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ABSTRACT 

With the proliferation of smart home devices like Google Home or Amazon Alexa, significant 
research endeavors are being carried out to improve the user experience while interacting with 
these smart assistants. One such dimension in this endeavor is ongoing research on successful 
emotion detection from short voice commands used in smart home environment. Besides facial 
expression and body language, etc., speech plays a pivotal role in the classification of emotions 
when it comes to smart home application. Upon successful implementation of accurate emotion 
recognition, the smart devices will be able to intelligently and empathetically suggest appropriate 
actions based on the users’ current emotional state. Keeping that in focus, this research aims to 
advance the existing literature on emotion detection from voice commands in smart home 
applications. Initially, I chose two publicly available datasets as audio conversation datasets to 
highlight my application's most effective classification algorithm. Through a comparative 
analysis, I have concluded that the Tree-based Pipeline Optimization Tool (TPOT) algorithm 
outperforms other machine learning techniques to detect accurate emotion from an audio. On a 
concurrent study, I observed that Mel Frequency Cepstral Coefficient (MFCC) in combination 
with Mel Spectrogram (MEL) result in higher classification accuracy than other existing audio 
feature combinations available in literature. Upon this conclusion, I have adapted TPOT 
combined with MEL and MFCC audio feature for our in-house smart home dataset. This 
Institutional Review Board (IRB) approved in-house dataset contains 5000 smart home voice 
commands covering five distinctive emotional states from 12 different users. Moving forward, I 
proposed four new audio features named Chunk Gap Length (CGL), Mean Chunk Duration 
(MCD), Mean Word Duration Per Chunk (MWDPC), and Per Chunk Word Count (PCWC) to be 
utilized along with existing MFCC and MEL for improving the accuracy of emotion detection. 
My evaluation results show that combinations of custom features with MFCC and MEL provide 
better accuracy in detecting the correct emotion compared to MFCC and MEL alone. 
 
 
KEYWORDS:  speech emotion recognition, machine learning, smart home, voice command,  
Mel Frequency Cepstral Coefficient (MFCC), Mel Spectrogram (MEL), pitch, Sound Pressure 
Level (SPL), Chunk Gap Length (CGL), Tree-based Pipeline Optimization Tool (TPOT) 
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INTRODUCTION 

 

Motivation 

Emotion detection from voice commands is an interesting research avenue due to the 

recent increase in the popularity of smart home devices like Amazon Alexa and Google Home. 

Automatic emotion recognition from short voice commands can make a smart home smarter by 

enabling automatic policy enforcement [1] to enhance the inhabitant’s quality of experience [2]–

[4]. With the overwhelming usage of smart devices in our daily life, communication with the 

device interface is one of the promising areas of research and innovation. The voice commands 

that we use to communicate with smart devices contain two key features - context and emotion 

[4].  Modern-day technology has successfully implemented the interlink between user and device 

based on the context of our speech [5]. Some smart devices have already been programmed to 

perform appropriate actions based on the context of our conversation [6]–[13]. In contrast, 

emotion is believed to carry much more sophisticated information related to the state of our mind 

but remains an unexplored dimension when it comes to getting utilized in smart home devices. 

Upon successful retrieval of the exact emotion from our conversation, it can be used to assist 

with emergency services, call centers, medical services, and many other potential fields. For 

example, if the smart assistant can detect fearful emotion in the user’s voice command, it can 

suggest dialing 911, call next of kin or sound an alarm.  

 

Research Problem 

Humans can typically understand the emotional state of another human because of years 

of learning and practice. This can be difficult to replicate because the amount of data that would 

need to be fed into the learning algorithm would be extensive. While humans can consider other 
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factors like the speaker’s physical state and facial expressions, speech-only detection systems 

cannot incorporate these features and hence, do not always yield the most consistent and accurate 

results [14]. While speech is only one aspect of this emotion detection puzzle, it is an aspect of 

utmost importance because of its inseparable integration in humans [15]. Keeping that in focus, 

the audio emotion detection system works to diminish the gap between human and machine 

capabilities to recognize the current emotional state of users. Methodically, for emotion detection 

from any sort of audio event, there are two aspects we need to consider simultaneously – i) 

selecting the appropriate audio features, and ii) selecting a classification algorithm. Most of the 

reported studies on audio emotion detection incorporate different combinations of audio features 

and machine learning algorithms to improve the accuracy of emotion detection [22]–[24]. Due to 

the complex nature of human speech, there are various challenges in retrieving accurate 

information by extracting audio features. Each emotional state has distinct speech features 

categorized as prosodic and dynamic features. Prosodic features such as pitch, sound pressure 

level [16], and energy are commonly used in the field of emotion detection [16]–[18] but they 

sometimes fail to distinguish certain emotions like happy or angry [19]. Therefore, dynamic 

features, e.g., Mel-frequency Cepstral Coefficient (MFCC) [20], [21], are considered in addition 

to the prosodic features. Researchers have also provided insight into which classification 

algorithms would be well-suited to adopt when it comes to detecting emotion from speech 

through years of research. These options include K-Nearest Neighbor (KNN) [18], Deep Neural 

Networks (DNN) [22], Convolutional Neural Network (CNN) [23], and Support Vector Machine 

(SVM) [24].  
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Research Contributions 

The primary focus of this thesis is to find audio features from smart home short voice 

commands and investigate a suitable classification algorithm for emotion classification. For this 

purpose, I have first extracted a combination of existing audio features and applied some 

machine learning algorithms on the publicly available RAVDESS dataset [25] and TESS dataset 

[26]. By the end of the primary phase, I have concluded Tree-based Pipeline Optimization Tool 

(TPOT) along with the combination of MFCC and MEL audio features outperforms all other 

combinations. Thus, I picked MEL, MFCC and TPOT and applied into an in-house custom 

dataset solely developed for this research. The dataset is Institutional Review Board (IRB) 

approved and consists of 5000 smart home voice commands covering five distinctive emotional 

states – happy, normal, sad, fearful, and angry from ten different users [27]. The motivation 

behind developing such a dataset is, that most of the voice commands used with a smart home 

assistant are short and do not carry elaborate information about the context, otherwise known as 

lexical cues, as compared to the regular human-human conversation as available in the existing 

literature. Consequently, there is a window of increasing the classification accuracy by 

incorporating dynamic features. To increase the accuracy of the detection algorithm further, I 

introduce four new audio features named Chunk Gap Length (CGL), Mean Chunk Duration 

(MCD), and Mean Word Duration Per Chunk (MWDPC), and Per Chunk Word Count (PCWC) 

along with existing MEL and MFCC. The novelty of this study resides in analyzing short smart 

home voice commands (in short, smart commands) and interactions with smart assistants for 

audio emotion detection which earlier studies did not explore to the best of my knowledge. Also, 

combining the custom audio features and existing features enhances the system’s accuracy for 

each user in the smart home dataset using TPOT. 
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Thesis Outline 

The rest of the thesis is organized as follows: In Section Literature Review, I provide an 

overview of similar studies and present a summary of their reported accuracy. I then describe the 

audio features in Section Audio Features and briefly discuss the classifiers in Section Review of 

Classifiers. The workflow diagram to detect emotion along with audio feature implementation is 

presented in Section Proposed Methodology and Implementation. I explain the dataset and 

performance evaluation in Section Performance Evaluation. Finally, I present my concluding 

remarks in Section Conclusion. 
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LITERATURE REVIEW 

 

In the field of emotion detection from an audio conversation, several studies have been 

conducted which incorporate some specific audio features and classification algorithms. This 

section will present an overview of some of the state-of-the-art research on audio emotion 

detection. 

In [24], a speech recognition system was presented where the authors applied a multilevel 

SVM classifier on a multi-lingual dataset. This dataset consists of Assamie, Dimasa, Bodo, Karbi, 

and Mishing languages. The authors chose 600 samples for each language in their study. A unique 

combination of 49 features, including 4 prosodic features (pitch, energy, zero-crossing rate, and 

Log-entropy), 6 quality features (3 format frequencies, spectral roll-off, spectral flux, spectral 

centroid), 14 MFCC, 12 Linear Predictive Coding Coefficients, and 13 Mel-Energy spectrum 

Dynamic Coefficients were utilized. This specific feature combination achieved 79.3% accuracy 

for Assamie, 78.57% for Dimasa, 82.8% for Bodo, 89.23% for Karbi, and 81.43% for Mishing 

Language. In a similar study [18], the authors applied the KNN algorithm to detect speech 

emotions. The authors used Berlin emotional database [28] and incorporated pitch, zero-crossing 

count, entropy, and MFCC as classification features for four emotional states (angry, sad, neutral, 

and happy) and achieved 86.02% accuracy. 

In a more recent study, in [29], authors utilized IEMOCAP and AVEC datasets to predict 

happy, sad, neutral, angry, excited, and frustrated emotional states using the Recurrent Neural 

Network (RNN) classifier. Authors extracted textual features, i.e., n-gram features, audio and 

visual feature using 3D-CNN [30] and openSMILE [31]. The system can identify emotional states 

in conversation with 78.80% accuracy. A new dataset named Multimodal EmotionLines Dataset 
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has been proposed in [32], where 13,000 utterances have been collected from 1,433 dialogues of 

the popular TV series “Friends”. The authors of this study applied DialogueRNN to detect happy, 

anger, disgust, sadness, surprise, and neutral emotional states. Here, 1-D CNN was used to extract 

textual features, and the openSMILE toolkit was incorporated to extract audio features which 

provided 6373-dimensional features and achieved 67.56% accuracy. This dataset can help extract 

new features from audio, video, and textual modalities. In [23], the authors proposed a system to 

detect the emotion of adult persons in the nursing home using CNN. In this case, 95% accuracy 

was achieved by applying the normalization and augmentation process together. The authors have 

incorporated the RAVDESS dataset and extracted spectrogram features to detect happy, sad, 

angry, fearful, surprised, and disgust emotional states. 

In [20], the authors applied a Gaussian mixture model (GMM). This study was conducted 

on a recorded dataset of 27 speakers of the Assamese language and reported detecting happy, 

surprise, and angry emotions based on the MFCC feature. The system achieved 76.5% accuracy. 

In [33], researchers have applied RNN on the IEMOCAP dataset [34] to detect happy, sad, 

neutral, and angry emotions. To achieve their goal, the authors extracted raw spectral features i.e., 

257-dimensional magnitude Fast Fourier Transform (FFT) vectors along with low-level 

descriptors, i.e., fundamental frequency, voicing probability, frame, energy, zero-crossing rate, 

and 12 MFCC, and achieved an accuracy of 58.8%. The authors proposed a weighted time 

pooling strategy in this study that considers emotionally salient parts of an utterance. Another 

study based on a deep learning network has been reported in [22]. In this study, the authors 

developed a unique architecture, named ADRNN, which incorporated dilated CNN with residual 

block and Bidirectional LSTM based on the attention mechanism. The study reported 85.39% 

accuracy in the speaker-independent experiment, 64.74% accuracy in the IEMOCAP dataset, and 
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85.39% accuracy in the Berlin EMODB dataset by extracting features from the 3-D log Mel 

spectrogram. In [35], the authors incorporated a deep neural network to detect neutral, happy, sad, 

and angry emotions from the IEMOCAP dataset by extracting the MFCC feature with 70.6% 

accuracy. In [36], both CNN and RNN have been applied to recognize speech emotions neutral, 

anger, fear, disgust, sadness, boredom, and happiness from the Berlin EMODB dataset by 

analyzing the Fourier transform coefficients of the input audio. 

Real-time speech emotion recognition was attempted on the open-source Berlin Emotional 

Speech Database (EMO-DB) dataset in [37]. The EMO-DB dataset consists of 535 short German 

utterances categorized into seven different emotions- anger, boredom, anxiety, happiness, sadness, 

disgust, and neutral. Each sample in the dataset was initially recorded with a 48 kHz sample rate. 

Then, each recording was down sampled to have a 16 kHz sample rate. Instead of classifying 

extracted acoustic features, the authors proposed converting each utterance into a visual 

spectrogram and then classifying the images. They used a transfer learning approach with a 

trained image-based convolution neural network known as AlexNet. AlexNet was first introduced 

in [38]. The model has been trained on 1.2 million images and has been able to distinguish images 

between 1,000 object classifications [37] successfully. The model consists of a three-channel 

input (red, green, and blue) allowing two-dimensional images with a resolution of 256 × 256. Five 

convolutional layers follow the input layer, with each convolution layer containing max pooling 

and normalization layers. Three fully connected layers exist after the last convolutional layer with 

an exponential SoftMax function that converts the output from the last fully connected layer into a 

normalized vector. This normalized vector contains floating-point numbers in the set [0,1] that 

represent the probability for each possible classification. The class with the highest probability is 
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returned. Using this model with spectrogram representations of the EMO-DB dataset, the authors 

achieved an average accuracy of 82% with a return time of 1.033-1.026 seconds. 

