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1 INTRODUCTION

In 1946, Paul Erdős posed the following question: how often can a single distance

occur in a large finite set of points in the plane? While there has been much activity on

this and related problems (using other functionals besides distance, and looking at differ-

ent ambient settings), the best known upper and lower bounds for quantity of the original

question are still quite far apart. The pursuit of this question has led to many surprising

connections between seemingly disparate fields of mathematics and has deepened our un-

derstanding of these fields. To gain a deeper understanding of what lies at the core of this

question, there have been a number of variants explored in algebraic settings such as vec-

tor spaces over finite fields and modules over various finite rings.

Finite fields have been studied as they play a close role to coding theory, which has

many applications for compression and transmission of data. Another reason is that finite

fields provide an easier environment to study problems in analysis without having to worry

about convergence. Thus, understanding the unit distance and dot product problem in fi-

nite fields may help us understand coding theory and analysis problems. A few reasons

to study the distinct dot product problem instead of the unit distance distance problem

is that dot products are analogous to lines and have deep connections with the so called

sum-product conjecture, which we discuss later. In this thesis, we focus on the following

variant: how often can a particular dot product occur in a subset of a module over a Ga-

lois ring?

In Chapter 1, we introduce the man behind the Erdős distance problem. Then we

explore the developments made on the problem and its variants, and then the applications

these have for mathematics and industry. Next we introduce terms and results needed for

the rest of the thesis. In Chapter 2, we address the unit distance problem in the context

of single dot products over Galois rings. For Chapter 3, we extend our single dot product

result to pairs of dot products determined by triples of points (called a hinge).
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1.1 Background on the Erdős Distance Problem

How often can a single distance occur in a large finite set of points in the plane? In

this chapter, we will give background on the man who posed this problem, its history, and

its applications. To better understand this problem, we give the example below:

Example 1. Consider how many times a single distance may occur with three points in

the plane. One way to view this problem is to place unit circles and find the maximal in-

cidences between centers of circles and edges of circles. This is as each center and intersec-

tion with its corresponding edge gives us a unit distance. Thus, for three points, we may

place three unit circles whose centers form an equilateral triangle. This gives us the max-

imum number of a single distance for three points is three (see Figure 1.1). If we were to

add another point, then anywhere we place it, it must introduce at least one new distance.

Figure 1.1: Three unit circles forming an equilateral triangle.

1.1.1 Erdős. Paul Erdős was one of the most prolific mathematicians of the 20th

century (see [16]). He was born in 1913 in Hungary to two mathematics teachers. At the

age of 20 he proved Chebyshev’s theorem, an important result in number theory. When

he was 21, he was awarded his doctorate at the university of Budapest. Before the Holo-

caust he relocated to the United States of America and became a traveling mathematician,

living out of a suitcase. During his life, he proposed problems in discrete mathematics,
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graph theory, number theory, mathematical analysis, approximation theory, set theory, and

probability theory. One of his peers said, “A mathematician is a machine for turning cof-

fee into theorems, and Erdős drank copious quantities.” For many of his conjectures, their

proofs and exploration would deepen and tie together many fields of mathematics. Erdős

would often also offer cash prize money for whoever solved one of his conjectures.

In 1946, Paul Erdős published a paper called, “On sets of distances of n points”

in the American Mathematical Monthly (see [9]). There he posed the following question:

How often can a single distance occur in a large finite set of points in the plane? The cash

prize for the Erdős distance problem was $500 in 1946. In today’s (2022) money, this is

over $7,000. Proving the Erdős distance conjecture would also give one a check with Erdős’s

signature.

In his paper (see [9, Theorem 2]), Erdős found that for n points, the number of

times a distance r may occur in the plane, call g(n; r), has n1+c/ log(log(n)) < g(n; r) < n3/2.

We give an adaptation of his proof below.

Proof. By using similar reasoning as we did in Example 1, Erdős found g(n; r) < n3/2. Let

a = [n1/2]. For a lower bound, we consider the set of points (x, y), 0 ≤ x ≤ a, 0 ≤ y ≤ a.

This is the a × a grid of integers. Thus, we are after the number of solutions x2 + y2 = r2.

In another paper (see [10, §1]), Erdős shows that the number of solutions of the equation

m = p2 + q2 is greater than nc/ log(log(n)) for some 0 < c < 1, and hence

g(n; r) > n1+c/ log(log(n))

which completes the proof.

At the end of his proof, Erdős writes, “It seems likely that g(n) < n1+ϵ,” (∀ϵ > 0).
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1.1.2 History. In this section, we give an overview of the developments toward

bounding the Erdős distance problem and the variants that arose. We will use the nota-

tion f(n) = Ω(h(n)) to mean that for n large enough, there exists constant C such that

f(n) > Ch(n). We will use f(n) = O(h(n)) to mean that for n large enough, there exists

constant C such that f(n) < Ch(n). We will use f(n) = Θ(h(n)) for f(n) = Ω(h(n))

and f(n) = O(h(n)). The single distance problem is often called the unit distance prob-

lem. This is as we may turn any single distance into the unit distance by scaling. The best

known upper bound to the original unit distance problem is O(n4/3) and was shown by

Spencer, Szemerédi, and Trotter in 1984 (see [27, Corollary 2]) where they consider the

number of incidences between points and circles.

After years of work on the unit distance problem with little progress, mathemati-

cians turned their gaze to a related problem. The related problem is the distinct distance

problem: For n points, how few different distances may be obtained? Let g(n) be the min-

imal number of distinct distances for n points. So, for instance, g(3) = 1 by using an equi-

lateral triangle. For g(4), we see that no matter where we place a fourth point in Figure

1.1, we will introduce at least one new distance. Ergo, g(4) = 2.

In that same paper where Erdős posed the unit distance problem [9, Theorem 1],

he also posed the distinct distance problem and conjectured that f(n) = Ω(n/(log n)1/2),

where f(n) is the minimum number of distance determined by n points in the plane. He

conjectured that in d dimensions, this problem is Θ(n2/d). In 2004 Katz and Tardos showed

that the lower bound on the number of distinct distances is Ω(n0.8641) for n points in the

plane (see [20]). This problem was practically solved in 2010 by Guth and Katz [14, Theo-

rem 1.1], where the bound was found to be Ω(n/ log(n)). Higher dimensional settings were

studied by Solymosi and Vu in [26, Theorem 1.1], where they showed the number of dis-

tinct distances in Rd is Ω
(︂
n

2
d
− 2

d(d+2)

)︂
, as opposed to the conjectured Ω(n2/d). In 2008 Io-

sevich and Rudnev studied this problem in the instance of vector spaces over finite fields

[18]. This may have inspired Burgain, Katz, and Tao to study the sum-product estimate in
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finite fields [4]. The distinct distance problem was further extended to the integers modulo

a prime power in 2011 by Covert, Iosevich, and Pakianathan [5], where they also consid-

ered the distinct dot product as well as the distinct distance problem. This idea of study-

ing dot products as well as vector spaces over rings is where most of this thesis will spend

it’s time.

Since the distinct distance problem was practically solved, many turned their gaze

back to studying the unit distance problem, but this time they studied variants of the

problem. The variant we focus on is the single dot product problem. This is in a set with

n points, how many pairs of points have a specified dot product? The single dot product

problem has been studied in the case of finite fields and integers modulo a prime power in

[15], [1], [6], and more, where different bounds and configurations are studied.

So far, in the single dot product problem, we have been looking at how many pairs

of points have the specified dot product. An extension to this idea is to ask how subsets of

points have a specified configuration of dot products.

In [1], Barker and Senger obtain upper bounds on the number triples with a speci-

fied pair of dot products. This is, for a given (α, β) ∈ R2, how large is the set {(a, b, c) ∈

P 3 : a·b = α, b·c = β} where P ⊂ R2? Such configurations are sometimes called hinges. In

[6], Covert and Senger extend the concept of hinges to finite fields and the integers modulo

a prime power. Kilmer, Marshall, and Senger, in [21], broaden the concept of hinges over

the reals to k-chains over the reals, where k + 1 points determine k dot products.

1.1.3 Applications. This unit distance problem and variants has far-reaching

applications. We see its ideas being used in multiple industries, such as in mobile robot

swarms, big data, pattern recognition, and more.

A mathematical reason to study the unit dot product problem is that, if we fix

(u, v) and r, then (u, v) · (x, y) = r is the same as ux + vy = r, the standard form of a line

in R2. Thus, studying the unit dot product problem helps us understand key facts about
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lines. Another reason to study dot products is that the set A·A+A·A = {a1a2+a3a4 : ai ∈

A} is equivalent to the set of dot products of A2 with itself. This set has connections with

the sum-product conjecture that max (|A+ A|, |A · A|) ≥ |A|2−o(1) where A ⊂ R. This

was conjectured by Erdős and Szemerédi in 1983 in [11] over the integers and is figured to

be true for the reals. In [31], Terence Tao studies the sum-product conjecture over many

types of rings. Hart, Iosevich, Koh, and Rudnev [15], prove, using the Erdős distance con-

jecture, results relating to the set A · A+ · · ·+ A · A where A is a subset of a finite field.

Finite rings have started to be used in every day life through coding theory. This is

the theory of strings over a set and how to compress, transmit, encrypt, etc. these strings.

