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ABSTRACT 

In contrast to many species of aquatic turtle, Alligator Snapping Turtles (Macrochelys 

temminckii) are putatively nocturnal. Data supporting this assertion are chiefly anecdotal, 

however, and two recent studies cast doubt on this generalization. Differences in activity patterns 

may be related to variability in temperature and photoperiod across the species’ range and may 

be influenced by ontogenetic changes, as well. To assess this, I equipped juvenile Alligator 

Snapping Turtles spanning a range of different ages with activity data loggers.  I used 4-year-old 

turtles were to measure latitudinal differences in activity which were reared in hatchery ponds 

spanning the species’ latitudinal range and located in Kansas, Oklahoma, and Louisiana. I also 

used 2- and 7-year-olds reared in Oklahoma to investigate ontogenetic changes in activity 

patterns. Temperature varied predictably with latitude, with warmer water temperatures 

occurring at lower latitudes. Daily activity patterns defied simple classification, but crepuscular 

activity was observed more frequently than was predominantly nocturnal or diurnal activity. The 

effect of latitude on diel patterns was inconsistent, with turtles in Louisiana consistently showing 

higher levels of activity and occasionally showing differences in daily activity patterns, with 

peaks of activity occurring where other sites showed lack of activity, from turtles at other sites. 

Seasonal activity did vary among the three age classes that I tested, with 7-year-old turtles 

showing higher levels of activity than the other two age classes throughout summer and autumn, 

and 2-year-old turtles showing higher than expected levels of activity in the winter months. Diel 

activity did differ some among age classes, but still showed similar periods of high activity 

around dawn and dusk. My results suggest that the activity patterns of Alligator Snapping Turtles 

change with latitude and developmental stage and, in combination with previous studies, 

demonstrate that while nocturnal activity occurs in this species, nocturnality is a poor general 

descriptor. 
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INTRODUCTION 

 

Patterns of activity influence many aspects of species’ natural history and niche space 

(Tester & Figala, 1990; Halle, 2000; Theuerkauf, 2009; Wiens et al., 2010; Frey et al., 2017). 

Timing of activity, whether defined on a diel or seasonal scale, affects exploitation of resources 

(Collier et al., 1990; Thies et al., 2006), exposure to predators (Nelson & Vance, 1979; Martín et 

al., 2009), habitat selection (Ferreguetti et al., 2015; Mohd-Azlan et al., 2017), and space use 

(Fox & Bellwood 2011). Myriad biotic and abiotic factors may influence the activity patterns of 

individuals, but some, such as geography and life stage, exert predictable and often consistent 

effects. While there are many forms of activity and many ways we can classify patterns of 

activity, for the purpose of my research we will consider activity to be defined simply as 

movement and the pattern which I was interested in was how the amount of activity or 

movement differed at different times of day and seasonally. 

Latitude influences temperature and photoperiod and can also indirectly affect other 

meteorological factors such as precipitation, wind, and frequency of storms. Populations of 

species with ranges that span large latitudinal gradients experience different conditions across 

their geographic range, and therefore may be hypothesized to exhibit predictable latitudinal 

variation in activity (Dwyer, 1970; Stevens, 1989; Engle & Summers, 1999; Gaston & Chown, 

1999; Addo-Bediako et al., 2000; Gaston et al., 2009; Sperry et al., 2010; Cadena et al., 2011). 

However, even in populations where photoperiod and temperature fluctuations follow 

predictable seasonal patterns, activity patterns may vary ontogenetically. As individuals of a 

given species age, changes in physiology and size may influence diet and predation risk, which 
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may result in changes in timing and duration of periods of activity (Pough, 1977; Crump, 1984; 

Kåster & Schnack, 1994; Lind & Welsh, 1994; Morinière et al., 2003). 