A hybrid model for speech emotion recognition, using both a GMM and deep neural 

network (DNN) proposed in [39]. In this project, the authors created their dataset for 

classification, titled the Emirati Speech Database (ESD). A group of 15 men and 15 women, 

ranging from 14 to 55 years old, were involved in the production of the ESD. A list of eight 

commonly spoken sentences in the United Arab Emirates was given to each speaker. Each 

participant spoke every sentence nine times in the following emotions: neutral, happy, sad, 

disgust, anger, and fear. All lengths of the recordings in the ESD are between two and five 

seconds. Each sentence was initially recorded at a sample rate of 44.6 kHz, and then the 

recordings were downsampled to 16 kHz. For feature extraction, they compute MFCC of the 

sentence inputs and then send this data to a cascaded GMMDNN classifier. The GMM first 

computes the log probability of training voice vectors during model training. The previously 

computed log probability competes with stored voice data during model testing, and a “GMM 

tag” is generated. In this context, a GMM tag is a vector consisting of a 0 or 1 associated with 

each possible emotion. This means that six GMM tags are created for each input sentence as there 

are six possible classification outputs. Once the GMMs tag is created, this is used as the input for 

the DNN. The DNN consists of a CNN with four hidden layers; Within these four hidden layers 

are 256 rectified linear hidden units and a gradient descend optimization stage. Overall, the DNN 

creates a probability value for each emotion. At the end of the GMMDNN hybrid model, a 

decision block returns the classification with the highest probability value. Using this architecture, 

the authors achieved a classification accuracy of 83.97% over the ESD. This paper does not 

present an average or range of return times based on the GMM-DNN hybrid model.  
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In [40], the authors compared the classification accuracy of standard vector machine 

(SVM) and Multi-Layer perception (MLP) models using the Ryerson Audio-Visual Database of 

Emotional Speech and Song (RAVDESS). The RAVDESS data set comprises 24 professional 

voice actors, who each perform 60 trials in the song channel and 44 trials in the song channel. The 

emotions expressed within both channels include calm, happy, sad, angry, and fear. All the files in 

the RAVDESS dataset are 16 bits encoded .wav files with a sample rate of 48 kHz. The authors 

note that the disgust and surprising emotion categories were dropped from both channels in the 

original dataset, as these categories were missing in the song channel. Before classification, 

feature extraction is completed using the Librosa Python library. The following five features were 

extracted from the RAVDESS samples for classification: Melscaled spectrogram, Mel-frequency 

Cepstral Coefficients (MFCCs), Chromagram, spectral contrast, and Tonnetz. These features were 

then sent to an SVM and MLP model for classification. The optimized SVM model yielded a total 

classification accuracy of 82%. The optimization, in this case, consists of a grid search, where all 

possible combinations of parameters are tested, and the combination that yields the highest 

accuracy is kept. The parameters that yielded 82% accuracy were 41.8 as C, 0.03 as gamma, and 

the radial basis function (RBF) as the kernel. As for the MLP model, an accuracy of 75% was 

achieved by parameter grid search optimization. The following parameters were found to yield the 

highest accuracy: “adam” for the solver, “constant” for learning rate, “(100,50)” for the hidden 

layer sizes, “1e-08” for epsilon, “0.001” as alpha, and “relu” as the activation function. The 

authors explain that many misclassified samples occurred between the sad and fearful 

classifications while using the MLP model.  

In [41], the authors proposed a similar solution in [40] by converting audio samples into 

visual spectrograms and then performing classification with a convolutional neural network. 
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However, in this case, both a trained AlexNet model and a custom CNN model alternative are 

used and compared. Badshah et al. note that using a custom-trained CNN model can be more 

effective as it suits the structure of the spectrogram-based input data better than a generalized 

pre-trained model such as AlexNet. Additionally, facilitating transfer learning on pre-trained 

models usually increases complexity and decreases training performance. The dataset used in this 

research was the Berlin dataset, which consists of speech data from four different individuals. All 

the data is sorted into seven different emotion classifications: neutral, fear, anger, happy, sadness, 

disgust, and boredom. The model architecture was shared across the trials using the trained and 

custom model. The architecture accepts a three-channel (red, green, and blue) 256×256 images in 

the form of a spectrogram. The first three layers in the network consist of convolutional layers. 

The first convolutional layer has 120 kernels with a 4-pixel stride setting. The first convolutional 

layer is a 3×3 size max pooling layer with a 2-pixel stride setting and a rectified linear unit 

(ReLU) layer. The second and third convolutional layers are followed by the same max pooling 

and ReLU layers as the first convolutional layer, except the kernel sizes are 256 and 384, 

respectively. The second and third convolutional layers have a stride setting of 1 pixel. After the 

convolutional layers, three fully connected layers have neuron counts of 2048, 2048, and 7, 

respectively. Badshah et al. note that dropout layers were added after the first two fully connected 

layers to prevent model overfitting. After running two tests on the same dataset between the 

custom trained model and the pre-trained AlexNet model, it was found that the custom trained 

model was superior, with an accuracy of 84.3%. 

In [42], the authors emphasize the role that pre-feature extraction processing serves in the 

accuracy of a speech emotion recognition model. This paper does not contain information about a 

proposed speech emotion recognition (SER) system. However, the authors present several 
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preprocessing methods that can be used to improve the accuracy across different models for SER. 

The first preprocessing stage presented is called “pre-emphasis”, which involves running the 

speech through a high-pass filter. High pass filters gradually attenuate frequencies in decibels per 

octave. In other words, high-frequency bands are allowed to pass while low-frequency bands are 

at the least attenuated or eliminated. By using high pass filters on the input data, low-frequency 

bands typically outside the human vocal range are eliminated. Because this subset of data 

contained in the input signal does not indicate human emotions, eliminating it can improve the 

accuracy of different SER models. Another preprocessing stage introduced is normalization, 

which involves applying a constant gain to an audio signal such that the peak of the signal reaches 

a specified decibel value. Maintaining a constant sound level between different classification 

groups alleviates the possibility of the volume being too influential on classification results. 

Lastly, the authors mention silence removal as a viable stage in the preprocessing chain. Silence 

removal involves detecting silent sections in audio before and after speech commands in audio 

recordings. In this context, “silence” refers to sections where there is no relevant speech. These 

“silent” sections can still contain subtle environmental noise that serves as meaningless data. 

Removing these sections in speech data as a preprocessing method is another way of omitting 

redundant data, increasing the classification accuracy of SER models. The system proposed in this 

paper is distinct in that it is purposed to run on smart home devices, which do not possess the 

computing power of a standard desktop computer. Using a CNN was considered. However, 

converting all incoming audio to visual representations and then classifying this information using 

a CNN is not viable for real-time processing on a smart home device. In this context, real-time is 

a return time of under two seconds. Other proposed solutions in the literature that use multiple 

neural networks in parallel to achieve accurate classification cannot also perform in real-time. We 
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found that an MLP model can return classification results within two seconds. The total return 

time of the neural network allows the system to perform both audio preprocessing and 

classification in under one second on certain systems. It is important to note that the time it takes 

to train our proposed system does not happen under two seconds; The time varies depending on 

the number of training samples used. We are operating under the assumption that smart home 

devices containing an SER system would not have model training capabilities. Another major 

concern with implementing existing solutions into smart home devices is the dataset used for 

training. Commands given to smart home devices are typically short, containing 2-6 words. 

Commonly used datasets in SER literature (EMO-DB, RAVDESS, etc.) do not accurately reflect 

the typical input into smart home devices; The samples are either too long or too short. We have 

created an internal dataset used for training that accurately reflects the typical length and delivery 

given to smart home devices. Additionally, the introduction of an audio preprocessing chain 

allows our proposed system to perform accurately in a wider range of environments. All 

submitted audio during training and testing is funneled through a denoising stage (i.e., vocal 

isolator) that mitigates background audio. This was added to combat accuracy loss in noisy 

environments where a low signal-to-noise ratio is likely. 

An overview of the studies mentioned above is presented in Table 1. Here, we can see that 

different studies that have considered different datasets, numbers of emotions, features, and 

algorithms and achieved different accuracy. While the objectives of these studies are similar, the 

proposed approaches can be hard to compare due to their associated differences in corpora, 

algorithms, and feature extraction techniques. 
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Table 1. Comparing related works based on dataset, emotions, features, algorithms, and accuracy 

Dataset No. of 
Emotions Features Algorithm Accuracy 

MESDNEI [24] 7 

Pitch, ZCR, Short-term energy, 
Log-entropy, 3 format 
frequencies, Spectral Roll-off, 
Spectral Flux, Spectral centroid, 
14 MFCC, 12 LPCC,13 MESDC 

Multilevel 
SVM 78-89% 

Berlin Database 
[18] 4 Energy, pitch, ZCC, Entropy, 

MFCC 
KNN 86.02% 

IEMOCAP, 
AVEC [29] 6 n-gram features, text features 

using 3-D CNN and OpenSMILE RNN 78.80% 

MELD [32] 6 Textual feature using 1-D CNN, 
audio feature using OpenSMILE DialogueRNN 67.56% 

RAVDESS [23] 6 Spectrogram CNN 95% 
Assamese 
Dataset [20] 

3 MFCC GMM 76.5% 

IEMOCAP [33] 4 
257-D FFT, fundamental 
frequency, voicing probability, 
frame, energy, ZCR, 12 MFCC 

RNN 58.8% 

IEMOCAP, 
BerlinEMODB 
[22] 

4 3-D long Mel spectrogram CNN, 
BiLSTM 69-90% 

IEMOCAP [35] 4 MFCC DNN 70.6% 
Berlin EMODB 
[36] 7 Fourier Transform coefficients CNN, RNN 73-90% 

Berlin EMODB 
[37] 7 Spectral magnitude AlexNet 82% 

ESD [39] 6 MFCC GMM, DNN 83.97% 

RAVDESS [40] 5 

Melscaled spectrogram, Mel-
frequency Cepstral Coefficients 
(MFCCs), Chromagram, spectral 
contrast, and Tonnetz 

SVM, MLP 82% 

Berlin EMODB 
[41] 7 Spectrogram CNN 84.3% 

 

Although some of the studies have demonstrated excellent classification accuracy, to the 

best of the scope of this research, no studies have performed the emotion detection analysis on a 

dataset solely based on the smart home context. To address this issue, I created a dataset that is 

based on everyday voice commands that we use to interact with smart assistants and does not 

contain lexical cues about any specific emotional state of the user. As evident from the list of 
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features in Table 1, MEL and MFCC are two of the most widely adopted audio features 

incorporated in previous studies on audio emotion detection. Also, there is still some window of 

improvement when it comes to the accuracy of the machine learning algorithms reported in the 

previous literatures. Hence, to detect emotions from my custom dataset with improved accuracy, I 

introduced Chunk Gap Length (CGL), Mean Chunk Duration (MCD), Mean Word Duration Per 

Chunk (MWDPC), and Per Chunk Word Count (PCWC) features, and combined them with 

MFCC and MEL for emotion classification. These audio features along with the dataset are the 

building block of my proposed methodology. While finding the appropriate classification 

algorithm is a multifaceted problem by itself, I performed a comparative study of 7 widely used 

classification algorithms along with auto-machine learning (AutoML) system, combined with the 

audio features, to determine the appropriate classifier to detect emotions from two publicly 

available datasets, RAVDESS and TESS. Afterward, I incorporated the algorithm associated with 

the highest classification accuracy into the smart home dataset and validated my conclusion. 
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AUDIO FEATURES 

 

In this section, I am going to provide an overview of the novel and existing audio features 

that have been implemented in this research, to detect emotion from short conversations used in 

the smart home environment. 

 

Chunk Gap Length (CGL) 

To harvest the influence of the dynamic features of rhythm and stress in determining the 

emotion of a user, I introduced a novel feature named Chunk Gap Length (CGL). In CGL, a gap 

between the chunks in a voice command is considered where a chunk may contain more than one 

word. For example, if a smart home user suddenly stutters while delivering a voice command, 

then it might lead to a larger gap between the chunks which could be associated with the sign of 

that person being nervous or under a stressful condition [43]. Similarly, voice commands from a 

user with an angry emotional state may have smaller gaps between subsequent chunks. These 

gaps between chunks can also be more prevalent when a person is happy or sad [17].  

