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ABSTRACT 

The interatomic potentials designed for binary/high entropy diborides and ultra-high temperature 

composites (UHTC) have been developed through the implementation of deep neural network 

(DNN) algorithms. These algorithms employed two different approaches and corresponding 

codes; 1) strictly local & invariant scalar-based descriptors as implemented in the DEEPMD 

code and 2) equivariant tensor-based descriptors as included in the ALLEGRO code. The 

samples for training and validation sets of the forces, energy, and virial data were obtained from 

the ab-initio molecular dynamics (AIMD) simulations and Density Functional Theory (DFT) 

calculations, including the simulation data from the ultra-high temperature region (> 2000K). 

The study then compared the accuracy of the Deep Learning potentials to predict not only the 

ground-state properties, such as the elastic constants and the phonon dispersion curves but also 

the ultra-high temperature properties, including the lattice parameters and melting behaviors. 
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INTRODUCTION 

 

In recent years, materials development has been heavily loaded with simulation 

processes. An innovative approach to speed up the discovery of materials. This method is also an 

effective and efficient way to understand the behavior of materials in extreme environments. For 

example, materials that can withstand high-temperature applications will benefit from the 

modeling approach since testing the material with the actual application would require a lot of 

resources. Candidates for this application are transition metal diborides, for example, zirconium 

diboride, hafnium diboride, and titanium diboride. Each of the materials has promising 

properties. Currently, those ultra-high temperature composites (UHTC) are widely used in 

spacecraft or reentry vehicles that need to maintain stability at extreme Temperatures. This 

material's distinct properties, such as high thermal conductivity, high resistance to thermal shock, 

and high melting temperature above 3000 K [1-2], give this material a great candidate to develop 

material that can withstand elevated temperatures. 

Due to their oxidation and thermal shock resistance, the properties are also fundamental 

to making ultra-high-temperature ceramics. Each binary has its advantage; for instance, 

zirconium diboride, this material being identified as the material with the lowest density among 

other diborides [1-4]. The other diboride pair, such as hafnium diboride also being investigated 

to be one other ultra-high temperature ceramic. 

Understanding that each component will have its strength, nowadays, scientists have 

taken a new step in the development of UHTC by adding a dopant to increase its properties. 

However, with an excellent alloying process recently, scientists are now taking an even further 

step, combining up to five elements of diboride and creating a high entropy material. The 
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breakthrough technology in alloying process increases the materials' properties, hoping that the 

material will absorb the strength of each binary diboride.  

 

High Entropy Diboride 

Traditionally, the materials are developed by one or two bulk components with the 

additive (dopant) for the other elements to enhance their properties, such as the corrosion 

properties, the mechanical, melting point, electrical or magnetic properties. Several studies still 

heavily researched this to find the best properties the materials can achieve. In recent years, the 

trend has been to expand compositional space into more complex material. This development is 

called high entropy materials, which are vastly growing in the metallurgy aspect.  

High Entropy Alloys (HEAs) are also known as complex, concentrated alloys, or 

multiracial alloys, commonly consisting of a minimum of 5 elements with a composition 

between 5 -35% of each component. [5 – 6]. The configurational entropy can reach a significant 

amount once five or more principal members are present in the system; it comes to a maximum 

value of ΔSmix = RlnN per mole for an N-component system, where R is the gas constant for an 

equimolar composition.  

Miracle and Senkov (2017) gave an extensive review of the main principles and 

predominant properties of high entropy materials [5], with the emphasis being given to four 

distinct aspects:  

"The high entropy effect” – increases the configurational entropy of five elements or 

more. The effect can help stabilize the solid solution over intermetallic or other complex phases. 

This argument has been used to suggest increased stability at higher temperatures as entropy 

linearly increases with temperature. 
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The second aspect is lattice distortion, in which a significant mismatch between the 

atomic size of the principal component would increase the distortion more than the conventional 

alloys.  

The subsequent effect is called the sluggish diffusion effect, which means the diffusion 

process on the high entropy alloys will be slow due to the formation of nanocrystals and 

amorphous phases upon cooling. 

The last effect is called the cocktail effect, a qualitative statement that the material 

produced will be more beneficial than a member of their constituent since they will benefit from 

their constituent and have distinct properties quite different from their component. 

The first high entropy alloys were introduced by Cantor (2004) with the production of 

Fe20Cr20Mn20Ni20Co20-based alloys that are stabilized into a single FCC phase.[7] 

 

Structure of Transition Metal - Diboride 

Transition metal diborides, such as hafnium diboride, tantalum diboride, titanium 

diboride, zirconium diboride, niobium diboride, and molybdenum diboride, have a crystal 

structure that categorized as hexagonal structure, with the space group p6/mmm. The crystal 

structure has two layers, one is Boron, and the other is transition metal. Both layers are 

alternating. From the top view, a 6-atom ring of Boron will surround the transition metal atom. 

The boron-boron atom bond is covalent, while each transition metal bond has a metallic bond.  

Transition metal diborides are a class of ceramic materials that have a unique crystal 

structure. They consist of two boron atoms and a transition metal atom that form a hexagonal 

lattice. Each transition metal atom is surrounded by two boron atoms above and below the plane 
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of the lattice. The crystal structure of transition metal diborides can be described as a layered 

structure with a space group of P6/mmm, as shown in Figure 1. 

 

 

Figure 1. Schematic Structure of High Entropy Diborides, with five elements Transition Metals. 

The Hexagonal p6/mmm symmetry 

 

The lattice parameters of transition metal diborides vary depending on the specific 

transition metal used. The experimental lattice parameter studied in this research can be seen in 

Table 1 as follows. 
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Table 1. Lattice Parameter of Studied HEA Diboride, HfZrTaNbTiB2, and HfZrTaMoTiB2 [8] 

Composition 

Single 

Phase 

a(Å) c(Å) Relative 

Density Average XRD Average XRD 

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2) B2  Yes  3.11 3.101 3.346 3.361 92.40% 

(Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2) B2  Yes  3.093 3.08 3.307 3.316 92.40% 

 

 The electronic structure of transition metal diborides is characterized by the partially 

filled d-orbitals of the transition metal atoms, which give rise to metallic conductivity. The 

coordination number of the transition metal atoms is typically 6, forming an octahedral 

coordination geometry. The crystal structure makes them attractive for various applications, 

including high-temperature superconductors, hard coatings, and catalysts. 

Within the boron planes, the boron atoms form a network of triangles, with the metal 

atoms occupying the interstitial sites. The boron atoms are covalently bonded to each other and 

the metal atoms, while the metal atoms are bonded via metallic bonding. The bonding between 

the metal and boron atoms is a combination of covalent and ionic bonding, with the exact nature 

of the bonding depending on the specific transition metal and the crystallographic direction. The 

coordination number of the metal atoms is typically 12, with six boron atoms and six metal 

atoms in the first coordination shell. 

