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ABSTRACT 

In modern agriculture, the use of pesticides is unavoidable. However, improper use has resulted 

in pest resistance and negative impacts on the environment and human health. Changes are 

needed in the agricultural industry to account for the damage already caused. Researchers have 

turned to essential oils as key ingredients for potential biopesticides, with some mixtures already 

on the market. Most studies involving essential oils and a pest’s response concentrate on 

mortality or interruptions in development during and between life stages. My study, however, 

focused on immune responses; specifically, lemongrass essential oil’s impact on Galleria 

mellonella. Such responses include a change in hemocyte numbers and phagocytosis. This 

research concludes that lemongrass essential oil lowers the numbers of hemocytes in circulation 

of a triggered immune system, potentially also counteracting phagocytosis efficacy. This 

revelation could prove practical in integrated pest management strategies that involve biocontrol 

agents like parasitic nematodes. 
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INTRODUCTION 

 

The global population is expected to reach almost 10 billion people by 2050 (Crist et al., 

2017). Agriculture production, for human and livestock consumption, will need to increase 

approximately 60% to adequately support this projected population (Alexandratos & Bruinsma, 

2012). McKenzie and Williams (2015) suggest that such an increase in agricultural production is 

currently possible if processes were done more efficiently, with appropriate changes including: 

adjusting nutritional imbalances (referring to both under-nutrition and obesity), enhancing 

current agricultural land usage, expanding irrigated lands, reducing food waste, combatting 

climate change, encouraging local food production, and improving fertilizer and pesticide usage.  

Pesticides are necessary to maximize crop yield by minimizing crop loss caused by 

insects. Crop losses can reach up to 80% without proper pesticide treatment (Zhang, 2018). Over 

3 billion tons of synthetic pesticides are used annually around the globe (Sharma et al., 2020). A 

2017 EPA report concluded that the United States accounted for nearly 18% of global pesticide 

expenses (Atwood & Paisley-Jones, 2017). Zhang (2018) reported that from 2010 to 2014, the 

average total pesticide use worldwide was 2.8 kilograms per hectare (kg/ha). In 2014, the US 

applied 3.9 kg/ha, while China and Japan used 10.4 and 19.4 kg/ha, respectively (Zhang, 2018).  

Pesticides are a double-edged sword as excessive use causes serious environmental and 

health problems. Despite attempts to lower synthetic pesticide use in some developed countries, 

the negative effects of past use can still be seen in a decreased biodiversity of native plants, 

birds, and insects (Geiger et al., 2010). Soil bacterial diversity, and thereby soil fertility, is also 

negatively affected in a significant way by synthetic pesticides (Johnsen et al., 2001). Many 

pesticides also leach into groundwater, contaminating drinking water in rural areas 
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(Stavnichenko et al., 2017). Heavy or improper pesticide use in farming communities could 

result in physical ailments, from skin irritations and headaches to increased risk of prostate 

cancer for applicators (Alavanja et al., 2003; Berni et al., 2021). However, applicators are not the 

only ones physically affected by exposure to pesticides. Over a nine-year period in China, almost 

3,000 children were treated for pesticide poisonings, with nearly half under the age of six years 

old (Yimaer et al., 2017). Another study estimated that approximately 385 million cases of 

unintentional acute pesticide poisonings and 11,000 deaths occur annually worldwide (Boedeker 

et al., 2020). In much of the developing world, highly toxic pesticides are still used with barely 

any regulation (Zhang, 2018) and with insufficient education on personal protection equipment 

and proper application and disposal methods (Berni et al., 2021). Some of these countries, like 

Brazil, are major exporters of agricultural goods. Braga et al. (2020) found that every year in 

Brazil, an alarming number of new pesticides are manufactured with ingredients banned 

elsewhere. Traces of these ingredients have been found in exported agricultural goods that may 

cause health issues if consumed in high quantities (Caldas & Jardim, 2012).  

The continuous use of synthetic pesticides at high amounts can lead to pesticide 

resistance amongst pests (Sharma et al., 2020). When resistance occurs and yield loss increases, 

pesticide end-users who have not been given adequate information tend to increase pesticide 

dosage, only worsening the problem (Jutsum et al., 1998). 

Considering both the strong need for and negative effects of pesticide use, there has been 

a strong push for alternative strategies, e.g., biopesticides, to be implemented. Biopesticides are 

derived from natural means and comprised of microbes, animals, plant-extracts, insect-growth 

regulators, insect hormones, or plant-based extracts (Kumar et al., 2021). However, the EPA 

simplifies this by dividing them into three groups: microbial pest control agents, biochemical 
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pesticides, and genetically engineered organisms (Arora et al., 2016). Synthetic pesticides can 

take around three years before receiving approval by the EPA (Handford et al., 2015), while 

biopesticides require only one year due to less human and environmental risk (Kumar, 2012). 

Biopesticides offer a range of advantages over synthetic pesticides: faster biodegradability, target 

specificity, efficacy in small amounts, and efficacy comparable to that of synthetic pesticides 

when used in integrated pest management (IPM) strategies (Kumar, 2012).  

Despite the quick registration time and numerous advantages over synthetic pesticides, 

biopesticides have minimal market significance, accounting for only 5% of pesticides sold  

(Damalas & Koutroubas, 2018). The US, Canada, and Mexico constitute 44% of the biopesticide 

market (Bailey et al., 2010), and 90% of biopesticides contain Bacillus thuringiensis (Kumar & 

Singh, 2015), an entomopathogenic bacterium more commonly known as Bt, which negatively 

affects insect digestion (Whalon & Wingerd, 2003). Although biopesticides are slowly gaining 

popularity, the transition is delayed for a few reasons. The first issue is that natural compounds 

are sensitive to temperature and humidity, resulting in short shelf lives, need for climate-

controlled storage, and varying effectiveness in different parts of the world (Kumar et al., 2021). 