We are seeing codes over Zpn being used as they have a better way of defining distance

than other rings (see, [2, §8.1.1]). One of the common types of codes, cyclic, can be de-

scribed in terms of polynomials, so in [2, §8.1.3], we see Galois rings and coding theory

coming together.

Another reason to study finite rings is that they provide a test bed for complicated

analysis problems as integrals are always convergent. The prototypical example of this is

Zeev Dvir’s paper “On the size of Kakeya sets in finite fields” [8, Theorem 2], where he

proved the Kakeya Conjecture (relates to subsets of Fpl that contain a line in every direc-

tion) via simple means.

1.2 Ring Theory Background

We will assume that the reader has an undergraduate knowledge of groups and

rings. For further background information, see [7].

Throughout this thesis, we will assume that p is a given prime number. We will use

Zpl to be the integers modulo pl for some l > 0. We will use Fpl to denote the finite field

of order pl, this is also called a Galois field.
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1.2.1 Construction of Galois Rings. We focus on Galois rings as they are the

building blocks of finite local rings which are in turn the building blocks of finite commu-

tative rings. Any finite local ring is isomorphic to a quotient of a polynomial ring over a

Galois ring. This is if L is a local ring, then L ∼= Re,k[x1, x2, · · · , xn]/I for some prime

p, natural numbers e, k and ideal I ⊂ Re,k[x1, x2, · · · , xn]. In particular, Zpe
∼= Re,1

∼=

Zpl [x]/(x + 1) and Fpk
∼= Zp[x]/(f(x)) ∼= R1,k (where f is a monic irreducible polynomial

of degree k). In turn, local rings are the building blocks for any finite commutative ring

with unity (see [2, Chapter 3, Theorem 3.1.4]). We will first build up some definitions to

be able to understand what a Galois ring is. Our presentation follows elements from [2],

[17], and [24]

We will use the notation Zpl to mean Z/(pl) where (pl) is the ideal generated by pl.

Definition 2 (Basic monic irreducible polynomial). Let the map ρ : Zpl → Zp be the

map ρ(x) = r where r is remainder of x divided by p. Let the map µ : Zpl [x] → Zp[x]

be µ(
∑︁n

i=0 aix
i) =

∑︁n
i=0 ρ(ai)xi, which will apply mod p to the coefficients. Recall that

a monic polynomial is a polynomial with leading coefficient 1. A basic monic irreducible

polynomial is a polynomial f in Zpl [x] such that µ(f) is a monic irreducible polynomial in

Zp[x].

We know monic irreducible polynomials of a given degree exist (see [32, §2.3]). As

µ is surjective, we may take a preimage of a monic irreducible in Zp[x] as our basic irre-

ducible polynomial in Zℓ
p[x]. Further, at least one of these preimages is monic as ρ(1) = 1.

Definition 3 (Galois Ring). Let p be a given prime. The construction of the Galois ring,

Re,k, is Re,k = Zpe [x]/(f(x)), where f is a basic monic irreducible polynomial in Zpe [x] of

degree k.

In particular, Zpl and Fpn are both Galois rings. For Zpl , we may construct as Zpl [x]/(x+

1) = Rl,1 and for Fpn we may construct as Zp[x]/(f(x)) = R1,n where f(x) is a basic monic

irreducible polynomial of degree n. Thus, Zpl = Rl,1 and Fpn = R1,n

7



Example 4. We will construct R2,2 when p = 2. We see that x2 + x + 1 ∈ Z2[x] is monic

irreducible as 0 and 1 are not roots of this degree 2 polynomial. Thus, x2 + x + 1 ∈ Z22 [x]

is a basic monic irreducible polynomial. Thus, R2,2 = Z4[x]/(x
2 + x+ 1).

In this thesis, we will study dot products over (Re,k)
d. This type of structure is

called a module.

Definition 5 (Module). Suppose that R is a commutative ring with identity, 1. Then a

module, M , over R is a structure much like a vector space with the properties that for all

r, s ∈ R and x, y ∈ M ,

r · (x+ y) = r · x+ r · y

(r + s) · x = r · x+ s · x

(rs) · x = r · (s · x)

1 · x = x

1.2.2 Properties of Galois Rings. We will now show many of the properties of

Galois Rings. One important property of Galois rings is that they are finite local rings. To

understand what a local ring is, we must first define a maximal ideal.

Definition 6. Let R be a given ring. A maximal ideal M ⊊ R is a proper ideal, that is

an ideal not equal to R, of R such that if J is an ideal and M ⊂ J ⊂ R, then J = M or

J = R.

A local ring is a ring with one unique maximal ideal. Notice that a field is a local

ring as (0) is the unique maximal ideal. We now prove some results about local rings. Re-

call that a unit is an element with a multiplicative inverse. We will use R× to denote the

set of units of the ring R.

Proposition 7. Any element of a local ring is either a unit or an element of the maximal

ideal.

8



Proof. Let R be a local ring with maximal ideal M . Let r ∈ R. In the case that r is a

unit, we are done. In the case that r is not a unit, then (r) ⊊ R and hence (r) is a proper

ideal. As every proper ideal is a subset of a maximal ideal, and M is the unique maximal

ideal, (r) ⊂ M . Thus, r ∈ M .

Proposition 8. Any element r ∈ R where R is a local ring has either r as a unit or 1 − r

as a unit.

Proof. Let M be the maximal ideal of R. Suppose that r is not in M , then since (r) is an

ideal, it must be contained in a maximal ideal of R or (r) = R and hence r ∈ R×. As

r ̸∈ M , it must be that (r) = R.

Suppose that x ∈ M and that 1 − x is not a unit. As 1 − x is not a unit, then

1− x ∈ M . This means 1− x = m for some m ∈ M and so 1 = x+m. As ideals are closed

under addition, 1 ∈ M , and hence M = R. This is a contradiction. Hence, 1− x must be a

unit.

We will now build up to showing that Galois rings are local rings.

Definition 9. Let R be a given ring. A nilpotent element a ∈ R is an element such that

there exists some n > 0 such that an = 0.

Proposition 10. The set of nilpotent elements lie in the intersection of all prime ideals.

Proof. Let R be a given ring. Let π : R → D where D is an integral domain. Let a ∈ R be

nilpotent. Then there exists n > 0 such that aan = 0. Then π(aan) = 0 = π(a)π(an), hence

π(a) is a zero divisor. As D is an integral domain, π(a) must then be 0. Thus, a must be

in any given prime ideal as R/(p) is an integral domain when p is a prime ideal.

We will call a set nilpotent if all elements of the set are nilpotent.

Proposition 11. If a ring R has a maximal ideal M with all nilpotent elements, then M

is the unique maximal ideal of R.

9



Proof. Suppose that M ′ is a maximal ideal of R. Then by 10, M ⊂ M ′. By maximality of

M , M = M ′.

Lemma 12. A Galois ring is local.

Proof. Let Re,k be a given Galois ring. If a ∈ (p), then a = pr for some r ∈ Re,k, and so

ae = (pr)e = 0 and so (p) is nilpotent. Note

Re,k/(p) ∼=
Z[x]

(pe, p, f)
∼= Zp[x]/(f),

and so as Zp[x]/(f) is a field, (p) is a maximal ideal. Thus by 11, (p) is the unique maxi-

mal ideal of Re,k. Ergo, Re,k is a local ring.

Lemma 13. The units of a Galois ring Re,k has

R×
e,k

∼= (Re,k/(p))
× × (1 + (p)).

Proof. As Re,k is local, the set 1 + (p) is a subgroup of the units under multiplication. As

(p) is a maximal ideal, Re,k/(p) if a field and hence every non zero element of Re,k/(p) is a

unit. Let S ′ be a set of representatives of Re,k/(p) in Re,k. That is the canonical surjective

homomorphism π : Re,k → Re,k/(p) is bijective when restricted to S ′. Let S = S ′ \ {0}.

Then S ⊂ R×
e,k. Also note, |S ∩ (1 + (p))| = 1. This implies that S(1 + (p)) = {st : s ∈

S, t ∈ (1 + (p))} ∼= S × (1 + (p)). As |R×
e,k| = |Re,k \ (p)| = pek − p(e−1)k and |S| = pk − 1

and |(1 + (p))| = |(p)| = p(e−1)k, we see that |S × (1 + (p))| = pek − p(e−1)k. Thus,

R×
e,k

∼= (Re,k/(p))
× × (1 + (p)).

It is also known that the units R×
e,k has structure R×

e,k
∼= Zpk−1 × (Zpe−1)k when p

is odd or when p and e are both 2. We have R×
e,k

∼= Z2k−1 × Z2 × Z2e−2 × (Z2e−1)k−1 when

p = 2 and e ≥ 3. The proof for this is given in [2, Proposition 6.2.5]. This gives rise to the

p-adic representation for an element of Re,k.
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Example 14. When p = 2, R×
2,2

∼= Z22−1 × (Z22−1)2 ∼= Z3 × Z2 × Z2.

Lemma 15. For any 0 ≤ i ≤ e, Re,k/(p
i) ∼= Ri,k.