Overall, the crystal structure of transition metal diborides is highly ordered and simple, 

despite the high degree of anisotropy in its properties. This simplicity, combined with its 

excellent mechanical, thermal, and electrical properties, has led to extensive research into its 

potential applications in various fields, including aerospace, energy, and electronics. 
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Density Functional Theory  

Density Functional Theory (DFT) is a method based on computational aiming to study 

the electronic structure of the materials [9]. It is based on the concept that the total energy of a 

system can be expressed as a function of electron density rather than the wave function of the 

electrons, which is computationally expensive to calculate. 

On DFT calculations, the electronic structure is defined as a function of the electron's 

position. Then, the system's total energy is based on calculating the electron density by solving 

the Kohn-Sham equation. The energy total has components from kinetic energy, the electrostatic 

interaction from each electron, and exchange-correlation energy. In 1964, Hohenberg and Kohn 

finally formulated the density functional theory that turned complicated many-electron 

wavefunctions containing 3N (N being the number of electrons for three spatial variables) into 

three spatial variables [10]. The reduction of these many-body problems came only a year later 

by Kohn and Sham by simplifying multi-electron problem into an issue of non-interacting 

electrons in an effective potential which includes interaction between electrons, the exchange, 

and correlation interactions [11] 

𝐻 = 𝑇𝑁 + 𝑇𝑒 + 𝑉𝑁−𝑁 + 𝑉𝑒−𝑒 + 𝑉𝑁−𝑒 (1) 

Herein, 𝑇𝑁 represents the kinetic energy for the nuclei, 𝑇𝑒 𝑡he kinetic energy for 

electrons, 𝑉𝑁−𝑁  the potential energy for nucleus-nucleus interaction, 𝑉𝑒−𝑒 the potential energy 

for electron-electron interaction, 𝑉𝑁−𝑒 It is defined as the potential energy for nucleus-electron 

interaction.
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Molecular Dynamics Simulation 

Molecular dynamics is a method to simulate solids. The technique can handle particle 

numbers in many orders of magnitude compared to the ab initio approaches. In Figure 2, the 

comparison of each approach on different time scales and sizes of the model can be seen. 

Physical science can predict system behavior with the caveat that there is a detail that sufficient. 

For example, classical mechanics provides a method that predicts future actions if all related 

mechanisms are understood well. The object's mass, position, and velocity, Laplace, determines 

the whole trajectory by referring to the Newtonian equation of motion.  

 

 

Figure 2. Schematic diagram showing different simulations in time and length scale 
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The machine learning interatomic potential and the utility of this molecular dynamics 

simulation are connected with generating an accurate potential energy surface (PES) 

representation. This landscape underpins reactivity, phase stability, and other observable 

properties. As discussed, the PES is typically obtained using Quantum mechanic calculation with 

Density functional theory. Still, there is a reasonably high cost associated with the level of theory 

used to approximate solutions to the Schrödinger equation. The “holy grail” for developing 

interatomic potential with machine learning based on computational scientists can create the 

interatomic potential with a reasonably simple dataset with exceptionally accurate PESs. 

With a system that has more than 100 atoms, the computational requirement of Quantum 

Mechanics (QM) methods is significantly increased. As compensation, the computational scientist 

will degrade the dimension with lower-dimensional representations, reducing the PES details for 

efficiency. Also,  this limits our ability to comprehend higher-order systems, particularly as they 

pertain to their fundamental properties, which inevitably demand a large-scale model to simulate.  

Fortunately, this accuracy–efficiency trade-off, classically thought of as pervasive and 

unavoidable, is beginning to be overcome by the rapid expansion of machine-learned interatomic 

potentials (MLIP). As shown in Figure 3, it can be seen the comparison between the emerging 

method of MLIP enables us to extend our modeling capability to a more significant number of 

atoms due to its inherent linear scaling. 
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Figure 3. Comparison of DFT calculation vs. DeePMD, Machine learning based Interatomic 

Potentials, towards the number of molecules can be simulated and CPU resources required 

 

Neural Network Interatomic Potential of Molecular Dynamics 

Machine-learning interatomic potentials (MLIP) have become a potent tool to simulate the 

behavior and properties of materials. Interatomic potentials are developed to predict the potential 

energy (together with its derivatives), which comes from the interaction of a variable-size atomic 

system as a function of atomic positions and types. The MLIP offers a different approach compared 

to the previous empirical potential, which can improve the result of Prediction. The model hopes 

to model various chemical compositions, bonding types, or levels of the approximated quantum-

mechanical theory. Currently, the research goal will focus on developing the potential to achieve 

better accuracy, efficiency, and transferability.  

MLIP was started by Behler and Parrinello (2006). This approach can approximate the 

potential energy on the surface, which then looks like a promising technique for using neural 
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networks as a functional form of interatomic potentials, going beyond the small molecular systems 

by employing the locality of interaction [12-13].  

The structure of potentials commonly contains two parts: descriptors and three bodies. The 

descriptors are usually used for describing the local atomic environments that will capture the 

physical interaction, and then the regressor, which is a function that maps the descriptors to the 

energy interaction. MLIP primarily uses the neural network as the first and most widely used 

regressor [13–19]. The other popular interatomic potential class is message-passing potentials, 

based on neural networks. But then capture also beyond the local descriptors of atomic 

environments [20-22]. MLIPs can be constructed using numerous techniques, such as neural 

networks, reinforcement learning, or kernel methods. 

The fact that empirical MLIPs are approximate models of fundamental physics and 

chemistry and must thus be adapted to replicate reference data from experiments or quantum 

calculations is a crucial restriction of these models. Recent advances in ML approaches have 

made it possible to create MLIP with accuracy that rivals that of quantum computations with 

evaluation times that scale linearly. This results in significant computational savings over 

quantum mechanics because they naturally can acquire detailed, non-linear functional mappings 

that connect the inputs to the intended outcomes. Yet, machine learning interatomic potentials 

(MLIPs) still struggle to achieve a wide range of transferability. Even though, currently, some 

significant advancements in the complexity of the behavior may be captured with ML-based 

models. Figure 4 shows five aspects of defining an excellent interatomic potential. Known as the 

Holy Grail of MLIP, it covers efficiency, transferability, and accuracy. 
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Figure 4. Five Aspects of Effective Machine Learning Interatomic Potential 

 

DeePMD Simulation Package 

DeePMD is a code that can be used to develop machine learning interatomic potential 

[22]. The code interfaces with TensorFlow, which allows training, testing, and evaluation of the 

potential energy surface and the forces and interfaces with molecular dynamics simulation, such 

as LAMMPS [23].  