The next issue is that the high target specificity means that multiple different treatments may be 

needed if dealing with more than one pest (Kumar et al., 2021). These issues give motivation to 

find potential biopesticides in once unlikely places.  

Essential oils, although historically used for food preservation, flavor additives, medical 

treatment, and insect repellent (Koul et al., 2008), have recently become a focus for biopesticide 

usage(Sharma et al., 2020). These aromatic oils have the potential to act as pesticides that attract 

(Kendra et al., 2014), repel (Papachristos & Stamopoulos, 2002), possess antifeedant properties 

(Hummelbrunner & Isman, 2001; Rajkumar et al., 2019), or cause mortality. It has also been 
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found that some essential oils affect the octopaminergic nervous system, a site specific to insects 

(Koul et al., 2008). Therefore, they are target-specific and safer to use around mammals and 

humans (Zhang et al., 2016). The volatility of these oils means that under field conditions they 

have limited field persistence. This enables them to target crop pests that are on the treated plants 

while also allowing biocontrol agents like natural predators/parasitoids to re-enter shortly after 

treatment (Koul et al., 2008).  

Lemongrass plants from the genus Cymbopogon are native to tropical Asia, where it has 

been widely used as flavoring for foods and teas. Today, species are cultivated worldwide (Joy et 

al., 2006). Lemongrass has been used individually as an insect repellent for mosquitoes 

throughout history (Koul et al., 2008).  

The effect lemongrass essential oil (LGEO) has on the mortality and general health of 

insects is fairly well researched. One study found that lemongrass (C. nardus) could be used as a 

killing agent while fogging against mosquitoes (Aedes aegypti) that carry yellow fever(Zulfikar 

& Sitepu, 2019). Plata-Rueda et al. (2020) found that lemongrass (C. citratus) lowered the 

respiratory rate, had a repellant effect, and negatively influenced locomotion of granary weevils 

(Sitophilus granaries). Chintalchere et al. (2021) found that lemongrass (C. citratus) was most 

effective as a fumigant against common house fly (Musca domestica) pupae, but also had 

promising results on larval and adult development of house flies using different methods of 

exposure. Rani et al. (2019) also tested lemongrass on the same species common house flies, 

finding similar results with fumigation in the pupal stage. These studies and more have shown 

LGEO’s potential to combat insect pests.  

A vertebrate’s immune system is both innate and acquired or more simply put, natural 

and adaptive (Fearon, 1997). This two-fold system works in tandem, with innate immunity 
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responding immediately and immunity that is acquired active within the next several days to two 

weeks (Zimmerman et al., 2010). Innate immune systems contain receptors that preexist and 

cannot adapt any further. Whatever threat that is not eliminated by the innate system, triggers the 

acquired immune system. This system can clone receptors suitable to fight the infection. Once 

the infection is eradicated, the cloned receptors remain, building immunity against said infection 

in case of reinfection (Fearon, 1997). Insects historically were found to only have an innate 

immune system, meaning they were not able to build immunity as with an acquired immune 

system. However, recent evidence prompts further study into this issue as some Drosophila spp. 

have displayed transgenerational viral immunity in subsequent generations after parental priming 

(Mondotte et al., 2020).  

The innate immune system of an insect operates within its open circulatory system, along 

with other processes, such as transportation of molecules and nutrients, thermoregulation, and 

ventilation through the tracheal system (Glenn et al., 2010). Here, hemolymph pumps through a 

single dorsal vessel, alternating between pumping towards the head and towards the abdomen. 

The dorsal vessel opens on both ends into the open body cavity to allow the hemolymph to flow 

freely (Glenn et al., 2010). In doing so, the immune system can respond faster upon invasion 

(Dubovskiy et al., 2016). Hemolymph contains hemocytes, which are akin to blood cells in 

vertebrates.  

Hemocytes can be categorized into five or six hemocyte types, depending on the source 

and insect order (Lavine & Strand, 2002; Strand, 2008; Pereira et al., 2018). The most common 

consensus for Lepidopterans includes granulocytes, plasmatocytes, spherulocytes, oenecytoids, 

and prohemocytes. Granulocytes and plasmatocytes are adhesive cells responsible for immune 

defenses. Strand et al. (2006) found that in some cases with Lepidopteran species, granulocytes 
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are most efficient at phagocytosis while plasmatocytes are most efficient at encapsulation. 

Spherulocytes aid in transporting cuticle components (Lavine & Strand 2002; Tungjitwitayakul 

& Tatun, 2019). Oenecytoids release enzymes that catalyze prophenoloxidase (proPO), which 

aids the encapsulating hemocytes to start the melanization process (Lavine & Strand, 2002). 

Lepidopteran species also can have prohemocytes. These cells are considered stem cells as they 

can differentiate into required cell types if an immune system is triggered (Baghban et al., 2018). 

When an innate immune system is triggered, the number of hemocytes in the circulatory 

system increases to perform the immune defenses. For convenience, innate responses are divided 

into two categories: humoral and cellular defenses. Hemocytes have been found to provide some 

resources necessary for humoral strategies (Strand, 2008), so the distinction between the two 

categories is blurred regarding functionality.  

