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ABSTRACT 

Three-dimensional city (3D) models are very useful in supporting natural disaster preparation 
and response. LiDAR surveying is currently the main method by which 3D city models are 
created; however, LiDAR data on a local scale is hard to obtain for developing countries. This 
project sought to test whether or not urban feature height data obtained using the 
photogrammetric sun-angle shadow method is a viable alternative to LiDAR-derived 3D city 
models. A core element of this work was the development of a toolset to be shared freely to the 
public to promote crowdsourcing of 3D building data. Prior works were reviewed and a shadow-
overlapping method for estimating building heights was selected and implemented in the Python 
programming language. Shadow detection methods in the literature were also reviewed and eight 
were modified into a simple command-line Python tool to batch process shadow detection using 
multiple algorithms. The Missouri State University, Springfield, MO, campus was selected as the 
study site for testing the shadow-overlapping process and LiDAR/DEM data was used to create 
building footprints with ground truth height values. For the shadow detection methods that 
produced the most accurate results, roughly 60% of building height estimates were within 10 feet 
(or one floor) of the true height, and buildings whose heights were between 37-50 feet 
consistently had the lowest margins of error. A systematic finding, however, was that shorter 
buildings’ heights were overestimated and taller buildings were underestimated. A similar 
pattern was identified with building size/square footage with smaller buildings being 
overestimated and larger buildings being underestimated. In the end, the results suggested that 
the shadow-overlapping method is likely not reliable enough to produce height estimations 
comparable to LiDAR-derived methods and that these height estimates are not suitable for 
downstream calculations. However, for a simple/generalized 3D cartographic representation of 
an area, it appeared that this low-cost method could produce adequate results. 
 
 
 
 
KEYWORDS:  3D city models, building height estimation, GIS, photogrammetry, Python, 
shadows  
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INTRODUCTION 

 

Geospatial data is playing an ever-increasing role in natural disaster prevention and 

response [1]. Today, geospatial analysis can help answer questions such as “Who or what 

infrastructure is most vulnerable?”, “Where is the best evacuation route?”, and “Where should 

relief resources be positioned to best support those in need?” These questions form the key 

information requirements during a crisis event. Three-dimensional city (3D) city models, in 

particular, allow emergency responders to interact with and visualize the environment, 

infrastructure, and people using a more realistic world view than 2D maps, giving them a greater 

ability to find hidden relationships and subtle patterns [2]. For example, 3D building models can 

be used to estimate building occupancy or storage capacity—valuable information that can assist 

planners of relief efforts. Perhaps even more importantly, they also allow emergency responders 

to visualize the operating environment prior to a crisis response operation. One mainstream 

example of this was the successful raid on Osama bin Laden’s compound in 2011 by US Navy 

SEALs who, after the event, remarked that 3D geospatial visualizations helped them “feel like 

they had been there before” [3]. Lastly, using 3D data, scientists and engineers are also better 

equipped to model and simulate the impacts of natural disasters, such as floods and earthquakes, 

under a variety of conditions before they strike [4]—a potential lifesaver. 

 

3D Building Data Sources 

Light Detection and Ranging (LiDAR) aerial laser scan technology is currently one of the 

most widely used remote sensing methods of collecting the data used to create 3D city models 

[5]. However, in developing nations, which are already disproportionately affected by natural 
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disasters, LiDAR and other GIS data on a local scale is not always readily available, let alone 

data that is current and accurate [6]. The lack of available 3D data for such regions hinders the 

geospatial community’s ability to support disaster analysis and response. 

With that being said, LiDAR is not the only method of obtaining 3D data of man-made 

features, as object heights can also be calculated using the photogrammetric technique of 

measuring heights on single aerial photos using the sun-angle shadow method [7]. By utilizing 

the solar elevation angle at the time of image capture (a known value stored in the image’s 

metadata) and by measuring the length of an object’s cast shadow, its height can be calculated 

using the trigonometric formula from [7] shown in Fig. 1. Then, to create simple 3D city models 

using this information, building footprint polygons can be extruded vertically to the estimated 

height values, as seen in Fig. 2. 

 

 

Fig. 1. Formula to calculate object height using shadow-based photogrammetry method. 

 

 Objective 

While the potential for deriving 3D building information from shadow-based 

photogrammetry methods has been described in the literature, there does not currently exist a 

robust, commercially available tool for geospatial professionals to create this data in any easily 
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Fig. 2. Rudimentary 3D model of Springfield, MO, created by vertically extruding footprints. 

 

repeatable way or at scale. As such, a major goal was to implement algorithms presented in prior 

works and combine them into one open-source Python toolset to be shared freely in the public 

domain so future researchers can quickly compare results between different shadow methods as 

well as fine tune parameters without having to “reinvent the wheel”. Lastly, it must be 

acknowledged that the process outlined in this paper assumes vector building footprints are 

available for the study area and does not attempt any automated bulding footprint extraction. The 

goal in this research is only to test the feasibility of extracting and applying height metadata to 

existing footprints. Even so, it should be noted that GIS building footprint data without height 

attribution is widely and freely available to the public through crowdourced projects like 

OpenStreetMap [8] and through Microsoft’s AI Assisted Mapping project [9]. 

 

Hypothesis 

While shadow-based methods are not likely able to match the granularity of 3D meshes 

derived from LiDAR point clouds, the hypothesis explored here was that shadow-based building 
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height estimation from high spatial resolution (HSR) satellite imagery could provide comparable 

results to LiDAR-derived techniques in terms of the basic height attribution necessary to create 

rudimentary 3D city models.  
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LITERATURE REVIEW 

 

The literature review for this study consists of two parts—an overview of different 

automated methods for building height estimation from satellite imagery and an overview of 

different shadow detection algorithms. 