The basic concept of the DeePMD-kit is implementing the atomic environment 

descriptors and chain rules for force/viral computations in C++ and providing an interface to 

incorporate them as new operators in standard TensorFlow. The theory of DeePMD is to 

consider a system with N atoms, and then each atom will denote by each coordinate. (R1…RN). 

Then the potential energy of the system € is a function of 3N variables E = E (R1…RN). In the 

DeePMD method, the total energy is the sum of each representation of energy per atom. 

𝐸 =  ∑ 𝐸𝑖𝑖                                       (2) 
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With i being the index of the atom. The i-th atom's position and the neighbor's energy 

determine the atom's position. 

𝐸𝑖 = 𝐸𝑠(𝑖)(𝑅𝑖, {𝑅𝑗 | 𝑗 ∈ 𝑁𝑅𝑐 (𝑖)})       (3) 

The most straightforward idea to model the atomic energy Es(i) through DNN is to train a 

neural network with the input simply being the positions of the i-th atom Ri and its neighbors 

{Rj | j ∈ NRc(i)}. NRc (i) will represent the index set of the neighbors of atom i within the cutoff 

radius Rc, i.e., Rij = |Rij | = |Ri – Rj | ≤ Rc. s(i) is the chemical species of atom i. 

Figure 5 simplifies the schematic of how the coordinate materials will translate to energy. 

As discussed, the total energy is calculated from each energy per atom, translated from each 

atom's environment. 

 

 

Figure 5. Schematic for neural networks inside the DeePMD and the flow to represent local 

energy 
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The workflow of the DeePMD is defined into four three steps of the process. The data 

generator comes from the calculation of DFT, Ab-initio Molecular Dynamics (AIMD), or 

Quantum Monte Carlo (QMC). This study uses DFT calculation with the Vienna ab-initio 

Simulation Package (VASP) software as our data generator. Then the process continues to the 

DeePMD train or test, which processes all the data into the architecture on the DeePMD kit. It 

consists of raw data translated to descriptors before coming to the DeePMD network and will 

give the result about the Prediction of energy, forces, and virial. And the next step is the interface 

of the DeePMD model to molecular dynamics simulation. In this study, I use LAMMPS as the 

molecular dynamics simulation to simulate the potential to be the desired materials as the target 

of this study. The schematic plot of this DeePMD process can be found in Figure 6. 

 

 

Figure 6. DeePMD architecture and workflow 
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The first process is data preparation. The data from the DFT calculation will comprise a 

list of systems containing many frames. The frames are used as the training data. And the rest 

will be used for testing. The records show the tensor shape found on each frame and the atom's 

position in that system. The DeePMD kit defines data protocol which is called RAW format. 

This file will serve as training/test data. The box tensor, coordinate atom, and label (to define the 

materials) will be stored in a separate text file box. raw, coord.raw, force.raw, virial.raw, and 

type.raw (atom types). The whole file, except for type. raw will convert to binary files and set as 

the training/test data for DeePMD.  

 

Allegro Simulation Package 

 

Allegro is equivariant deep learning with an approach to retain the high accuracy of the 

recently proposed class of equivariant message passing neural network (MPNN) while 

combining to strict locality so it will have the ability to have accuracy in an extensive system 

[24].  

Message-passing neural networks (MPNN) based on learned atomistic representations 

operate on an atomistic graph constructed by representing atoms as nodes and defining edges 

between atoms within a fixed cutoff distance of one another. In Allegro, the code is developed 

with a strict locality, as the conventional MPNN has some scalability and memory consumption 

issues. 

The equivariant neural networks are coming to preserve them from the physics of atomic 

systems under the action of several geometric symmetries—rotation, inversion, and translation—

which together comprise the Euclidean group E (3) (rotation alone is SO (3), and rotation and 

inversion together include O (3)). Scalar quantities, such as the potential energy, are invariant to 

these symmetry group operations. In contrast, vector quantities such as the atomic forces are 
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equivariant to them and transform correspondingly when the atomic geometry is changed [24-

25]. 

Each atom’s hidden, latent space is a feature vector consisting solely of invariant scalars 

for the invariant, atom-centered message-passing interatomic potentials. The existing machine 

Learning interatomic potential, such as DeePMD, guarantees the invariance of their predicted 

energies by acting only on invariant inputs. On the equivariant neural networks, the developed 

network can work directly on non-invariant geometric inputs, like displacement vectors, in a 

symmetry-respecting way, achieved by using only E (3)-equivariant operations, yielding a model 

whose internal features are equivariant to the 3D Euclidean group. 

Unlike DeePMD, which uses the invariant and the energy decomposition represented per 

atom energy, Allegro's decomposition process uses pairwise energy decomposition. Blue 

represents the scalar, while red represents the tensor function of energy decomposition. As seen 

in Figure 7, the decomposition process of the energy is defined as hij, which comes from the 

interaction of atom i and atom j. 

 

Figure 7. Method of Decomposition for Energy from Allegro, with Pairwise energy 
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The Allegro approach begins by breaking down a system's potential energy into per-atom 

energies Ei per the earlier methods.  

𝐸𝑠𝑦𝑠𝑡𝑒𝑚 =  ∑ 𝜎𝑍𝑖𝐸𝑖 +  𝜇𝑍𝑖

𝑁

𝑖

 

The 𝜎𝑍𝑖and 𝜇𝑍𝑖 are potentially trainable per-species scale and shift settings. Then it 

further divides the per-atom energy into a sum of pairwise energies, indexed by the core atom 

and one of its neighbors, in contrast to most existing MLIPs. 

𝐸𝑖 =  ∑ 𝜎𝑍𝑖,𝑍𝑗𝐸𝑖𝑗

𝑗∈ℵ(𝑖)

 

Now, j covers the neighbors of atom i, and once again, a per-species-pair scaling factor of 

Zi,Zj is optional. The atom i and its neighbor j serve as the index for these pairwise energies, but 

other nearby atoms k in the local environment N(i) may also play a role. In Allegro, Eij and Eji 

only depend on the surroundings of the corresponding central atoms because they each 

contribute differently to the site energies Ei and Ej, respectively. Eij and Eji as a result and on 

purpose. 

The Allegro architecture, depicted in Figure 8, is a Nlayer ≥ 1 layer, arbitrarily deep, 

equivariant neural network. Using two latent spaces—an equivariant latent space, which 

processes tensors of any rank l ≥ 0, and an invariant latent space, which processes scalar (l = 0) 

features—the architecture learns representations linked to ordered pairs of surrounding atoms. At 

every layer, the two latent spaces communicate with one another. A multi-layer perceptron 

(MLP) acting on the scalar characteristics of the last layer is then used to compute the final pair 

energy Eij. 