The predominant feature of humoral defenses involves molecules, e.g., proteins and 

antimicrobial peptides, that act as the first line of defense (Sheehan et al., 2018), but also 

incorporates hemolymph clotting and melanization. Hemolymph clots the entry wound via a 

transglutaminase cascade, which is activated rapidly and simultaneously with the 

prophenoloxidase (proPO) system (Sheehan et al., 2018). The proPO system cascade is catalyzed 

by the phenoloxidase enzyme produced and secreted by hemocytes (Sheehan et al., 2018), 

specifically oenecytoids in Lepidopteran species (Strand, 2008). The proPO cascade leads to the 

production of melanin at the injury site (Wojda, 2017). The humoral defense of melanization is 

not only an important immune function but also is responsible for exoskeleton coloration and 

sclerotization during ecdysis (Vilmos & Kurucz, 1998). Melanization also occurs at the end of 

cellular defense encapsulation and nodulation (Wojda, 2017). 
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Cellular defenses fully utilize hemocytes to perform either phagocytosis, nodulation, or 

encapsulation. Phagocytosis is the process where individual cells absorb small particles of 

bacteria and yeasts, or abiotic agents used for experimentation, e.g., chromatography beads and 

ink particles (Lavine & Strand, 2002; Strand, 2008). Within an hour of engulfment, the hemocyte 

can digest the target particle (Rosales, 2010). Nodulation and encapsulation refer to groups of 

hemocytes adhering to and layering around foreign invaders to suffocate them (Strand, 2008). 

These processes have been observed to begin fifteen minutes after invasion (Dubovskii et al., 

2010). Nodulation typically forms around small clusters of bacteria, while encapsulation forms 

around larger pathogens like nematodes and parasitoid eggs (Lavine & Strand, 2002). 

Plasmatocytes and granulocytes have been noted in literature to be the only hemocytes with 

adhesion capabilities in Lepidopterans (Strand & Pech, 1995); therefore, they are the only ones 

used in capsule formation. In these defense actions, granulocytes create the first layer, and 

plasmatocytes form many layers on top of them (Lavine & Strand, 2002). A final layer of 

granulocytes forms to prohibit further plasmatocyte adhesion (Strand, 2008). At this point, 

phenoloxidase is released from oenecytoids to begin the proPO cascade for production of 

melanin (Dubovskiy et al., 2010).  

Although the aforementioned studies of LGEO causing mortality and developmental 

issues have deemed the oil fit for a biopesticide ingredient, there is no research on how LGEO 

affects insect immune systems. My study objective was to test the effects of LGEO on the 

immune response of a model insect species. I asked three specific questions: (i) will LGEO lower 

the cell response in a triggered immune system, (ii) will LGEO impair phagocytosis, and (iii) if 

LGEO affects insect immune system, what would be the active ingredient responsible for such 
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effects? The answers to these questions may show potential for LGEOs to be used in or as a 

biopesticide. 
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METHODS 

 

Materials 

I used Galleria mellonella larvae, i.e., greater wax moth, from the insect order 

Lepidoptera and family Pyralidae. This insect is a pest on honeybee hives, where it feeds on wax 

combs during its larval stage (Wojda et al., 2020). G. mellonella has become a model study 

species in toxicology and immunology (Allegra et al., 2018; Pereira et al., 2018). This species is 

found worldwide and is simple to rear and perform experiments on (Wojda, 2017). 

I purchased the larvae in their seventh instar stage from Knutson’s Live Bait in Brooklyn, 

Michigan. After being separated into ventilated jars of approximately 60 larvae with prepared 

diet, I stored the jars in unlit incubators (VWR Scientific Products, Model 2005) set at 30°C and 

80% relative humidity. For the diet, I combined 37ml of glycerin USP 99.5% (Humco), 25ml of 

C&H brand pure granulated cane sugar, and 25ml of purified water. This solution was heated in 

a low-power microwave for ~20 seconds, stirred thoroughly to dissolve the sugar, and poured 

into 400 ml of Gerber multigrain cereal. The cereal contains vitamins (A, B1, B2, B3, B6, B12, 

C, and E) and minerals (calcium, iron, phosphorus, and zinc) necessary for high-quality larval 

health. I placed this mixture in a one gallon ZipLock bag and kneaded it by hand for two minutes 

until the cereal was consistently saturated with liquid ingredients. The diet could be stored in a 

refrigerator at 4°C for up to two months. 

I used two chemicals in the injections procedure (below): black Sumi ink and LGEO. 

Yasutomo black Sumi ink was centrifuged for five minutes to draw large particles down. Using a 

pipette, I pulled up 40µl of supernatant and added it to a separate microcentrifuge tube with 60µl 

of distilled water to form a 40% concentration. This concentration was found to be the most 
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effective as an artificial immune trigger that mimics bacterial infection in prevous work (Haszcz, 

2016).  

LGEO, i.e., C. flexuosus, purchased from NOW Foods, was stored at 4°C in the original 

glass packaging. To find the most effective doses, LGEO dissolved in cholesterol-free vegetable 

oil was applied at various concentrations. Control larvae received vegetable oil only. 

Cholesterol-free vegetable oil was selected because this species does not produce cholesterol and 

adding it into their system would affect the physiology of the larvae and could skew the results 

of my experiment. 

Anticoagulant buffer was made from 0.157g NaOH, 0.435g NaCl, 0.315g citric acid, and 

0.253g Na2EDTA. I purchased the NaOH and NaCl from Sigma-Aldrich, and the citric acid and 

Na2EDTA from Thermo Fisher Scientific. These were weighed using an Ohaus Galaxy 1600 

scale and mixed. To obtain the final product at a volume of 40 mL, distilled water was added, 

vortexed, and acidity tested to ensure a final pH of 4.58. I combined 2mg of acto-neutral red dye 

(Difco Laboratories, Detroit, MI) and 1mL of anticoagulant to obtain a neutral stain. This stain 

was used to prevent hemolymph from clotting and to add pigment to hemocytes for easier 

identification under a microscope. 

