the infection 

process of HIV-1. However, it is unknown how a complete knockout of SPTBN1 will affect the 

physiology of the cell due to its interaction with actin cytoskeleton. The actin cytoskeleton is an 

intricate part of the cell, and it remains unknown how TCN14 cells will respond, which could 

lead to death of the cell line. With the increased amount of knockdown there will be a further 

decrease in infectivity along with a greater effect on uncoating.  

 

Full CsA Washout and Fusion Assay 
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The goal of the full CsA washout assay is to test whether the later time points of 

uncoating are affected by SPTBN1 knockdown. The full CsA-washout assay follows the same 

principle of the mini-CsA washout assay and will be carried out in the same manner (108). The 

difference between the mini and the full CsA washout assays is that more time points will be 

added to include 15 min, 45 min, 2 hr, 3 hr, 4 hr and 6 hr time points in the assay. This will yield 

more information about the kinetics of uncoating when SPTBN1 is downregulated (108). To 

obtain the percent uncoating, the amount of infectivity at time points will be divided by the 

infectivity at the 6 hr instead of the 5 hr time point in the mini-CsA-washout assay. Since 

SPTBN1 plays a role in the early time points of uncoating it is likely the later time points of 

uncoating are affected as well. This will allow me to determine the full involvement of SPTBN1 

in the uncoating process and if uncoating is delayed.  

Since the uncoating process is affected, the next process that needs to be investigated is 

viral fusion. Since fusion proceeds uncoating this process need to be investigated to make sure 

that the affects seen in uncoating are not due to altered fusion. There are two assays to test the 

fusion process: The BlaM assay and the fusion kinetic assay (109). The BlaM assay consists of a 

one-time measurement of fusion, which will tell me if the process is affected, but nothing about 

whether the kinetics of the process is affected (109). The kinetic fusion assay allows for multiple 

measurements of fusion to be taken over time, yielding more information about the timing of 

fusion and any alterations.  

A BlaM assay should be conducted first to see if the process is altered. The BlaM assay 

uses a kit which is commercially available. The principle behind the assay is that fusion is 

tracked by a color change in a dye (109). The dye (CCF2-AM) contains a beta lactam ring and 

emits a green light when it is un-cleaved. Once the beta lactam ring is cleaved the dye will emit a 

https://paperpile.com/c/TxVBML/lJ6Z3
https://paperpile.com/c/TxVBML/lJ6Z3
https://paperpile.com/c/TxVBML/bb16V
https://paperpile.com/c/TxVBML/bb16V
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blue light (109). The dye is inserted in the cell and infected with HIV which contains a beta 

lactamase attached to the viral accessory protein Vpr (109). When HIV fuses with the cell, Vpr 

with the lactamase attached is released into the cell, comes in-contact with the dye and causes the 

change in color (109). The color change can be detected by flow cytometry and based on the 

emission of the various colors of light the amount of fusion can be determined (109).  

 To start the BlaM assay TCN14 cells will be grown, transferred to a 6-well plate, and 

transfected with siRNA (SPTBN1, NT4, or no siRNA). The day after transfection, cells are 

transferred to a 96-well plate and CCF2-AM dye which is in the media is inserted into the cells 

due its highly lipophilic nature. Probenecid can be used to help load the dye into the cells if 

necessary. After the dye is inserted, infection occurs with HIV-Vpr lac and cells are preserved. 

Flow cytometry is used to detect the amount of cells that changed from green to blue light, and 

therefore the amount of fusion. If the BlaM assay shows an alteration of fusion by SPTBN1 

knock down, then a kinetic assay will be performed. The fusion kinetic assay is started and 

conducted the same manner to the BlaM assay, however, multiple samples are fixed at various 

time points after the TCN14 cells are infected and the fusion process is occurring. The time point 

will include 15 min, 30 min, 1 hr, 2 hr and 4 hr time points. The results will allow fusion to be 

tracked over time to determine how SPTBN1 affects fusion kinetics. If fusion is affected more 

investigation will need to occur to see if SPTBN1 plays a role in both fusion and uncoating or 

one or the other which could lead me to rethink how SPTBN1 participates in HIV infection.  

 

WT HIV and VSV-g-HIV-GFP Differences 

Another discrepancy that needs to be evaluated is the role that SPTBN1 plays in WT-HIV 

and VSV-g HIV. The Gallo publication demonstrated a difference in the amount of infectivity 

https://paperpile.com/c/TxVBML/bb16V
https://paperpile.com/c/TxVBML/bb16V
https://paperpile.com/c/TxVBML/bb16V
https://paperpile.com/c/TxVBML/bb16V
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between the two viral types, wild type HIV and VSV-g HIV in HeLa cells when SPTBN1 was 

downregulated. The publication speculated that fusion is the most likely candidate for the 

discrepancy between SPTBN1 knockdown on the two viral types (15). One speculation on why 

there was a difference between viral types and but could be because of the way the virus enters 

the cell and the reliance on the actin cytoskeleton between the two.  