Proof. Note that (pi) is the kernel of the map g : Re,k → Re,k with g(r) = pe−ir. Recall

Re,k
∼=

Zpe [x]

(f)

by definition of Re,k where f is a basic monic irreducible polynomial of degree k. Further,

we restrict f to having coefficients in the range 0–(pi − 1). Also, we will view Re,k as poly-

nomials with coefficients in the range 0–(pe − 1). This will allow us to view an element in

Ri,k as being also an element in Re,k. Set g(z) = pe−iz, then g has kernel (pi) and so by

the first isomorphism theorem,

Re,k

(pi)
∼= g(Re,k).

Notice,

g(a0+a1x+· · · ak−1x
k−1) = pe−i(a0+a1x+· · · ak−1x

k−1) = pe−iao+pe−ia1x+· · · pe−iak−1x
k−1,

and so, it is equivalent to the map h : Zpe → Zpe with h(r) = pe−ir lifted to Zpe [x]/(f)

(that is applying the map to the coefficients). Notice that (pi) ⊂ Zpe is the kernel of h.

Thus, by the first isomorphism theorem, h(Zpe) ∼= Zpe/(p
i) ∼= Zpi . Hence g is the lifting of

h, so

g(Re,k) ∼=
h(Zpe)[x]

(f)

. By the first isomorphism theorem and definition of Ri,k, we have

h(Zpe)[x]

(f)
∼=

Zpi [x]

(f)
∼= Ri,k.

Thus,
Re,k

(pi)
∼= Ri,k.

11



Theorem 1.1. Let β be a generator of the subgroup of R×
e,k isomorphic to Zpk−1 (recall

Zpk−1
∼= (Re,k/(p))

×). Let Te,k = {0, 1, β, · · · βpk−2}. Every z ∈ R has a unique p-adic

representation

z = z0 + pz1 + · · ·+ pe−1ze−1, zi ∈ Te,k.

Proof. We proceed by induction. It is clear that the theorem holds for R1,k
∼= Fpk . Sup-

pose that the theorem holds for all 1 ≤ i < e. Let R = Re,k and K = R/pR. Let π be the

natural surjective quotient map from R to K with kernel (p). Let h(x) = px. Recall that

(p) = {px : x ∈ R}, which is Im(h). By the first isomorphism theorem, Im(h) ∼= R/ ker(h).

As R has characteristic pe (recall a ring has characteristic κ if κ1 = 0 and κ is the minimal

such number), kerh = (pe−1). Thus by Lemma 15, Im(h) ∼= R/(pe−1). Ergo,

Im(h) ∼= R/(pe−1) ∼= Re−1,k.

Thus, elements of (p) = Imh have p-adic representation. As R is split into cosets by (p),

every x ∈ R has unique representation x = k + pr where k ∈ kerh ∼= (pe−1) and pr ∈ (p).

As |R| = | Imh|| kerh| and | Imh| = |Re−1,k| = p(e−1)k, it must be | kerh| = pk. As

kerh = (pe−1), hence a cyclic subgroup of R of order pe−1, kerh ∼= Fpk . Thus, x = k + pr

has that k ∈ Te,k. Also, (p) ∼= Re−1,k, so we have r has p-adic representation. Therefore, x

has p-adic representation.

Theorem 1.2 (Uniqueness). For any given e, k, the Galois ring Re,k is unique up to iso-

morphism.

Proof. Let e, k be given and g, f be basic monic irreducible polynomials of degree k. Let

R1 = Zpe [x]/(f) and R2 = Zpe [x]/(g). Let modp(r) = r + (p). As f, g are both ba-

sic monic irreducible polynomials of degree k, modp(R1) ∼= Fpk
∼= modp(R2). Let β1

and β2 be generators for R×
1 , R

×
2 isomorphic to Zpk−1 respectively and T1, T2 be the corre-

sponding Te,k for each from Theorem 1.1. By Theorem 1.1, we may form an isomorphism,
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ϕ, between R1 and R2 by sending β1 to β2 and extending by p-adic expansion. That is,

ϕ(z0 + pz1 + . . .+ pe−1ze−1) = z′0 + pz′1 + . . .+ pe−1z′e−1 where zi ∈ T1 and z′i ∈ T2.

For an alternative proof of the uniqueness of Galois rings (see [17, Theorem 20]).

Definition 16. We will use [pi] to mean (pi) \ (pi+1).

Any r ∈ [pi] has p-adic representation, r = pizi + pi+1zi+1 + · · · + pe−1ze−1 where

zi ∈ Te,k \ {0} and zj ∈ Te,k for j > i. Note that
⋃︁e

i=0[p
i] = R and that [pi] ∩ [pj] = ∅ when

i ̸= j.

Lemma 17. Any s ∈ [pi] has the form s = piu where u is the uniquely determined unit of

the form u1 + pu2 + · · ·+ pe−i−1ue−i−1 where ui ∈ Te,k.

Proof. Let s ∈ [pi]. That means that s ∈ (pi) and s ̸∈ (pi+1). As s ∈ (pi), s = piu for some

u ∈ R. Suppose that u is not a unit, then (u) ̸= R and so (u) ⊊ R. As R is a local ring,

(u) ∈ (p) and hence u = pr for some r ∈ R. This means that s = pipr = pi+1r, and so

s ∈ (pi+1). This is a contradiction. Thus, u is a unit.

Lemma 18. Any ideal of Re,k has the form (pi) for 0 ≤ i ≤ e.

Proof. Let I be an ideal of Re,k. As Re,k =
⋃︁e

i=0[p
i], and I is non-empty, all a ∈ I are

in some [pi]. Let b ∈ I be such that b ∈ [pj] and j is minimal. By Lemma 17, b = pju

for some unit u. Thus, (b) = (pj). As j is minimal and all other elements of I have form

a = piu for i ≥ j, we have I = (pj).

1.2.3 Characters of Galois Rings and Their Properties. The proofs of the

main theorems rely heavily on characters, which are maps from a ring to the complex

numbers. Thus, here we give some background theorems and lemmas on characters over

Galois Rings. When the context is clear, we will write R for Re,k. We will use 0̄ to denote

the element with all zero entries in the module Rd.

Example 19. We will examine R2,2 = Z4[x]/(x
2 + x+ 1) with p = 2. We will use notation

from Theorem 1.1. For finding T2,2, we must first find β. Since β must be isomorphic to

13



Zp2−1, we will take β = x and show ord(x) = 3. As x2 = 3x+3 and x(3x+3) = 3x2+3x =

3(3x + 3) + 3x = x + 3x + 1 = 1, we have ord(x) = 3. So, T2,2 = {0, 1, x, 3x + 3}. We will

use this choice of p, β, and T2,2 for our examples with R2,2.

Definition 20 (Trace map). Let Tre,k : Re,k → Zpe be the trace map with

Tre,k(z) = z + τ(z) + τ 2(z) + · · ·+ τ k−1(z)

(here τn = τ ◦ τn−1) where z has p-adic expansion z0 + z1p+ · · ·+ ze−1p
e−1 and

τ(z) = zp0 + pzp1 + · · ·+ pe−1zpe−1.

Lemma 21. For n ∈ N, τn(z) = zp
n

0 +pzp
n

1 +· · ·+pe−1zp
n

e−1 where z = z0+pz1+· · ·+pe−1ze−1

by p-adic expansion.

Proof. We proceed by induction. By definition, this is true for τ 1(z). Suppose that for all

i < n, the theorem holds. Then

τn−1(z0 + pz1 + · · ·+ pe−1ze−1) = zp
n−1

0 + pzp
n−1

1 + · · ·+ pe−1zp
n−1

e−1 .

Thus,

τ(τn−1(z)) = τn(z)

= (zp
n−1

0 )p + p(zp
n−1

1 )p + · · ·+ pe−1(zp
n−1

e−1 )p

= zp
n

0 + pzp
n

1 + · · ·+ pe−1zp
n

e−1.

Example 22. We compute the trace of 2x + 3 ∈ R2,2. First we see that the p-adic expan-
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sion of 2x+ 3 is 1 + 2(3x+ 3), so we have

Tr2,2(1 + 2(3x+ 3)) = (1 + 2(3x+ 3)) + τ(1 + 2(3x+ 3))

= (1 + 2(3x+ 3)) + (12 + 2(3x+ 3)2)

= 1 + 1 + 2(3x+ 3) + 2x

= 2(1 + 3 + 3x+ x)

= 0.

Definition 23 (χe,k). The canonical additive character χe,k : Re,k → C× is defined as

χe,k(z) = e2πiTre,k(z)/p
e

Example 24. We compute χ2,2(3x+ 2). By definition,

χ2,2(3x+ 2) = e2πiTr2,2(3x+2)/22

where

Tr2,2(3x+ 2) = Tr2,2(x+ 2(3x+ 3))

= x+ 2(3x+ 3) + (x2 + 2(3x+ 3)2)

= x+ 2(3x+ 3) + (3x+ 3) + 2x

= x+ 2x+ 2 + 3x+ 3 + 2x

= 1.
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So,

χ2,2(3x+ 2) = e2πi(1)/4

= eπi/2

= 0 + i.

Lemma 25. The canonical additive character χ is non-trivial.