 

Injections Procedure 

The following injections procedure was the initial step in mortality assays and differential 

hemocyte count experiments. I randomly selected two groups of 10–15 larvae to anesthetize in 

tap water for 15 minutes. Individual larvae were removed from the water, blotted dry, and 

injected with their respective chemicals using a Hamilton microliter syringe (24G/2”/30°) into 

one proleg of the first or second set. For the control group, each larva was injected with 5µl of 
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40% Sumi ink / 60% dH₂O (Haszcz, 2016) and 5µl of 100% vegetable oil. The experimental 

group was injected with 5µl of Sumi ink and 5µl of tested LGEO concentration. After both 

injections, each larva was gently rolled to ensure that the chemicals spread throughout the body 

cavity. I stored the injected larvae in a clean ventilated jar and inside the incubator for four hours 

(as in Haszcz, 2016), after which one of the following two experiments was performed. 

 

Experiment One: Mortality Assays 

Because I wanted to observe LGEO’s effect on the physiology of the test subject, it was 

important to keep the oil concentrations below the lethal level.To that end, mortality assays were 

performed by injecting the larvae with LGEO and ink and calculating the mortality rate after the 

four hour incubation period following injections. Larvae that reacted when disturbed were 

counted as alive. Concentrations of lemongrass in cholesterol-free vegetable oil at percentages of 

1.25, 2.5, 5, 10, 20, 30, 40, and were applied along with the previously mentioned Sumi ink 

concentration. Vegetable oil alone was applied to the control larvae. Results from these 

experiments were plotted on a graph and inspected visually, or subjected to probit analysis. 

Concentrations of LGEO lower than LD10 were used in subsequent experiments. 

 

Experiment Two: Differential Hemocyte Counts and Phagocytosis 

In preparation for both differential hemocyte counts and phagocytosis cell counts, I 

combined 4µl of neutral red stain and 40µl of anticoagulant buffer in 3–5 microcentrifuge tubes 

for the treated hemolymph to be placed. This mixture sat at room temperature for five minutes. 

Then a single treated larva was bled by carefully clipping off one proleg with micro iris scissors 

and pinching the body over a square of parafilm to place a few drops of hemolymph. I 
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immediately extracted 5µl of hemolymph with a micropipette and added it to one of the prepared 

microcentrifuge tubes with the stain and anticoagulant and then vortexed the tube. After resting 

for five minutes to allow staining of the cells, I pipetted 10µl of the mixture into each of the two 

chambers of an improved Neubauer hemocytometer covered with a Corning cover glass 

(thickness 1, 22 x 22mm). Each chamber had four quadrants, or grids, eight in total for one 

sample of hemolymph. The hemocytometer was then inspected under a Galen III microscope 

fitted with an oblique illumination filter (Peterson, 2019), which improved clarity and depth of 

field. In both tests, the cells that fell into the boundaries of one of the quadrants on the 

hemocytometer were counted boustrophedonically (i.e., left to right, down, right to left, down, 

and so on) through the four rows of the grid. 

For differential hemocyte counts, total plasmatocytes, granulocytes, spherulocytes, and 

oenecytoids were counted individually using a tally counter. In my research, prohemocytes were 

not counted as they were too low in numbers. Based on probit analysis of larval mortality (see 

Results), I selected 0.625, 1.25, 2.5, and 5% of LGEO. Control larvae received vegetable oil 

only. In tandem with differential hemocyte counts, phagocytosis was evaluated. 

Each of the cell types were counted in two groups: phagocytizing and not phagocytizing. 

To be considered phagocytizing, the cell must have one or more particles of black Sumi ink 

absorbed in its cytosol. The percentage of phagocytized versus not phagocytized was calculated 

for each lemongras essential oil concentration. All data from Experiment Two were averaged ± 

SEM for each concetration and subjected to ANOVA followed by Tukey comparison of means. 

 

Delineation of Candidate for Active Ingredient of LGEO 
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To delineate biologically active substances that could be responsible for LGEO effects on 

Galleria immune system, I subjected the lemongrass oil to qualitative analysis by high-

performance thin-layer chromatography as in Wagner and Bladt (1996). Based on Wagner and 

Bladt (1996), I selected citral for standards in this analysis. Briefly, a silica gel F254 glass plate 

was washed with 100% methanol, air dried and spotted using a CAMAG Nanomat 4 HPTLC 

spotter. Five microliters of pure citral diluted in methanol at 0.5% and 0.125%, and five 

microliters of 1% and 5% of LGEO were applied on the plate. 

The plate was developed in a horizontal CAMAG developing chamber for 10 minutes 

with a mobile phase made of toluene and ethyl acetate (93/7 v.v.). I air dried the plate under a 

hood for one hour and derivatized it in vanillin reagent. The derivatized plate was then heated at 

100°C for 10 minutes on a CAMAG Plate Heater III, cooled and scanned using a Canon 

CanoScan 5200F flatbed scanner in white light. 

 

Statistical Analysis 

The data collected from the mortality assays was subjected to a probit analysis to find the 

LD10 and LD50 using Polo Plus, by LeOra Software. 