A graphical depiction of the gap between two consecutive chunks in a sample audio file 

is presented in Fig 1. Here, the total gap between “remind me”, “to”, “do, “laun”, and “dry” 

chunks are considered as CGL. As can be seen from this figure, an audio recording will contain 

varying signal strengths representing the user’s voice activity. When the signal strength falls 

below a certain threshold then that can be considered noise or silence. As can be seen in Figure 

1, the silence periods in the beginning and the end of each audio recording are not useful for the 

voice activity analysis. Hence, these two segments of silence at the beginning and the end of 

each audio file are not considered while calculating the CGL. Such assumption holds its validity 

as the silence periods in the beginning and at the end of each audio recording do not contain any 



   
 

16 

information about the users' emotional state and rather might lead to an erroneous input while 

calculating the silence period due to coherent inconsistency. The red dotted line in Figure 1 

refers to the threshold of silence which is calculated from the energy of the audio data. 

 

 

Figure 1. Graphical overview of custom audio features 
 

Mean Chunk Duration (MCD) 

Based on the same hypothesis of CGL, the time to utter the same number of words in 

different states of mind may vary depending on the emotional state of a user [44]. Therefore, I 

introduce the Mean Chunk Duration (MCD) feature where I calculate the meantime of the 

detected audio chunks, without the gaps between the chunks, in a voice command.  

To distinguish the time segments associated with the audio event, I used the same signal 

threshold as CGL. For better understanding, a pictorial depiction of chunk duration is also shown 

in Figure 1, where “remind me”, “to”, “do, “laun”, and “dry” are the chunks of voice activity, 

and the average duration of uttering these chunks represent MCD. Compared to CGL, the sum of 
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the chunk duration for MCD is not considered because some voice commands may return larger 

chunk sizes. For example, "go home" versus "remind me to do laundry". Whereas in CGL, the 

sum of silence periods is more appropriate otherwise vital information about the user's emotional 

state based on the length of the silence between chunks might be lost. 

 

Mean Word Duration Per Chunk (MWDPC) 

In Mean Word Duration Per Chunk (MWDPC), the average duration of each word in a 

voice command is calculated, by splitting the command into chunks and discarding the gaps 

between chunks. The split chunks for each command based on the voice activity threshold are 

divided by the number of words in each chunk.  

For example, in Figure 1, “Remind me” is a chunk with 2 words. For MWDPC, the 

duration of uttering this chunk is calculated and then divided it by the number of words in this 

chunk. The same for the other chunks in the voice command is calculated similarly. Finally, the 

average of the word duration for all the chunks in that command is measured. To detect Mean 

Word Duration Per Chunk, the following equation (1) is followed: 

MWDPC = avg 𝑡𝑐ℎ𝑢𝑛𝑘

𝑛𝑤𝑜𝑟𝑑 𝑖𝑛 𝑐ℎ𝑢𝑛𝑘
                                                 (1) 

where 𝑡𝑐ℎ𝑢𝑛𝑘 is each chunk duration of an audio event and 𝑛𝑤𝑜𝑟𝑑 𝑖𝑛 𝑐ℎ𝑢𝑛𝑘 is the number of words 

in each chunk. In Figure 1, there are 5 chunks. Thus, the MWDPC of the command “remind me 

to do laundry” is: 

MWDPC = avg ( 𝑡𝑅𝑒𝑚𝑖𝑛𝑑 𝑚𝑒

2
 + 𝑡𝑡𝑜

1
 + 𝑡𝑑𝑜

1
 + 𝑡𝑙𝑎𝑢𝑛

1
 + 𝑡𝑑𝑟𝑦

1
 )                         (2) 
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Per Chunk Word Count (PCWC) 

The final custom feature used in this research is Per Chunk Word Count (PCWC). PCWC 

represents how fast or slow the user is uttering the words in terms of word count per chunk per 

command. To obtain PCWC, the average number of words per chunk in each command is 

calculated as per the following equation (3):  

PCWC = avg (nwchunk1 + nwchunk2   + nwchunk3  +…………….+ nwchunkn)            (3) 

where nwchunkn represents the number of words in a given chunk. For example, PCWC of the 

command in Figure 1 is PCWC = avg (2+1+1+1+1) = 1.2. 

 

Mel-Frequency Cepstrum Coefficients (MFCC) 

MFCC is a widely adapted audio feature that can provide an accurate representation of 

the produced by the vocal tract of humans during speech generation [45], [46]. There have been 

several studies on improving the accuracy of speech emotion recognition using MFCC [47]–[51]. 

An overview of the key steps to calculate the MFCC from an audio signal is presented below. 

Mel-Frequency Wrapping. Audio signal of speech is a slowly time-varying or quasi-

stationary signal, and hence needs to be examined over an optimum period, which is not too 

short to provide enough samples to get an accurate spectral estimate and again, not too long that 

the signal changes too much throughout the period. Typically, audio frame of ~20-40 ms period 

is considered sufficient to provide good spectral resolution of the speech [45], [46]. To ensure 

maximum signal continuity, the audio frames are then processed through appropriate window 

functions which minimize the spectral distortion of the signal. After this processing, the time-

domain signal is converted into a frequency domain power spectrum using the Fast-Fourier 

Transform (FFT), which highlights the prominent frequency components present in a particular 

frame. To determine the existing energy in different frequency bands, the resultant power 
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spectrum is wrapped into a Mel-frequency scale. ‘Mel’ scale is a subjective representation of the 

actual frequency of a signal that relates to the perceived audio frequency by the human brain 

[47], [48].  The Mel-scale wrapped power spectrum is convolved with the Mel filter bank which 

is a series of overlapping triangular bandpass filters with center frequencies spaced in a fashion 

to simulate the auditory system. The output of the convolution is named as log Mel spectrum 

which manifests the information about the phoneme being produced by the vocal tract, in the 

frequency domain [48], [49], [51]. 

Cepstrum Coefficient. The resulting log Mel spectrum from the Mel filter bank is 

converted to several cepstral coefficients using Discrete Cosine Transform (DCT) in the final 

step, which are known as Mel Frequency Cepstrum Coefficients (MFCC). The mathematical 

representation of DCT of the log Mel spectrum resulting from a series of filter banks can be 

expressed by equation (4)[47], [48]. 

𝐶𝑛 = ∑ (log 𝑆𝑘)𝑐𝑜𝑠 {𝑛 (𝑘 −
1

2
)

𝜋

𝐺
 }𝐺

𝑘=1 ,     𝑘 = 1,2, … , 𝐾                        (4) 

Where, 𝐶𝑛 is the coefficient of the acoustic vector that represents the set of MFCC and 𝑆𝑘 

is the accumulated power density of the output from kth Mel filter bank. Conventionally, each 

MFCC acoustic vector comprises of 13 coefficients. Some variants of the MFCC also include 

additional 26 features calculated from the delta (velocity) and double delta (acceleration) of the 

original 13 coefficients, in total 3of 9 features [49]. The 13 key coefficients of the MFCC 

acoustic vector incorporates the power spectral envelope of an audio segment, where the velocity 

and acceleration features carry information regarding the dynamics of MFCC coefficients over 

time. Combinedly these features provide a strong tool for speech emotion recognition. A 

summary of the general MFCC architecture is depicted in Figure 2.   
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Figure 2. Block diagram of the MFCC architecture [51] 
 

Mel Spectrogram (MEL) 

Mel spectrogram is another feature that is closely related to MFCC from an operational 

point of view and is oftentimes used in conjunction with MFCC for speech emotion recognition 

[49], [51]. In the Mel spectrogram, the signal strength of an audio event is represented overtime 

at the 'Mel' scale. 'Mel' scale is a logarithmic transformation of a signal's original frequencies: 

this transformation mimics the human ear sensitivity at different frequency levels. To obtain the 

Mel spectrogram of audio input, Short Term Fourier Transform (STFT) is applied on 

overlapping windowed frames of the digitally sampled signal under test. Then the obtained 

spectrogram magnitudes are mapped to the ‘Mel’ scale to get the Mel spectrogram [51]. 
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REVIEW OF CLASSIFIERS 

 

Successful implementation of an audio emotion detection system can be achieved when 

an appropriate classification algorithm is combined with the extracted audio features as described 

in the Audio Feature section. Besides audio features, we must choose an appropriate 

classification algorithm to train the system. In this section, I am presenting a brief discussion on 

the different classification algorithms that are considered in this thesis to train the audio emotion 

detection system.   

While there are several classification algorithms to choose from, the following 

classification algorithms are considered to present a comparative discussion of their level of 

accuracy in this research– KNN, Single Layer Perceptron (SLP), MLP, SVM, Logistic 

Regression (LR), AdaBoost, and Random Forest (RF) along with the TPOT AutoML system. 

Although there are many complicated models used by other researchers in the section Literature 

Review, I have chosen these simple models such as linear models like SLP, LR to reduce the 

time complexity. Here we are considering deploying our model in IoT devices thus the decision 

has to be made in real time. Also, these algorithms are some of the most frequently used 

algorithms to detect audio emotion. They belong to the supervised learning category because 

they are all fed with labeled data and are expected to return an outcome that fits within a range 

created by the labeled data.  

 

K-Nearest Neighbor (KNN) 

Among the aforementioned classifiers, KNN training is the simplest as it takes the 

training data at first, and then the sample data is compared with the training data using Euclidean 

distance, and finally, the closest points are selected for prediction [52]. KNN requires no 
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previous knowledge of the data distribution and operates by plotting all training data onto a 

theoretic graph using the features extracted. Then, a test sample is plotted on the graph as well, 

the Euclidean distance between the test sample and each training sample is then calculated and 

compared to find the closest point. That point’s labeled outcome then becomes the predicted 

emotion. This is displayed in Figure 3 showing the test sample as a red star and all other training 

samples as the black point. 

 

 
Figure 3. A schematic overview of the KNN algorithm 

 

Single Layer Perceptron (SLP)  

Contrary to KNN, SLP is trained by a labeled dataset, where the initial weights associated 

with the input are looped over to determine the optimum contribution of each weight that will 

result in the desired label as the output [53] - [35]. The overall algorithm of SLP gets more 

convoluted with the introduction of weights, reiteration, and the number of intermediate layers. It 

is also known as a perceptron, which is a system of nodes similar to neurons in the human brain 

that are connected by edges with weights. These edges are then used to apply the weights to the 

input data and this result is the prediction. Neural Network (NN) is trained by feeding in labeled 
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training data that is looped over to help to train the weights on the edges so that the labeled result 

can be reached. Figure 4 displays how the features extracted are fed into the weighted edges, 

which are adjusted over each training sample to produce the required outcome. The training 

sample is then fed into these weights and the produced outcome is the predicted emotion. 

 

 

Figure 4. A schematic overview of the SLP algorithm 
 

Multi-Layer Perceptron (MLP)  

Although SLP and MLP share similar training procedures, MLP is complex due to the 

introduction of the multiple hidden layer and activation functions [55]. Inherently, both SLP and 

MLP have the potential disadvantage of either underfitting or overfitting. This happens when 

either too little or too much training data is supplied. It is an artificial network of interconnected 

nodes modeled after the human brain like NN. These neurons are connected by edges. This 

network is fed labeled data for training and when test data is entered into the system, it is put 

through multiple layers before coming to the result. Those layers are as follows: input layer, 

hidden layer, and output layer. The input layer is just the beginning layer that brings in the data 

to be examined. The hidden layer is created when inputs from the input layer are weighted, and 

an activation function is applied to produce an output. This output is then calculated again using 
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the same process of weighting and activation and the resulting number is the final output. A 

simple example showing MLP layers is shown in Figure 5. 

 

 

Figure 5. A schematic overview of the Multilayer Perceptron (MLP) algorithm 
 

Support Vector Machine (SVM) 

SVM is another such classification algorithm, which utilizes the binary learning model. 