Proof. From [19, §2.2] we see that Tr1,k ◦µ = ρ ◦ Tre,k, where µ, ρ are from Definition

2. Note Tr1,k is also the usual trace from Fpk to Fp. Notice that from Definition 20 that

Tr1,k(z0) = z0 + zp0 + · · · + z
(k−1)p
0 . That is Tr1,k has degree pk−1 when viewed as a poly-

nomial over R1,k. We know that |R1,k| = pk. Thus, there must exist a ∈ R1,k such that

Tr1,k(a) ̸= 0. So in particular, Tr1,k(µ(ι(a))) ̸= 0 where ι : R1,k → Re,k is the standard

inclusion map so that µ ◦ ι = id. Thus, ρ(Tre,k(ι(a))) ̸= 0. As ρ(0) = 0, Tre,k(ι(a)) ̸= 0.

Hence 2πiTre,k(ι(a))/p
e ̸= 0 and hence χe,k(ι(a)) ̸= 1. Ergo, χe,k is non-trivial.

Definition 26. Let ρi : Re,k → Re−i,k by ρi(b0 + pb1 + · · · pe−1be−1) = b0 + pb1 + · · · +

pe−i−1be−i−1 where b0 + pb1 + · · ·+ pe−1be−1 is the p-adic expansion of the argument (Defini-

tion 1.1).

Lemma 27. If 0 ≤ i ≤ e, then ρi is a homomorphism.

Proof. Notice that ρi(1) = 1, and that for any a, b ∈ Re,k,

a+ b = (a0 + b0) + p(a1 + b1) + . . .+ pe−1(ae−1 + be−1)
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by the distributive property and p-adic expansion, so

ρi(a+ b) = (a0 + b0) + p(a1 + b1) + . . .+ pe−i−1(ae−i−1 + be−i−1)

= (a0 + pa1 + . . .+ pe−i−1ae−i−1) + (b0 + pb1 + . . .+ pe−ibe−i−1)

= ρi(a) + ρi(b).

Also, ab =
∑︁e

i=0

∑︁i
j=0 p

iajbi−j. So

ρi(ab) =
e−i−1∑︂
i=0

i∑︂
j=0

piajbi−j

=
e−i−1∑︂
i=0

piai

e−i∑︂
j=0

pjbj

= ρi(a)ρi(b).

Hence, ρi is a homomorphism.

Also, ρi is equivalent to the natural projection to the quotient ring Re,k/(p
e−i) ∼= Re−i,k.

Example 28. For R2,2, we see ρ1 has codomain R1,2
∼= Z21 [x]/(x

2 + x+ 1).

Example 29. We compute ρ1(x+ 2):

ρ1(x+ 2) = ρ1(x+ 2(1))

= x

Lemma 30. For every a ∈ Re,k, we have χe,k(p
ia) = χe−i,k(ρi(a)), where χe,k is the canon-

ical additive character for Re,k.
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Proof. If a ∈ Re,k, then pia has p-adic expansion pia0+ · · ·+pe−1+iae−1 with ai ∈ Te,k. Note

χe,k(p
ia) = exp(2πiTre,k,1(p

ia)/pe)

which by definition of Trace (Definition 20) gives

χe,k(p
ia) = exp(2πi[pia+ (piap0 + · · ·+ pe−1+iape−1) + · · ·+ (piap

k

0 + · · ·+ pe−1+iap
k

e−1)]/p
e).

As Re,k has characteristic pe, the ae−i through ae−1 terms become zero. Hence,

χe,k(p
ia) = exp(2πi[pia+ (piap0 + · · ·+ pe−1ape−1−i) + · · ·+ (piap

k

0 + · · ·+ pe−1ap
k

e−1−i)]/p
e)

= exp(2πi[a+ (ap0 + · · ·+ pe−1−iape−1−i) + · · ·+ (ap
k

0 + · · ·+ pe−1−iap
k

e−1−i)]/p
e−i)

= χe−i,k(ρi(a)).

This gives the following corollary.

Corollary 31. If a ∈ Re,k is given, then

∑︂
z∈piRe,k

χe,k(az) =
∑︂

w∈Re−i,k

χe−i,k(ρi(a)w).
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Proof. We use the p-adic expansion of z to obtain

∑︂
z∈piRe,k

χe,k(az) =
∑︂

z∈piRe,k

χe,k(a(p
izi + pi+1zi+1 + · · ·+ pe−1ze−1))

=
∑︂

z∈piRe,k

χe,k(p
ia(zi + p1zi+1 + · · ·+ pe−i−1ze−1))

=
∑︂

w∈Re−i,k

χe,k(p
iaι(w0 + p1w1 + · · ·+ pe−i−1we−i−1))

where ι is the inclusion map ι : Re−i,k → Re,k. By Lemma 30, this is

∑︂
z∈piRe,k

χe,k(az) =
∑︂

w∈Re−i,k

χe−i,k(ρi(aι(w)))

=
∑︂

w∈Re−i,k

χe−i,k(ρi(a)w)).

concluding the proof.

Lemma 32 (Orthogonality). Let e, k be given. For any a ∈ R,

∑︂
z∈R

χ(az) =

⎧⎪⎪⎨⎪⎪⎩
|R|, a = 0

0, a ̸= 0

Proof. When a = 0, then χ(az) = χ(0z) = 1. So

∑︂
z∈R

χ(az) =
∑︂
z∈R

1 = |R|.
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When a ̸= 0, then a = piu for some i < e and unit u (Lemma 17). Then we have

∑︂
z∈R

χ(az) =
∑︂
z∈R

χ(piu)

=
∑︂
z∈R

χe−i,k(ρi(uz)).

As ρi is a homomorphism, we may break R into cosets of ker(ρi). Let S be a set of repre-

sentatives of R/ ker(ρi). This gives,

∑︂
z∈R

χ(az) =
∑︂

x∈ker(ρi)

∑︂
y∈S

χe−i,k(ρi(u(x+ y)))

As R/ ker(ρi) ∼= R/(pe−i) ∼= Re−i,k by Lemma 15,

∑︂
z∈R

χ(az) = | ker(ρi)|
∑︂

y∈Re−i,k

χe−i,k(ρi(uy)).

As u is a unit, y ↦→ uy is an automorphism. So, summing uy is the same as summing over

y. Hence,

| ker(ρi)|
∑︂

y∈Re−i,k

χe−i,k(ρi(uy)) = pik
∑︂

y∈Re−i,k

χe−i,k(ρi(y)).

Since y ∈ Re−i,k and ρi removes the upper pe−i through pe−1 terms, ρi(y) = y. Hence,

| ker(ρi)|
∑︂

y∈Re−i,k

χe−i,k(ρi(uy)) = pik
∑︂

y∈Re−i,k

χe−i,k(y).

Since χe−i,k is a non-trivial character (Lemma 25), there exists b ∈ Re−i,k such that χe−i,k(b) ̸=
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1. Thus,

χe−i,k(b)
∑︂

y∈Re−i,k

χe−i,k(y) =
∑︂

y∈Re−i,k

χe−i,k(b+ y)

Which as addition forms a group, summing over y− b is the same as summing over y as we

are summing over all of Re−i,k. Thus,

χe−i,k(b)
∑︂

y∈Re−i,k

χe−i,k(y) =
∑︂

y−b∈Re−i,k

χe−i,k(y)

As Re−i,k is a group under addition, this is

χe−i,k(b)
∑︂

y∈Re−i,k

χe−i,k(y) =
∑︂

y∈Re−i,k

χe−i,k(y).

Thus, χe−i,k(b)
∑︁

y∈Re−i,k
χe−i,k(y) =

∑︁
y∈Re−i,k

χe−i,k(y). Since χe−i,k(b) ̸= 1, it must be

that
∑︁

y∈Re−i,k
χe−i,k(y) = 0. Therefore,

∑︁
z∈R χ(az) = 0.

Lemma 33. If 0 < n < e is a given natural number, then

∑︂
z∈R×

χ(pnz) ≤ 0

when n < e.

Proof. Note that

∑︂
z∈R×

χ(pnz) =
∑︂
z∈R

χ(pnz)−
∑︂
z∈(p)

χ(pnz)

= I + II.
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By orthogonality (Lemma 32), I = 0. So
∑︁

z∈R× χ(pnz) = −
∑︁

z∈(p) χ(p
nz). Thus, when

n + 1 = e,
∑︁

z∈R× χ(pnz) = −|(p)| = −|pRe,k|. In the case that n + 1 ̸= e, by applying

Corollary 31,

−
∑︂
z∈R×

χ(pnz) =
∑︂

pz∈pRe,k

χ(pn+1z)

=
∑︂

w∈Re−1,k

χe−1,k(p
nw).

By orthogonality in z, this is 0 (as n ̸= e − 1). Thus,
∑︁

z∈R× χ(pnz) ≤ 0 when n < e.

Further,

∑︂
z∈R×

χ(pnz) =

⎧⎪⎪⎨⎪⎪⎩
−|pRe,k| , n+ 1 = e

0 , n+ 1 < e

For more properties of character sums, see [25].

We now state the Cauchy-Schwarz inequality.

Lemma 34 (Cauchy-Schwarz). If {ak} and {bk} are sequences of complex numbers, then

⃓⃓⃓⃓
⃓

n∑︂
k=1

akb̄k

⃓⃓⃓⃓
⃓
2

≤

(︄
n∑︂

k=1

akāk

)︄(︄
n∑︂

k=1

bkb̄k

)︄

where z̄ represents the conjugate of complex number z.
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2 SINGLE DOT PRODUCTS

We will follow the proof by Covert, Iosevich, and Pakianathan [5, Theorem 1.3.2].