For differential hemocyte counts and phagocytosis percentages, I used ANOVA followed 

by Tukey multiple comparison of means with the significance value at p < 0.05. The data was 

tested on GraphPad InStat and results were plotted with SigmaPlot. 
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RESULTS 

 

Experiment One 

Mortality of Galleria mellonella larvae was positively correlated to tested LGEO 

concentration (Figure 1). Visual inspection of the data plot (Figure 1) revealed that the control 

group had an average of 14% mortality. Concentrations ≤ 5% had a mortality rate ranging from 

approximately 29–40%, while concentrations ≥ 10% ranged between 52–100% mortality. For 

precise results, I subjected my data to a probit analysis to find the LD10 and LD50. The LD10 was 

about 4% with a 95% confidence interval (CI) ranging from approximately 1.6 to 6.6%. The 

LD50 was about 15% with a 95% CI ranging from roughly 10.5 to 20.3% (Table 1). LD10 is 

widely accepted in experiments studying physiological responses (Beggel et al., 2010). For that 

reason, I selected concentrations 0.625, 1.25, 2.5, and 5% LGEO for subsequent tests. 

 

 

Figure 1. Mortality rate (%) based on dose-dependent injections of 5 µl LGEO in cholesterol-free 

vegetable oil into larvae challenged with 5 µl  4:6 Sumi ink to dH2O. The zero-concentration 

solution was 100% cholesterol-free vegetable oil. N = 15–17 larvae per data point.  
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Table 1. Probit analysis of LGEO mortality data.  

 

N Slope LD10  (95% CI) % concentration LD50  (95% CI) % concentration χ2 Df 

282 2.244 4.072 (1.618 – 6.616) 15.164 (10.469 – 20.270) 7.768 5 

 

 

Experiment Two 

 

 LGEO was effective at significantly lowering both plasmatocytes and granulocytes in 

triggered Galleria mellonella immune systems (Figure 2a–b). In the control group, 

plasmatocytes (Figure 2a) occurred at a rate of 10.25 x 10⁵ cells per ml of hemolymph. LGEO 

treatments significantly decreased plasmatocyte counts from about 9 x 10⁵ cells per ml of 

hemolymph to about 4 x 10⁵ cells per ml of hemolymph in a dose-dependent manner. 

Granulocytes (Figure 2b) had a similar trend in being negatively correlated with LGEO 

treatments, starting with the control having 51.04 x 10⁵ cells per ml of hemolymph. The 

treatment groups significantly decreased in granulocyte numbers from approximately 32 x 10⁵ 

cells per ml of hemolymph to nearly 27 x 10⁵ cells per ml of hemolymph in a dose-dependent 

manner. At 1.25, 2.5, and 5% LGEO concentrations, the decrease in individual plasmatocyte and 

granulocyte counts was statistically significant (p < 0.05, ANOVA followed by Tukey multiple 

comparison of means test). 

The trends for spherulocytes and oenecytoids differed from the trends seen in 

plasmatocytes and granulocytes. The control count for spherulocytes (Figure 2c) was 3.49 x 10⁵ 

cells per ml of hemolymph. Spherulocyte counts in the treatment groups remained at 

approximately 1.5 x 10⁵ cells per ml of hemolymph throughout all tested LGEO concentrations. 
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All were considered statistically signficiant when compared to the control (p < 0.05, ANOVA 

followed by Tukey multiple comparison of means test). Oenecytoids (Figure 2d) were present at 

6.5 x 10⁵ cells per ml of hemolymph in the control group. Only at 0.625% LGEO was there a 

statistically significant depletion in hemocyte numbers observed, with about 1 x 10⁵ cell per ml 

of hemolymph (p < 0.05, ANOVA followed by Tukey multiple comparison of means test).  

 

 

Figure 2. Plasmatocyte (a), granulocyte (b), spherulocyte (c), and oenecytoid (d) counts in 

response to dose-dependent injections of LGEO in Galleria mellonella immune systems 

challenged with 40% Sumi ink. The zero-concentration solution was cholesterol-free vegetable 

oil. N = 15-35 larvae per data point. * P < 0.05, ** P < 0.01, *** P < 0.001 in ANOVA followed 

by Tukey comparison of means. 

 

 

C D 
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The percentage of phagocytized cells appeared to not be affected by LGEO (Figure 3). 

The phagocytized cells in the treatment groups were all above 94%, indicating that phagocytosis 

still occurred at a high rate in the dose-dependent injections. 

 

Qualitative High Performance Thin Layer Chromatography 

Qualitative HTPLC analysis indicated that citral was present in the lemongrass oil used in 

my study. Derivatized citral produced a band that collocated at Rf 0.55 with a massive band in 

the lanes containing derivatized LGEO (Figure 4). 

 

 

Figure 3. Percent of phagocityzed cells in total hemocyte counts of dose-dependent injections of 

LGEO and 40% Sumi ink. N = 15 larvae per data point.  
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Figure 4. HPTLC plate confirming presence of citral in LGEO. Lanes: 0.5% citral (1), 0.125% 

citral (2), 1% LGEO (3), and 5% LGEO (4). All concentrations were dilluted in methanol. Plate 

was developed in 93:7 toluene to ethyl acetate and derivatized in vanillin reagent over heat. 

Citral standards collocate with the main ingredient of LGEO (arrow). 
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DISCUSSION 

 

In this study, I addressed whether LGEO had the potential to counteract cellular immune 

responses of Galleria mellonella larvae on two fronts: lowering circulating cells produced in a 

triggered immune system, and lowering the rate of phagocytosis. LGEO treatments were 

effective in lowering all four cell types that I examined, with statistically significant results for 

plasmatocytes, granulocytes, and spherulocytes in a dose-dependent manner. Oenecytoid 

numbers were lowered with treatments, but only one concentration yielded statistically 

significant results. However, due to the elevated oenecytoid numbers in the other concentrations, 

I can surmise that this significance is an outlier.  