 

A Brief Note on Imagery 

In satellite imagery, a common finding for the remote sensing professional is that shadow 

regions are less illuminated than their surroundings, and as a result, have lower values for red, 

green, and blue (RGB), as well as graylevel intensity, standard deviation, variance, local 

maximum, and brightness [10]. However, since other dark colored objects in the imagery usually 

have similar characteristics, it can often be difficult to discriminate between the two. This is 

especially the case in panchromatic imagery, a single-band image type that depicts features 

solely in shades of black and white. Generally, the more spectral bands, the more information is 

gathered by the sensor. As such, true color RGB imagery and imagery with a near infrared (NIR) 

band can provide more data which can be used to detect shadow regions. In fact, a NIR band can 

be used in index calculations such as NDVI (Normalized Difference Vegetation Index) to assist 

in filtering out vegetation from candidate shadow regions—reducing the likelihood of 

misclassification as shadow pixels [11]. While true color RGB imagery does not have this 

capability, it does have the greatest availablilty, and in alignment with the goal to promote 

crowdsourcing of global building height data, developing a method using RGB imagery seemed 

most prudent in this study. 
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Building Height Estimation Methods 

Many prior scholars have studied the automation of building height estimation from HSR 

satellite imagery. For this paper, four categories of algorithms have been established—measuring 

shadow length, overlapping artificial shadows, stereo-pair photogrammetry, and depth estimation 

in computer vision—with the first two being shadow methods and the second two being non-

shadow methods. 

Measuring Shadow Length. The first method of estimating building height is to simply 

measure the length of building shadows within a pre-defined azimuth angle range followed by 

height calculation using the shadow formula. In one method, shadow objects were segmented 

using supervised classification of the panchromatic and multispectral bands of IKONOS images 

[12]. The authors visually observed that the shadows from taller objects (high-rise buildings) in 

the image were more compact in shape than those from shorter objects (low-rise buildings and 

other non-building features in the image scene). As such, they used a compactness index of 

perimeter-area ratio on detected shadow features to filter out those not likely to be buildings 

(taller buildings/compact shadows having lower perimeter-area ratios). However, since smaller 

image objects also tend to have higher perimeter-area ratios than large image objects and the 

authors did not want to filter out important shadows that may have smaller pixel areas depending 

on the image, the index was sampled for 20 high-rise buildings and the highest perimeter-area 

ratio was then set as the threshold value to separate shadow objects of taller/larger buildings 

from smaller/shorter objects in the image scene [12]. Next, candidate shadow lengths were found 

by measuring the length of each shadow object at intervals between the pre-defined azimuth 

angle range (e.g., 315-345°). Then, the highest length within the angle range was selected. In Fig. 

3, the selected building shadow length would be around 9 pixels long. A major advantage of this 
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Fig. 3. Candidate shadow lengths within pre-defined azimuth angle range. 

 

method is its simplicity—low computational complexity results in very fast processing times. 

However, a problem specific to this algorithm is that it frequently fails to be able to calculate 

heights for low-rise buildings and the authors report that it systematically overestimates the 

remaining buildings [12]. It is also concerning that this method assumes the sun’s illumination is 

perpendicular to the side of a building (resulting in a single parallelogram-shaped shadow along 

one side of a building). Additional testing would need to occur to verify if perimeter-area index 

assumptions would also hold true in the cases where the sun’s illumination falls onto the corners 

of buildings (resulting in connected shadowing from two or more sides of a building forming an 

“r” or “L” shape). In the latter case, programmatically choosing the start location for measuring 

the shadow object’s length in the direction of the azimuth angle might also be more difficult so 

as to not measure the building’s length in addition to shadow length. Another limitation of this 

algorithm that the authors conceded was that it assumes the shadows fall onto a flat surface, 

which can result in invalid results when the shadows of high-rise buildings fall onto other high-

rise buildings [12]. Further, while not acknowledged by the original authors, it is assessed that, 

instead of directly using the known azimuth angle, a sun azimuth angle range was likely used in 

order to account for terrain variation, which could have made shadows appear to deviate slightly 

from the azimuth angle. 

~9 pixels

~7 pixels

~8 pixels
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Overlapping Artificial Shadows. Another shadow-based method for estimating building 

heights involves generating artificial (or simulated) shadows for buildings at various candidate 

heights and comparing their similarity to the actual shadow pixels. In one paper, shadow regions 

and building footprints are first extracted from HSR satellite imagery [13]. Then, for each 

footprint, an artificial shadow is generated given the solar elevation angle from the image’s 

metadata and a pre-defined initial building height. Next, the artificial shadow is compared to the 

actual shadow pixels using the Jaccard similarity index (intersection over union metric) [14]. The 

statistic ranges in value from 0 to 1, with more accurate candidate heights returning a score 

closer to 1. Using an exhaustive search process, additional artificial shadows are generated for 

the footprint with the candidate height incremented on each iteration until the Jaccard index is 

maximized. Once that occurs, the process stops and the candidate height associated with the 

highest Jaccard value is set as the building’s final estimated height. Fig. 4 illustrates this process 

with one building—the process would then continue for any other building footprints in the 

image. 

 

 

Fig. 4. Process flow diagram of the overlapping artificial shadows algorithm. 
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The authors reported encouraging results with this method, but it must be noted that an 

exhaustive search for candidate building heights significantly increases computation time.  