 

(5) 

(4) 
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Figure 8. Allegro model architecture and details of a tensor product layer. Blue represents the 

scalar, and red represents the tensor. 

 

Active Learning 

The new development of neural network development is called active learning. The Active 

learning technique is coming because the most time-consuming part of the development is defining 

and establishing the best training set based on trial-and-error iterations. The training set can be 

verified while all the steps are already followed and potential already developed, which will need 

a complete cycle of the method. The dataset needs to be manually assessed for the performance of 

the trained potential and tries to understand how to construct configurations for the new training 

set to avoid the undesirable behavior of the potential on the next iteration. The method called 

Active Learning is a technique that is based on machine learning that will do the learning in the 
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middle of the process of MLIP development. This technique allows the refinement iterations to a 

computer, which will automate updating the dataset based on the learning process[26]. 

The concept of active learning, which can be retroactively characterized as a learning-and-

forgetting scheme, originates from the idea of active learning during atomistic simulations. The 

first learning-and-remembering technique was put forth in, but the sampling was uniform; a 

predetermined amount of time steps was skipped before including a configuration in the training 

set, which would otherwise continue to grow indefinitely. Under this plan, the training set would 

comprise some of the final arrangements along the track of molecular dynamics. 

 

 

 

 

 

  



19 

COMPUTATIONAL METHODS 

 

Density Functional Theory Calculation (Vienna Ab-initio Simulation Package) 

 

The primary data generated in this research was based on density functional theory and 

ab-initio calculation. Before the calculation process, some input must be ready to run the 

analysis. The first input for this calculation is POSCAR, which is the crystal structure of the 

materials that need to be calculated. In this research, the volume of the POSCAR was varied into 

five different scales for each composition. In this research, the standardized structure of the 

POSCAR that I used for the training and validation sets contains 24 atoms, eight transition 

metals, and 16 Boron atoms. A schematic visualization generated by OVITO[27] to represent a 

typical POSCAR structure can be found in Figure 9. 

 

 

Figure 9. Visualization of POSCAR file of input from DFT Calculation 
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The other additional input files necessary for the DFT calculations are the INCAR and 

KPOINTS files. For all calculations, the standardized KPOINTS was set to 3x3x3, 

corresponding to the k-point grid used. The INCAR file is the main input file for the VASP code. 

For the ab-initio MD simulations, the files are also used to specify the simulation temperature. 

The PREC is set as Accurate with cutoff energy (ENCUT) set at 450eV. The details of the 

INCAR file can be seen in Figure 10. Further explanation regarding the rest of the input 

parameters defined within the INCAR file can be found at 

https://www.vasp.at/wiki/index.php/Input. 

 

 

Figure 10. Standardized INCAR file of DFT calculation with the variable of temperature in 

3500K and ALGO Normal 

 



21 

The composition prepared for the calculation is based on six elements of transition metal 

diborides: Hf, Ta, Zr, Mo, Ti, B (HEA_MB2_Mo) and Hf, Ta, Zr, Nb, Ti, B (HEA_MB2_Nb). 

The calculation of each diboride compound started with a “corner composition,” defined as the 

diboride compounds enriched by the transition metals. For example, in the case of Hf rich 

(HEA_HfB2) with eight transition metal atoms, four are Hf, and the other transition metals will 

have only one atom each. And each corner’s rich composition varied the temperature into three 

different high temperatures, 3500K, 5000K, and 6000K. With all corners calculated, there are 

five corner compositions with three temperatures & 5 different volumes. In each case, the atomic 

position was randomized & vary based on the number of transition metals and the volume 

sampled. The volumes include the standard volume and 5% and 10% expansion/reduction. 

Figure 11 is the schematic idea of how to pick the area for DFT calculation. This strategy is 

called as High Entropy Alloy Strategy.  

 

 

Figure 11. Schematic of HEA Strategy 
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The other calculation was also done with mixed composition with five different varied 

compositions, varied randomly for each five transition metals, with sampling with the same 

temperature and volume as specified in corner-rich above. The other data was produced in 

relatively low temperatures, 1000K, with five different volumes. 

 

Deep Neural Networks (DeePMD & Allegro Package) 

After finishing all calculations and variations that have been done in VASP, the next step 

is to develop the interatomic potential with the deep learning process. As discussed in the 

previous chapter, the potential developed used two codes based on deep Learning, DeePMD, and 

Allegro. Both codes have different preprocessing steps for the vasprun to be able to read as an 

input for the neural network. 

For the DeePMD, after the calculation result (vasprun.xml) is collected from all various 

compositions, volumes, and temperatures. Then, all vasprun files were shuffled and preprocessed 

with dpdata based on the Python script. After all mixed data from all vasprun, the result will 

generate the Deep Data folder, which comes from the shuffled vasprun result and become input 

for the DeePMD. The next step is to prepare the script for information for DeePMD with *. json 

script. The script defines all the learning rates, cutoff radius, and stop batch before the fitting 

process starts. Based on the previous study, some training variable was followed, such as a cutoff 

radius of 5.8 angstroms, which determined able to capture neighbor interactions of up to the third 

nearest neighbor from each training [28]. This study uses the dptrain command featured in the 

DeePMD code. The process of this training is defined as 3500000 steps. Please see Appendix A 

to see further details of the training input for DeePMD,  
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In Allegro, the first step is to preprocess the data obtained from vasprun by combining all 

the vasprun into one data file on *. extxyz file. The combining process is developed using Python 

script, resulting in all the vasprun.xml files converting to extxyz. In the following procedure, 

prepare the input file specifying the learning rate, number of layers, cutoff radius, and other 

variables. Then, the process will start with running the command nequip-train. The training 

process is limited to 500 epochs. Please refer to Appendix B of this thesis for further information 

about more detailed training parameters. 

 

Molecular Dynamics Simulation (LAMMPS) 

In the last process of the methodology, this study implemented the developed potential 

(both DeePMD and Allegro) to molecular dynamics simulation, which in this study generated the 

data using LAMMPS. After training, the process will deploy the model and generate the 

interatomic potential files. 

The DeePMD function to do this process is called the “dp-freeze” process. which deploys 

the training result into interatomic potential files (*.pb). Then we plot some properties by 

simulating the elastic and lattice constant, which was already determined per the previous 

study[29]. In Allegro, the function to develop the potentials after the training process is called 

“nequip-deploy,” which will generate the interatomic potential files for Allegro (*.pth). Allegro 

and DeePMD have an interface with LAMMPS, specified in the pair style and pair coeff section 

on LAMMPS input.   
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RESULTS AND DISCUSSION 

 

DeePMD Interatomic Potentials for High Entropy Diborides 

In this study, the total trajectories involved in the analysis were 46,710 for the 

HEA_MB2_Mo and 36637 for HEA_MB2_Nb. Regarding the data quality, all data were 

calculated with KPOINTS 3x3x3. In the case of HEA_MB2_Mo, I employed a mixed resolution 

calculation with ALGO “Normal” and ALGO “Fast” as defined in 

https://www.vasp.at/wiki/index.php/Input, which boosts the number of trajectories that are used 

in each material. With low-resolution calculation, the number of trajectories will increase as the 

calculation is for a given supercomputer computing hour.  