Since the learning method of SVM is based on sorting the labeled dataset into only two 

categories, it provides a better result to classify binary classes [52]. The data is called support 

vectors. It is a binary learning model. A decision boundary is drawn to classify the data into two 

groups. The decision boundary is called a hyperplane. The distance between support vectors and 

hyperplane should be as far as possible. Then new unlabeled data is to be fed into the system 

based on their category the system shows predicted emotion. The SVM training process is shown 

in Figure 6. 
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Figure 6. A schematic overview of the SVM algorithm 
 

Logistic Regression (LR) 

In comparison to the common classification algorithms, LR utilizes traditional statistics 

to develop an interlink between one dependent binary class and one or more nominal, ratio-level, 

or interval independent variables. The output from LR is provided in a form of the probability of 

desired outcome [54]. Due to its ability to correlate more than two variables, LR can handle 

multi-class classification in a better way. It is a technique that is used for traditional statistics 

along with machine learning. There is one dependent binary class and one or more ordinal, 

nominal, ratio-level, or interval dependent variables. Logistic regression develops the bonding 

between one dependent binary class and one or more nominal, ratio-level, or interval 

independent variables. LR shows the relationship between features and the probability of an 

outcome as shown in Figure 7. Here, Ɵ is the weight associated with different audio features 

which control the impact of each feature in training the algorithm. 
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Figure 7. A schematic overview of the LR algorithm 
 

Adaptive Boosting (AdaBoost) 

AdaBoost is also called boosting technique. Here several base learner models are 

developed sequentially. The labeled dataset is fed into the 1st base learner model. If the 1st base 

learner model incorrectly classifies some of the records, then the records are fed into the next 

sequential layer. This process is called boosting technique. In AdaBoost, the records are fed with 

sample weight into the system. Then a decision tree is created with the help of one depth. It is 

also called stumps. One stump would be created for each record. The total error is calculated for 

each of the misclassified records. Then the performance and error are calculated for each stump 

and the weight gets updated. In AdaBoost [56], the training dataset is also fed with sample 

weights into the first base learner model similar to SLP and MLP. The advantage of AB is that it 

incorporates several base learner models sequentially, where each subsequent learner model 

takes the misclassified data from the previous base learner model with updated weight. As the 

model is trained in sequential layers with updated weight, this technique is also known as 

boosting technique and can effectively handle weak learners. AdaBoost training mechanism is 

shown in Figure 8. 
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Figure 8. A schematic overview of the AdaBoost algorithm 
 

Random Forest (RF) 

RF classifier [57] also introduces several base learner models where each model is fed 

with a random combination of labels and features from the training dataset. When the test data is 

introduced to the trained model, every base learner model generates its output. The class that is 

predicted by the majority of the base learner models is considered the outcome. As a result, RF 

performs well when there are multiple combinations of labels and features. It also uses a decision 

tree as the base learner model. At first, some rows and some features are selected as samples 

called row sampling and feature sampling. Row and feature sampling are always less than the 

total row and features.  The sample row and features are fed into the decision tree as the base 

learner model. This is also called bootstrapping. Then the row and feature sampling get replaced 

and fed into the second base learner model. Thus, all the models are fed with different row and 

column sampling for training. Then the test data is fed into the system and every model generates 

its output. The majority of the output from all the models is counted as the final output for the 

test data. RF training mechanism is shown in Figure 9. 
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Figure 9. A schematic overview of the RF algorithm 
 

Tree-based Pipeline Optimization Tool (TPOT) 

Besides the algorithms discussed in the previous subsections, there exist a plethora of 

classification techniques that a system designer can choose from, such as XGBoost, 

DecisionTree, etc., with the additional dependency of data preprocessing and choice of the 

number of ideal parameters for each classifier. This tedious yet significant aspect of machine 

learning processes prompted the introduction of automated machine learning (AutoML) pipelines 

that optimizes the process of designing an effective classifier [58]. To identify the appropriate 

classifier, an AutoML known as TPOT is incorporated in this research, which is a python-based 

tool that optimizes machine learning pipelines using genetic programming. The pipelines of 

TPOT are arranged in a tree-like formation, where genetic programming is performed to obtain 

accurate predictive models [59]. Each node of the tree is known as ‘operators’ such as 

preprocessors, decomposition functions, feature selectors, and estimators. The pipelines 

comprising the ‘leaf’ node of the tree are provided with identical copies of the input dataset and 

the prediction accuracy of each pipeline is delivered as output to the ‘root’ node. The system 

then performs genetic mutation of the operators for example introducing a preprocessing step or 
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reducing the dimensionality of the features based on their relative importance in prediction. 

Some ‘operators’ such as feature selectors or model selectors, which can take input from 

multiple previous operators also undergoes crossover by exchanging features between different 

pipelines. The next generation of the programming tree with mutated operators is constructed 

based on the fitness score from each pipeline. Consequently, the machine learning pipelines 

trained by TPOT consist of a relatively small number of operators yet ensure high performance 

[60]. It is an AutoML (Automatic Machine Learning) tool. TPOT is an automated machine 

learning tool that optimizes machine learning pipelines using genetic programming.  It uses sci-

kit learn library of python for machine learning classifiers. TPOT combines a flexible expansion 

tree with genetic programming, and stochastic search algorithms to build machine learning 

pipelines. It reduces dimensionality and searches intelligently over machine learning pipelines 

containing classification models, preprocessors, feature selection techniques, and 

hyperparameters of all objects. It considers scikit-learn API and searches over supervised 

classification. algorithms associated, transformers and hypermeters with it. Figure 10 shows the 

TPOT mechanism. 

 

 

Figure 10. A schematic overview of the TPOT algorithm 
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To summarize the algorithms that have been discussed in this section, all of them include 

some advantages and disadvantages that must be considered when trying to determine which one 

is best for the smart home application. K-Nearest Neighbor training is the simplest in the fact 

that it is fed the training data, then the sample data is compared using Euclidean distance. K-

Nearest Neighbor is semi-simple in the fact that it just plots the points of the training data 

features, and then compares the Euclidean distance between those points and the plotted test 

point, and then selects the closest point for prediction. NN gets to be more complex with the 

introduction of weights and reiteration, adding to the number of steps. Multi-Layer Perceptron is 

the most complex of the algorithms discussed due to the introduction of the hidden layer and 

activation function, requiring the algorithm to take more steps than similar algorithms like NN.  

NN and Multi-Layer Perceptron share similar training processes with the main difference being 

that the training process of Multi-Layer Perceptron is more complex due to the use of the hidden 

layer. NN and Multi-Layer Perceptron both have the potential problem of either underfitting or 

overfitting. This is when either too little or too much training data is supplied. Support Vector 

Machine shows a better result to classify binary classes whereas logistic regression can handle 

multi-class classification in a better way. To handle weak learners, AdaBoost performs well 

whereas random forest performs well due to its bootstrapping process.  
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IMPLEMENTATION 

 

A complete workflow diagram of the proposed methodology is shown in Figure 11. First, 

the audio data is recorded using an audio recorder interface developed using Python. The model 

training is initiated by importing the audio files and splitting the entire dataset into training and 

test data. To train the model, first, the audio features mentioned in Section Audio Features are 

extracted from the training dataset. In addition to the audio features, the training dataset also 

consists of labels/identifiers for happy, normal, sad, angry, and fearful emotions corresponding to 

each of the audio files. Then the classification algorithms mentioned in Section Review of 

Classifiers are implemented to train the system models by aligning the feature attributes to a 

specific label. For each trained classification model, the accuracy of that model is tested by 

calculating its ability to detect appropriate emotions from the test dataset, using the same audio 

features. 

 

 

Figure 11. Emotion detection workflow diagram 
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Each model predicts the emotion label of each audio file in the test dataset based on its 

learning from the training dataset by analyzing the feature attributes. Then, the predicted 

emotions are matched with the actual emotions, and a confusion matrix of true positives, false 

positives, true negatives and false negatives are created. The accuracy of each model is then 

determined from the confusion matrix based on the number of false positives and true positives. 

 With the choice of audio features and classification algorithm, the next step is to 

implement the combination of audio features and classification algorithm to the verify audio 

dataset for system model training and test purposes. The dataset must provide enough quality 

samples that convey the correct emotion. There are many existing audio datasets, and they have a 

lot of emotions and various audio features that can be extracted from them. Primarily, the 

proposed methodology was implemented on the RAVDESS dataset [25] and TESS dataset [26] 

to train and test the model. In this section, details on these two datasets are provided along with 

the preparation of our in-house dataset which is solely based on the voice command used in the 

smart home environment.  

 

Audio Dataset 

RAVDESS. To identify a suitable classification algorithm amongst the classifiers 

reviewed in the section of Review of Classifiers, the RAVDESS dataset to train and test the audio 

emotion detection model is utilized at first [25]. This dataset is open source, publicly available, 

and has been widely used to detect speech emotion from the audio conversation, e.g. [23], [62]. 

It consists of 1440 files with 60 audio recordings in English from 24 professional actors (12 male 

and 12 female), vocalizing in a neutral North American accent. There are 8 distinct emotions in 

the dataset, which are normal, calm, happy, sad, angry, fearful, disgust, and surprised. However, 

only normal, happy, angry, sad, and fearful emotions are chosen among the 8 emotional states in 
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RAVDESS dataset for my study. The resultant dataset considering the three emotions consisted 

of 800 audio recordings. 

TESS. The second publicly available dataset is Toronto Emotional Speech Set (TESS) 

[26]. In this dataset, 2 actresses aged 26 and 64 years old spoke 200 target words. There are 

2,800 files in total consisting of 7 emotions which are happiness, anger, disgust, fear, pleasant, 

surprise, neutral, and sadness. For this research, only 5 emotions named happiness, anger, fear, 

neutral, and sadness are considered, consisting of 2,000 files. The summary of the data used from 

the RAVDESS and TESS dataset is tabulated in Table 2. 

 

Table 2. Considered Data from RAVDESS and TESS dataset 
Dataset RAVDESS TESS 

Speaker 12 males, 12 females 2 females 

Age range 21-33 32 

Emotions Normal, happy, angry, sad, fear Neutral, happy, angry, sad, fear 

Audio Files 800 2000 

 

Smart Home Dataset. One of the shortcomings of the existing audio dataset is that they 

are based on scripted dialogues [25] or movie clips [32], which are impractical in a smart home 

context, especially when the used voice commands that dictate the operation of smart appliances 

or communicate with the smart assistants consist of only a few words. To date, there has not 

been any report of a smart home voice command dataset to the best of my knowledge. Hence, I 

created an Institutional Review Board (IRB) approved smart home voice command dataset for 

this research. The commands are concise and do not exceed a total word count of 6. The dataset 

consists of 50 voice commands consisting of 2-6 words per command as tabulated in Table 3.  
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Table 3. Smart voice commands from the smart home dataset 
Command 
no. Command Command 

no. Command 

1 Go home 26 How’s the weather tomorrow? 

2 Dial 911 27 Is it cold today? 

3 Call Mom 28 Cancel the 2pm alarm 

4 Spell Banana 29 Turn the volume down 

5 Call Police 30 Set temperature to 75 

6 Play music 31 What's the best operating system? 

7 Cancel alarm 32 Set an alarm for 8am 

8 Show camera 33 Cancel all the alarms today 

9 make coffee 34 What is my flash briefing 

10 lock doors 35 Why are you so annoying? 

11 Make it warmer 36 Remind me to do laundry. 

12 Play the news 37 When is my son's birthday? 

13 Read my calendar 38 What do you think of siri? 

14 I am sad 39 How's traffic today in Springfield? 

15 turn on light 40 I am not happy today 

16 turn off fan 41 What is on my calendar today? 

17 Change your voice 42 Are you afraid of the dark? 

18 Who are you? 43 What is the value of Pi 

19 Lower the temperature 44 What is zero divided by zero 

20 Set 10minutes timer 45 Is it going to snow today? 

21 Tell me a joke 46 How will be the weather at night? 

22 Sing me a song 47 Who’s the president of USA now? 

23 Tell me a story 48 What’s the Italian of “Good morning” 

24 Read me a haiku 49 
How’s the weather of Bangladesh 

now? 

25 What’s the weather today? 50 Do not answer to my kid 
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As can be seen from Table 3, these are some of the most used voice commands in daily 

smart home context and do not contain any specific lexical cues about the emotion of a user by 

itself. Here, all the samples were recorded using the audio recorder interface. Python Tkinter and 

Google speech recognition library was used to develop the audio recorder. I used CMTeck USB 

Computer Microphone, Plug & Play Desktop Omnidirectional Condenser PC Laptop Mic to 

record the audio samples from each participant. As I invited different age ranges of native as 

well as non-native speakers, I wanted to make sure the recorded emotional utterance was 

annotated and validated. Thus, in the designed audio recorder interface, when the user selects 

particular emotion and records it, the speech recognition library converts the audio to text and 

displays the “Detected Voice Command”. To make sure the recordings are unbiased and not 

influenced by the aim of this study, I have given control to the user of choosing if a specific 

version of the recorded voice commands should be included in the dataset. By observing the 

detected voice command, the user can assess if the audio data has been recorded correctly and 

choose to accept or reject the “Save Audio” step (i.e. Step 8). Also, the user can listen to the 

recorded command by clicking on the “Play” button before saving the file or re-recording the 

audio data if it is unsatisfactory. Each audio file in the dataset is saved in the folder named as the 

selected emotion and uses the following naming convention: <Speaker ID>_<detected 

command>_<serial number>.wav. This ensures every user recorded each command correctly and 

2 separate times for each emotion. The reason for choosing to record twice for each emotion is 

validated further in the Performance Evaluation subsection. Also, to validate my recorded 

dataset, I went through each of the recorded command and requested the user to rerecord if 

needed. The instruction to interact with the audio recorder interface are given below: 
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1. Write Speaker ID once 

 

2. Select emotion from the drop-down menu. Click on it to select the other emotion 

 

3. Click on the Microphone button 

 

4. Speak the voice command in your selected emotion 

5. See the text that appeared in the “Detected Voice Command” is correct or not 

 

6. Play (if you want to listen) after unmuting the computer’s speaker 

 

7. Keep the Computer’s speaker muted 
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8. Click on “Save Audio”. It will show the saved information. 