Instead of an exhaustive search, other scholars have used optimization algorithms to select 

candidate height values more efficiently. In [15], fuzzy reasoning and a genetic algorithm was 

used for this step. Genetic algorithms rely on operators inspired by evolution such as mutation, 

crossover, and selection, to generate solutions to optimization and search problems [16]. In [14], 

the authors used a gradient descent method, a first-order iterative optimization algorithm based 

on a convex function and adjusts its parameters iteratively to minimize a given function to its 

local minimum [17]. As is the case with the other shadow method, the robustness of this 

algorithm is also limited by the fact it assumes building shadows fall onto flat surfaces and not 

falling onto nearby or adjacent buildings. (Additional limitations of the shadow-overlapping 

method are acknowledged in the “Discussion” chapter of this paper.) 

Stereo-pair Photogrammetry. This next method uses satellite image stereo pairs to 

obtain 3D city models from digital surface models (DSMs). In one study, this was done using the 

ERDAS IMAGINE Automatic Terrain Extraction with Dense Point Matching (eATE) software; 

an example stereo pair used by the authors in [18] can be seen in Fig. 5. The dense image 

matching procedure of the eATE tool finds the corresponding points for almost every pixel of the 

stereo pair and estimates their 3D coordinates in object space. 

Stereo-pair photogrammetry is capable of creating highly detailed 3D city models of not 

just buildings, but trees and other natural features as well. However, while the ERDAS 

IMAGINE software used in this paper is non-free along with their proprietary algorithms for 

dense point matching, the general capability of automatic tie point extraction/automatic aerial 

triangulation is included in free photogrammetry software such as Meshroom or LISA-FOTO. 
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Fig. 5. Stereo pair of satellite images for an urban study area. 

 

With that being said, this method using stereo pairs of VHR satellite images is generally more 

cost prohibitive as the images are more difficult to obtain than monocular satellite images, which 

can be found freely and in much greater quantities [14]. 

Depth Estimation in Computer Vision. However, when only a single image is 

available, it is not possible conduct 3D reconstruction using stereo geometry and its related 

photogrammetric techniques [19]. Instead, depth estimation algorithms relying on contextual 

cues (size, texture, position) can make strong assumptions about scene geometry. In the method 

proposed in [20], a depth estimation algorithm was used to create DSMs for urban areas, with 

examples of inputs shown in Fig. 6. Their algorithm relied on the idea that abrupt transitions in 

height often corresponded with abrupt changes in object type classification/labeling between 

adjacent objects and vice versa. With advances in deep learning and Convolutional Neural 

Networks (CNNs), it is now possible for these algorithms to learn these contextual cues from 

training data rather than by programming them in manually [19]. In both [20] and [21], the deep 

learning models were trained using ground truth-labeled DSMs. 
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Fig. 6. Satellite image and its associated ground truth-labeled DSM for an urban study area. 

 

Just as stereo-pair photogrammetry was able to, these depth estimation-based algorithms 

are also capable of creating 3D models of more than just buildings. However, disadvantages of 

this method include the high level of complexity involved with implementing deep learning 

models. Additionally, the time and resources required to train the model would also be 

significant. Lastly, these depth-estimation algorithms make assumptions instead of considering 

known information such as azimuth and elevation angle of the sun and may introduce errors 

when using images from different data sources (e.g., the appearance and location of rooftops in 

orthorectified photos will differ from images affected by relief displacement). 

Applications of Prior Works in This Paper. The decision to use a shadow-based 

method was in part due to the vast quanity of monocular HSR satellite imagery available to 

geospatial professionals today, much of which can be easily obtained and spanning the majority 

of the world. Another potential advantage of methods using monocular satellite imagery is that 

change detection and analysis may be possible using the vast archives of historical monocular 

imagery whereas methods involving LiDAR and stereo imagery are limited by their more limited 

temporal and regional coverage. Specifically, the shadow-overlapping algorithm proposed in 

2018 by N. Kadhim and M. Mourshed [13] was used in this paper’s experimentation. The 

benefits of this algorithm over the other three discussed previously are that it only requires one 
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image, it is not very technically complex while still yielding highly accurate results for both low-

rise and high-rise buildings, and that it allows for flexible integration with a variety of different 

shadow and footprint detection methods. 

 

Shadow Detection Methods 

The second major consideration when developing a shadow-based algorithm is the 

method by which shadows are extracted from source imagery. Four classes of varying levels of 

complexity have been identified in [10]—thresholding-based shadow detection, color model-

based shadow detection, region-based shadow detection, and feature learning-based shadow 

detection—with the first two being pixel-based classification methods and the second two being 

object-based classification methods. 

 Thresholding-based Shadow Detection. Thresholding is currently the most widely used 

method of shadow detection. The advantage of this method is the simplicity and speed with 

which shadow regions can be identified since it works by simply applying mathematical 

operations to pixel values in the image [10]. In essence, it works by further darkening the dark 

parts of an image and lightening the light parts. However, due to the pixel similarity between 

shadow regions and dark features (e.g., water bodies, dark rooftops, fresh asphalt), it can be 

difficult to select suitable thresholds that will correctly identify shadow regions across a diverse 

range of geographic environments [22]. 

The authors in [13] used thresholding on imagery with both visible and NIR bands to 

help avoid the issue of dark colored features being mistaken for shadows. For each pixel, the 

proposed process computes the ratio between the visible and NIR bands. This works to 

discriminate between shadow regions and dark colored objects as objects that are dark in the 
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visible spectrum often have a much higher reflectance in the NIR band, and shadows would be 

dark in both [23]. Their method also uses a NDVI to filter out vegetation, producing a fairly 

accurate result at the cost of requiring multispectral imagery. 