To understand the model's accuracy, DeePMD has a feature called dptest which evaluates 

the model based on the energy, force, and virial. In this study, I utilize this function to evaluate 

the model of DeePMD. Then compare the data obtained from DFT calculation versus the 

prediction energy, forces, and virial from DeePMD results. The plot of the graph below, of dptest 

result from HEA_MB2_Mo, shows the error level of each variable. The result of dptest shows 

the average Energy RMSE/Natoms is 1.197928e-02 eV, then the force average error is 

2.872448e-01 eV/A, and the Virial RMSE/Natoms is 4.962046e-02 eV. The error value shows 

that the build model of HEA_MB2_Mo has a relatively accurate model in terms of evaluation 

from energy, forces and virial. Then, the result also indicates that the force had comparatively 

high error compared to the energy and stress. Figure 12 shows the trend between the DFT 

calculation result of Energy, Forces (x, y, z), and virial (xx, yy, zz) compared with the Prediction 

from DeePMD.  
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Figure 12. Evaluation of DeePMD, comparison between (a) DFT Calculation vs. DeePMD 

Prediction of energy, (b) force, (c) virial, Model for HEA_MB2_Mo with DPTEST function 

 

The HEA_MB2_Mo results were compared with those from HEA_MB2_Nb as shown in 

Figure 13, which use more accurate calculation (high-resolution data); the DeePMD result of the 

dptest function generated the error value of this model. This study got the error value for the 

Energy RMSE/Natoms as 9.677641e-03 eV, while the Force RMSE and Virial RMSE/Natoms 

are 2.866047e-01 eV/A and 4.660441e-02 eV, respectively, with a smaller number of systems, 

263 calculations. 

(a) (b) 

(c) 
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(a) 

  

 

  

 

Figure 13. Evaluation of DeePMD, comparison between (a) DFT Calculation vs. DeePMD 

Prediction of energy, (b) force, (c) virial, Model for HEA_MB2_Nb with DPTEST function 

 

Simulation of DeePMD Interatomic Potentials on Molecular Dynamics  

One of the aims of this study is to generate potential models that can withstand elevated 

temperatures as per real applications. Then, to understand the stability of this model, I try to plot 

the response of the lattice constant toward temperature. The built model is then interfaced with 

the molecular dynamic simulation, LAMMPS. In this simulation, this study utilizes NPT 

(a) (b) 

(c) 
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ensembles by increasing the temperature from 300K to 2000 K, then plotting the lattice constant 

vs. temperature, which can be seen in Figure 14. 

 

 
(a) 

 

 
(b) 

Figure 14. Evaluation of Lattice constant on temperature for (a) High Entropy Diboride 

Molybdenum (b) High Entropy Diboride Niobium, in the range 300 K to 2000 K 
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The lattice constant graph shows that the lattice parameter for the HEA_MB2_Mo and 

HEA_MB2_Nb slightly increase while expanding along the temperature. In 300K, the lattice 

constant a is for HEA_MB2_Mo and HEA_MB2_Nb are 3.13 & 3.14 angstrom. The constant 

lattice c for the HEA_MB2_Mo and HEA_MB2_Nb are 3.34 & 3.38 angstrom. On the 

temperature 2000K, the lattice a of HEA_MB2_Mo and HEA_MB2_Nb expand to 3.16 and 3.18 

angstrom, while on the lattice constant c expansion to 3.40 and 3.44 angstrom for 

HEA_MB2_Mo and HEA_MB2_Nb, respectively.  

Both results were consistent with the result obtained from the experiment by Gild (2016)  

[8], which found in room temperature, the lattice constant of HEA_MB2_Mo is 3.097 and 3.307 

for lattice constant a and c, respectively. And for the lattice constant a and c for HEA_MB2_Nb 

is 3.11 and 3.346 angstrom. 

As discussed in the introduction chapter, one target for developing interatomic potential 

is to capture more significant areas of the composition. And in this case, it becomes beneficial 

for the development of interatomic potential for high entropy diboride to capture not only as five 

element system but also back to a binary system. In this case, this study tried the transferability 

of our potential by applying this to each binary system.  

The study tried each binary's elastic constant, HfB2, ZrB2, TaB2, NbB2, MoB2, and 

TiB2, which method based on the script has been published [30] and compared the result 

obtained based on other methods, such as molecular dynamics and first principles [31-34] and 

based on materials database [35-38] which determined on a different method. This study then ran 

each LAMMPS to simulate the binary's elastic constant (Cij) and compared it with the data from 

the previous study. For the HfB2, this study found that the bulk modulus for our model got 290 

GPa, while the previous study found that HfB2 has a bulk modulus of 248 GPa [31], while the 
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other study found a bulk modulus of 272 GPa [35]. The other result for HfB2 found that the C11, 

C33, and C44 can model the elastic constant with the result on 604 GPa, 443, and 237 GPa, 

respectively. The summary of the Cij value can be found in Table 2 as follows. On the ZrB2, this 

potential model found the bulk modulus 269 GPa, slightly higher than the reference, 240 GPa 

[36]. It also found that C11 matched well with the reference [32] with only 1 GPa off. The C12 

on this model is relatively higher than the reference; while the reference found 61 GPa, the 

model found the value of C12 is 107 GPa. The TaB2 model also found that the Poisson ratio of 

0.20 matched well with the previous work's 0.21 [33], and the bulk modulus of TiB2 also can 

capture a close value to the previous work, with 256 Gpa [34] while this study found 243 GPa. 