There they study the Erdős distance problem over the integers modulo an odd prime to

a power. They study the finite cyclic rings Zpl as such results give insights for questions

about the rationals and the integers. Their dot product result is as follows:

Theorem 2.1. Let E ⊂ (Zpl)
d. If |E| > lpl(

(2l−1)d
2l

+ 1
2l), then Π(E) ⊃ Z×

pl
where Π(E) =

{x · y : x, y ∈ E}.

Their general method of proof is to estimate a counting function ν(t) (which counts

the number of pairs of points with dot products t). They first transform ν(t) into a char-

acter sum, then use the p-adic expansion of elements of Zpl , then they apply Cauchy-Schwarz,

and then they extend their main sum to over all of Zpl , then they simplify the sum using

orthogonality of characters and properties of Zpl . They get that ν(t) = |E|2/pl + R(t),

where |R(t)| < l|E|pl( d−1
2

(2−1/l)) whenever |E| > lpld−d/2+1/2. We now formally define ν(t)

for the Galois ring setting.

Definition 35. Let e, k be given natural numbers greater than 0. Let E ⊂ Rd
e,k. We de-

fine ν(t) = |{(x, y) ∈ E × E : x · y = t}|.

The following is the key estimate for our main result.

Lemma 36. Let p, e, k, d be given natural numbers with p prime, e ≥ 5, d ≥ 2, and k ≥ 1.

Then

ν(t) ≤ 2|E|/pek

for any t ∈ Re,k whenever |E| ≥
√
6 + 3epdek−dk/2+ek/2+k/2.

Lemma 36 is an application of the more technical result whose proof we delay until later.

Theorem 2.2. Let e, k be given natural numbers greater than 0. Let E ⊂ Rd
e,k. Let
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ν(t) = |{(x, y) ∈ E × E : x · y = t}|. For any t ∈ R,

ν(t) < |E|2/pek +D(t).

Further, the discrepancy D(t), has D(t) < |E|2/pek whenever

|E| ≥ pek
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek)

We now prove Lemma 36.

Proof. Label

F = pek
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek).

By Theorem 2.2, we know that

|E| ≥ F.

Examining F , we see

F = pek
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek)

= pek+dek/2

e−1∑︂
i=0

√︁
pdik−ik (2p−ik−k + 1 + p−ek)

So,

F

pekpdek/2
≤

e−1∑︂
i=0

pdik/2−ik/2
√︁
2p−ik−k + 1 + p−ek.
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For getting a cleaner bound for Theorem 2.2, we now apply Cauchy–Schwarz, which loosens

our bound to

F

pekpdek/2
≤

⌜⃓⃓⎷ e−1∑︂
i=0

(pdik/2−ik/2)2
e−1∑︂
i=0

√︁
2p−ik−k + 1 + p−ek

2

≤

⌜⃓⃓⎷ e−1∑︂
i=0

pdik−ik

e−1∑︂
i=0

2p−ik−k + 1 + p−ek.

This is a sum of geometric series or constants. Thus,

F

pekpdek/2
=

√︄
1− pdek−ek

1− pdk−k

(︃
2p−k

1− p−ek

1− p−k
+ e+ ep−ek

)︃
.

The above quantity in parenthesis is maximized when e grows large, k = 1 and p = 2,

giving 1−p−ek

1−p−k ≤ 2. This quantity is smaller for all other choices of e, k, and p. Ergo,

F

pekpdek/2
≤

√︄
1− pdek−ek

1− pdk−k
(2p−k + e+ ep−ek)

≤

√︄(︃
1

1− pdk−k
− pdek−ek

1− pdk−k

)︃
(2p−k + e+ ep−ek).

Let C = 1/(1 − pdk−k). We may bound − pdek−ek

1−pdk−k by 2pdek−ek−dk+k as −1
1−B

≤ 2
B
for any

B ≥ 2. This gives,

F

pekpdek/2
≤
√︁

(C + 2pdek−ek−dk+k) (2p−k + e+ ep−ek).

Since e ≥ 5, k ≥ 1, and p ≥ 2, we have 2p−k + e+ ep−ek ≤ 2 + e. So,

F

pekpdek/2
≤
√︁

(C + 2pdek−ek−dk+k) (2 + e).
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As C = 1/(1− pdk−k), pdk−k ≥ 2, |C| ≤ 1, and C +2pdek−ek−dk+k ≤ (|C|+2)pdek−ek−dk+k we

have,

F

pekpdek/2
≤
√︁

(1 + 2)pdek−ek−dk+k (2 + e)

≤
√︁

3(2 + e)pdek−dk−ek−dk+k

≤
√
6 + 3epdek/2−dk/2−ek/2+k/2

Thus F ≤
√
6 + 3epdek−dk/2+ek/2+k/2 and so ν(t) ≤ 2|E|/pek whenever

|E| >
√
6 + 3epdek−dk/2+ek/2+k/2.

We now go on to show when Lemma 36 is nontrivial. As |E| ≤ |Rd| = pdek, this

result is non-trivial when

pdek ≥
√
6 + 3epdek−dk/2+ek/2+k/2,

which simplifies to

pdk/2 ≥
√
6 + 3epek/2+k/2

pdk ≥ (6 + 3e)pek+k

dk ≥ ek + k + logp(6 + 3e).

So, whenever d ≥ e + 1 +
logp(6+3e)

k
, then we may take a proper subset of |Rd| for Lemma

36.
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We now get to the heart of the thesis; the technical result for the number of pairs

in Galois rings with specified dot product. We now prove Theorem 2.2.

Proof. Recall that by Lemma 32,
∑︁

r∈R χ(ra) = 0 if a ̸= 0 and pek if a = 0. Since we are

after x · y = t, we examine
∑︁

s∈R
∑︁

x,y∈E χ(s(x · y − t)). This sum gives out a pek precisely

when x · y = t and 0 when x · y ̸= t. Thus, by multiplying this sum by p−ek we get the

number of x, y ∈ E such that x · y = t. Thus, we write ν(t) as below and split ν(t) into the

following parts

ν(t) = p−ek
∑︂
s∈R

∑︂
x,y∈E

χ(s(x · y − t))

= p−ek
∑︂
s∈R

∑︂
x,y∈E

χ(s(x · y))χ(−st)

= ν0(t) + · · ·+ νe(t),

where

νi(t) = p−ek
∑︂
s∈[pi]

∑︂
x,y∈E

χ(s(x · y))χ(−st).

For νe(t), we have

νe(t) = p−ek
∑︂
x,y∈E

χ(0(x · y))χ(−0t) = |E|2/pek.

This is what gives us the |E|2/pek term for ν(t). Thus the discrepancy is

D(t) =
e−1∑︂
i=0

νi(t) = p−ek
∑︂

s∈R\{0}

∑︂
x,y∈E

χ(s(x · y − t)). (2.1)

We now examine νi(t) for some i ̸= e. Recall,
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νi(t) = p−ek
∑︂
s∈[pi]

∑︂
x,y∈E

χ(s(x · y))χ(−st).

We will prepare to use Cauchy-Schwarz 34 by recognizing that

νi(t) = p−ek

⎛⎝∑︂
x∈E

(1)
∑︂
y∈E

∑︂
s∈[pi]

χ(s(x · y))χ(−st)

⎞⎠
=

⎛⎝∑︂
x∈E

(1)
∑︂
y∈E

p−ek
∑︂
s∈[pi]

χ(s(x · y))χ(−st)

⎞⎠ .

By applying Cauchy-Schwarz with ax = 1 and bx =
∑︁

y∈E p−ek
∑︁

s∈[pi] χ(s(x · y))χ(−st),

|νi(t)|2 ≤ p−2ek

(︄∑︂
x∈E

11̄

)︄⎛⎝∑︂
x∈E

∑︂
y∈E

∑︂
s∈[pi]

χ(s(x · y))χ(−st)
∑︂
y′∈E

∑︂
s′∈[pi]

χ(s′(x · y′))χ(−s′t)

⎞⎠ .

Because zz̄ ≥ 0 for any z ∈ C, we may dominate the second sum of x ∈ E by x ∈ Rd,

obtaining,

|νi(t)|2 ≤ p−2ek|E|
∑︂
x∈Rd

∑︂
y,y′

∑︂
s,s′∈[pi]

χ(s(x · y − t))χ(−s′(x · y′ − t)).

We make use of Lemma 17, which gives that s ∈ [pi] has the form s = piu in which u is a

uniquely determined unit of the form u1 + pu2 + · · ·+ pe−i−1ue−i−1 where ui ∈ Te,k. Thus as

s, s′ ∈ [pi], we let s = piu and s′ = piv. This gives,

|νi(t)|2 ≤ p−2ek|E|
∑︂
x∈Rd

∑︂
y,y′

∑︂
piu,piv∈[pi]

χ(pi(uy − vy′) · x)χ(pit(u− v)) (2.2)
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= p−2ek|E|
∑︂
y,y′

∑︂
piu,piv∈[pi]

∑︂
x∈Rd

χ(pi(uy − vy′) · x)χ(pit(u− v))

= p−2ek|E|
∑︂
y∈E

⎛⎜⎜⎜⎝ ∑︂
y′∈E, piu,piv∈[pi]

pi(uy−vy′)=0

∑︂
x∈Rd

χ(pi(uy − vy′) · x)χ(pit(u− v))

+
∑︂

y′∈E, piu,piv∈[pi]
pi(uy−vy′ )̸=0

∑︂
x∈Rd

χ(pi(uy − vy′) · x)χ(pit(u− v))

⎞⎟⎟⎟⎠ .