 

9. Thank you. Please start following instructions 2-9 for the next commands. 

To prepare the custom dataset of smart home voice commands, I invited 10 volunteer 

speakers whose demographics are given in Table 4. 

 

Table 4. Smart home dataset description 

ID Gender Age Range Native English 
Speaker 

S001 Female 15-20 Yes 

S002 Male 21-25 Yes 

S003 Male 21-25 No 

S004 Nonbinary 21-25 Yes 

S005 Female 15-20 Yes 

S006 Male 31-35 No 

S007 Male 36-40 No 

S008 Female 26-30 No 

S009 Male 21-25 Yes 

S010 Male 21-25 Yes 
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The final dataset consists of 5000 voice commands imitating happy, normal, angry, sad, 

and fearful emotional states. Only these 5 specific emotions are considered in this study as 

researchers have suggested that invoking these emotions would result in distinguishable variation 

in audio features of human conversation [27]. Each participant recorded each of the 50 

commands 2 separate times using 5 different emotions in indoor environments in one or more 

recording sessions. 

 

Feature Extraction 

The audio data for our in-house dataset on smart home voice commands is first recorded 

in .wav format and lossless mono channel using an audio recorder interface designed for this 

study. Afterward, the recorded data is converted into bytes and an open-source audio activity 

detection python tool named auditok is used to calculate the root means square energy (RMSE) 

of single-channel mono audio data according to equation 5 [61]: 

RMSE = 20 log (√1/𝑁 ∑ 𝑎𝑟
2𝑁

𝑟  )                                                  (5)  
 

Here, ar is the r-th sample from the digitally converted audio file and N is the number of 

samples in the dataset. The RMSE is represented with a logarithmic operation to ensure better 

resolution for defining noise threshold during audio activity detection. Based on the audio 

activity, four new features named CGL, MCD, MWDPC, PCWC are extracted for each audio file 

and then combined with existing MFCC and MEL features for emotion classification. The four 

new audio features that are being considered in this thesis are directly correlated with the voice 

activity detection in smart home environments. To split input audio into segment of voice 

activity and silence period, I used four specific parameters- namely minimum_duration, 

maximum_duration, maximum_silence, drop_trailing_silence, and analysis_window thresholds. 
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Minimum and maximum duration are important to properly detect and record a voice activity 

event. For example, a high value for minimum duration might result in recording a lot of noise 

whereas the audio will be shortened if the audio length is more than the maximum duration. The 

maximum_silence is the maximum duration of uninterrupted silence in recorded audio for it to 

be considered as a single voice activity event. Drop_trailing_silence is used to remove the 

trailing silence from each audio chunk. Finally, the analysis_window is the duration of audio 

analysis in seconds. 

Chunk Gap Length (CGL). In Algorithm 1, the CGL feature extraction steps are 

presented. In the implementation, minimum_duration is set to 0.1s, maximum_duration is set to 

5s, maximum_silence is set to 0.01s, analysis_window is set to 0.01s, and drop_trailing_silence 

is set to True (i.e. enable). As there is practically no silence period (i.e., with absolute zero signal 

strength) in a natural audio signal, an energy threshold is defined as silence while extracting 

CGL and MCD features from the input audio. The energy threshold for silence determines the 

specific segment of audio activity that is considered the silence period. As the audio data was 

recorded using a 16-bit or 2-byte binary encoding scheme (default bit rate for mono-channel 

audio recording in .wav format), the maximum energy threshold of an audio event was set to the 

RMSE value calculated using equation 5 while considering every 2-byte of the digited audio 

signal as one sample. Considering the maximum energy level to 0 dBFS (decibel related to full 

scale), the silence threshold was set to -10 dBFS which corresponds to approximately one-third 

below the maximum signal strength (20*log(1/3) ≈ −10 dB). An intuitive representation of the 

energy threshold and corresponding detected audio activity is shown in Figure 12 to Figure 14, 

where 3 different signal thresholds are shown to detect 3 different audio data.  
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If 1 byte of data is chosen as an energy threshold parameter, the entire audio event is 

detected as 1 chunk shown in Figure 12. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Utterance detection of mono audio data when energy threshold = calculate energy 
single channel (data,1) 
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If 2 bytes of data are chosen to calculate the signal strength, then the correct audio events 

cannot be distinguished appropriately as shown in Figure 13. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 13. Utterance detection of mono audio data when energy threshold = calculate energy 
single channel (data,2) 



   
 

42 

In comparison, as shown in Figure 14, if the energy of 2 bytes-10 dBFS is defined as the noise 

threshold all significant audio activity can be detected accurately. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Utterance detection of mono audio data when energy threshold = calculate energy 
single channel (data,2)-10 
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The interval of each silence period is measured from the time duration when the signal 

strength is below the noise threshold between two chunks. Also, when a word consists of any 

soft-spoken syllables and the associated signal strength in such a scenario drops below the noise 

threshold. For example, the word ‘temperature’ may be spoken in four syllables (tem.per.a.ture) 

by many non-native speakers, but the native pronunciation has only three syllables 

(‘temp(ə)rəCHər’), where the ‘(ə)’ syllable is considered as silent phonetics. In such situations, 

the continuity of the audio signal produced by that specific word will be broken if the soft-

spoken syllable falls below the noise threshold and will affect the feature extraction accuracy. To 

avoid such circumstances, the minimum duration is set to 0.1s. Finally, the CGL feature for a 

specific audio input is measured from the mean duration of the silence periods. 

 

 

Algorithm 1. Chunk Gap Length Extraction 
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Therefore, for the results reported in this thesis, any audio signal having a minimum 

duration of 100ms, a maximum duration of 5000ms duration of an analysis window of 10ms, and 

continuous silence of 10ms are considered audio activity, and the rest is considered silence. It is 

not practically comprehensible to set a fixed threshold for silence as the definition of noise may 

vary depending on the recording environment, ambient noise, and user historical data. Hence, we 

set a dynamic range of threshold which is approximately one-third or 10 dBFS below the 

maximum signal strength of each audio event and validated through several demonstrations that 

our assumption for silence threshold is valid in smart-home environment. However, the threshold 

may vary based on the application and recording environment. 

Mean Chunk Duration (MCD). A pictorial depiction of the chunks in a sample audio 

file is shown in Figures 12 to Figure 14. Here, Figure 12 shows that if 1 byte of data width is 

chosen to calculate the energy threshold, then the whole command is taken as one audio chunk. 

If 2 bytes of data widths are chosen then the first and last chunks i.e., “Re” of “Remind” and 

“dry” of “laundry” are considered silent, as shown in Figure 13. But if the silence threshold is set 

to the energy of 2bytes -10 dBFS, then all the audio chunks can be detected correctly. Here, the 

command is divided into 5 chunks which are, “Remind me”, “to”, “do, “laun”, and “dry”. 

Similarly, the minimum threshold is set to 0.1s, max_dur is set to 5s, max_silence is set to 0.01s, 

analysis_window is set to 0.01s and the drop_trailing_silence is set to True.  

In Algorithm 2, the MCD feature extraction steps are depicted. Based on the same 

concept described in the CGL implementation, the time difference between two successive time 

stamps of silences will correspond to the time interval of each chunk of words. The audio  



   
 

45 

 

Algorithm 2. Mean Chunk Duration Extraction 
 

recordings are separated into segments corresponding to the chunks of words in a voice 

command. To extract the MCD feature, then the mean time interval of the chunks of an input 

audio file is measured.  

However, there is a probable chance of error if a word consists of any soft-spoken 

syllables and associated signal strength in such a scenario drops below the noise threshold. For 

example, the word ‘temperature’ may be spoken in four syllables (tem.per.a.ture) by many non-

native speakers, but the native pronunciation has only three syllables (‘temp(ə)rəCHər’), where 

the ‘(ə)’ syllable is considered as silent phonetics. In such situations, the continuity of the audio 

signal produced by that specific word will be broken if the soft-spoken syllable falls below the  

noise threshold and will affect the feature extraction accuracy. To avoid such circumstances, I 

have incorporated a timing interval threshold determined by several trials for the model which 

ensures that if the time difference between two successive walls of silence is less than the 

minimum silence length then it will be considered a time segment of the previous word.  If the 
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time difference between two successive walls of silence is less than the minimum duration, then 

it will be considered as a time segment of the previous word. 

Mean Word Duration Per Chunk (MWDPC). In Algorithm 3, the MWDPC feature 

extraction steps are shown. To detect MWDPC, the split chunks of words for each command 

detected by MCD are divided by the the number of words in each chunk. The number of words 

in each chunk is detected by Google Speech Recognition tool. To avoid division by zero error, it 

is assumed that each chunk will have at least one word. Here, if speech recognition cannot detect 

any word, then it will count the word as 1 to avoid zero division error. 

 

 

Algorithm 3. Mean Word Duration Per Chunk Extraction 
 

Per Chunk Word Count (PCWC). As shown in Algorithm 4, the average number of 

words per chunk is calculated to detect per chunk word count. The threshold values for different 
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parameters remained the same as CGL and MCD to detect chunks of words and to count the 

number of words in each chunk. 

 

 

Algorithm 4. Per Chunk Word Count Extraction 
 

Finally, to extract MFCC and MEL from the audio recordings, the python ‘librosa’ 

library is incorporated. Each input audio file is subdivided into small frames of 20-40ms for 

MFCC feature extraction. The first 40 MFCCs are considered for each frame in this experiment. 

To extract the Mel spectrogram, a "Hann" window of 2048 length is used with an STFT hop-

length of 512 and the resultant spectrogram coefficients were then mapped to the Mel scale. The 

recordings were sampled at a rate of 48 kHz, which yields a 40 ms audio frame with 10 ms hop 

length (duration of frame = number of samples x (1/sampling rate)). This is in well accordance to 

the generic values used for windowing as stated in Mel Frequency Wrapping subsection of 

section Review of Classifiers.  
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Classification Algorithms 

After extracting the audio features, I used 80% the of the dataset as training data and 20% 

of the dataset as test data to train our model by incorporating the classification algorithms 

mentioned in the Review of Classifiers section. To ensure the performance improvement is 

unbiased and no by chance, I maintained the same training and test data from each dataset. 

Python-based sklearn library was used to implement KNN, SLP, MLP, SVM, LR, AdaBoost and 

RF classifiers. For implementing TPOT, I used tpot library. Each of the classifiers have specific 

control parameters based on their respective algorithm and the classification accuracy also 

depends greatly on the selection of the control parameters. Here, I am providing a brief overview 

of the control parameters I employed for this study: 

 For KNN, I imported KNeighborsClassifier package from sklearn module and 

considered 5 neighbors in accordance with the number of emotions considered in our study. I 

used Perceptron package from sklearn library for the SLP classifier, where the maximum 

iteration number was to set to 10000000. For MLP, I employed MLPClassifier package from 

sklearn library, where I considered 10 hidden layers, logistic activation function with learning 

rate of 0.01 and maximum iteration of 100000. I imported svm package from sklearn library to 

implement SVM, where I considered linear kernel. For LR, I imported LogisticRegression 

package from the same sklearn library and considered liblinear solver with 0 random state. To 

implement AdaBoost, I imported LabelEncoder and AdaBoostClassifier packages with maximum 

depth of 1 and 200 estimators. I imported RandomForestClassifier from the sklearn library to 

implement RF, where I considered maximum depth of 2 with 0 random state 0. Finally, to 

implement TPOT, I imported TPOTClassifier package from the tpot module, where I chose 5 

generations, population size of 20 and 42 random state. 
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PERFORMANCE EVALUATION 

 

To evaluate different classifiers’ performance, I have considered the confusion matrix for 

multiclass classification [63]. The confusion matrix compares the actual label with the predicted 

label for each of the machine learning models and is used to define the performance of a 

classification algorithm. The key performance indicator of a classifier that is considered most 

important in the performance evaluation is accuracy. There are several performance metrices that 

can be calculated from the confusion matrix to assess the accuracy of an algorithm. The most 

common parameters of accuracy are F-1 score, precision, and recall. The ratio of correctly 

predicted positive records to all the records of the real class is known as recall whereas precision 

shows the ratio of correct positive predictions to the total predictions. F-1 score shows the test 

accuracy, and it is determined by the function of recall and precision. To report the accuracy of 

each classifier, I utilized the F-1 score as the performance evaluation parameter.   