 

Table 2. Evaluation of Elastic constant of Binary System for HEA_MB2_Mo 

TM-Diboride 
C11 

(GPa) 

C12 

(GPa) 

C13 

(GPa) 

C33 

(GPa) 

C44 

(GPa) 

Poisson 

ratio 

Bulk Modulus 

(GPa) 

HfB2 604 113 177 443 237 0.21 290 

Reference [31] 608 73 135 468 272 0.14 248 

Reference [35] 594 65 125 448 262 0.13 272  

          

ZrB2 566 107 157 447 240 0.21 269 

Reference [32] 567 56 120 436 247 0.13 240 

 Reference [36] 553 61 123 428 246 0.14 238 

          

TaB2 532 98 146 403 212 0.20 248 

Reference [33] 598 145 214 443 208 0.21 308 

 Reference [37] 593 148 196 461 209 0.23 303 

          

TiB2 556 92 106 421 246 0.17 243 

Reference [34] 699 57 95 467 265 0.10 256 

 Reference [38] 642 75 106 443 258 0.13 256 

 

On the HEA_MB2_Nb Potential, which the result can be shown in Table 3, the elastic 

constant value on each binary system is improving compared to the previous model. While 
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modeling the elastic constant of HfB2, This research found the result on Bulk Modulus on 234 

GPa, while based on previous work found quite match well with 248 [31]. The Poisson ratio on 

0.18 and C11, C33, and C44 is 525, 383, and 218 GPa. In the ZrB2 model, I found the potential 

to match well with the reference [36]. The Bulk modulus is only shifted lower by 6 GPa with the 

reference 232 GPa [36]. The other value also shifted only below 1%, with the C11. C33 and C44 

are 531, 396, and 234 GPa. For the TiB2, the C11 value shifted relatively high compared to the 

reference, which found 642 GPa[38], while the other value was very close. 

 

Table 3. Evaluation of Elastic constant of Binary System for HEA_MB2_Nb 

TM-Diboride 
C11 

(GPa) 

C12 

(GPa) 

C13 

(GPa) 

C33 

(GPa) 

C44 

(GPa) 

Poisson 

ratio 

Bulk Modulus 

(GPa) 

HfB2 525 94 112 383 218 0.18 234 

Reference [31] 608 73 135 468 272 0.14 248 

Reference [35] 594 65 125 448 262 0.13 272  

          

ZrB2 531 88 112 396 234 0.17 232 

Reference [32] 567 56 120 436 247 0.13 240 

 Reference [36] 553 61 123 428 246 0.14 238 

          

TaB2 543 89 114 365 214 0.18 231 

Reference [33] 598 145 214 443 208 0.21 308 

 Reference [37] 593 148 196 461 209 0.23 303 

          

TiB2 627 118 183 495 275 0.21 301 

Reference [34] 699 57 95 467 265 0.10 256 

 Reference [38] 642 75 106 443 258 0.13 256 

 

Another significant result obtained in this research is to simulate the melting process of 

the high entropy diborides-Niobium and high entropy diborides-molybdenum used to simulate 

the ZrB2 melting process. With a similar approach, this study utilizes the developed interatomic 

potentials to simulate the melting temperature of the high entropy materials. 
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The study also simulates the interatomic potential developed from DeePMD and utilizes 

the LAMMPS with the NPT function. The simulation increased its temperature from 300K and 

then increased it to 6000K. From the result of the LAMMPS, it obtained the data of temperature 

vs. volume. The graph below shows that at a specific temperature, the expansion of the volume 

increased significantly, which can be seen as the signal of the phase change (phase transition). In 

the HEA_MB2_Mo potential, it can be seen that the temperature where the volume changes 

notable change is ~3300K. The result of the melting process plot can be found in Figure 15.  

 

 

Figure 15. The plot from the LAMMPS result of the Melting Process for the HEA_MB2_Mo 

interatomic potentials, with plot Temperature vs. Volume on NPT function 

 

Based on the study obtained from the LAMMPS result for the HEA_MB2_Nb 

interatomic potentials, I found that the transition temperature on this result is slightly shifted to 

~3500K with the same set of our LAMMPS model.  



32 

This research's sample drives the shifting of HEA_MB2_Nb potential. In the 

HEA_MB2_Mo, the potential is developed using the MoB2, which has a melting point of 

~2500K. In the HEA_MB2_Nb, I developed the Potential with NbB2, which has a melting point 

of ~3000K. The result of this LAMMPS simulation can be seen in the plot in Figure 16. 

 

 

Figure 16. The plot from the LAMMPS result of the Melting Process for the HEA_MB2_Nb 

interatomic potentials, with plot Temperature vs. Volume on the NPT function 

 

This study tries to optimize specifically for ZrB2. The other properties that I tried to 

model with both potentials are the vibration characteristics which will reflect in the phonon 

dispersion curve on ZrB2. The Phonon dispersion curve that I obtained comes from a code called 

Alamode [39]. The mass of the ZrB2 is in between other constituents on our high entropy model, 

which should give an idea about the average trend of the vibrational characteristics from the 

developed potentials on each element. Each potential found can give an expected trend on the 

vibrational characteristics for ZrB2 then the result is compared to the curve obtained from DFT 
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and other published references [40]. The result of the Phonon Dispersion curves can be found in 

Figure 17. 

 

 
(a)                                                                       (b) 

Figure 17. Phonon Dispersion of ZrB2 from DeePMD Potential Result vs. DFT calculation result 

from (a) HEA_MB2_Mo Potential (b) HEA_MB2_Nb Potential 

 

Interestingly, in the optical mode, the HEA_MB2_Nb can give better results than the 

HEA_MB2_Mo, which this study assumes is because the increment in our data accuracy helps 

refine the data. On the other hand, in the acoustic mode, both potentials can match well, with 

comparatively the HEA_MB2_Mo having a better curve. In this aspect, the increment in our data 

trajectory on this potential helps us better resolve the transition metal vibration. 

 

Allegro Interatomic Potential for High Entropy Diborides  

 

In this section, the evaluation of the Potential development from Allegro code was 

discussed by comparing the result obtained from the DFT calculation and the Prediction obtained 

from Allegro. To obtain the energy and force predicted by Allegro, I use the nequip-evaluate 

function. Then this study gets all the predicted energy and force. Figure 18 shows the plot result 

from DFT vs. Allegro results for HEA_MB2_Mo. 
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(a) 

 
(b) 

 

Figure 18. Evaluation of DeePMD, comparison between (a) DFT Calculation vs. Allegro 

Prediction of energy and force for Model for HEA_MB2_Mo (b) DFT Calculation vs. Allegro 

Prediction of energy and force for Model for HEA_MB2_Nb, with nequip-evaluate function 

 

This study also tries to optimize the variable of our training by running the same dataset 

with a different learning rate (LR), number of the neural network layer (L), and cutoff radius. 

The analysis is then obtained from the Weight and Biases portal, which interfaces with Allegro 

to analyze the data obtained from the training process. The first result tried to see the effect of 

those variables on the energy and force validation of our training. 

In this study also compares training with allegro code based on different hyperparameters 

on HEA_MB2_Mo data. The energy plot and force plot shown that the energy and force 
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validation reach 0.003 eV/A and 013 eV/A, respectively, at a learning rate of 0.001 with the 

cutoff radius of 6 Angstrom and the number of layers at eight layers. The result can be found on 

Figure 19. 