By orthogonality in x, when ever pi(uy−vy′) = 0̄ we get a factor of pek for each component

of x, so a factor of pdek. When pi(uy − vy′) ̸= 0, we get a factor of zero. Thus,

|νi(t)|2 ≤ |E|pdek−2ek
∑︂

y,y′∈E
pi(uy−vy′)=0
piu,piv∈[pi]

χ(pit(v − u)).

We now split this sum into,

|νi(t)|2 ≤ I + II,

where I has u = v and II has u ̸= v.

Lemma 37. For I, we have

|I| ≤ |E|2pdek+ikd−ek−ik.

Proof. For I, we have

I = |E|pdek−2ek
∑︂

y,y′∈E
pi(uy−vy′)=0
piu=piv∈[pi]

χ(pit(v − u)),
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which as u = v,

I = |E|pdek−2ek
∑︂

y,y′∈E
piu(y−y′)=0

piu∈[pi]

χ(pit(0)).

Let E(y) = 1 when y ∈ E and E(y) = 0 when y ̸∈ E. As u is a unit, piu(y − y′) = 0 is the

same as pi(y − y′) = 0. As χ(pit0) = 1 does not depend on u, we have

I = |E|pdek−2ek|[pi]|
∑︂

y,y′∈Rd

pi(y−y′)=0

E(y)E(y′)

= |E|pdek−2ek(p(e−i)k − p(e−i−1)k)
∑︂

y,y′∈Rd

pi(y−y′)=0

E(y)E(y′).

Note ∑︂
y,y′∈Rd

pi(y−y′)=0

E(y)E(y′)

is count of (y, y′) ∈ E2 such that y − y′ ∈ (pe−i)d. This we may bound above by taking

an arbitrary y ∈ E and seeing that there are, at most, |pe−iR| = pik many choices for each

component of y′. This gives

∑︂
y,y′∈Rd

pi(y−y′)=0

E(y)E(y′) ≤
∑︂
y∈E

∑︂
y′∈Rd

pi(y−y′)=0̄

1 ≤ |E|pikd.

Thus,

|I| ≤ |E|pdek−2ek(p(e−i)k − p(e−i−1)k)|E|pikd ≤ |E|2pdek+ikd−ek−ik.
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For II we have v ̸= u. So,

II = |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈E, piu,piv∈[pi]

pi(uy−vy′)=0
u̸=v

χ(pit(v − u)).

Let v = b and a = u/v. This gives us,

II = |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈E, piu,piv∈[pi]

pib(ay−y′)=0
u̸=v

χ(pitb(1− a))

= IIu + IIn,

where IIu has 1− a being a unit and IIn has 1− a being a non-unit.

Lemma 38. For IIu we have,

|IIu| ≤ |E|2pdek+dik−2ik−k|+ |E|2pdek+dik−ik.

Proof. For IIu, we have that as 1− a is a unit,

IIu = |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈E, piu,piv∈[pi]

pib(ay−y′)=0
u̸=v

1−a∈R×
e−i,k

χ(pitb(1− a)).
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As b = v and piv ∈ [pi], b has the form b = u1 + pu2 + . . . + pe−i−1ue−i−1 where ui ∈ Te,k

by Lemma 17. So, summing over pib ∈ [pi] is the same as summing over b ∈ R×
e−i,k. As

a = u/v and 1 − a ̸= 0, it must be that u ̸= v (allowing us to drop it from the restriction

on the summation). This gives,

|IIu| ≤ |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈E, b∈R×

e−i,k

pib(ay−y′)=0

1−a∈R×
e−i,k

χe−i,k(tb(1− a)).

Since pib(ay − y′) = 0̄, and b is a unit, we must have ay − y′ ∈ (pe−i)d, so

|IIu| ≤ |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈E, b∈R×

e−i,k

ay−y′∈(pe−i)d

1−a∈R×
e−i,k

χe−i,k(tb(1− a)).

As a is a unit, and ay − y′ ∈ (pe−i)d, it must be that for each choice of y, that y′ is in a

coset of (pe−i)d. Being the case that χe−i,k(tb(1 − a)) does not depend on y nor y′, we can

bound ay − y′ ∈ (pe−i)d by summing y ∈ E, and summing y′ ∈ −ay + (pe−i)d, giving

|(pe−i)d| = pidk many choices for y′. Pulling out this factor of pidk, we get

|IIu| ≤ |E|pdek−2ek+idk
∑︂
y∈E

∑︂
1−a∈R×

e−i,k

∑︂
b∈R×

e−i,k

χe−i,k(tb(1− a)).

As b sums over R×
e−i,k, by Lemma 33, we have that IIu = 0 when t ̸∈ (pe−i−1).
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When t ∈ [pe−i−1], we have, by Lemma 33,

|IIu| ≤

⃓⃓⃓⃓
⃓⃓⃓|E|pdek−2ek+idk

∑︂
y∈E

∑︂
1−a∈R×

e−i,k

−|pRe−i,k|

⃓⃓⃓⃓
⃓⃓⃓ ,

which then simplifies as follows:

|IIu| ≤
⃓⃓
−|E|pdek−2ek+idk|E||R×

e−i,k||pRe−i,k|
⃓⃓

≤
⃓⃓
−|E|2pdek−2ek+idkp(e−i)kp(e−i−1)k

⃓⃓
≤
⃓⃓
−|E|2pdek+dik−2ik−k

⃓⃓
.

In the final case that t ∈ (pe−i), we have χ(tb(1− a)) = 1, and so

|IIu| ≤ |E|pdek−2ek+idk
∑︂
y∈E

∑︂
1−a∈R×

e−i,k

|R×
e−i,k|.

Which then simplifies as follows:

|IIu| ≤ |E|pdek−2ek+idk|E||R×
e−i,k||R

×
e−i,k|

≤ |E|pdek−2ek+idk|E|p2(e−i)k

≤ |E|2pdek+dik−ik.

Thus,

|IIu| ≤
⃓⃓
−|E|2pdek+dik−2ik−k

⃓⃓
+ |E|2pdek+dik−ik
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Lemma 39. For IIn, we have

|IIn| ≤ |E|2pdek+dik−2ik−k.

Proof. Recall v = b and a = u/v. For IIn, we have 1−a being a non-unit, hence pi(1−a) ∈

(pi+1). Also this requirement already makes satified u ̸= v. Thus,

IIn = |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈E, piv,piu∈[pi]

pib(ay−y′)=0
pi(1−a)∈(pi+1)

χ(pitb(1− a)).

As summing over piu ∈ [pi] is the same as summing over piu/v ∈ [pi], we have,

IIn = |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈E, pib,pia∈[pi]

pib(ay−y′)=0
pi(1−a)∈(pi+1)

χ(pitb(1− a)).

Recall pia ∈ [pi] means that a = u0 + pz1 + . . .+ pe−i−1ze−i−1 for some unit u0 and zj ∈ Te,k

by Lemma 17. As 1 − a is not a unit, a = 1 + pr for some r ∈ Re,k. This means that the

restriction pi(1− a) ∈ (pi+1) restricts pia ∈ [pi] to the subset pia ∈ pi + (pi+1). Thus,

IIn = |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈E, pib∈[pi], pia∈pi+(pi+1)

pib(ay−y′)=0

χ(pitb(1− a)).

By letting c = pi(1− a), we have

IIn = |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈E, pib∈[pi], c∈(pi+1)

pib(ay−y′)=0

χ(tbc).
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As pib(ay − y′) = 0 means y′ ∈ ay + (pe−i)d and we no where else depend on y′, we may

bound this sum by summing y′ ∈ (pe−i)d. This gives,

|IIn| ≤ |E|pdek−2ek
∑︂
y∈E

∑︂
y′∈(pe−i)d, pib∈[pi], c∈(pi+1)

χ(tbc).

Which, by Corollary 31 (supressing ρi) and pulling out y′ ∈ (pe−i)d is

|IIn| ≤ |E|pdek−2ek
⃓⃓
(pe−i)d

⃓⃓∑︂
y∈E

∑︂
pib∈[pi]

∑︂
c∈Re−i−1,k

χ(tbc).

By Lemma 32, orthogonality in c, we have IIn = 0 when t ̸∈ (pe−i−1). Otherwise,

|IIn| ≤ |E|pdek−2ek
⃓⃓
(pe−i)d

⃓⃓∑︂
y∈E

∑︂
pib∈[pi]

∑︂
c∈Re−i−1,k

1

= |E|pdek−2ek
⃓⃓
(pe−i)d

⃓⃓∑︂
y∈E

∑︂
pib∈[pi]

|Re−i−1,k| .

We now bound IIn by the size of each index of summation’s domain. Thus,

|IIn| ≤ |E|pdek−2ek
⃓⃓
(pe−i)d

⃓⃓
|E|
⃓⃓
[pi]
⃓⃓
|Re−i−1,k| .