The first law of geography, as stated by Waldo R. Tobler, states that “everything is 

related to everything else, but near things are more related than distant things” [24]. This 

phenomenon, where values of a common variable are similar across nearby locations, is also 

called positive spatial autocorrelation. However, in general, pixel-based classification often fails 

to account for spatial autocorrelation—especially in many thresholding-based methods where a 

filter is globally applied to the image without considering local contextual clues and relationships 

[25]. Furthermore, many pixel-based analytic methods were developed for relatively coarse 

spatial resolution imagery, and with the increase of spatial resolution (such as with HSR images 

used in this paper’s study), the accuracy of classification may decrease due to the increase of 

within-class variability [25]. This variability, which can further be described as high local spatial 

heterogeneity, often results in “salt-and-pepper” noise in the pixel-based classification result [26] 

and the application of a median filter may be required to reduce noise. 

Color Model-based Shadow Detection. The transformation of an image from one color 

model to another can provide additional information to help detect shadows. Color spaces such 

as HSI (Hue, Saturation, Intensity) and c1c2c3 are commonly used because they produce images 

invariant to shadows [27] and CIELAB has gained popularity due to its similarity with human 

perception [10]. 

A cornerstone piece of research on shadow identification and classification using 

invariant color models was conducted in [28]. In their method, after initial RGB conversion to 

the c1c2c3 color invariant model, a Sobel operator is applied on the luminance component of the 
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input image to perform edge detection. The generated edge-map is used to find object contours 

and to extract candidate shadow regions. Dark regions that are not contained in the object 

contours are classified as cast shadow regions. A few limitations of this method, however, are 

that it generally only works for shadows cast on a flat, non-textured surface only, and that the 

process worked best for images with a single object according to the authors. Obviously, this 

would not be ideal for a dense urban landscape. As a whole, this method is better utilized in 

combination with other classes of shadow detection algorithms, rather than by itself. 

Region-based Shadow Detection. This class of shadow detection algorithms seeks to 

solve the issue of classification not being adaptive to different regions across an image. In these 

methods, segmented regions are labeled as shadows or non-shadows based on the properties of 

individual regions as well as similarity with other regions, comparing properties such as color 

and texture histograms, intensity ratios, and distance between regions [10]. 

One significant implementation of a region-based method was proposed in [29]. In their 

research, a region growing algorithm utilizing two different color model transformations—RGB 

to c1c2c3 and RGB to HSV (Hue, Saturation, Value)—was used. Then, using a smoothed c3 

channel, the saturation channel (S), and the gradient of the intensity channel (V) calculated using 

the Sobel operator, seed pixels are selected where they match the known properties of shadow 

regions. Next, the process recursively checks the eight neighbor pixels of a growing region’s 

boundaries—adding them to the growing region if their saturation and intensity values are 

consistent with shadow pixels. Once no more neighbor pixels are added to a region, the growing 

algorithm stops. While this algorithm produces highly accurate results, a potential issue with this 

method is that a building’s shadow will be missed entirely if at least one seed is not originally 
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detected in its shadow region, which can be an issue in image settings with many buildings 

depending on the density of starting seed points. 

In sum, region-based shadow detection algorithms have the benefit of using contextual 

information to help identify shadowed areas in imagery and use more logic when classifying 

pixels as shadow pixels than simple thresholding, while not being as complex as feature 

learning-based methods. 

Feature Learning-based Shadow Detection. Undoubtedly, the most complex 

algorithms for shadow detection in digital images are found in the subset of machine learning 

and deep learning-based methods. These methods are intended to solve some of the issues that 

arise in thresholding and color model-based algorithms such as difficulty in obtaining the 

optimal threshold value and distinguishing shadows from dark colored features [10]. Scholars in 

the field of computer vision have implemented approaches such as decision trees, neural 

networks, as well as supervised and unsupervised learning models to separate shadow and 

shadowless regions using trained classifiers. The authors in [25] used a machine learning random 

forest classifier on segmented Arctic sea ice imagery using a total of 13 spectral, texture, and 

spatial attributes to detect shadows. As an object-based classification technique, this method 

considers both spectral values of each pixel and spatial patterns that determine the texture, shape, 

and contextual properties of each feature, helping improve classification accuracy [25] and 

reducing “salt-and-pepper” noise by merging pixels into neighboring objects; however, these 

generalizations may come at the cost of losing some important detail information [26]. 

Furthermore, some feature learning-based shadow detection methods use predefined 

training data sets to identify shadows while others automatically learn the most relevant 
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characteristics of shadow regions at runtime (the discriminator between supervised and 

unsupervised classification algorithms). 

Applications of Prior Works in This Paper. For this paper, eight shadow detection 

methods were selected for testing in the overall building height estimation process and are 

outlined below in Table 1. Additionally, the benefits of hybrid implmentations (where an 

algorithm pulls elements from more than one shadow method class) have been discussed 

previously. Those selected for this paper’s experimentation follow this trend. Feature learning-

based methods were not implemented in this study due to their complexity and their respective 

training data requirements. Only the first algorithm used in this paper may be considered an 

object-based classification method, with the remaining seven being pixel-based methods—a 

limitation that will be addressed further in the “Discussion” chapter. 