Annual temperature profiles correlate predictably with latitude due to variation in 

insolation and plays a key role in shaping the activity patterns of vertebrates. This is especially 

true of ectotherms, whose capacity to thermoregulate across a broad ambient temperature range 

is more limited than it is for endotherms of similar size and body shape (Dawson, 1975; Hailey 

& Davies, 1986; Grant & Dunham, 1988; Gunderson & Leal, 2015). Thermal preferences 

contribute substantially to variation in patterns of activity among ectotherms (Adolph & Porter, 

1993; Gunderson & Leal, 2015); this may include activity patterns across seasons as well as in 

response to daily cycles in temperature and light availability (Peterson, 1987; Adolph & Porter, 

1993). For example, the foraging behavior of the Common Coral Trout (Plectropomus 

leopardus) have been found to vary seasonally throughout their range in relation to seasonal and 

latitudinal temperature (Scott et al., 2017). 

Photoperiod also changes predictably with latitude, and circadian rhythms are often 

strongly influenced by photoperiod precisely because of its predictability. Seasonal changes in 

photoperiod are often linked to consequential activities such as mating, reproduction, foraging, 

migration, and overwintering (Spieler & Noeske, 1984; Rismiller & Heldmaier, 1988; Canavero 

& Arim, 2009), and these factors often comprise a sizeable fraction of animals’ time budgets. 

Changes in physiology and diet often shift over the course of ontogenetic development, 

and these factors may, in turn, influence when animals choose to be active. (Lind & Welsh, 

1994; Morinière et al., 2003; Jensen et al., 2012; Scott et al., 2017). Ontogenetic change in 

physiology has been shown to be especially important in Common Garter Snakes, where 

difference in blood oxygen capacity has been shown to allow adults of the species to continue to 
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right themselves when rolled over for up to five times as long a juvenile conspecific (Pough, 

1977).  Additionally, as predation risks change with ontogeny, the degree to which individuals’ 

activity is dictated by risk management likely decreases. Hatchling Common Snapping Turtles 

(Chelydra serpentina) have been shown to increase survivorship by remaining still in the 

presence of predators (Janzen, 1995) which adults of the species are less susceptible to (Ernst & 

Lovich, 2009).  

Like many ectothermic vertebrates, turtle activity patterns have been shown to be 

influenced by temperature and photoperiod (Graham & Hutchison, 1978; Graham & Hutchison, 

1979; Lovich, 1988; Tucker et al., 2015). In Common Musk Turtles (Sternotherus odoratus), for 

example, photoperiod and temperature were shown to affect timing of male reproductive 

behavior. In addition to temperature and photoperiod, turtles also show varying activity at 

different ages. For example, some species of freshwater turtles have been shown to change 

overwintering behavior and use of habitat with change in age and size (Pluto & Bellis, 1986) 

with juveniles of many species including Common Snapping Turtles and Blanding’s Turtles 

(Emydoidea blandingii) choosing shallower overwintering sites than older conspecifics 

(Costanzo et. al., 2008). Additionally swimming ability and antipredator behavior have been 

found to differ in young turtles relative to older conspecifics (Britson & Gutske, 1993) with 

species such as the Red-Bellied short-necked turtle showing notable difference in stability and 

agility between adults and juveniles (Stevens et al., 2018). 

The Alligator Snapping Turtle (Macrochelys temminckii) is unusual among turtles in its 

extremely limited use of terrestrial habitats and infrequent basking. Because of these factors, it 

presumably has limited opportunities to thermoregulate behaviorally (Riedle et al., 2006). 

Several past studies have described the species as predominantly nocturnal (Lane & Mitchell, 
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1997; Ewert et al., 2006); however, recent studies suggest that activity patterns of Alligator 

Snapping Turtles may be more complex than previously recognized, with patterns varying 

seasonally and ontogenetically and ranging from distinctly diurnal to crepuscular (Spangler, 

2017; Van Den Bussche et al., 2018). The seemingly conflicting conclusions among studies may 

result from the aforementioned factors of latitudinal variation, as the species range spans 

approximately 7° of latitude (Ernst & Lovich, 2009), or ontogenetic changes in activity patterns. 

Alligator Snapping Turtles have been reported to exhibit more activity in warmer months than in 

winter and to change their use of depth seasonally in response to changes in water temperature 

(Harrel et al., 1996; Riedle et al., 2006). Differences in the behavior of juveniles relative to 

adults are likely to be influenced by the absence of reproduction and higher predation risk (Ligon 

& Reasor, 2007; Holcomb & Carr, 2013; Dreslik et al., 2017; Spangler, 2017).  