As |Re−i−1,k| = p(e−i−1)k, |[pi]| = |(pi)| − |(pi+1)| ≤ |(pi)|, and |(pi)| = p(e−i)k,

|IIn| ≤ |E|2p(e−i)kpdek+dik−2ek+(e−i−1)k.

We simplify this to

|IIn| ≤ |E|2pdek+dik−2ik−k.
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Recall,

|II| ≤ |IIu|+ |IIn|,

which by Lemmas 38 and 39 give,

|II| ≤
⃓⃓
|E|2pdek+dik−2ik−k|+ |E|2pdek+dik−ik

⃓⃓
+ |E|2pdek+dik−2ik−k

≤ 2|E|2pdek+dik−2ik−k + |E|2pdek+dik−ik.

As |νi(t)|2 ≤ |I|+ |II| and by our bounds on II and I (Lemma 37),

|νi(t)|2 ≤ 2|E|2pdek+dik−2ik−k + |E|2pdek+dik−ik + |E|2pdek+ikd−ek−ik. (2.3)

Thus the discrepancy, D(t) =
⃓⃓∑︁e−1

i=0 νi(t)
⃓⃓
, has

D(t) ≤
e−1∑︂
i=0

√︁
2|E|2pdek+dik−2ik−k + |E|2pdek+dik−ik + |E|2pdek+ikd−ek−ik

≤
e−1∑︂
i=0

√︁
|E|2pdek+dik−ik (2p−ik−k + 1 + p−ek).

Thus,

D(t) ≤ |E|
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek) (2.4)
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So as we want νe(t) ≥ D(t), we must have

|E|2/pek ≥ |E|
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek)

|E| ≥ pek
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek)

This concludes the proof of Theorem 2.2.

We also have proved the following two corollaries.

Corollary 40. Let e, k be given. With R = Re,k,

p−2ek|E|
∑︂

y,y′∈E

∑︂
piu,piv∈[pi]

∑︂
x∈Rd

χ(pi(uy − vy′) · x)χ(pit(u− v))

≤ 2|E|2pdek+dik−2ik−k + |E|2pdek+dik−ik + |E|2pdek+ikd−ek−ik

whenever

|E| ≥ pek
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek)

Proof. By Equation 2.2 and Equation 2.3 this is immediate.

Corollary 41. Let e, k be given. With R = Re,k,

p−ek
∑︂

s∈R\{0}

∑︂
x,y∈E

χ(s(x · y − t))

≤ |E|
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek)
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whenever

|E| ≥ pek
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek)

Proof. By the definition of D(t) (Equation 2.1) and Equation 2.4 this is immediate.
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3 PAIRS OF DOT PRODUCTS

Now we extend the single dot product problem to subsets of points that have a

specified configuration of dot products. The first such problem we study is for hinges of

dot products, which asks for a given set of points and given (α, β), how many triplets of

points (a, b, c) have a · b = α and b · c = β? Figure 3.1 shows a representation of a hinge.

Figure 3.1: A hinge.

The argument for this section follows and extends the paper “Pairs of Dot Prod-

ucts in Finite Fields and Rings” by David Covert and Steven Senger [6], where they obtain

bounds on the number triples of elements from subset of a given ring with specified dot

products. The rings they consider are Fpl and Zpl , the finite field of order pl and the inte-

gers modulo pl.

Definition 42. Let Πα,β(E) = {(x, y, z) ∈ E3 : x · y = α, x · z = β} where E ⊂ R for a

given ring R.

The bound that Covert and Senger get for Πα,β(E) is for α, β ∈ R×
e,k. They find

when E ⊂ (Fpl)
d that,

|Πα,β(E)| = |E|3

p2l
(1 + o(1))
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whenever |E| > cpl(
d+1
2

) for some constant c. In the case E ⊂ (Zpl)
d, they find,

|Πα,β(E)| = |E|3

p2l
(1 + o(1))

whenever |E| > cpdl−d/2+1 for some constant c.

Their method of proof is to convert |Πα,β(E)| into a character sum. Then they

split the sum into three terms, I, II, and III, based on if their two indices of summa-

tion for orthogonality are zero. When both of these are zero, we get the expected bound

of |E|3/p2l. For case II where one and only one index is zero, it simplifies to the sum of

two single dot product sums, for which bounds are known by [15]. For III, where both are

non-zero, it reduces to a product of single dot product sums.

The reason that they studied hinges is that it relates to the sum-product problem.

Their result extends the results of Hart et. al. [15] from a single dot product to a pair of

dot products over Zpe and Fpk . Here we will further extend the field by considering Zpk

and Fpk simultaneously by having our ambient setting be the module (Re,k)
d.

Lemma 43. Let d ≥ 3, e ≥ 5, k ≥ 1. Let E ⊂ (Re,k)
d and suppose that α, β ∈ Re,k. We

have the bound

|Πα,β(E)| ≤ 2|E3|
p2ek

whenever

|E| ≥
√︁

35e/8pdek−dk/2+ek/2+k/2.

This lemma relies on the more technical Theorem 3.1 whose statement is below and whose

proof is given later in this chapter.

Theorem 3.1. Let d ≥ 2, E ⊂ (Re,k)
d and suppose that α, β ∈ Re,k. We have the bound

|Πα,β(E)| = |E3|
p2ek

(1 + o(1))
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whenever

|E| ≥ max

(︄
pek

e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek),

√
2G

)︄
where

G = pdek+2eke

(︃
2p−k p

dek−2ek − 1

pdk−2k − 1
+ (1 + p−ek)

pdek−ek − 1

pdk−k − 1

)︃

We now begin the proof of Lemma 43.

Proof. By Theorem 3.1 we know that this is true whenever

|E| ≥ max

(︄
pek

e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek),

√
2G

)︄

where

G = pdek+2eke

(︃
2p−k p

dek−2ek − 1

pdk−2k − 1
+ (1 + p−ek)

pdek−ek − 1

pdk−k − 1

)︃
.

By Lemma 36, we know

pek
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek) ≤

√
6 + 3epdek−dk/2+ek/2+k/2

whenever e ≥ 5, d ≥ 2, and k ≥ 1, which is given. We focus now on getting a nice upper

bound on G. Recall

G = pdek+2eke

(︃
2p−k p

dek−2ek − 1

pdk−2k − 1
+ (1 + p−ek)

pdek−ek − 1

pdk−k − 1

)︃
.
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As 1/(B − 1) ≤ 2/B for any B ≥ 2,

G ≤ 2pdek+2eke

(︃
2p−k p

dek−2ek − 1

pdk−2k
+ (1 + p−ek)

pdek−ek − 1

pdk−k

)︃
≤ 2pdek+2eke

(︃
2p−k p

dek−2ek

pdk−2k
+ (1 + p−ek)

pdek−ek

pdk−k

)︃
≤ 2pdek+2eke

(︁
2p−k+dek−2ek−dk+2k + (1 + p−ek)pdek−ek−dk+k

)︁
≤ 2p2dek+ek−dk+ke

(︁
2p−ek + (1 + p−ek)

)︁
≤ 2p2dek+ek−dk+ke

(︁
3p−ek + 1

)︁
Recall, e ≥ 5, p ≥ 2, k ≥ 1, so the part in parentheses is maximized when e = 5, p = 2, and

k = 1. Thus,

G ≤ 2p2dek+ek−dk+ke
(︁
3(2−5) + 1

)︁
≤ 2p2dek+ek−dk+ke(35/32)

≤ p2dek+ek−dk+ke(35/16).

Thus, we have that this lemma is true whenever

|E| ≥ max
(︂√

6 + 3epdek−dk/2+ek/2+k/2,
√︁
2(35/16)ep2dek+ek−dk+k

)︂
.

As
√︁

35e/8pdek−dk/2+ek/2+k/2 ≥
√
6 + 3epdek+ek/2−dk/2+k/2 since e ≥ 5, we have that

|E| ≥
√︁

35e/8pdek−dk/2+ek/2+k/2.
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This is non-trivial when |E| < pdek, giving

pdek ≥
√︁
35e/8pdek−dk/2+ek/2+k/2

pdk/2 ≥
√︁
35e/8pek/2+k/2

pdk ≥ 35e/8pek+k

dk ≥ ek + k + logp(35e/8)

Thus, this resut is non-trivial when d ≥ e+ 1 + logp(35e/8)/k.

We now begin the proof of Theorem 3.1.

Proof. For the sake of brevity, we will use R to stand for Re,k. Let χ denote the canonical

additive character of R (Definition 23). Recall that,

|Πα,β(E)| = |{(x, y, z) ∈ E × E × E : x · y = α, x · z = β}|.

As we want x · y = α and x · z = β, the character sum becomes

|Πα,β(E)| = p−2ek
∑︂
s,t∈R

∑︂
x,y,z∈E

χ(s(x · y − α))χ(t(x · z − β))

= p−2ek
∑︂
s,t∈R

∑︂
x,y,z∈E

χ(−sα)χ(tβ)χ(x · (sy − tz))

= I + II + III,

where I has s = t = 0, II has s or t equal to zero but not both, and III has s ̸= 0 and

t ̸= 0.

For I, we see

I = p−2ek
∑︂
s=t=0

∑︂
x,y,z∈E

χ(−0α)χ(0β)χ(x · (0y − 0z)) = p−2ek|E|3. (3.1)
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For II and III, we will use Theorem 2.2 from Section 2, which requires that

|E| ≥ pek
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek)

which is given.