 

Table 1. Shadow Detection Algorithms Used in this Paper 

Author(s) Year Title/Paper/Code Algorithm Classes

V. Arévalo, J. 
González, and G. 
Ambrosio 

2008 “Shadow detection in colour high-resolution 
satellite images” [29] [30] 

Region, Color 
model, 
Thresholding 

K. Deb and A. H. 
Suny 

2014 “Shadow detection and removal based on 
YCbCr color space” [31] [32] 

Color model, 
Thresholding 

V. L. S. Freitas, B. 
M. F. Reis, and A. 
M. G. Tommaselli 

2017 “Automatic shadow detection in aerial and 
terrestrial images” [33] [34] 

Color model, 
Thresholding 

H. Ma, Q. Qin, and 
X. Shen 

2008 “Shadow segmentation and compensation in 
high resolution satellite images” [35] [30] 

Color model, 
Thresholding 

S. Murali and V. 
K. Govindan 

2013 “Shadow detection and removal from a single 
image using LAB color space” [36] [37] 

Color model, 
Thresholding 
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Table 1 continued: Shadow Detection Algorithms Used in this Paper 

Author(s) Year Title/Paper/Code Algorithm Classes

G. F. Silva, G. B. 
Carneiro, R. Doth, 
L. A. Amaral, and 
D. F. G. Azevedo 

2018 “Near real-time shadow detection and removal 
in aerial motion imagery application” [38] [39] 

Color model, 
Thresholding 

K. K. Singh, K. 
Pal, and M. J. 
Nigam 

2012 “Shadow detection and removal from remote 
sensing images using NDI and morphological 
operators” [40] [41] 

Color model, 
Thresholding 

V. J. D. Tsai 2006 “A comparative study on shadow 
compensation of color aerial images in 
invariant color models” [42] [30] 

Color model, 
Thresholding 
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METHODS 

 

The research methods in this study are comprised of three parts: study site selection and 

generation of ground truth data, batch processing of imagery using eight different shadow 

detection algorithms, and the shadow-overlapping building height estimation process. 

 

Study Area and Ground Truth Data 

Study Area. The Missouri State University (MSU), Springfield, MO, campus and 

surrounding area was selected as the area of interest for testing the tools developed for this paper, 

as quality imaging and ground truth data was previously known to be available. 

Study Image. March 2019 leaf-off imagery was obtained for the MSU study area for 

optimal view of shadows. The image was first exported from Google Earth Pro [43] and then 

georeferenced using ESRI ArcGIS Desktop software. The image capture date was provided by 

Google Earth Pro and the solar azimuth angle was measured from imagery as the back bearing of 

shadow angles. Further, the solar elevation angle was estimated using the NOAA Solar 

Calculator [44] using the known date and solar azimuth angle. Comprehensive metadata for the 

study image shown in Fig. 7 (left) is as follows: 

 

• Spectral resolution – 3 bands/true color RGB 
• Dimensions – 4800 x 8322 pixels 
• Capture date/time – 3/15/2019 at 12:48:45 PM (estimated) 
• Solar azimuth angle – 167° 
• Solar elevation angle – 50° (estimated) 
• Cell size – 0.585875426437609 ft 
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Fig. 7. March 2019 Google Earth image of MSU study area (left) and 495 ground truth building 
footprints derived from 2011 Greene County, MO, LiDAR and DEM data (right). 
 
 

Ground Truth. To verify the accuracy of building heights estimated using the shadow-

overlapping tool developed in this study, a ground truth dataset was derived from LiDAR and 

DEM data offered by the Missouri Spatial Data Information Service (MSDIS) [45]. This data 

was produced by the Sanborn Map Co, Inc. for their “Greene County, Missouri, 2011 Digital 

Mapping Project” [46]. The LAS and DEM data was processed according to the flow diagram in 

Fig. 8 and as described below. Additionally, while OpenStreetMap data or authoritiative  
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Fig. 8. Flow chart illustrating ground truth data generation from source LiDAR and DEM data. 
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building footprints from city or state government GIS data portals could have been used, it was 

decided to just create ground truth data from a single data source in the interest of minimizing 

errors that may occur during data conflation. 

To create the vector building footprints required in this study as well as their ground truth 

heights, the ArcGIS Geoprocessing tool “Classify LAS Building” was first ran on the raw LAS 

point cloud data, which attributed buildings with a LiDAR classification of “6”. Next, free, third-

party LAStools (lasboundary) software [47] was used to create concave hull-based building 

footprint representations of building points, with the optimal tool parameters detailed below: 

 

• Keep classification – 6 (outputs only building footprint polygons) 
• Concavity – 8 
• Disjoint – enabled (exports building footprints as discrete polygon features, not 

just one merged polygon) 
 

 

Then, the ArcGIS tool “LAS Dataset to Raster” was ran, allowing the use of raster calcuations on 

what is essentially a LiDAR-derived digital surface model. Now, to normalize building elevation 

to “above ground level” (AGL) height, the following calculation was used on the output LAS 

raster and the DEM raster: HEIGHTS_AGL = OUTPUT_LAS_RASTER – DEM. At this point, 

a spatial join was used to attribute the building footprint polygons created using lasboundary 

with ground truth height values. The merge rule for this step was set to maximum, ensuring each 

building footprint was assigned the highest height value of those sampled from the LAS raster. 

Finally, to improve the geometry of the building footprint polygons, the ArcGIS Geoprocessing 

tool “Regularize Building Footprint” was used on the joined footprint polygons (with height 

attribution). The resulting 495 buildings with ground truth heights can be seen in Fig. 7 (right). 

  



22 

Shadow Detection Toolset 

 The Python toolset for shadow detection on RGB images described herein utilizes 

numerous open-source image processing and spatial data libraries, most notably OpenCV, scikit-

image, GDAL, and NumPy. Additionally, it should be noted that the hardware used in this study 

was a ThinkPad X1 Yoga 1st Signature Edition with an Intel Core i7-6600U CPU @ 2.60 GHz 

and 16.0 GB of memory running 64-bit Windows 10 Pro. Python 3.7 was used in an Anaconda 

environment. 

Outside of updating functions to Python 3, threshold parameter adjustments, and adding 

spatial reference management for file input/output actions [48], the implementations of each of 

the eight shadow detection methods remained largely unchanged from their originals as cited in 

Table 1. The only significant changes included the addition of two morphological operations, 

erosion followed by dilation, at the end of each of the algorithms as a final cleanup to the edges 

of identified shadow segments. 