The goals of my research were to document patterns of activity in juvenile M. temminckii 

in relation to both latitude and ontogenetic development. I hypothesized that overall activity rates 

are higher at lower (warmer) latitudes and that daily activity patterns will become more subdued 

during colder seasons and at times when day length is shorter. Furthermore, I hypothesized that 

high midsummer water temperatures suppress activity levels, especially at lower latitudes. 

During winter, I anticipated higher levels of activity at southern latitudes, and nearly complete 

cessation of activity at the northernmost part of the species range. Finally, I hypothesized that 

younger/smaller turtles would exhibit lower levels of activity in comparison to older/larger 

conspecifics, possibly as a mechanism to reduce detection by predators.  
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METHODS 

Study Species 

Alligator Snapping Turtles are the largest species of freshwater turtles in North America 

(Lane & Mitchell, 1997; Ernst & Lovich, 2009). They are a long-lived species, with some of the 

oldest in captivity living over 70 years but are believed to be able to live much longer. Alligator 

Snapping Turtles have been suggested to become sexually mature as early as 11–13 years of age 

(Dobie, 1971), but it has been found that sexual maturity in this species may be delayed up to 

until 21 years of age (Tucker & Sloan, 1997). These turtles are known generalist with a 

perceived preference for fish. Alligator Snapping Turtles engage in sit-and-wait predation where 

they use a lingual lure to attract prey items (Lane & Mitchell, 1997; Ernst & Lovich, 2009). This 

species has historic range spanning from the gulf coastal plain up as far north as southern Kansas 

and up the Mississippi Valley as far as southern Iowa (Ernst & Lovich, 2009). 

 

Study Sites 

I monitored Alligator Snapping Turtle activity at three fish hatcheries in the central 

United States. Hatcheries were selected due to location, willingness to allow the housing of 

Alligator Snapping Turtles and the familiarity of staff with the care of Alligator Snapping 

Turtles. My sites were approximately evenly spaced along a latitudinal gradient, and all were 

within the natural historical range of the species. The locations included Farlington Fish 

Hatchery in eastern Kansas, Tishomingo National Fish Hatchery in southeastern Oklahoma, and 

Natchitoches National Fish Hatchery in central Louisiana (Figure 1). These locations are located 

at intervals of approximately 3° latitude; elevation is variable, but all sites are located <280 m 

above sea level. At all three locations, turtles had access to emergent vegetation, fish, and aquatic 
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arthropods, and were offered frozen fish to supplement the natural forage. Pond Size differed 

among the three sites, as did the density of aquatic vegetation (Table 1). 

 

 

 

Data Collection and Transmitters 

I obtained my turtles from a captive population that was established at Tishomingo 

National Fish Hatchery. Prior to releasing the turtles into ponds, I measured and weighed each 

turtle, recorded its previously injected PIT tag code, and epoxied a coded transmitter/data logger 

(MCFT3 Series; Lotek Wireless Fish & Wildlife Monitoring, New Market, Ontario, Canada) to 

Table 1. Descriptive factors of the three ponds used in the latitude portion of the study. 
 
Pond Location Latitude/ 

Longitude 

Elevation 

(m) 

Pond Bottom 

Area (m2) 

Maximum 

Depth (m) 

Vegetation/ 

Cover 

Farlington Kansas 

Fish Hatchery 

37.649340/     

-94.802291 

275.0 580 1.1 Thick emergent 

vegetation 

throughout 

Tishomingo 

National Fish 

Hatchery 

34.352437/       

-96.714869 

 

266.0 260  1.8 Some emergent 

vegetation at 

pond edges/ 

shade mats on 

the perimeter 

Natchitoches 

National Fish 

Hatchery  

31.740397/    

-93.077270 

34.0 3,036 1.8 Some emergent 

vegetation at 

pond edge 
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its carapace between the central and right keels using waterproof epoxy (Loctite Marine Epoxy; 

Henkel Corp., Westlake, Ohio, USA) (Figure 2). 