In the context of audio emotion detection, accuracy is the algorithm’s ability to correctly 

predict the emotional state of test samples. The very first demonstration of classification 

accuracy in the form of F-1 score is tabulated in Table 5, which highlights the justification 

behind choosing to record each command 2 times from the same users. Here, I applied TPOT on 

custom smart home dataset extracting MFCC feature where I considered 80% data as training 

data and 20% data as test data without any cross validation. As can be seen from the table, if I 

consider 2 recordings per command from one user, it constitutes a dataset with more accuracy 

than a single recording per command. So, the optimum number of recordings per command for 

each user is 2. For brevity and computational advantage, I have only considered the MFCC 

feature and TPOT classifier for generating Table 5. 
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Table 5. Experimental results of different times of recorded dataset 

Feature ID 
accuracyTPOT 

1 time 

accuracyTPOT 

2 times 

MFCC 

S001 77% 80% 

S002 83% 85% 

S003 62% 64% 

S004 90% 93% 

S005 81% 85% 

S006 86% 88% 

S007 94% 96% 

S008 83% 87% 

S009 94% 95% 

S010 88% 94% 

 

As different classifiers have different capabilities as reviewed in section Review of 

Classifiers, it is pivotal to analyze their performance for the chosen dataset based on the selected 

features. The primary dataset that is considered is a modified version of the RAVDESS dataset 

with 800 recordings for five specific emotions - normal, happy, sad, fearful, and angry. The 

model is then trained and tested by splitting the dataset into 80% training data and 20% as testing 

data. Then the TESS dataset is chosen to identify suitable classification algorithms and audio 

features. I extracted the MFCC features from the modified RAVDESS dataset and incorporated 

the 7 classifiers reviewed in section Review of Classifiers, along with the TPOT AutoML 

system. In Table 6, the values corresponding to the parameters associated with system accuracy 

(i.e., F-1 score, Precision, Recall, and Support) for all the classifiers for MFCC only are 

presented. From Table 6, we can see that TPOT is associated with the highest F-1 score (72%) 

for the XGBoost algorithm. XGBoost is one of the machine learning pipelines incorporated in 

the TPOT system, which implements a gradient boosting algorithm to improve prediction 
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accuracy. Other traditional classifiers such as KNN, SVM, LR, SLP, AdaBoost, ML, RF were 

shown to have F-1 scores of 55%, 64%, 54%, 18%, 43%, 61%, and 46% respectively for the 

modified RAVDESS dataset for MFCC only. 

 

Table 6. Experimental results of emotion detection for different classifiers using MFCC feature 
for RAVDESS dataset 

Algorithm F-1 score Precision Recall Support 

KNN    55% 55% 57% 96 

SVM 64% 65% 63% 96 

LR 54% 53% 52% 96 

SLP 18% 37% 32% 96 

TPOT 72% 73% 72% 96 

AdaBoost 43% 44% 44% 96 

MLP 61% 44% 39% 96 

RF 46% 47% 48% 96 

 

I extracted 5 existing features (MEL, MFCC, Chroma [64], Contrast [65], and Tonnetz 

[65]) and used their combinations on the selective RAVDESS dataset and applied the 7 

classifiers reviewed in Section Review of Classifiers, along with the TPOT AutoML system. In 

Table 7, the F-1 scores for each classifier and the associated parameters are tabulated. As there 

can be 25 = 32 unique subsets, only the combination of significant results is shown in Table 7.  
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Table 7. Experimental results of emotion detection for different classifiers using the RAVDESS 
dataset 
Features KNN SVM LR SLP TPOT AdaBoost MLP RF 

MEL 39% 37% 35% 32% 63% 50% 39% 38% 

MFCC 55% 64% 54% 18% 72% 43% 61% 46% 

Chroma 32% 24% 24% 26% 33% 29% 27% 27% 

Contrast 40% 28% 26% 27% 39% 28% 32% 33% 

Tonnetz 21% 18% 20% 22% 25% 21% 24% 24% 

MEL, MFCC 53% 56% 59% 43% 73% 41% 18% 38% 

MEL, MFCC, Chroma 53% 57% 58% 29% 68% 41% 73% 38% 

MEL, MFCC, Contrast 53% 61% 61% 23% 72% 39% 67% 39% 

All 53% 60% 60% 46% 71% 43% 61% 38% 

 

From Table 7, we can conclude that TPOT gives the highest F-1 score of 73% for the 

MEL, MFCC combination utilizing the XGBoost algorithm, which is one of the machine 

learning pipelines incorporated in the TPOT system. Other traditional classifiers such as KNN, 

SVM, LR, SLP, AdaBoost, MLP, RF were shown to have F-1 scores of 53%, 56%, 59%, 43%, 

41%, 18%, and 38% respectively for the modified RAVDESS dataset for MFCC and MEL. 

Similarly, in Table 8 we can observe that extracting MEL and MFCC using TPOT shows the 

best result for the TESS dataset i.e., 99%. 

Even though MFCC and Mel spectrogram is eventually extracted from the signal strength 

associated with different frequency components in the audible range, the fundamental difference 

between those two is MFCC describes the power spectral envelope of an audio signal and 

provides insight into the rate of change of features which is pivotal in Automatic Speech 

Recognition (ASR), whereas MEL helps distinguish a specific emotion as it is a visual 

representation of human perception of audio events. One interesting fact about human perception 

of sound is it perceives audio differently at different frequency level. For example, the difference  
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Table 8. Experimental results of emotion detection for TPOT classifiers using the TESS dataset 
Features TPOT 

MEL 97% 

MFCC 98% 

Chroma 88% 

Contrast 90% 

Tonnetz 72% 

MEL, MFCC 99% 

MEL, MFCC, Chroma 95% 

MEL, MFCC, Contrast 95% 

All 97% 

 

of sound in 10 kHz and 11 kHz is not as prominent to human ear as the difference is sound at 

100 Hz and 1kHz, even though the difference in frequency is same. This is most accurately 

captured by Mel spectrogram where the signal strength of an audio event is represented over 

time at the ’Mel’ scale which is a logarithmic transformation of the signal’s original frequencies. 

Hence, hypothetically, the combination of these two features should lead to better accuracy in 

speech emotion detection and that is what we can observe from the results shown in Table 7 and 

Table 8. Thus, to validate the impact of custom audio features, this research combines the custom 

audio features along with the best combination of existing features of MEL, MFCC. 

To validate the model for the short voice command dataset, a smart home dataset 

recorded by user S007 is randomly chosen and associated audio features were extracted for the 8 

classifiers in Table 9. Based on the results presented in this table, we can see that TPOT again  

outperforms other classifiers for all the combinations of features. Therefore, TPOT is selected as 

my de facto classifier. 
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Table 9. Experimental results of emotion detection for different classifiers using the smart home 
dataset (S007) 
Features KNN SVM LR SLP TPOT AdaBoost MLP RF 

MEL 87% 81% 84% 67% 98% 32% 93% 76% 

MFCC 87% 96% 95% 80% 96% 42% 98% 72% 

Chroma 33% 53% 48% 52% 54% 37% 58% 55% 

Contrast 82% 84% 74% 73% 87% 25% 84% 82% 

Tonnetz 43% 30% 31% 35% 46% 43% 49% 40% 

MEL, 

MFCC 

88% 95% 97% 80% 99% 36% 99% 75% 

MEL, 

MFCC, 

Chroma 

88% 95% 97% 79% 98% 36% 98% 76% 

MEL, 

MFCC, 

Contrast 

88% 98% 97% 88% 96% 26% 98% 79% 

All 88% 98% 97% 75% 99% 26% 99% 76% 

 

Afterward, I used the combined audio data for all users and applied different 

combinations of audio features using the TPOT classifier. The results are illustrated in Figure 15 

to Figure 23, where the confusion matrices for the combined smart home dataset considering 

different features using the TPOT classifier is shown. For each algorithm, the bold diagonal 

blocks show the number of correctly classified labels whereas off-diagonal numbers are 

misclassified labels. 

Figure 15 shows the confusion matrix after training the model on combined dataset 

extracting MEL feature using TPOT. The model used 5000 samples split into training and test 

data following 80%-20% train-test ratio. The training dataset consists of 4000 samples and test 

dataset consists of 1000 samples. The confusion matrix shows that among 1000 test samples, 150 
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samples were classified correctly as angry data, 180 samples were classified correctly as fearful 

data, 180 samples were classified correctly as happy data, 170 samples were classified correctly 

as normal data, and 180 samples were classified correctly as sad data. The rest of the test 

samples were misclassified and results in 85% classification accuracy. 

 

 

Figure 15. Confusion matrix for the combined smart home dataset considering MEL features 
using TPOT classifier 
 

Figure 16 shows the confusion matrix after training the model on combined dataset 

extracting MFCC feature using TPOT. The model used 5000 samples split into training and test 

data following 80%-20% train-test ratio. The training dataset consists of 4000 samples and test 

dataset consists of 1000 samples. The confusion matrix shows that among 1000 test samples, 160 

samples were classified correctly as angry data, 160 samples were classified correctly as fearful 

data, 160 samples were classified correctly as happy data, 170 samples were classified correctly 
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as normal data, and 170 samples were classified correctly as sad data. The rest of the test 

samples were misclassified and results in 81% classification accuracy. 

 

 
Figure 16. Confusion matrix for the combined smart home dataset considering MFCC features 
using TPOT classifier 
 

Figure 17 shows the confusion matrix after training the model on combined dataset 

extracting Chroma feature using TPOT. The model used 5000 samples split into training and test 

data following 80%-20% train-test ratio. The training dataset consists of 4000 samples and test 

dataset consists of 1000 samples. The confusion matrix shows that among 1000 test samples, 84 

samples were classified correctly as angry data, 92 samples were classified correctly as fearful 

data, 89 samples were classified correctly as happy data, 120 samples were classified correctly as 

normal data, and 94 samples were classified correctly as sad data. The rest of the test samples 

were misclassified and results in 48% classification accuracy. 
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Figure 17. Confusion matrix for the combined smart home dataset considering Chroma features 
using TPOT classifier 
 

Figure 18 shows the confusion matrix after training the model on combined dataset 

extracting Contrast feature using TPOT. The model used 5000 samples split into training and test 

data following 80%-20% train-test ratio. The training dataset consists of 4000 samples and test 

dataset consists of 1000 samples. The confusion matrix shows that among 1000 test samples, 110 

samples were classified correctly as angry data, 120 samples were classified correctly as fearful 

data, 100 samples were classified correctly as happy data, 150 samples were classified correctly 

as normal data, and 130 samples were classified correctly as sad data. The rest of the test 

samples were misclassified and results in 31% classification accuracy. 
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Figure 18. Confusion matrix for the combined smart home dataset considering Contrast features 
using TPOT classifier 
 

Figure 19 shows the confusion matrix after training the model on combined dataset 

extracting Tonnetz feature using TPOT. The model used 5000 samples split into training and test 

data following 80%-20% train-test ratio. The training dataset consists of 4000 samples and test 

dataset consists of 1000 samples. The confusion matrix shows that among 1000 test samples, 58 

samples were classified correctly as angry data, 62 samples were classified correctly as fearful 

data, 55 samples were classified correctly as happy data, 63 samples were classified correctly as 

normal data, and 73 samples were classified correctly as sad data. The rest of the test samples 

were misclassified and results in 31% classification accuracy. 
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Figure 19. Confusion matrix for the combined smart home dataset considering Tonnetz features 
using TPOT classifier 
 

Figure 20 shows the confusion matrix after training the model on combined dataset 

extracting MEL, MFCC feature using TPOT. The model used 5000 samples split into training 

and test data following 80%-20% train-test ratio. The training dataset consists of 4000 samples 

and test dataset consists of 1000 samples. The confusion matrix shows that among 1000 test 

samples, 160 samples were classified correctly as angry data, 190 samples were classified 

correctly as fearful data, 180 samples were classified correctly as happy data, 180 samples were 

classified correctly as normal data, and 180 samples were classified correctly as sad data. The 

rest of the test samples were misclassified and results in 90% classification accuracy, which is 

more than MEL or MFCC only. 
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Figure 20. Confusion matrix for the combined smart home dataset considering MEL, MFCC 
features using TPOT classifier 
 