The rate of phagocytosis was not affected by dose-dependent LGEO treatments. 

However, the total hemocyte count was lowered, specifically plasmatocyte, granulocyte, and 

spherulocytes counts. These were the only cell types that I observed to display phagocytosis, 

correlating to results found in literature (Lavine & Strand, 2002; Peterson, 2019). I speculate that 

because of lowered hemocyte’s numbers the total efficacy of phagocytosis was in fact lowered 

by the LGEO treatment. If studied further with the proper equipment and tools, the negative 

correlation would be likely observed with a decrease in phagocytosis rate in a dose-dependent 

manner.  

The HPTLC analysis (Figure 4) shows that citral does make up the majority of the LGEO 

used in my tests. This is confirmed in literature by Wagner and Bladt (1996). Rice (2021) 

performed preliminary investigation of citral effects on differential hemocyte copunts in Galleria 

larvae, using the same methods that I used here with citral instead of LGEO. She observed that 

citral lowered numbers of circulating plasmatocytes, and was effective at lower concentrations. 
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This is, in a part, congruent with my findings, confirming that citral is responsible for lowering 

hemocyte numbers.  

Rice (2021) also studied citral application methods and found that citral could influence 

hemocyte counts in Galleria when applied topically or by alimentary system. This raises the 

question about citral’s potential as biopesticide. Specifically, if citral can lower levels of 

circulating hemocytes under field conditions, and, consequently, counteract encapsulation. Since 

shutting off this mechanism increases the chance of survival for the invader, citral could enhance 

biocontrol treatments used in IPM strategies against parasitic roundworm nematodes. Further 

studies are needed on lemongrass’s and other essential oils’ potential against insect immune 

systems.  

Such studies have been recently undertaken in Dr. Pszczolkowski’s lab and produced 

promising results. For example, invasion by a parasitoid can be mimicked by implantation of 

nylon implant into the hemocoel of the larvae. The larvae respond by encapsulation and 

melanization of the implant. Later, a video imaging system was used for measuring grey values 

of light passing through the implants (Rantala et al., 2002). In our experiments, citral injections 

prior to implant insertion inhibited implant melanization at doses as low as 0.3 µg/larva. 

  



 

21 

REFERENCES 

 

Alavanja, M.C., Samanic, C., Dosemeci, M., Lubin, J., Tarone, R., Lynch, C.F., Knott, C., 

Thomas, K., Hoppin, J.A., Barker, J., Coble, J., Sandler, J.P. and Blair, A. (2003) Use of 

agricultural pesticides and prostate cancer risk in the Agricultural Health Study cohort. 

American Journal of Epidemiology, 157, 800–814. 

 

Alexandratos, N. and Bruinsma, J. (2012) World agriculture towards 2030/2050: the 2012 

revision. Food and Agriculture Organization of the United Nations. 

https://www.fao.org/3/ap106e/ap106e.pdf. 

 

Allegra, E., Titball, R.W., Carter, J. and Champion, O.L. (2018) Galleria mellonella larvae allow 

the discrimination of toxic and non-toxic chemicals. Chemosphere, 198, 469–472.  

 

Arora, N.K., Verma, M., Prakash, J. and Mishra, J. (2016) Regulation of biopesticides: global

concerns and policies. In N.K. Arora, Mehnaz S. and Balestrini R. (Eds.), 

Bioformulations: for sustainable agriculture (pp. 283–299). Springer. 

 

Atwood, D. and Paisley-Jones, C. (2017) Pesticides industry sales and usage. U.S.  

Environmental Protection Agency. https://www.epa.gov/sites/default/files/2017- 

01/documents/pesticides-industry-sales-usage-2016_0.pdf. 

 

Bailey, K.L., Boyetchko, S.M. and Längle, T. (2010) Social and economic drivers shaping the 

future of biological control: a Canadian perspective on the factors affecting the 

development and use of microbial biopesticides. Biological Control, 52, 221–229.  

 

Baghban, A., Sendi, J.J. and Zibaee, A. (2018) Effect of essential and non-essential elements on 

cellular immune system of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: 

Noctuidae). Invertebrate Survival Journal, 15, 158–168. 

 

Beggel, S., Werner, I., Connon, R.E. and Geist, J.P. (2010) Sublethal toxicity of commercial 

insecticide formulations and their active ingredients to larval fathead minnow 

(Pimephales promelas). Science of the Total Environment, 408, 3169–3175. 

 

Berni, I., Menouni, A., El, I.G., Duca, R.C., Kestemont, M.P., Godderis, L. and Jaafari, S.E. 

(2021) Understanding farmers’ safety behavior regarding pesticide use in Morocco. 

Sustainable Production and Consumption, 25, 471–483.  

 

Boedeker, W., Watts, M., Clausing, P. and Marquez, E. (2020) The global distribution of acute 

unintentional pesticide poisoning: estimations based on a systematic review. BMC Public 

Health, 20, 1–19. 

 

Braga, A.R.C., de Rosso, V.V., Harayashiki, C.A.Y., Jimenez, P.C. and Castro, Í.B. (2020) 

Global health risks from pesticide use in Brazil. Nature Food, 1, 312–314.  



 

22 

 

Caldas, E.D. and Jardim, A.N.O. (2012) Exposure to toxic chemicals in the diet: is the Brazilian 

population at risk? Journal of Exposure Science and Environmental Epidemiology, 22, 1–

15.  