I used three models of coded transmitters to accommodate a range of body sizes.  The 

smallest of the models (MCFT3-EM-TA) weighed ~15 g and were affixed to 2-year-old turtles 

ranging 289–676 g. Transmitters intermediate in size (MCFT3-3A-TA; 20 g) were applied to 4-

year-old turtles ranging 802–1301 g, and the largest transmitters (MCFT3-L-TA; 30 g) were 

attached to 7-year-old turtles that ranged 2,495–6,614 g. The transmitters inferred activity from 

activation of internal triaxial accelerometers. A turtle would be required to move sufficiently in 

any direction for a transmitter to register activity. Transmitters used and algorithm to assign an 

activity score based on the combined activation of the accelerometers, for which the units were 

arbitrary. I also measured the activity score of a cinderblock placed in the pond at Oklahoma to 

establish a baseline score for no activity. Any value higher than the baseline scores of the 

cinderblock were considered active.  Each transmitter also recorded temperature, and both 

activity and temperature endpoints were logged at 2-minute intervals. 
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Figure 1.  Heat map indicating the mean temperatures at and geographic locations of: (A) 

Farlington Fish Hatchery (mean annual temperature = 13.7° C), (B) Tishomingo National Fish 

Hatchery (mean annual temperature = 16.4° C), and (C) Natchitoches National Fish Hatchery 

(mean annual temp = 18.2° C). Climate data from O’Donnell & Ignizio (2012). The shaded 

polygon indicates the western geographic distribution of Macrochelys temminckii. Adapted from 

the U.S. Geological Survey, https://nas.er.usgs.gov/viewer/omap.aspx?SpeciesID=1227, accessed 

on 15 October 2021. 
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Figure 2. Placement of a transmitter/data logger on a captive-reared 4-year-old Alligator 

Snapping Turtle (Macrochelys temminckii). 
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Effects of Latitude on Daily and Seasonal Activity Patterns 

I applied 20-g data loggers to 27 4-year-old Alligator Snapping Turtles, and then evenly 

but randomly assigned them the three study sites. All turtles were introduced to their 

experimental pond between 26 May and 6 June 2019. A single turtle at the northernmost site in 

Kansas died early in the study and was replaced with another from the same cohort that was 

similar in size. Following release, the turtles were only disturbed by occasional supplemental 

feeding of frozen fish and periodic recapture events during which I downloaded data from the 

loggers. Supplemental feeding was done at the discretion of hatchery staff and was not done 

regularly. I monitored activity from 7 June 2019 to 7 November 2019. While initially I planned 

to monitor activity for a full year, I truncated the duration of my study due to multiple transmitter 

failures that greatly reduced my sample size.  

 

Effects of Age Class on Daily and Seasonal Activity Patterns 

In addition to the nine 4-year-old turtles that were part of the latitudinal study, I also 

equipped an additional 18 turtles (nine 7-year-olds and nine 2-year-olds) in ponds at Tishomingo 

National Fish Hatchery. I released the 2-year-olds into the same pond that the 4-year-olds 

occupied; the 7-year-olds occupied a similar but separate pond to eliminate the possibility of 

intraspecific aggression or predation of the younger/smaller cohorts. I was also forced to truncate 

the duration of the age study due to transmitter loss and failure resulting in an activity monitoring 

period from 2 June 2019 to 11 January 2020. 
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Size 

I measured the straight mid-line carapace length (SCL) for each turtle during each 

recovery. The size of turtles within each study were compared based of either location or age. 

Due to failure and loss of transmitters as well as the mortality of two turtles in Kansas, not all 

turtles had equal time to grow, or were not allowed to grow during the same seasons in the case 

of the turtle which replaced those that died. Because of this, only those turtles in the latitude 

study that had been in the study for 146–155 days between 23 May and 8 November 2019 at 

their last measurement were included in size comparisons. This resulted in sample size differing 

among sites with n = 3, 8 and 9 for populations in Kansas, Louisiana, and Oklahoma, 

respectively.  For turtles involved in the age study, only those that had amassed 146–149 days of 

growth between 23 May and 19 October 2019 at their last measurement were compared, which 

resulted in n = 8, 9, and 6 for 2-, 4- and 7-year-olds, respectively. I elected to use carapace length 

for comparing size among groups, as measurements of length tend to be less variable than 

measures of mass. 