To deduce possible differences in fusion between the two HIV strains, BlaM and the 

kinetic fusion assays will be performed on both the WT-HIV and VSV-g HIV. This will allow 

me to make a comparison between the two virus and see how big of a role SPTBN1 plays in 

each. Due to limited biohazard protocols at Missouri State University and the risk of working 

with replication competent HIV virus, this experiment would need to be conducted at or by a 

collaborator’s laboratory. Testing fusion will allow comparison of the modes of entry between 

WT-HIV and VSV-g HIV. Moreover, using SPTBN1 knockdown, we can see if SPTBN1 plays a 

role in each. If fusion is affected by the down regulation of SPTBN1, it allows for better 

interpretation of the uncoating result and give more details about the role SPTBN1 plays in the 

infection process. After fusion of the two virus types there is no difference in the later process of 

infection, uncoating and viral trafficking are the same between the two viruses. If there is a 

difference between the viral types in the infectivity in TCN14 cells, this assay will demonstrate it 

is due to fusion. If a difference between the two viruses exist, it could be due to more of a 

dependence on the actin cytoskeleton in the fusion process of WT-HIV (9). Since both viral 

types are widely used in many research labs it is important to denote why there is a difference 

and how the two viral types depend on the actin cytoskeleton.  

Viral Trafficking and TCN14 Cells Response to IL-27 

https://paperpile.com/c/TxVBML/1Loya
https://paperpile.com/c/TxVBML/ZOIWx
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Another important replication process which needs to be evaluated is HIV-1 trafficking. 

In the Dai publication it was shown that the actin cytoskeleton arrangement was altered when 

SPTBN1 was downregulated, which correlated to decreased infectivity. In the same publication 

the infectivity of Herpes simplex 2 and influenza followed the same trend (8). This could be due 

to fusion or trafficking of the various viruses. Since the viruses must migrate to the nucleus as 

part of their replication process, viral trafficking could be a possible source for the decreased 

infectivity. Migration of HIV-1 capsid cores relies heavily on the microtubule system of the cell, 

but the actin cytoskeleton could be utilized as an alternative pathway (71). This could be why 

there was not a drastic decrease in the amount of infectivity in my data. Regardless, SPTBN1 

role in trafficking needs to be explored.   

There are many assays available to track the movement of viral particles all of which 

involve three basic steps: particle detection/tracking, trajectory classification, and physical 

modeling (110). The easiest way to track, visualize viral progression, and map the trajectory is to 

fluorescently label capsid cores and utilize microscopy. The process can be performed by infecting 

cells with double labeled virus and visualization of the fluorescent signal by light microscopy (110).  

The double label HIV virus has two different signals, the outer membrane labeled with S15-cherry 

and the capsid core is labeled with GFP by inserting the protein between the matrix and the capsid 

protein (110). Utilization of this virus will not only allow me to track the movement of the virus but 

denote what replication process the virus is using. Before HIV-1 enters the cells, the virus will have a 

red signal. Once HIV enters the cell via endocytosis (VSVg-HIV) and fuses with the cell membrane, 

the red signal dissipates and only the green-fluorescent signal remains. The green fluorescence 

illuminates for the capsid core, and the migration can then be tracked through the cells. Once the 

GFP signal dissipates the virus has uncoated. The dissipation of the GFP signal will be lost when the 

capsid core breaks apart. By utilizing the double labeled virus, it will allow me to visualize how the 

https://paperpile.com/c/TxVBML/qF7uw
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capsid core migrates in the cells and tell me if SPTBN1 plays a role in viral trafficking.  A 

fluorescent trafficking assay should be started by first transfecting TCN14-cells with a siRNA 

(SPTBN1, NT4, or no siRNA). After the cells are transfected, they are moved to a 24-well plate 

with a glass cover slip that are treated to allow cells to adhere and then infect with the double 

labeled virus by spinoculation. At time point zero, 15 min, 30 min, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr and 

6 hr, the cells will be fixed. The number of capsid cores that are intact, and the distance away 

from the cell membrane will be compared between SPTBN1 knockdown and control cells at 

each time point. Since the downregulation of SPTBN1 alters the actin cytoskeleton I believe 

there would be a decrease in the amount of capsid cores trafficked to the nucleus of the cell.  