Figure 21 shows the confusion matrix after training the model on combined dataset 

extracting MEL, MFCC, Chroma feature using TPOT. The model used 5000 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 4000 

samples and test dataset consists of 1000 samples. The confusion matrix shows that among 1000 

test samples, 170 samples were classified correctly as angry data, 190 samples were classified 

correctly as fearful data, 180 samples were classified correctly as happy data, 180 samples were 

classified correctly as normal data, and 190 samples were classified correctly as sad data. The 

rest of the test samples were misclassified and results in 88% classification accuracy. 
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Figure 21. Confusion matrix for the combined smart home dataset considering MEL, MFCC, 
Chroma features using TPOT classifier 
 

Figure 22 shows the confusion matrix after training the model on combined dataset 

extracting MEL, MFCC, Contrast feature using TPOT. The model used 5000 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 4000 

samples and test dataset consists of 1000 samples. The confusion matrix shows that among 1000 

test samples, 170 samples were classified correctly as angry data, 190 samples were classified 

correctly as fearful data, 180 samples were classified correctly as happy data, 180 samples were 

classified correctly as sad data, and 190 samples were classified correctly as normal data. The 

rest of the test samples were misclassified and results in 88% classification accuracy. 
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Figure 22. Confusion matrix for the combined smart home dataset considering MEL, MFCC, 
Contrast features using TPOT classifier 
 

Figure 23 shows the confusion matrix after training the model on combined dataset 

extracting MEL, MFCC, Contrast, Chroma, Tonnetz feature using TPOT. The model used 5000 

samples split into training and test data following 80%-20% train-test ratio. The training dataset 

consists of 4000 samples and test dataset consists of 1000 samples. The confusion matrix shows 

that among 1000 test samples, 160 samples were classified correctly as angry data, 180 samples 

were classified correctly as fearful data, 180 samples were classified correctly as happy data, 180 

samples were classified correctly as normal data, and 180 samples were classified correctly as 

sad data. The rest of the test samples were misclassified and results in 89% classification 

accuracy. 
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Figure 23. Confusion matrix for the combined smart home dataset considering MEL, MFCC, 
Contrast, Chroma, Tonnetz features using TPOT classifier 
 

The results highlighted in Figure 15 to Figure 23 is summarized in Table 10. From the 

table results, we see that the combination of MEL, and MFCC shows the best result i.e., 90%.  

 

Table 10.  Experimental results of emotion detection for TPOT classifier using the combined 
smart home dataset 

Features F-1 score Precision Recall Support 

MEL 85% 85% 85% 1000 

MFCC 81% 82% 82% 1000 

Chroma 48% 48% 47% 1000 

Contrast 60% 61% 60% 1000 

Tonnetz 31% 31% 31% 1000 

MEL, MFCC 90% 90% 90% 1000 

MEL, MFCC, Chroma 88% 88% 87% 1000 

MEL, MFCC, Contrast 88% 88% 87% 1000 

All 89% 89% 89% 1000 
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Finally, the TPOT classification model is trained and tested with the custom smart home 

dataset for each participant by splitting each user’s dataset into 80% as training data and 20% as 

testing data. Figures 24 to Figure 45 show the confusion matrix for each participant’s smart 

home dataset considering different features using the TPOT classifier. 

Figure 24 shows the confusion matrix after training the model on S001 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a female of 15-20 age and a native 

English speaker. The model used 500 samples split into training and test data following 80%-

20% train-test ratio. The training dataset consists of 400 samples and test dataset consists of 100 

samples. The confusion matrix shows that among 100 test samples, 19 samples were classified 

correctly as angry data, 19 samples were classified correctly as fearful data, 14 samples were 

classified correctly as happy data, 17 samples were classified correctly as normal data, and 15 

samples were classified correctly as sad data. The rest of the test samples were misclassified and 

results in 84% classification accuracy. 

 

 
Figure 24. Confusion matrix for the S001 considering MEL, MFCC features using TPOT 
classifier 
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Figure 25 shows the confusion matrix after training the model on S001 users’ dataset 

extracting MEL, MFCC, MWDPC features using TPOT. The model used 500 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 400 

samples and test dataset consists of 100 samples. The confusion matrix shows that among 100 

test samples, 19 samples were classified correctly as angry data, 21 samples were classified 

correctly as fearful data, 14 samples were classified correctly as happy data, 17 samples were 

classified correctly as normal data, and 15 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 87% classification accuracy, which is 3% 

more than extracting MEL, MFCC features. I performed a chi-squared to determine if the 

difference in the classification accuracy is statistically significant for user S001 and found the 

resultant p value as 0.046 (i.e. < 0.05), yielding a significant improvement in the proposed 

methodology. 

 

 
Figure 25. Confusion matrix for the S001 considering MEL, MFCC, MWDPC features using 
TPOT classifier 



   
 

66 

Figure 26 shows the confusion matrix after training the model on S002 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a male of 21-25 age and a native 

English speaker. The model used 500 samples split into training and test data following 80%-

20% train-test ratio. The training dataset consists of 400 samples and test dataset consists of 100 

samples. The confusion matrix shows that among 100 test samples, 18 samples were classified 

correctly as angry data, 22 samples were classified correctly as fearful data, 14 samples were 

classified correctly as happy data, 18 samples were classified correctly as normal data, and 18 

samples were classified correctly as sad data. The rest of the test samples were misclassified and 

results in 90% classification accuracy.  

 

 
Figure 26. Confusion matrix for the S002 considering MEL, MFCC features using TPOT 
classifier 
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Figure 27 shows the confusion matrix after training the model on S002 users’ dataset 

extracting MEL, MFCC, PCWC features using TPOT. The model used 500 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 400 

samples and test dataset consists of 100 samples. The confusion matrix shows that among 100 

test samples, 19 samples were classified correctly as angry data, 23 samples were classified 

correctly as fearful data, 15 samples were classified correctly as happy data, 19 samples were 

classified correctly as normal data, and 19 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 92% classification accuracy, which is 2% 

more than extracting MEL, MFCC features.  

 

 
Figure 27. Confusion matrix for the S002 considering MEL, MFCC, PCWC features using 
TPOT classifier 
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Figure 28 shows the confusion matrix after training the model on S002 users’ dataset 

extracting MEL, MFCC, MWDPC, PCWC features using TPOT. The model used 500 samples 

split into training and test data following 80%-20% train-test ratio. The training dataset consists 

of 400 samples and test dataset consists of 100 samples. The confusion matrix shows that among 

100 test samples, 18 samples were classified correctly as angry data, 23 samples were classified 

correctly as fearful data, 14 samples were classified correctly as happy data, 19 samples were 

classified correctly as normal data, and 18 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 92% classification accuracy, which is 2% 

more than extracting MEL, MFCC features. However, this improvement in accuracy is not 

statistically significant as it resulted in a p value of 0.09926 in a chi-squared test. 

 

 
Figure 28. Confusion matrix for the S002 considering MEL, MFCC, MWDPC, PCWC features 
using TPOT classifier 
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Figure 29 shows the confusion matrix after training the model on S003 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a male of 21-25 age and a non-native 

English speaker. The model used 500 samples split into training and test data following 80%-

20% train-test ratio. The training dataset consists of 400 samples and test dataset consists of 100 

samples. The confusion matrix shows that among 100 test samples, 21 samples were classified 

correctly as angry data, 24 samples were classified correctly as fearful data, 15 samples were 

classified correctly as happy data, 19 samples were classified correctly as normal data, and 18 

samples were classified correctly as sad data. The rest of the test samples were misclassified and 

results in 69% classification accuracy. 

 

 
Figure 29. Confusion matrix for the S003 considering MEL, MFCC features using TPOT 
classifier 
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Figure 30 shows the confusion matrix after training the model on S003 users’ dataset 

extracting MEL, MFCC, MCD, CGL features using TPOT. The model used 500 samples split 

into training and test data following 80%-20% train-test ratio. The training dataset consists of 

400 samples and test dataset consists of 100 samples. The confusion matrix shows that among 

100 test samples, 21 samples were classified correctly as angry data, 26 samples were classified 

correctly as fearful data, 15 samples were classified correctly as happy data, 19 samples were 

classified correctly as normal data, and 19 samples were classified correctly as normal data. The 

rest of the test samples were misclassified and results in 72% classification accuracy, which is 

3% more than extracting MEL, MFCC features. This is not a statistically significant 

improvement given that the correct and incorrect classification resulted in a p value of 0.13516 in 

chi-squared test. 

 

 
Figure 30. Confusion matrix for the S003 considering MEL, MFCC, MCD, CGL features using 
TPOT classifier 
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Figure 31 shows the confusion matrix after training the model on S004 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a non-binary of age 21-25 and a 

native English speaker. The model used 500 samples split into training and test data following 

80%-20% train-test ratio. The training dataset consists of 400 samples and test dataset consists of 

100 samples. The confusion matrix shows that among 100 test samples, 12 samples were 

classified correctly as angry data, 14 samples were classified correctly as fearful data, 14 samples 

were classified correctly as happy data, 14 samples were classified correctly as normal data, and 

15 samples were classified correctly as sad data. The rest of the test samples were misclassified 

and results in 97% classification accuracy. 

 

 
Figure 31. Confusion matrix for the S004 considering MEL, MFCC features using TPOT 
classifier 
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Figure 32 shows the confusion matrix after training the model on S004 users’ dataset 

extracting MEL, MFCC, MWDPC features using TPOT. The model used 500 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 400 

samples and test dataset consists of 100 samples.  The confusion matrix shows that among 100 

test samples, 12 samples were classified correctly as angry data, 17 samples were classified 

correctly as fearful data, 14 samples were classified correctly as happy data, 13 samples were 

classified correctly as normal data, and 16 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 99% classification accuracy, which is 2% 

more than extracting MEL, MFCC features. This is statistically significant improvement based 

on the p value of 0.044 from a chi-squared test. 

 

 
Figure 32. Confusion matrix for the S004 considering MEL, MFCC, MWDPC features using 
TPOT classifier 
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Figure 33 shows the confusion matrix after training the model on S005 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a female of 15-20 age and a native 

English speaker. The model used 500 samples split into training and test data following 80%-

20% train-test ratio. The training dataset consists of 400 samples and test dataset consists of 100 

samples. The confusion matrix shows that among 100 test samples, 18 samples were classified 

correctly as angry data, 22 samples were classified correctly as fearful data, 13 samples were 

classified correctly as happy data, 18 samples were classified correctly as normal data, and 19 

samples were classified correctly as sad data. The rest of the test samples were misclassified and 

results in 90% classification accuracy. 

 

 
Figure 33. Confusion matrix for the S005 considering MEL, MFCC features using TPOT 
classifier 
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Figure 34 shows the confusion matrix after training the model on S005 users’ dataset 

extracting MEL, MFCC, CGL features using TPOT. The model used 500 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 400 

samples and test dataset consists of 100 samples. The confusion matrix shows that among 100 

test samples, 19 samples were classified correctly as angry data, 22 samples were classified 

correctly as fearful data, 13 samples were classified correctly as happy data, 18 samples were 

classified correctly as normal data, and 19 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 94% classification accuracy, which is 4% 

more than extracting MEL, MFCC features. The statistical significance for this user is p = 

0.01722, which is statistically significant improvement. 

 

 
Figure 34. Confusion matrix for the S005 considering MEL, MFCC, CGL features using TPOT 
classifier 
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Figure 35 shows the confusion matrix after training the model on S006 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a male of 31-35 age and a non-native 

English speaker. The model used 500 samples split into training and test data following 80%-

20% train-test ratio. The training dataset consists of 400 samples and test dataset consists of 100 

samples. The confusion matrix shows that among 100 test samples, 19 samples were classified 

correctly as angry data, 26 samples were classified correctly as fearful data, 14 samples were 

classified correctly as happy data, 14 samples were classified correctly as normal data, and 19 

samples were classified correctly as sad data. The rest of the test samples were misclassified and 

results in 92% classification accuracy. 

 

 
Figure 35. Confusion matrix for the S006 considering MEL, MFCC features using TPOT 
classifier 
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Figure 36 shows the confusion matrix after training the model on S006 users’ dataset 

extracting MEL, MFCC, MCD features using TPOT. The model used 500 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 400 

samples and test dataset consists of 100 samples. The confusion matrix shows that among 100 

test samples, 19 samples were classified correctly as angry data, 26 samples were classified 

correctly as fearful data, 14 samples were classified correctly as happy data, 18 samples were 

classified correctly as normal data, and 18 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 95% classification accuracy, which is 3% 

more than extracting MEL, MFCC features. Under a chi-squared test, I found the probability 

value to be p = 0.002, yielding a statistically significant improvement in the performance 

evaluation. 