 

Statistics 

I compared initial and final straight-line carapace length (SCL) among sites and age class 

using a repeated-measures ANOVA. I also compared rates of activity among study sites and age 

classes using repeated-measures ANOVA tests. I divided the study interval into 2-week periods 

in order to investigate potential seasonal differences between sites and age classes. To test for 

differences in monthly and seasonal activity patterns, I also performed repeated measures 

ANOVAs on data pooled by hour for each two-week period. Due to the large number of tests 

performed, I conservatively set α = 0.01 to minimize instances of type-II statistical error. I also 
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calculated average hourly temperatures for each turtle and compared temperatures among the 

three study locations. I also used a simple linear regression to test if average daily temperature 

significantly predicted averaged daily activity. 

 

IACUC Approval 

This study was approved by Institutional Animal Care and Use Committee on 4 June 

2020 and received Approval #2020-03 (See Appendix). 
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RESULTS 

 

Size 

On average, turtles that were maintained at different latitudes did not differ in body size 

at the beginning or end of the study (F2,34 = 2.17, P = 0.130), but did grow over the course of 153 

days (F1,34 = 8.13, P = 0.007) (Table 2). The increase in average SCL for Kansas, Oklahoma and 

Louisiana turtles was 12.9 mm,7.7 mm, and 12.5 mm respectively. 

 

Table 2. Initial and final straight mid-line carapace length (SCL) of 

4-year-old Macrochelys temminckii housed in outdoor ponds at fish 

hatcheries in Kansas (Farlington Fish Hatchery), Oklahoma 

(Tishomingo National Fish Hatchery), and Louisiana (Natchitoches 

National Fish Hatchery). 146–155 days elapsed between the initial 

and final measurements of each turtle. 

Site Average SCL (mm) 

  Mean ± 1 s.d. Range 

Initial 

Kansas     156.6 ± 15.48 135.4–171.9 

Oklahoma     153.1 ± 9.01 143.4–171.5 

Louisiana     145.8 ± 7.59 140.4–160.1 

Final 

Kansas     169.5 ± 15.89 148.2–186.4 

Oklahoma     160.8 ± 9.72 149.8–184.1 

Louisiana     158.4 ± 8.30 144.2–171.1 
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Carapace length of 2-, 4-, and 7-year-old M. temminckii was significantly different 

between age classes (F2,42 = 233.95, P < 0.001) with 7-year-old turtles being the largest and 2-

year-olds being the smallest (Table 3). However, SCL was not significantly different within age 

classes between the beginning and end of the study (F1,42 = 2.65, P = 0.11) 

Table 3. Initial and final straight-line carapace lengths (SCL) of 2-, 4-, 

and 7-year-old Macrochelys temminckii following. The study lasted 

146–149 days and all animals were housed in outdoor ponds at 

Tishomingo National Fish Hatchery in southern Oklahoma.  
Age (Years) Average SCL (mm) 

  Mean ± 1 s.d. Range 

Initial 

Two     117.3 ± 13.58 101.9–139.8 

Four     153.1 ± 9.01 143.4–171.5 

Seven     252.5 ± 23.5 213.0–282.7 

Final 

Two     122.9 ± 14.21 114.3–143.1 

Four     160.8 ± 9.72 149.8–184.1 

Seven     263.4 ± 25.6 219.0–295.0 

 

Latitudinal Temperature 

Turtles in Louisiana experienced the warmest temperatures (28.5 ± 4.4° C [mean ± s.d.]), 

while those in Oklahoma experienced intermediate temperatures (25.9 ± 5.6° C) and in Kansas 

the coldest temperatures (23.2 ± 6.3° C) (Figure 3).  
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Effects of Latitude on Daily and Seasonal Activity Patterns 

I performed a simple linear regression to assess the relationship between average daily 

temperatures and average daily activity for each site. The relationship was significant at all three 

sites (KS: R2 = 0.309, F1,151 = 67.673, P < 0.001; OK: R2 = 0.187, F1,152 = 34.891, P < 0.001; LA: 

R2 = 0.339, F1,152 = 77.898, P < 0.001) (Figure 4).  