 

Chintalchere, J.M., Dar, M.A., Raut, K.D. and Pandit, R.S. (2021) Bioefficacy of lemongrass and 

tea tree essential oils against house fly, Musca domestica. Proceedings of the National 

Academy of Sciences, India Section B: Biological Sciences, 91, 307–318.  

 

Crist, E., Mora, C. and Engelman, R. (2017) The interaction of human population, food 

production, and biodiversity protection. Science, 356, 260–264.  

 

Damalas, C.A., and Koutroubas, S.D. (2018) Current status and recent developments in 

biopesticide use. Agriculture, 8, 1–6. 

 

Dubovskii, I.M., Grizanova, E.V., Chertkova, E.A., Slepneva, I.A., Komarov, D.A., Vorontsova, 

Ya.L. and Glupov, V.V. (2010) Generation of reactive oxygen species and activity of 

antioxidants in hemolymph of the moth larvae Galleria mellonella (L.) (Lepidoptera: 

Piralidae) at development of the process of encapsulation. Journal of Evolutionary 

Biochemistry and Physiology, 46, 35–43. 

 

Dubovskiy, I.M., Kryukova, N.A., Glupov, V.V. and Ratcliffe, N.A. (2016) Encapsulation and 

nodulation in insects. Invertebrate Survival Journal, 13, 229–246. 

 

Fearon, D.T. (1997) Seeking wisdom in innate immunity. Nature, 388, 323–324. 

 

Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B., 

Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., Eggers, S., Bommarco, R., Pärt, T., 

Bretagnolle, V., Plantegenest, M., Clement, L.W., Dennis, C., Palmer, C., Oñate, J.J., 

Guerrero, I., Hawro, V., Aavik, T., Thies, C., Flohre, A., Hänke, S., Fischer, C., 

Goedhart, P.W. and Inchausti, P. (2010) Persistent negative effects of pesticides on 

biodiversity and biological control potential on European farmland. Basic and Applied 

Ecology, 11, 97–105. 

 

Glenn, J.D., King, J.G. and Hillyer, J.F. (2010) Structural mechanics of the mosquito heart and 

its function in bidirectional hemolymph transport. Journal of Experimental Biology, 213, 

541–550.  

 

Handford, C.E., Elliott, C.T. and Campbell, K. (2015) A review of the global pesticide 

legislation and the scale of challenge in reaching the global harmonization of food safety 

standards. Integrated Environmental Assessment and Management, 11, 525–536. 

 

Haszcz, K. (2016) Impairing the insect immune system with plant-derived substances 

[Unpublished master’s thesis]. Missouri State University. 

 



 

23 

Hummelbrunner, L.A. and Isman, M.B. (2001) Acute, sublethal, antifeedant, and synergistic 

effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera 

litura (Lep., Noctuidae). Journal of Agricultural and Food Chemistry, 49, 715–720. 

 

Johnsen, K., Jacobsen, C.S., Torsvik, V. and Sørensen, J. (2001) Pesticide effects on bacterial 

diversity in agricultural soils – a review. Biology and Fertility of Soils, 33, 443–453.  

 

Joy, P.P., Skaria, B.P., Mathew, S., Mathew, G. and Joseph, A. (2006) Lemongrass: the fame of 

Cochin. Indian Journal of Arecanut, Spices and Medicinal Plants, 8, 55–64. 

 

Jutsum, A.R., Heaney, S.P., Perrin, B.M. and Wege, P.J. (1998) Pesticide resistance:  assessment 

of risk and the development and implementation of effective management strategies. 

Pesticide Science, 54, 435–446. 

 

Kendra, P.E., Montgomery, W.S., Niogret, J., Schnell, E.Q., Deyrup, M.A. and Epsky, N.D. 

(2014) Evaluation of seven essential oils identifies cubeb oil as most effective attractant 

for detection of Xyleborus glabratus. Journal of Pest Science, 87, 681–689. 

 

Koul, O., Walia, S. and Dhaliwal, G.S. (2008) Essential oils as green pesticides: potential and 

constraints. Biopesticides International, 4, 63–84. 

 

Kumar, J., Ramlal, A., Mallick, D. and Mishra, V., (2021) An overview of some biopesticides 

and their importance in plant protection for commercial acceptance. Plants, 10, 1185. 

 

Kumar, S. (2012) Biopesticides: a need for food and environmental safety. Journal of 

Biofertilizers and Biopesticides, 3, 1–3. 

 

Kumar, S. and Singh, A. (2015) Biopesticides: present status and the future prospects. Journal of 

Fertilizers & Pesticides, 6, 100–129. 

 

Lavine, M.D. and Strand, M.R. (2002) Insect hemocytes and their role in immunity. Insect 

Biochemistry and Molecular Biology, 32, 1295–1309. 

 

McKenzie, F.C. and Williams, J. (2015) Sustainable food production: constraints, challenges and 

choices by 2050. Food Security, 7, 221–233. 

 

Mondotte, J.A., Gausson, V., Frangeul, L., Suzuki, Y., Vazeille, M., Mongelli, V., Blanc, H., 

Failloux, A.B. and Saleh, M.C. (2020) Evidence for long-lasting transgenerational 

antiviral immunity in insects. Cell Reports, 33, 108506. 

 

Papachristos, D.P. and Stamopoulos, D.C. (2002) Repellent, toxic and reproduction inhibitory 

effects of essential oil vapours on Acanthoscelides obtectus (Say)(Coleoptera: 

Bruchidae). Journal of Stored Products Research, 38, 117–128. 

 

Pereira, T.C., De Barros, P.P., Fugisaki, L.R.D.O., Rossoni, R.D., Ribeiro, F.D.C., De Menezes, 

R.T., Junqueira, J.C. and Scorzoni, L. (2018) Recent advances in the use of Galleria 



 

24 

mellonella model to study immune responses against human pathogens. Journal of Fungi, 

4, 1–19. 