The final toolset created for this paper allows users to batch process all eight shadow 

detection algorithms on an image using a simple command line interface. Tool runtime was 

consistently less than 10 minutes to produce all eight images for any given input image of size 

4800 x 8322 pixels or less. See Appendix A for output shadow rasters for each of the eight 

methods. 

 

Shadow-Overlapping Building Height Estimation Tool 

For this study, an implmentation of the shadow-overlapping method outlined in [13] was 

written from scratch in Python (scikit-image). The tool requires five inputs: raster shadow image 

created using shadow toolset, raster building footprint image, cell size in feet (the user would 
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enter 1.64042 here if the image had 0.5 meter spatial resolution), solar elevation angle, and solar 

azimuth angle. 

First, the shadow angle is calculated as the back bearing of the input solar azimuth angle. 

However, as this tool requires polar angles to draw the artificial shadows, the next step is to 

convert the shadow angle from a true bearing (compass bearing) to an angle in standard position. 

At this point, preprocessing is complete and the tool is now ready to iterate over each building 

footprint. 

For each footprint, the tool creates a list of its boundary pixel coordinates using the 

algorithm from [49]. Then, the tool iterates over candidate height in an exhausive search 

process—starting at an initial height of 20 feet and increasing by 5 with each iteration. For each 

iteration, a blank “temporary image” of the same size as both the original and the shadow image 

is created in memory where the artificial shadow will be drawn in binary with shadow pixels set 

to 1. Shadow length (in pixels) is next calculated for the footprint given the candidate height and 

solar elevation angle. Now, for each boundary pixel of the footprint, a line is generated in the 

direction of the established shadow angle using the length found in the previous step. Once this 

is completed, the artificial shadow image is nearly complete, however, the illuminated side of the 

building will have a false “shadow” that appears in the center of the building that needs to be 

removed. A simple raster calculation is used to set the building footprint pixel values back to 0 in 

the binary image so all that remains is the artificial shadow. A Jaccard (intersection over union) 

score is then calculated between the artificial shadow image and the true shadow image, which is 

stored along with the candidate height in a list. The process continues in a loop until one of two 

conditions are met—the maximum candidate height has been reached or if the Jaccard score for 

the current candidate height has decreased from the previous. (An arbitrary value of 70 feet was 
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chosen as the maximum height to be tested for the sake of runtime as it reduced the total number 

of iterations ran.) In the latter case, the final height estimate for that building footprint would be 

set to the the previous candiate height. 

For the 495 buildings in the study image of size 4800 x 8322 pixels, the tool consistently 

took just under 13 hours to run (or around 1.57 minutes per footprint). Due to the shadow-

overlapping tool’s long runtime on the available computer hardware, only five shadow outputs 

were tested: 

 

• V. L. S. Freitas, B. M. F. Reis, and A. M. G. Tommaselli [33] 
• H. Ma, Q. Qin, and X. Shen [35] 
• S. Murali and V. K. Govindan [36] 
• G. F. Silva, G. B. Carneiro, R. Doth, L. A. Amaral, and D. F. G. Azevedo [38] 
• V. J. D. Tsai [42] 

 
 

Additionally, it must be acknowledged that the accuracy of the shadow detection methods were 

not objectively measured using a ground truth, only by height estimation accuracy in the overall 

shadow-overlapping process. As such, the study was limited by the fact that the five “best” 

shadow detection images used for testing were selected, subjectively, on the basis of visual 

image interpretation alone. 

 

GitHub Repository of Python Tools 

The tools created for and used in this paper can be found at: 

https://github.com/LonnieBIII/Shadow-Overlapping_Building_Height_Estimation_Toolset. 
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RESULTS 

 

Using the LiDAR/DEM-derived ground truth data, accuracy metrics in this study were 

measured in a few different ways for each shadow detection algorithm and are detailed below: 

 

• Percentage of buildings whose estimated height falls within the accepted margin 
of error (MOE) of 10 feet, or about one floor of a building (see Table 2). 

• Scatterplot showing the relationship between true building height and height 
estimation error (calculated as: estimated height – true height) (see Fig. 9-Fig. 
13). 

• Scatterplot showing the relationship between building area (square footage of the 
area within the building footprint, not total building square footage of all floors) 
and height estimation error (estimated height – true height) (see Fig. 9-Fig. 13). 

• Linear regression of the data displayed in both scatterplots and the x-intercept of 
the line of best fit (the building height or area where height estimation error is 
most likely to be zero) (see Fig. 9-Fig. 13). 
 
 

Table 2. Accuracy Metrics by Shadow Detection Algorithm  

Author(s) Year Within MOE Outside MOE 

V. L. S. Freitas, B. 
M. F. Reis, and A. 
M. G. Tommaselli 

2017 87/236 (36.9%) 149/236 (63.1%) 

H. Ma, Q. Qin, and 
X. Shen 

2008 54/236 (22.9%) 182/236 (77.1%) 

S. Murali and V. 
K. Govindan 

2013 75/236 (31.8%) 161/236 (68.2%) 

G. F. Silva, G. B. 
Carneiro, R. Doth, 
L. A. Amaral, and 
D. F. G. Azevedo 

2018 139/236 (58.9%) 97/236 (41.1%) 