Across all three sites, rates of activity were highest in early summer and late 

summer/early autumn (periods A–D and G–I; Figure 5) which were mostly periods of higher 

temperatures (Fig 3.). These periods of higher activity were separated by a mid-summer decline 

in activity (periods E and F; Fig 5). By mid-October, activity levels declined to a level that then 

remained consistent for the winter intervals of the study.  

Patterns of daily activity varied among the three sites in 4 of 11 two-week periods (Fig. 

5). Turtles located at the southernmost latitude in Louisiana maintained higher activity levels 

than the two more northern latitudes until the final four weeks of monitoring and exhibited 

higher levels of activity than the other two sites for 7 of the 11 two-week periods (Fig. 5). 

Alligator Snapping Turtles that were maintained in ponds in Oklahoma and Kansas exhibited 

lower rates of activity overall, but with peaks of activity during the early and late summer 

followed by a decline in late October. In comparison to Alligator Snapping turtles located in 

Kansas and Louisiana, turtles in Oklahoma exhibited reduced rates of activity in mid-July. 

Daily activity patterns defied simple classification at all latitudes. Turtles at the Louisiana 

study site were more active midday in early summer but shifted to a pattern of mostly pre-dawn 

morning activity from mid-summer until activity levels declined in October. Turtles at the 

Kansas and Oklahoma sites also displayed higher levels of activity midday during early summer, 
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while exhibiting activity levels that were similar across a 24-hour cycle for the remainder of the 

study. 

Effects of Age Class on Seasonal and Daily Activity Patterns  

Peak activity occurred in early summer and early autumn for all three age classes of 

turtles that I studied (periods A–C and F–H; Figure 6). Seven-year-olds exhibited higher levels 

of activity overall than the two younger year classes (Fig. 6), and while activity rates remained 

high for 2- and 7-year-old turtles throughout summer, 4-year-old turtles exhibited lower activity 

during mid-summer (Periods D–F; Fig. 6). In addition, 2-year-old turtles recorded higher activity 

levels than the 4-, and 7-year-old turtles from 17 November to 28 December (Fig. 6). The 

activity levels of the 2-year-olds during this period was comparable to mid-summer activity 

levels. 

Daily activity patterns differed between the 2-, 4-, and 7-year-old groups in 4 of the 16 

two-week periods (Fig. 6). I measured a noticeable decrease in activity for a single two-week 

period between 6 and 19 October, followed by a two-week period of high activity before activity 

decreased throughout the remainder of the study period. 

Daily activity patterns were inconsistent for 4-, and 7-year-old Alligator Snapping Turtles 

for the duration of our study.  7-year-old turtles were most active during the day for most of the 

study, but with peak activity occurring at different times of day throughout. 7-year-old turtles 

exhibited peak activity before sunrise for four different time periods occurring in mid-summer 

and early autumn (periods C, E, H, and I; Fig. 6). 4-year-olds exhibited bimodal patterns of peak 

activity at dawn and dusk for periods in early summer and in late autumn (periods A, B, and K; 

Fig. 6) but throughout the rest of the study activity levels were similar throughout the day (Fig. 

6).  Two-year-olds showed the most consistent daily activity patterns with some peaks in the 
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evening and early morning. In contrast, activity was highest in the afternoon and early evening in 

late October (Period K; Fig. 6)
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Figure 3. Average hourly temperatures experienced by all Alligator Snapping Turtles (Macrochelys temminckii) included in the study 

along a latitudinal gradient. Note that each individual is represented by a single line, and that all turtles at a given site are represented 

by a common color. Alternating shaded columns demarcate the 2-week periods within which activity levels where compared.
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Figure 4. Temperature-Activity Regression plots for all three sites using average daily 

temperature and average daily activity for each day over the course of the study (n = 152 d for 

KS and 153 d for OK and LA). Regressions for all three sites were significant (KS: R2 = 0.309, 

F1,151 = 67.673, P < 0.001; OK: R2 = 0.187, F1,152 = 34.891, P < 0.001; LA: R2 = 0.339, F1,152 = 

77.898, P < 0.001). All three sites showed a positive relationship between temperature and 

activity. Y-axis is unitless due to arbitrary units reported by data loggers. 