 

Peterson, W. (2019) Using pseudo nomarski contrast to study hemocytes of Galleria mellonella. 

[Unpublished master’s thesis]. Missouri State University. 

 

Plata-Rueda, A., Rolim, G.D.S., Wilcken, C.F., Zanuncio, J.C., Serrão, J.E. and Martínez, L.C. 

(2020) Acute toxicity and sublethal effects of lemongrass essential oil and their 

components against the granary weevil, Sitophilus granarius. Insects, 11, 379. 

 

Rajkumar, V., Gunasekaran, C., Christy, I.K., Dharmaraj, J., Chinnaraj, P. and Paul, C.A. (2019) 

Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and 

their major constituents against stored grain pest. Pesticide Biochemistry and Physiology, 

156, 138–144. 

 

Rani, N., Ponnudurai, G. and Harikrishnan, T.J. (2019) In vitro insecticidal activities of essential 

oil of Lemon grass against house fly: Musca domestica L. Journal of Entomology and 

Zoology Studies, 7, 206–209.  

 

Rantala, M.J., Jokinen, I. Kortet, R., Vainikka, A. and Suhonen J. (2002) Do pheromones reveal 

male immunocompetence? Proceedings of Royal Society of London B Biology, 269, 

1681–1685. 

 

Rice, J. (2021) Effects of “lemongrass factor” on Galleria mellonella hemocytes [Unpublished 

master’s thesis]. Missouri State University. 

  

Rosales, C. (2010) Phagocytosis, a cellular immune response in insects. Invertebrate Survival 

Journal, 8, 109–131. 

 

Sharma, A., Shukla, A., Attri, K., Kumar, M., Kumar, P., Suttee, A., Singh, G., Barnwal, R.P. 

and Singla, N. (2020) Global trends in pesticides: a looming threat and viable 

alternatives. Ecotoxicology and Environmental Safety, 201, 110812. 

 

Sheehan, G., Garvey, A., Croke, M. and Kavanagh, K. (2018) Innate humoral immune defences 

in mammals and insects: the same, with differences? Virulence, 9, 1625–1639. 

 

Stavnichenko, P.V., Novohatska, L.O., Antonenko, A.M. and Vavrinevych, O.P. (2017) 

Assessment of ecotoxicological hazard and risk of contamination of groundwater with 

different groups of pesticides. Medicini Perspektivi (Medical Perspectives), 22, 119–125. 

  

Strand, M.R. (2008) The insect cellular immune response. Insect Science, 15, 1–14.  

 

Strand, M.R., Beck, M.H., Lavine, M.D. and Clark, K.D. (2006) Microplitis demolitor 

bracovirus inhibits phagocytosis by hemocytes from Pseudoplusia includens. Archives of 

Insect Biochemistry and Physiology, 61, 134–145.  

 



 

25 

Strand, M.R. and Pech, L.L. (1995) Immunological basis for compatibility in parasitoid-host 

relationships. Annual Review of Entomology, 40, 31–56. 

 

Tungjitwitayakul, J. and Tatun, N. (2019) Hemocyte Types based on total and differential counts 

in Samia cynthia ricini (Lepidoptera; Saturniidae) reared on host plants versus an 

artificial diet. Naresuan University Journal: Science and Technology (NUJST), 27, 82–

94. 

 

Vilmos, P. and Kurucz, É. (1998) Insect immunity: evolutionary roots of the mammalian innate 

immune system. Immunology Letters, 62, 59–66. 

 

Wagner, H. and Bladt, S. (1996) Plant drug analysis: a thin layer chromatography atlas. 

Springer. 

 

Whalon, M.E. and Wingerd, B.A. (2003) Bt: mode of action and use. Archives of Insect 

Biochemistry and Physiology, 54, 200–211. 

 

Wojda, I. (2017) Immunity of the greater wax moth Galleria mellonella. Insect Science, 24, 342– 

357. 

 

Wojda, I., Staniec, B., Sułek, M. and Kordaczuk, J. (2020) The greater wax moth Galleria 

mellonella: biology and use in immune studies. Pathogens and Disease, 78, 1–15. 

 

Yimaer, A., Chen, G., Zhang, M., Zhou, L., Fang, X. and Jiang, W. (2017) Childhood pesticide 

poisoning in Zhejiang, China: a retrospective analysis from 2006 to 2015. BMC Public 

Health, 17, 1–8.  

 

Zhang, C., Liu, R., He, J., Ma, Z. and Zhang, X. (2016) Chemical compositions of Ligusticum 

chuanxiong oil and lemongrass oil and their joint action against Aphis citricola van der 

goot (Hemiptera: Aphididae). Molecules, 21, 1–10.  

 

Zhang, W. (2018) Global pesticide use: profile, trend, cost / benefit and more. Proceedings of the 

International Academy of Ecology and Environmental Sciences, 8, 1–27. 

 

Zimmerman, L.M., Vogel, L.A. and Bowden, R.M. (2010) Understanding the vertebrate immune 

system: insights from the reptilian perspective. Journal of Experimental Biology, 213, 

661–671.  

 

Zulfikar, W.A. and Sitepu, F.Y. (2019) The effect of lemongrass (Cymbopogon nardus) extract 

as insecticide against Aedes aegypti. International Journal of Mosquito Research, 6, 101–

103. 


	Effects of Lemongrass Essential Oil on Galleria Mellonella Hemocytes
	Recommended Citation

	Missouri State University