Another vital area which needs to be explored is to determine if SPTBN1 is 

downregulated in response to IL-27. This will not only determine if IL-27 can downregulate 

SPTBN1 and can be utilized as a therapeutic agent, but this process also holds the possibility of 

knocking down SPTBN1 other than the utilization of a siRNA. To start the experiment, cells will 

be grown in three separate media conditions (CHME3 media, M-CSF as a control, and IL-27) 

which is added to growth media and incubated for 24 hrs. After the incubation period RNA will 

be extracted and RT-qPCR will be carried out to determine the amount of knockdown. GAPDH 

will be utilized as a housekeeping gene so that the expression of SPTBN1 can be compared and 

the amount of knockdown determined. Since macrophages are affected by IL-27 and decrease 

the amount of SPTBN1, I believe TCN14 cells will have a similar response and have a decreased 

about SPTBN1 expression.  

In the Dai publication IL-27 was able to decrease SPTBN1 when monocytes were 

differentiated into macrophages which was done without affecting the physiology of the cells (8). 

However, it is unknown if IL-27 stimulated TCN14 cells will have altered physiology or have 

https://paperpile.com/c/TxVBML/qF7uw
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any affect at all. If IL-27 can affect TCN14 cells and decrease SPTBN1 expression, then the 

physiology of the cell will need to be investigated. To investigate the physiological response, IL-

27 stimulated TCN14 cells will be examined by determining receptor expression, phagocytosis 

ability, response to chemotaxis agents and the ability to mount an immune response (8). To start 

the various experiments, TCN14 cells will be grown in a 10 cm dish until 100% confluent at 

which point the cells will be split and placed in a 6-well plate by the procedure described in the 

method section. The TCN14 cells in the 6-well plate will be seeded at 0.7 x 106 cells/well and 

grown in CHME3 media that include IL-27, M-CFS and regular CHME3 (8). The cells will 

incubate for 24 hr to allow the cells to respond to the various media components. After the 

incubation period the phagocytic ability of the cell will be tested by the E. coli bioparticle 

phagocytosis kit (8). To utilize the kit 1.0 x 106 TCN14 cells will be incubated with 20 µl of E. 

coli particles for 30 min at 37°C. A negative control will be placed on ice to prevent TCN14 cells 

from phagocytosing the E. coli particles (8). After the 30 min incubation period cells will be 

washed and the amount of phagocytosis will be analyzed by flow cytometry.  

 If IL-27 affects TCN14 cells, then the response to chemotactic agents by the stimulated 

TCN14 cells will also be investigated. To analyze the chemotactic ability of TCN14 cells, the 

cells will be stimulated with IL-27 as previously described. After the TCN14 cells have been 

stimulated they are seeded in a 48-well plate and the migration tested by the R&D system (8).  

The R&D system consists of a 48-well micro-chemotaxis plate which was developed by Falk in 

the 1980’s (111). TCN14 cells will be placed in the 48-well plate in the presents of SDF-1α and 

RANTES. Both SDF-1α and RANTES are chemotaxis agents which can cause migration of 

immune cells. Once the cells are seeded in the plate, the ability of TCN14 cell to migrate across 

the plate in response to the chemotaxis agent will be determine by microscopy. The data will be 

https://paperpile.com/c/TxVBML/qF7uw
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presented as the number of cells per high power field which will allow the determination if the 

physiology of TCN14 cells are affected by IL-27 stimulation. If IL-27 is able to down regulate 

SPBTN1, I believe that the physiology of the cells will be unaffected, and the stimulated cells 

will have the same response as the control cells.  

To test the ability of TCN14 cells to mount an immune response when stimulated with 

IL-27, the production of cytokines will be analyzed by the Milliplex assay kit (8). The assay is 

commercially available and can determine the amount of production of various interleukins to 

include IL-1β, IL-5, IL-6, IL-12β, IL-13, IL-17, CSF3, Fractalkine, TGFα, IL-2Rα (8). To start 

the experiment TCN14 cells will be grown and stimulated with IL-27 by the previously 

mentioned procedure. After the cells were grown and the 2-day incubation period has past, the 

supernatant will be analyzed to determine the cells ability to mount an immune response. The 

Milliplex assay will be performed on the supernatant following the manufacture’s 

recommendation. By determining the immune response produced by IL-27, a determination can 

be made if this interleukin can be utilized as a therapeutic agent for HIV-1. 

By conducting a fusion assay, a full CsA-washout assay, and the viral trafficking 

experiments, we will have a better understanding of the role SPTBN1 plays in not only WT-HIV, 

but VSV-g HIV replication processes in TCN14 cells. The better understanding of how host 

factors participate in HIV infection will hopefully lead to future therapeutics or a cure for HIV-1, 

These targets include host factor and interleukins that can control the expression of various host 

factors. By altering host factor interaction with HIV proteins, we will hopefully reduce the 

incident of HAD/HAND, have other means of treating resistant strains of HIV, and hopefully 

reduce the amount of HIV particles in viral reservoirs. The utilization of therapeutics involving 

host factors will lead to better outcomes and prolonged life for HIV-1 patients. 
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