 

 
Figure 36. Confusion matrix for the S006 considering MEL, MFCC, MCD features using TPOT 
classifier 
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Figure 37 shows the confusion matrix after training the model on S007 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a male of 36-40 age and a non-native 

English speaker. The model used 500 samples split into training and test data following 80%-

20% train-test ratio. The training dataset consists of 400 samples and test dataset consists of 100 

samples. The confusion matrix shows that among 100 test samples, 21 samples were classified 

correctly as angry data, 25 samples were classified correctly as fearful data, 15 samples were 

classified correctly as happy data, 19 samples were classified correctly as normal data, and 19 

samples were classified correctly as sad data. The rest of the test samples were misclassified and 

results in 99% classification accuracy. 

 

 
Figure 37. Confusion matrix for the S007 considering MEL, MFCC features using TPOT 
classifier 
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Figure 38 shows the confusion matrix after training the model on S007 users’ dataset 

extracting MEL, MFCC, MCD, CGL features using TPOT. The model used 500 samples split 

into training and test data following 80%-20% train-test ratio. The training dataset consists of 

400 samples and test dataset consists of 100 samples.  The confusion matrix shows that among 

100 test samples, 21 samples were classified correctly as angry data, 26 samples were classified 

correctly as fearful data, 15 samples were classified correctly as happy data, 19 samples were 

classified correctly as normal data, and 19 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 100% classification accuracy, which is 1% 

more than extracting MEL, MFCC features. This is a statistically significant improvement as the 

proposed methodology yields maximum possible accuracy. 

 

 
Figure 38. Confusion matrix for the S007 considering MEL, MFCC, MCD, CGL features using 
TPOT classifier 
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Figure 39 shows the confusion matrix after training the model on S008 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a female of 26-30 age and a non-

native English speaker. The model used 500 samples split into training and test data following 

80%-20% train-test ratio. The training dataset consists of 400 samples and test dataset consists of 

100 samples. The confusion matrix shows that among 100 test samples, 18 samples were 

classified correctly as angry data, 22 samples were classified correctly as fearful data, 15 samples 

were classified correctly as happy data, 19 samples were classified correctly as normal data, and 

15 samples were classified correctly as sad data. The rest of the test samples were misclassified 

and results in 89% classification accuracy. 

 

 
Figure 39. Confusion matrix for the S008 considering MEL, MFCC features using TPOT 
classifier 
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Figure 40 shows the confusion matrix after training the model on S008 users’ dataset 

extracting MEL, MFCC, MWDPC features using TPOT. The model used 500 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 400 

samples and test dataset consists of 100 samples. The confusion matrix shows that among 100 

test samples, 18 samples were classified correctly as angry data, 25 samples were classified 

correctly as fearful data, 15 samples were classified correctly as happy data, 19 samples were 

classified correctly as normal data, and 17 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 95% classification accuracy, which is 6% 

more than extracting MEL, MFCC features. Based on the same chi-squared test, I found the 

improvement yielding a p value of 0.0059, which is statistically significant. 

 

 
Figure 40. Confusion matrix for the S008 considering MEL, MFCC, MWDPC features using 
TPOT classifier 
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Figure 41 shows the confusion matrix after training the model on S009 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a male of 21-25 age and a native 

English speaker. The model used 500 samples where 400 training samples and 100 testing 

samples after splitting the dataset into 80%-20% train test ratio. The confusion matrix shows that 

among 100 test samples, 21 samples were classified correctly as angry data, 26 samples were 

classified correctly as fearful data, 15 samples were classified correctly as happy data, 19 

samples were classified correctly as normal data, and 19 samples were classified correctly as sad 

data. The rest of the test samples were misclassified and results in 98% classification accuracy. 

 

 
Figure 41. Confusion matrix for the S009 considering MEL, MFCC features using TPOT 
classifier 
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Figure 42 shows the confusion matrix after training the model on S009 users’ dataset 

extracting MEL, MFCC, CGL features using TPOT. The model used 500 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 400 

samples and test dataset consists of 100 samples. The confusion matrix shows that among 100 

test samples, 20 samples were classified correctly as angry data, 26 samples were classified 

correctly as fearful data, 15 samples were classified correctly as happy data, 19 samples were 

classified correctly as normal data, and 19 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 100% classification accuracy, which is 2% 

more than extracting MEL, MFCC features. This is a statistically significant improvement as the 

proposed methodology yields maximum possible accuracy. 

 

 
Figure 42. Confusion matrix for the S009 considering MEL, MFCC, CGL features using TPOT 
classifier 
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Figure 43 shows the confusion matrix after training the model on S010 users’ dataset 

extracting MEL, MFCC features using TPOT. The actor is a male of 21-25 age and a native 

English speaker. The model used 500 samples split into training and test data following 80%-

20% train-test ratio. The training dataset consists of 400 samples and test dataset consists of 100 

samples. The confusion matrix shows that among 100 test samples, 21 samples were classified 

correctly as angry data, 23 samples were classified correctly as fearful data, 15 samples were 

classified correctly as happy data, 19 samples were classified correctly as normal data, and 19 

samples were classified correctly as sad data. The rest of the test samples were misclassified and 

results in 98% classification accuracy. 

 

 
Figure 43. Confusion matrix for the S010 considering MEL, MFCC features using TPOT 
classifier 
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Figure 44 shows the confusion matrix after training the model on S010 users’ dataset 

extracting MEL, MFCC, MCD features using TPOT. The model used 500 samples split into 

training and test data following 80%-20% train-test ratio. The training dataset consists of 400 

samples and test dataset consists of 100 samples. The confusion matrix shows that among 100 

test samples, 21 samples were classified correctly as angry data, 23 samples were classified 

correctly as fearful data, 15 samples were classified correctly as happy data, 19 samples were 

classified correctly as normal data, and 19 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 99% classification accuracy, which is 1% 

more than extracting MEL, MFCC features. 

 

 
Figure 44. Confusion matrix for the S010 considering MEL, MFCC, MCD features using TPOT 
classifier 
 

Figure 45 shows the confusion matrix after training the model on S010 users’ dataset 

extracting MEL, MFCC, MWDPC features using TPOT. The model used 500 samples split into 
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training and test data following 80%-20% train-test ratio. The training dataset consists of 400 

samples and test dataset consists of 100 samples. The confusion matrix shows that among 100 

test samples, 21 samples were classified correctly as angry data, 23 samples were classified 

correctly as fearful data, 15 samples were classified correctly as happy data, 19 samples were 

classified correctly as normal data, and 19 samples were classified correctly as sad data. The rest 

of the test samples were misclassified and results in 99% classification accuracy, which is 1% 

more than extracting MEL, MFCC features. Under a chi-squared test, I found the probability 

value to be p = 0.0246, yielding a statistically significant improvement in the performance 

evaluation. 

 

 
Figure 45. Confusion matrix for the S010 considering MEL, MFCC, MWDPC features using 
TPOT classifier 
 

The accuracy obtained from Figure 24 to Figure 45 is summarized in Table 11. In 

summary, if the custom features are combined with MEL and MFCC, the accuracy gets better.  
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Table 11. Results for TPOT classifier using different participants of the smart home dataset 
User Features TPOT 

S001 
MEL, MFCC 

MEL, MFCC, MWDPC 

84% 

87% 

S002 

MEL, MFCC 

MEL, MFCC, PCWC 

MEL, MFCC, MWDPC, PCWC 

90% 

92% 

92% 

S003 
MEL, MFCC 

MEL, MFCC, MCD, CGL 

69% 

72% 

S004 
MEL, MFCC 

MEL, MFCC, MWDPC 

97% 

99% 

S005 
MEL, MFCC 

MEL, MFCC, CGL 

90% 

94% 

S006 
MEL, MFCC 

MEL, MFCC, MCD 

92% 

95% 

S007 
MEL, MFCC 

MEL, MFCC, MCD, CGL 

99% 

100% 

S008 
MEL, MFCC 

MEL, MFCC, MWDPC 

89% 

95% 

S009 
MEL, MFCC 

MEL, MFCC, CGL 

98% 

100% 

S010 

MEL, MFCC 

MEL, MFCC, MCD 

MEL, MFCC, MWDPC 

98% 

99% 

99% 

 

For user S001, the accuracy gets 3% better if MWDPC is combined with MEL and 

MFCC feature extraction. We can see the accuracy gets better for S002, S004, S008, and S010 

users if MEL and MFCC are combined with MWDPC. We can observe better accuracy for S002 

by combining PCWC feature extraction. The accuracy even gets better from 90% to 94% if CGL 

is combined with the existing features, for the S005 dataset. Also, we see the impact of CGL for 
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users S003, S007, and S009 whereas the accuracy gets better in extracting MCD along with 

MEL, MFCC for S003, S006, S007, and S010.  Thus, Table 11, shows that we can detect 

emotion more accurately by combining MEL, and MFCC features with the custom features for 

the smart home dataset. Besides, I also showed the improvement in performance evaluation is 

statistically significant in most of the user cases based on the p value from chi-squared test. 

Based on the observation depicted in this section, we can conclude that is there is no one 

universal custom feature that works better for all of them rather different custom features worked 

better for different users. Also, some users have really high accuracy compared to other users. 

Another observation is that native speakers have more accuracy than nonnative speakers. 

Moreover, some users are not different emotional states are not distinguishable enough.  

Apart from testing the system by splitting the dataset into training and testing datasets, 

the model was also tested on unlabeled data in real-time. For this, MEL, MFCC, and one custom 

feature each time was used. Table 12 shows the result observed from applying different models 

with different combinations of features. 

 

Table 12. Emotion detection for unlabeled data using the different combinations of features 
Model Actual Emotion Predicted Emotion Accurately Detected 

MEL, MFCC Happy Happy Yes 

MEL, MFCC, CGL Normal Normal Yes 

MEL, MFCC, MCD Fearful Fearful Yes 

MEL, MFCC, MWDPC Sad Sad Yes 

MEL, MFCC, PCWC Angry Angry Yes 
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CONCLUSIONS 

 

Speech plays a pivotal role in the classification of emotions besides multiple factors, e.g., 

facial expressions as well as body language. Assessing the emotions of a human being based on 

these emotions through artificial intelligence is a promising research domain. The information 

related to facial expression and body language can be extracted through video and image 

processing and is already being employed in different applications. However, the scope of this 

research is concentrated on the smart home device applications, and interaction in the smart 

home environment is mostly dictated by speech. The rise in popularity of smart home devices 

(e.g., Amazon Alexa or Google Home) has incentivized the development of real-time emotion 

detection. Therefore, motivated by the need for smart devices to suggest appropriate actions 

based on the users’ current emotional state, I have explored methods to determine the emotional 

state of a smart home user based on the short audio conversations with smart assistants. In this 

thesis, I presented my novel initiative to classify happy, normal, sad, fearful, and angry emotions 

from smart commands. Potential uses include tailoring the smart home services and the 

functionalities of smart devices to the user’s current emotion or tracking the emotional states to 

improve the mental well-being of the user. 

Voice commands given to smart home devices are short relative to typical human 

conversations, as they usually consist of 2-6 words. Because of this, short voice commands lack 

contextual data (i.e., lexical cues) that can be used to estimate the emotion of smart home device 

users.  Therefore, emotion detection in the smart home environment is mostly dependent on the 

exact extraction of audio features combined with an appropriate classification algorithm. In this 

thesis, performed a comparison among several classifiers and observed that the XGBoost 
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classifier from TPOT AutoML performs best. I also proposed four novel audio features and 

combined them with the widely used MFCC and Mel Spectrogram features for emotion 

classification. Combining MEL, MFCC with CGL, MCD, MWDPC and PCWC features showed 

improvement in the emotion detection accuracy. Moreover, this accuracy improvement indicates 

that emotion prediction may increase if we consider a larger dataset containing smart home voice 

commands and audio conversations with the smart assistants which the publicly available 

datasets like RAVDESS as well as TESS do not provide. Therefore, I built a custom smart home 

audio dataset to confirm the results. My thesis highlights the importance of investigating more 

dynamic features from smart home audio conversations to ensure accurate emotion detection for 

individual users. The future scope of this research can be focused on increasing the custom 

dataset size and planning to incorporate advanced machine learning classifiers, such as Bi-LSTM 

and Deep Belief Network.  
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