For II, as either s = 0 or t = 0 but not both, we may split the sum as two sums

with either s = 0 or t = 0,

II = p−ek

(︄
p−ek

∑︂
s∈R,t=0

∑︂
x,y,z∈E

χ(s(x · y − α)) + p−ek
∑︂

t∈R,s=0

∑︂
x,y,z∈E

χ(t(x · z − β)

)︄
. (3.2)

Notice that this is the sum of two ν(t) from Theorem 2.2. Thus by Theorem 2.2, we have

II < 4|E|2/p2ek.

For III, we have as s, t ̸= 0,

|III| ≤

⃓⃓⃓⃓
⃓⃓p−2ek

∑︂
s,t∈Re,k\{0}

∑︂
x,y,z∈E

χ(s(x · y − α))χ(t(β − x · z))

⃓⃓⃓⃓
⃓⃓ (3.3)

which we then prepare for Cauchy-Schwarz. So,

|III| ≤

⃓⃓⃓⃓
⃓p−2ek

∑︂
x∈E

∑︂
y∈E

∑︂
s ̸=0

χ(s(x · y − α))
∑︂
t̸=0

∑︂
z∈E

χ(t(β − x · z))

⃓⃓⃓⃓
⃓

≤ p−2ek
∑︂
x∈Rd

⃓⃓⃓⃓
⃓∑︂
y∈E

∑︂
s ̸=0

χ(s(x · y − α))

⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓∑︂
t̸=0

∑︂
z∈E

χ(t(β − x · z))

⃓⃓⃓⃓
⃓ .
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By Cauchy-Schwarz,

|III| ≤ p−2ek

⎛⎝∑︂
x∈Rd

⃓⃓⃓⃓
⃓∑︂
s ̸=0

∑︂
y∈E

χ(s(x · y − α))

⃓⃓⃓⃓
⃓
2
⎞⎠1/2⎛⎝∑︂

x∈Rd

⃓⃓⃓⃓
⃓∑︂
t̸=0

∑︂
z∈E

χ(t(x · z − β))

⃓⃓⃓⃓
⃓
2
⎞⎠1/2

≤ p−2ekIIIα · IIIβ.

Notice that IIIα and IIIβ are similar, so we will examine IIIα. With IIIα we pre-

pare to apply Cauchy-Schwarz a second time,

III2α =
∑︂
x∈Rd

⃓⃓⃓⃓
⃓∑︂
s ̸=0

∑︂
y∈E

χ(s(x · y − α))

⃓⃓⃓⃓
⃓
2

.

So,

III2α =
∑︂
x∈Rd

⃓⃓⃓⃓
⃓⃓ e−1∑︂
i=0

⎡⎣(1)
⎛⎝∑︂

s∈[pi]

∑︂
y∈E

χ(s(x · y − α))

⎞⎠⎤⎦⃓⃓⃓⃓⃓⃓
2

. (3.4)

Which by Cauchy-Schwarz is

III2α ≤
∑︂
x∈Rd

e−1∑︂
i=0

(1)2
e−1∑︂
i=0

⃓⃓⃓⃓
⃓⃓∑︂
s∈[pi]

∑︂
y∈E

χ(s(x · y − α))

⃓⃓⃓⃓
⃓⃓
2

≤
∑︂
x∈Rd

e−1∑︂
i=0

(1)2
e−1∑︂
i=0

⎛⎝∑︂
s∈[pi]

∑︂
y∈E

χ(s(x · y − α))

⎞⎠⎛⎝∑︂
s∈[pi]

∑︂
y∈E

χ(s(x · y − α))

⎞⎠
≤ e

∑︂
x∈Rd

e−1∑︂
i=0

∑︂
s,s′∈[pi]

∑︂
y,y′∈E

χ(s(x · y − α))χ(s′(x · y′ − α)).
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Recall that by Lemma 17, s ∈ [pi] means s = piu for some unit u. Likewise s′ = piv

allowing us to relabel s, s′ ∈ [pi] as piu, piv ∈ [pi]. Since χ is an additive character, we may

rearrange the terms in the innermost sum to the below:

III2α ≤ e
∑︂
x∈Rd

e−1∑︂
i=0

∑︂
y,y′∈E

∑︂
piu,piv∈[pi]

χ(pi(uy − vy′) · x)χ(piα(v − u)).

So,

III2α ≤ e
∑︂
x∈Rd

e−1∑︂
i=0

∑︂
y,y′∈E

∑︂
piu,piv∈[pi]

χ(pi(uy − vy′) · x)χ(piα(v − u)).

We introduce a factor of |E|p−2ek into the outer–most sum to prepare it for Corollary 40

III2α ≤ (|E|p−2ek)−1e
e−1∑︂
i=0

|E|p−2ek
∑︂
x∈Rd

∑︂
y,y′∈E

∑︂
piu,piv∈[pi]

χ(pi(uy − vy′) · x)χ(piα(v − u)),

which by Corollary 40 is

≤ (|E|p−2ek)−1e
e−1∑︂
i=0

(︁
2|E|2pdek+dik−2ik−k + |E|2pdek+dik−ik +|E|2pdek+dik−ek−ik

)︁
.

Which then simplifies as follows

III2α ≤ |E|−1p2eke
e−1∑︂
i=0

|E|2pdek+dik−ik
(︁
2p−ik−k + 1 + p−ek

)︁
.

= |E|pdek+2eke
e−1∑︂
i=0

(︁
2p−kpdik−2ik + pdik−ik + p−ekpdik−ik

)︁
.
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This is a sum of geometric series, so summing each term in i gives,

III2α ≤ |E|pdek+2eke

(︃
2p−k p

dek−2ek − 1

pdk−2k − 1
+ (1 + p−ek)

pdek−ek − 1

pdk−k − 1

)︃
.

Let

F = |E|pdek+2eke

(︃
2p−k p

dek−2ek − 1

pdk−2k − 1
+ (1 + p−ek)

pdek−ek − 1

pdk−k − 1

)︃
.

By equation 3.4, we have III2α ≤ F . Likewise III2β ≤ F . Ergo, IIIαIIIβ ≤ F .

Thus as |III| ≤ p−2ekIIIαIIIβ,

|III| ≤ p−2ekF. (3.5)

Putting I, II, III together, we see that

I + II + III ≤ |E|3/p2ek + 4|E|2/p2ek + p−2ekF

As we want I+II+III = |E3|/p2ek(1+o(1)), we need show that II+III = (|E|3/p2ek)o(1)

when |E| is of sufficient size. Note that by definition of F , we have e|E|pdek/p2ek ≤ F/p2ek.

As 4|E|2/p2ek < e|E|pdek/p2ek for any size of E (recall E ⊂ Rd and |R| = pek), we need

only have 2p−2ekF ≤ |E|3p−2ek.

Let G = F/|E|. This gives rise to the inequality,

|E|3p−2ek ≥ 2p−2ekF
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which simplifies to

|E|2 ≥ 2G

|E| ≥
√
2G

Thus, as we used Theorem 2.2 earlier in the proof and it requires

|E| ≥ pek
e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek),

we must have

|E| ≥ max

(︄
pek

e−1∑︂
i=0

√︁
pdek+dik−ik (2p−ik−k + 1 + p−ek),

√
2G

)︄
.
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4 CONCLUSION

We studied a variant the Erdős distance problem in the context of Galois rings. As

Fpl and Zpl are both a kind of Galois ring, we generalize bounds for those much-studied

rings. For future works, we would like to extend the known results on Galois rings with

dot products to arbitrary local rings, dot product configurations with cycles, improve bounds

for small sets, and re-examine the known theory through the lens of spectral graph theory.

Throughout this thesis, we only used fairly elementary character sum estimates for Galois

rings. We conjecture it will be straightforward to find and use character sum estimates for

other types of local rings as well so long as they have a p-adic representation.

The author is currently working on extending the results to tree configurations.

This in turn leads to bounds for an inverse matrix multiplication problem. One of the ap-

plications of the trees result is a result for vector matrix multiplication. We expect to be

able to use a similar result for matrix-matrix multiplication to give a result for dot prod-

uct configurations with cycles.

It is possible that further improvements could be made to sharpen these bounds

and we did not consider small sets. For studying the Erdős distance problem in finite rings,

using character sum estimates and spectral graph theory are the common routes. To the

author’s knowledge, only character sum estimates have been used in the case of Galois

rings and so better results may be obtainable with spectral graph theory.

This work helps tie together much of the current theory of the unit distance prob-

lem in the context of dot products over finite rings. This theory also has applications in

additive combinatorics in bounding number of solutions to matrix equations. Just as Ga-

lois rings are the building blocks of finite local rings, we hope this thesis may be a building

block for this area of mathematics.
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[11] P. Erdős and E. Szemerédi. On sums and products of integers. In Studies in

Pure Mathematics, pages 213-218. Springer, New York, 1983.

[12] J. Garibaldi, A. Iosevich and S. Senger. The Erdős distance problem. Student
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plane. Ann. of Math., 181:155–190, 2015.

[15] D. Hart, A. Iosevich, D. Koh and M. Rudnev. Averages over hyperplanes,

sum-product theory in vector spaces over finite fields and the Erdős-Falconer
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