 

 
 

Figure 19: Evaluation of Hyperparameter to energy and force validation for HEA_MB2_Mo 

Allegro Interatomic Potential by varying the Learning Rate (LR), number of Layer (L), and 

cutoff radius (RAD) 

 

In Figure 20, the hyperparameter effect on energy and force validation for 

HEA_MB2_Nb, this study found that the learning rate of 0.0005 with the number of layers (L) 

set to 8 and cutoff radius 6 Angstrom, can give the best model, with the energy and force 

validation reach 0.0020 eV/A and 0.7 eV/A, respectively. This result then analyzes further with 

the parallel plot of each hyperparameter to see the effect of the training error on both potentials.   
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Figure 20. Evaluation of Hyperparameter to energy and force validation for HEA_MB2_Nb 

Allegro Interatomic Potential by varying the Learning Rate (LR), number of Layer (L), and 

cutoff radius (RAD) 

 

The following result shows the plot of three variables significantly affects the training 

error. In Figure 21 (a), which shows the hyperparameter effect towards HEA_MB2_Mo, this 

study found that the medium learning rate at 0.001 will give the lowest error in the low-quality 

data(HEA_MB2_Mo). On the other hand, the maximum cutoff radius at 6.0 Angstrom and the 

highest layer number at eight layers give the lowest error of the trained model. On the other 

hand, the result of HEA_MB2_Nb, as depicted in Figure 21 (b), shows the cutoff radius and total 

layer. At the same time, the lowest learning rate at 0.0005 will significantly impact the error 

from our training result. In contrast, with the other hyperparameter variables, cutoff radius, and 

the number of layers, the result on high-quality data shows the same effect as the low-quality 

data. 
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(a) 

 
(b) 

 

Figure 21. Evaluation of Hyperparameter effect for Training Error on development of Allegro 

Interatomic Potential (a) HEA_MB2_Mo (b) HEA_MB2_Nb, by varying the Learning Rate 

(LR), number of Layer (L) and cutoff radius (RAD). 

 

The next segment also gives us better diagnostics of the data employed for this study and 

their accuracy. Allegro can assess the quality of our Prediction for each element. Such a detailed 

evaluation provides a better guide on refining our next training by focusing, for example, on 

those that exhibit less desirable accuracy. 

The following result compares the accuracy of the validation sets of the data from 

HEA_MB2_Mo versus HEA_MB2_Nb. It found that Niobium and Molybdenum atoms 

contribute to the highest validation error compared to the rest of the constituents of MB2. The 
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exciting result below can relate to the phonon dispersion plot on the DeePMD result. As noted, 

the HEA_MB2_Mo has an issue with the higher frequency, which the Boron drives. The 

validation results above showed that the data validation on boron elements tends to plateau on 

the HEA_MB2_Mo, which indicates that the error is in line with the result with the phonon 

result on DeePMD. From this, this study can identify that the data sampling on Boron for our 

HEA_MB2_Mo has lower accuracy. The detailed result of each element plot can be found in 

Figure 22. 

 

 
(a)  

 
 (b) 

 

Figure 22. Step vs. Force Validation on (a) HEA_MB2_Mo (b) HEA_MB2_Nb, taken per 

constituent on materials.  
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Simulation of Allegro Interatomic Potentials on Molecular Dynamics  

 

This study focuses on how the response of interatomic potential can show the stability of 

the materials at elevated temperatures, which tested at two elevated temperatures is done to 

understand the response of the materials at elevated temperatures. In this section, the testing on 

interatomic potentials which develop through Allegro was being tested on the molecular 

dynamics simulation, LAMMPS. The radial function distribution analysis at 1000K and 2000K, 

as shown in Figure 23, proved that at each temperature, the potential ability to remain stable in 

the crystal form.  

 

 
(a) 

 
(b) 

Figure 23. Radial Distribution Function Analysis on (a) 1000K (b) 2000K temperatures for 

HEA_MB2_Nb 
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The stability of the crystal structure at 2000K, as shown in Figure 24, verifies that this 

material's MD (Molecular Dynamics) simulation using the Allegro-generated Potential can 

withstand the elevated temperature. This result is consistent with the experimental findings of 

UCSD’s group, which synthesized the same composition through an ultra-high temperature 

sintering process up to 2000oC [8].  

 

 
 

Figure 24. Stability test with NVT function of Allegro Potential on 2000K 

 

Comparison Study of DeePMD and Allegro Interatomic Potential  

 

The last section of the result compares what this study got on DeePMD interatomic 

potential with the work result on Allegro Potential. As noted, both codes have different 

approaches to decomposing energy formalism and how the DeePMD focuses on invariant 

descriptors based on scalar. In contrast, Allegro combines both the scalar and the equivariant 

descriptors. As discussed in the introduction of about five interatomic potential aspects, This 

study intends to compare these two codes based on the accuracy level and the computational 

efficiency. 
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The following results compare the accuracy between the two potentials by evaluating the 

RMSE of the model for HEA_MB2_Nb, for the energy and forces, respectively, as a function of 

the steps. The original DeePMD data were calculated with steps. In contrast, the Allegro data 

were calculated with epoch. I convert the data into steps to give the same scale for the two 

methods.  

Figure 25 shows that Allegro could give a higher accuracy than DeePMD. In the case of 

energy comparison, this study found that both methods show a similar level of accuracy. It is 

worth noting, however, that beyond the 20000 steps, Allegro results in better accuracy.  

 

 
 

Figure 25. Computational Steps vs. Accuracy of Developed Interatomic Potentials from 

DeePMD vs. Allegro Energy RMSE 

 

In the force comparison, the Allegro achieved much higher accuracy throughout the steps. 

The use of tensors, in this case, seems to help significantly in reducing the error level. It can 

capture the fundamental physics behind the force balance calculation result, consistent with the 

DFT calculations. Overall, both approaches provide a satisfactory level of accuracy. Allegro 
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excels with more steps, especially concerning its energy predictions. The result, which is shown 

in Figure 26, may be caused by the added complexity (the inclusion of the tensorial products) of 

the structure of the Deep Learning model within Allegro. 

 

 
Figure 26. Computational Steps vs. Accuracy of Developed Interatomic Potentials from 

DeePMD vs. Allegro Force RMSE 
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CONCLUSION 

 

The High Entropy Diborides, interatomic potential with machine learning, and neural 

networks were developed using the High Entropy Alloy Strategy. Optimizing the corner 

composition calculation and sampling in five elements component system is a very efficient and 

effective way to sample the high entropy alloy interatomic potential development through two 

machine learning interatomic potential codes, DeePMD and Allegro.  