V. J. D. Tsai 2006 147/236 (62.3%) 89/236 (37.7%) 
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Fig. 9. Scatterplots illustrating the relationships between height estimation error and true building 
height (top) as well as building area (bottom) for V. L. S. Freitas, B. M. F. Reis, and A. M. G. 
Tommaselli [33].  
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Fig. 10. Scatterplots illustrating the relationships between height estimation error and true 
building height (top) as well as building area (bottom) for H. Ma, Q. Qin, and X. Shen [35].
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Fig. 11. Scatterplots illustrating the relationships between height estimation error and true 
building height (top) as well as building area (bottom) for S. Murali and V. K. Govindan [36]. 
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Fig. 12. Scatterplots illustrating the relationships between height estimation error and true 
building height (top) as well as building area (bottom) for G. F. Silva, G. B. Carneiro, R. Doth, 
L. A. Amaral, and D. F. G. Azevedo [38].  
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Fig. 13. Scatterplots illustrating the relationships between height estimation error and true 
building height (top) as well as building area (bottom) for V. J. D. Tsai [42]. 
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However, it should be noted that since many buildings within the study area had true 

heights less than 20 feet or greater than 70 feet (minimum and maximum candidate heights for 

the shadow-overlapping tool), metrics were only computed on buildings whose true heights were 

within that range. (Essentially, buildings shorter than 20 feet would have had overestimated 

heights and buildings taller than 70 feet would have been underestimated.) As such, the 

following metrics depict only the remaining 236 buildings within the study area which are 

highlighted in Fig. 14. Additionally, it should be noted that a clustering pattern appears in the 

true height vs estimated height error scatterplots because of the five foot interval used between 

candidate heights. As such, points on the scatterplots appear to be “snapped” to multiples of five 

along the y-axis. 

The shadow detection algorithms that resulted in the most accurate building height 

estimates were [42] and [38], with roughly 60% of building height estimates within 10 feet (or 

one floor) of the true height. Additionally, x-intercepts of the regression lines revealed that 

buildings whose heights were between 37-50 feet consistently had the lowest margins of error 

across all five shadow methods that were tested in this study. Perhaps a more interesting finding, 

however, is that shorter buildings’ heights were systematically overestimated, and taller 

buildings were systematically underestimated—potentially underscoring a weakness with the 

shadow-overlapping method as a whole. A similar pattern was identified with building 

size/square footage with smaller buildings being overestimated and larger buildings being 

underestimated. 
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Fig. 14. Subset of 236 buildings within the MSU study area whose accuracy metrics were 
computed. 
  

Building 
between 20 
and 70 feet 
 
Building not 
considered in 
metrics 



33 

DISCUSSION 

 

This study had a considerable number of limitations which will be addressed in this 

chapter as well as its author’s overall conclusions. 

 

Limitations Involving Imagery and Geography 

Shadow detection in this study was performed on a single leaf-off image captured in 

March 2019. It is assessed that results from the shadow-overlapping process would have been 

significantly worse had shadows of homes in residential areas been obstructed by tree canopies. 

While this paper focused on the use of 3 band/RGB imagery due to its high availability, other 

authors have reported success with using imagery with a NIR band to help filter out vegetation 

from candidate shadow regions [11]. 

Further, the study image was selected in part due to the clarity of the shadow regions, 

with RGB pixel values of shadow areas near (0, 0, 0). It is assessed that results would likely have 

been worse with poorer shadow contrast. Also, it is difficult to determine if a preprocessing step 

(e.g., histogram equalization) should be included before detecting shadows on raw imagery 

without additional testing. In testing this paper’s hypothesis, an image with optimal conditions 

was used under the assumption that, should the process fail for an image/scene with good 

conditions, the shadow-overlapping method would likely not be a suitable candidate in the cases 

of more challenging geographies or poorer image conditions. 

The solar elevation angle of the study image (~50°) was optimal for the shadows in the 

MSU area—long enough shadow lengths for more accurate trigonometry to find building heights 

but not too long as to have shadows falling significantly onto adjacent buildings. Without testing 
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more images, it is not possible to determine whether different solar elevation angles will alleviate 

or worsen the systematic issue of shorter buildings’ heights being overestimated and taller 

buildings being underestimated. 

Additionally, a common phenomenon that occurs in cities is when tall buildings’ 

shadows fall onto adjacent buildings (e.g., high rise apartment complexes). The MSU study area 

is not a dense urban area and, in this study, the impact this phenomeonon might have had on the 

shadow-overlapping process was not tested. This, however, would likely have introduced a 

significant amount of error and has previously been reported in the literature by multiple authors 

[12] [13]. With that being said, a potential workaround could include programmatically 

aggregating the heights of adjacent or nearby buildings of similar appearance. Another potential 

solution could be to use imagery captured when the sun is high in the sky and shadows are 

shorter so they are less likely to fall on adjacent structures. The impact shorter shadows would 

have in the shadow detection process and the sensitivity of height estimation results is also yet to 

be tested. 

Lastly, this study is limited by the fact that the shadow-overlapping method was only 

tested against Western geography—specifically a mixed use area consisting of a college campus 

and surrounding residential-style buildings. However, it stands to reason that results might vary 

significantly across different global regions and across different images. Specifically, areas 

where buildings are densely packed in next to each other might have obscured shadow regions—

reducing the effectiveness of any shadow-based height estimation methodology. With tall 

buildings, an aggregation strategy has been proposed above, however, in the case of densely 

packed low rise buildings such as the favela communities of Brazil, there may not be any viable 
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workarounds as there may not be any gaps between buildings where shadows could fall onto the 

ground and footprint delineation of individual structures might be challenging. 

 

Limitations Involving the Python Tools and Overall Process 

Currently, this process requires building footprints to be already available, however, 

implementing an automated (AI/ML) process for extracting clean building footprints from 

imagery is another important aspect of producing an entirely automated 3D building model 

extraction process. 