20 

 

 

Figure 5. Mean hourly activity of Alligator Snapping Turtles (Macrochelys temminckii) 

occupying three sites located in Louisiana, Oklahoma, and Kansas from 7 June to 7 November. 

Dotted lines represent mean sunrise and sunset times for each time period. Time periods where 

activity differed among groups are denoted by a red label, and asterisks (*) indicate hours when 

activity levels differed among sites as determined by repeated-measures ANOVA. The y-axis 

units are not noted as the activity scores calculated by transmitters were reported in arbitrary 

units. 
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Figure 6. Mean hourly activity of 2-, 4-, and 7-year-old Alligator Snapping Turtles 

(Macrochelys temminckii) from 2 June 2019 to 11 January 2020.  Dotted lines represent mean 

sunrise and sunset times for each period. Time periods in which activity differed among ages are 

denoted by a red letter. Single asterisks (*) indicate hours in which the interactions between age 

and hour of day were significant, and double asterisks (**) denote times when 2-year-olds 

exhibited significantly higher levels of activity than the two older age groups as determined by 

repeated-measures ANOVA. The y-axis units are not noted as the activity scores calculated by 

the transmitters were reported in arbitrary units. 
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DISCUSSION 

 

Although all turtles grew over the duration of the study, I did not find support for 

consistent differences in growth among year classes of young juvenile Alligator Snapping 

Turtles. Somewhat surprisingly, I also found no support for an effect of latitude on growth. 

Differences in growth have previously been observed between hatchling Alligator Snapping 

Turtles housed at Tishomingo National Fish Hatchery in Oklahoma and Natchitoches National 

Fish Hatchery in Louisiana (B. Fillmore, unpublished data); however, those differences were 

observed after a full year of observations, whereas my size comparisons spanned just 153 days. 

Additionally, the previous study had much larger sample sizes, with 100 hatchlings housed in 

Louisiana and more than 200 housed in Oklahoma. Had my study run longer, allowing for 

changes in growing season due to difference in overwintering periods, or had similarly large 

sample sizes then treatment differences might have become evident.  

 

Latitudinal Temperature 

Consistent with predictions, mean hourly water temperatures correlated inversely with 

latitude. Summertime temperatures were more similar among sites than autumn or winter 

temperatures, and temperatures declined dramatically at all sites in October. Latitude likely 

accounts for most temperature differences among sites, but it should be noted that the emergent 

vegetation and water depth varied among sites and may have subtly influenced the temperatures 

that turtles experienced.  
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Effects of Latitude on Seasonal and Daily Activity Patterns 

The effects of latitude on diel activity patterns of 4-year-old Alligator Snapping Turtles 

were surprisingly inconsistent. However, during intervals when activity differed significantly 

among treatments, the animals that were reared at the southernmost site in Louisiana tended to be 

more active during pre-dawn hours (two time periods) or daylight hours (two time periods) than 

those reared in Oklahoma or Kansas. Had I obtained a full year of data that spanned all seasons, 

it is possible that greater differences would have become apparent in spring as southerly latitudes 

likely would have warmed earlier in the year than more northerly sites.  

On a seasonal scale, juvenile Alligator Snapping Turtles reared in Louisiana were more 

active than those at more northerly latitudes in late September and early October, and 

subsequently decreased to levels comparable to turtles reared in Oklahoma and Kansas, 

suggesting that water temperatures at my study site in Louisiana remained warm enough to 

support activity later into autumn. 

While I found temperature to be a significant predictor of activity (Fig. 4) other variables 

not accounted for must play a factor in activity as Kansas activity levels where comparable or 

higher to those of turtles in Oklahoma, which experienced higher temperatures on average. 

Differences in the ponds at each site may account for some degree of difference in 

activity patterns (Table 1). The pond in Louisiana was by far the largest of the three, which may 

have resulted in a lower density of prey items than at the other two locations. With that said, I 

noted while in the field that turtles in Louisiana tended to stay near the kettle, which is a concrete 

lined structure where water enters the pond and is the deepest point. Vegetation was by far the 

densest in the Kansas pond, which was also the shallowest. Turtles in Kansas where often 

recollected amongst the vegetation on the edge of the pond, similar to how turtles in Oklahoma 
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utilized the shade mats. These differences in cover and depth may variables for which future 

researchers want to control for. Alligator Snapping Turtles have previously been shown to 

change their use of depth with season (Riedle et al., 2006) meaning that the activity associated 

with that change may have been influenced by the difference in available deep-water habitat. 