Furthermore, as stated earlier in this paper, it should be recognized that the subjective 

visual interpretation of eight shadow detection outputs was a weak point in this study, as well as 

the reliance on pixel-based classification methods. While the results from the pixel-based 

methods used in this study were likely good enough for the MSU study image, the flexibility and 

robustness of a well-trained object-based classifier makes one almost certainly more appropriate 

for use in the overall shadow-overlapping process when considering the diversity of images that 

would be needed to create global building height data. 

Another significant limitation of this study was that candidate height selection in the 

Python tool started at 20 feet and maxed out at 70 feet for the sake of improving runtime during 

the testing phase of experimentation. This brought down the total number of buildings analyzed 

down from 495 to 236, which is a number likely not statistically significant enough to support or 

reject this paper’s hypothesis that the shadow-overlapping method can produce similar results to 

LiDAR-based methods. To that point, instead of using an arbitrary value of 70 feet, increasing 

the maximum candidate height to around 100 feet (or greater) would be suggested for future 
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testing, as the aerial ladders on fire trucks commonly have a maximum length of 100 feet and 

many cities limit building height based on that criteria. 

Also, the methodology of creating artificial shadows in scikit-image by first finding the 

border pixels of the footprint and then, secondly, drawing lines off of each border pixel given the 

desired vector (angle and distance) is likely inefficient and leading to the substantial runtimes 

observed in this paper’s experimentation. A previous attempt to create artificial shadows 

involving iterating over each pixel in the footprint and shifting them was found to be even more 

computationally complex and the process was quickly abandoned. Since both OpenCV and 

scikit-image do not have more efficient built-in functions to complete a task similar to the 

artificial shadow creation step using rasters, perhaps a better solution would be to process 

artificial shadows and perform Jaccard index calcuations using vectors. Python scripts using 

ESRI ArcGIS software have been published [50] [51] to simulate shadows for vector building 

footprint polygons with good success, however, the goal of this study was to only use free or 

open-source software. With that being said, it is entirely possible that a similar tool can be 

written using an open-source Python library designed to handle vector spatial data such as 

GDAL or Shapely. 

With a faster process in place to draw artificial shadows, testing on more images and 

spanning more diverse geographies can more easily occur. Additionally, while this study used 

exhaustive search to find candidate heights as was done by [13], optimization algorithms have 

been reported to improve runtimes as well by [14] and [15] and can be implemented as a next 

step. 

Lastly, while this study leaves many questions unanswered, the work has considerable 

merit in terms of the Python toolset developed which facilitates further fine tuning and 
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development of the algorithms used within. The toolset was written in a “plug and play” manner 

whereby users can easily switch between different shadow detection algorithms and play with 

different parameters. A significant portion of the workload in this study was implementing the 

shadow-overlapping building height estimation tool in Python and making edits to the shadow 

detection scripts to ensure cross compatability and updating them to the latest version of Python. 

With a toolset now available, future work can be done much more quickly with the tool 

processing time being the only major time cost. A final positive outcome of this research is that 

the batch shadow detection tool can be used for a variety of other remote sensing problems and is 

not limited in application to just building height estimation. 

 

Conclusion 

Currently, it does not appear that the shadow-based method tested in this research is 

reliable enough to produce height estimations comparable to LiDAR-derived methods. 

Unfortunately, this is expected to be the case in the target regions of this research—developing 

nations—where densely packed, low-rise buildings obstructed by tree canopies are likely to be 

found and poor view of shadows/footprint delineation could complicate the shadow-overlapping 

process. Lastly, the results from the shadow-overlapping algorithm discussed in this paper should 

not be considered to be suitable for downstream calculations (e.g., estimating number of floors of 

a building/building capacity, line of sight analysis, or flood damage modeling). However, for a 

simple/generalized 3D cartographic representation of an area that is not a dense urban landscape, 

it appears that this low-cost method could produce adequate results. Examples of these 

visualizations can be found in Appendix B. 
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APPENDICES 

 

Appendix A: Results of the Eight Shadow Detection Algorithms 

 

 
 
Shadow detection result from V. Arévalo, J. González, and G. Ambrosio [29]. 
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Shadow detection result from K. Deb and A. H. Suny [31]. 
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Shadow detection result from V. L. S. Freitas, B. M. F. Reis, and A. M. G. Tommaselli [33]. 
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Shadow detection result from H. Ma, Q. Qin, and X. Shen [35]. 
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Shadow detection result from S. Murali and V. K. Govindan [36]. 
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Shadow detection result from G. F. Silva, G. B. Carneiro, R. Doth, L. A. Amaral, and D. F. G. 
Azevedo [38]. 
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Shadow detection result from K. K. Singh, K. Pal, and M. J. Nigam [40]. This algorithm did not 
produce a suitable result for the MSU study image but did work successfully for other smaller 
images in testing, such as with the example seen above to the right. 
  

Smaller test image 
that worked 
successfully 

Successful shadow 
detection in smaller test 
image (512 x 512 pixels) 
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Shadow detection result from V. J. D. Tsai [42]. 
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Appendix B: 3D Visualizations of the Final Outputs 

 

 
 
Rudimentary 3D model of the MSU study area created by vertically extruding footprints. 
Renderings have been included using ground truth heights (top) and with estimated heights 
(bottom) for all 495 buildings using V. J. D. Tsai [42]. 
 

Height Estimation Error (in feet) 
(Estimated Height – True Height) 
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Rudimentary 3D model of the MSU study area created by vertically extruding footprints. 
Renderings have been included using ground truth heights (top) and with estimated heights 
(bottom) for the subset of 236 buildings using V. J. D. Tsai [42] whose heights were between 20 
and 70 feet and metrics were computed for. 
 

Height Estimation Error (in feet) 
(Estimated Height – True Height) 
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