Another potentially confounding variable is the use of supplemental feedings. While these 

feedings were irregular and in small amounts, ensuring that hatchery staff at all sites are using a 

similar supplemental feeding regiment at each site would ensure that any potential impact of this 

action would be able to clearly be explained. 

 

Effects of Age Class on Seasonal and Daily Activity Patterns  

Activity patterns varied seasonally among 2-, 4-, and 7-year-old Alligator Snapping 

Turtles that were reared in Oklahoma. Unsurprisingly, generally higher levels of activity 

occurred during summer and early autumn intervals and much lower levels of activity during late 

autumn and winter. Diel cycles varied among age classes, but in general, activity tended to be 

higher during predawn and daylight hours and lower in the evening and nighttime. During most 

2-week time intervals, activity tended to decrease at or before dusk and increase at or before 

dawn, suggesting a diurnal activity pattern that is biased toward more early morning and less 

evening activity.  

Where age-specific differences occurred, 7-year-olds tended to be more active during 

summer months when overall activity was comparatively higher. However, during late autumn 

and winter, 2-year-old Alligator Snapping Turtles consistently exhibited higher levels of activity 

than did older conspecifics. This result is surprising for several reasons. First, a recent study 

demonstrated that hatchling Alligator Snapping Turtles adhere to a distinctly diurnal activity 
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pattern (Spangler, 2017). Based upon my results, it appears that unimodal daytime activity may 

be unique to hatchlings, with transitions to uni- or bimodal crepuscular activity patterns 

occurring within two years of hatching. Reasons for these early shifts in activity are unclear, but 

it is possible that hatchlings follow patterns of activity that minimize interactions with potential 

predators, including large conspecifics. Previous research of the activity of both hatchling and 

adults have shown Alligator Snapping Turtles reduce activity in winter months (Spangler, 2017; 

Van Den Bussche et al., 2018). This makes the discovery of the elevated wintertime activity 

levels that I observed in 2-year-olds surprising, and the reasons underlying this result remain 

enigmatic.  

 

Conclusion 

To date, no empirical studies of the activity of Alligator Snapping Turtles indicate that 

the species consistently conforms to a predominantly nocturnal pattern, although such a pattern 

does occasionally arise during certain seasons and among a demographic subset of individuals 

(Van Den Bussche et al., 2018). My results, in combination with previous studies of hatchlings 

and adults, indicate that overall activity levels and patterns vary with season and life stage. 

Furthermore, my southernmost population in Louisiana showed a modest and inconsistent 

tendency toward higher activity levels than populations maintained farther north, a pattern 

consistent with activity correlating positively with temperature. 

Alligator Snapping Turtle activity is likely influenced by variables beyond those 

associated with latitude (i.e., temperature and photoperiod) and age that may influence changes 

in these patterns. Alligator Snapping Turtles are uniquely adapted to sit-and-wait foraging, 

although the proportion of food that are obtained passively versus by active searching is 
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unknown. Nonetheless, this tendency for passive foraging suggests that movement, as measured 

in this study, may miss ecologically important behaviors that are indistinguishable from true 

inactivity. Furthermore, it is possible that seasonal fluctuations in available forage influences 

activity patterns (Collier et al., 1990; Thies et al., 2006). As different prey become more 

abundant, Alligator Snapping Turtles may adjust foraging tactics to maximize prey acquisition 

rates.  

In conclusion, my results suggest that activity patterns of Alligator Snapping Turtles vary 

with latitude and age but are likely also influenced by other variables that were not accounted for 

in this study. Future studies should focus on pairing acceleration-derived measures of activity 

with specific behaviors to provide a more detailed accounting of time and energy budgets. 

Understanding why and when a species may be active is helpful in both allowing a better 

understanding of the niche of that species, while also allowing researchers to better plan potential 

projects to maximize observations or captures. 
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