The strength of the DeePMD, with the excellent accuracy of energy, forces, and viral 

Prediction, is also obtained in this study. The interface of interatomic potential to molecular 

dynamics simulation to model and compare with the result from the experiment is also being 

demonstrated with compare with the stability on elevated temperature. The transferability of the 

potential is also demonstrated in this study. 

The Allegro result also showed a promising result, demonstrating incredibly low error 

and good accuracy on the developed model. The strength of Allegro by implementing the scalar 

and tensor combination on the code can optimize the force error compared to the result obtained 

from DeePMD results. 

In the future, combining this result and implementing Active learning is an up-and-

coming technique to refine the obtained result. The active learning will be able to identify the 

bad data, which later can automatically produce the refined calculated data, which promises not 

only to increase the accuracy but also good for reducing the number of samples and 

computational efficiency. 
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APPENDICES 

 

Appendix A: Input File of DeePMD 

{    "_comment": " model parameters", 

    "model": { 

        "type_map":     ["Hf", "Zr", "Ta", "Mo", "Ti", "B"], 

        "descriptor" :{ 

            "type":             "se_a", 

            "sel":              [72, 72, 72, 72, 72, 92], 

            "rcut_smth":        5.80, 

            "rcut":             6.00, 

            "neuron":           [25, 50, 100], 

            "resnet_dt":        false, 

            "axis_neuron":      16, 

            "seed":             1, 

            "_comment":         " that's all" 

        }, 

        "fitting_net" : { 

            "neuron":           [240, 240, 240], 

            "resnet_dt":        true, 

            "seed":             1, 

            "_comment":         " that's all" 

        }, 

        "_comment":     " that's all" 

    }, 

 

    "learning_rate" :{ 

        "type":         "exp", 

        "decay_steps":  5000, 

        "start_lr":     0.001, 

        "stop_lr":      3.51e-8, 

        "_comment":     "that's all" 

    }, 

 

    "loss" :{ 

        "start_pref_e": 0.02, 

        "limit_pref_e": 1, 

        "start_pref_f": 1000, 

        "limit_pref_f": 1, 

        "start_pref_v": 100, 

        "limit_pref_v": 1, 

        "_comment":     " that's all" 



49 

    }, 

 

    "_comment": " training controls", 

    "training" : { 

        "systems":      ["../data/DeepData/ "], 

        "set_prefix":   "set", 

        "stop_batch":   3500000, 

        "batch_size":   1, 

 

        "seed":         1, 

 

        "_comment": " display and restart", 

        "_comment": " frequencies counted in batch", 

        "disp_file":    "lcurve.out", 

        "disp_freq":    100, 

        "numb_test":    10, 

        "save_freq":    1000, 

        "save_ckpt":    "model.ckpt", 

        "disp_training":true, 

        "time_training":true, 

        "profiling":    false, 

        "Profiling_file":"timeline.json", 

        "_comment":     "that's all" 

    }, 

 

    "_comment":         "that's all" 
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Appendix B: Input File of Allegro 

 

# general 

root: results/HEA_MB2_Mo 

run_name: MB2_HEA_Mo_MODEL_HIRES_1 

seed: 123456 

dataset_seed: 123456 

append: true 

default_dtype: float32 

 

# -- network -- 

model_builders: 

 - Allegro.model.Allegro 

 # the typical model builders from `nequip` can still be used: 

 - PerSpeciesRescale 

 - ForceOutput 

 - RescaleEnergyEtc 

 

# cutoffs 

r_max: 6.0 

avg_num_neighbors: auto 

 

# radial basis 

BesselBasis_trainable: true 
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PolynomialCutoff_p: 6  # sets it BOTH for the RadialBasisProjection AND the Allegro_Module 

 

# symmetry 

l_max: 2 

parity: o3_full  # allowed: o3_full, o3_restricted, so3 

 

# Allegro layers: 

num_layers: 6 

env_embed_multiplicity: 64 

embed_initial_edge: true 

 

two_body_latent_mlp_latent_dimensions: [64, 128, 256, 512] 

two_body_latent_mlp_nonlinearity: silu 

two_body_latent_mlp_initialization: uniform 

 

latent_mlp_latent_dimensions: [512] 

latent_mlp_nonlinearity: silu 

latent_mlp_initialization: uniform 

latent_resnet: true 

 

env_embed_mlp_latent_dimensions: [] 

env_embed_mlp_nonlinearity: null 

env_embed_mlp_initialization: uniform 
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# - end allegro layers - 

 

# Final MLP to go from Allegro latent space to edge energies: 

edge_eng_mlp_latent_dimensions: [128] 

edge_eng_mlp_nonlinearity: null 

edge_eng_mlp_initialization: uniform 

 

# -- data -- 

dataset: ase 

dataset_file_name: HEA_MB2_Mo_MODEL_HIRES_1.extxyz                 # path to data set file 

ase_args: 

  format: extxyz 

 

# A mapping of chemical species to type indexes is necessary if the dataset is provided with 

atomic numbers instead of type indexes. 

chemical_symbols: 

    - Hf 

    - Zr 

    - Ta 

    - Mo 

    - Ti 

    - B 
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# logging 

wandb: True 

wandb_project: MB2_HEA_Mo 

verbose: info 

log_batch_freq: 10 

 

# training 

n_train: 1000 

n_val: 200 

NEQUIP_NUM_TASKS: 64 

batch_size: 15 

max_epochs: 1000000 

learning_rate: 0.001 

train_val_split: random 

shuffle: true 

metrics_key: validation_loss 

 

# use an exponential moving average of the weights 

use_ema: true 

ema_decay: 0.99 

ema_use_num_updates: true 
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# loss function 

loss_coeffs: 

  forces: 1. 

  total_energy: 

    - 1. 

    - PerAtomMSELoss 

 

# optimizer 

optimizer_name: Adam 

optimizer_params: 

  amsgrad: false 

  betas: !!python/tuple 

  - 0.9 

  - 0.999 

  eps: 1.0e-08 

  weight_decay: 0. 

 

metrics_components: 

  - - forces                               # key 

    - mae                                  # "rmse" or "mae" 

  - - forces 

    - rmse 

  - - forces 
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    - mae 

    - PerSpecies: True              # if true, per species contribution is counted separately 

      report_per_component: False          # if true, statistics on each component (i.e., fx, fy, fz) will 

be counted separately 

    - forces 

    - rmse 

    - PerSpecies: True 

      report_per_component: False 

  - - total_energy 

    - mae 

  - - total_energy 

    - mae 

    - PerAtom: True 

 

# lr scheduler, drop lr if there is no improvement for 50 epochs 

lr_scheduler_name: ReduceLROnPlateau 

lr_scheduler_patience: 50 

lr_scheduler_factor: 0.5 

 

# early stopping if max 7 days is reached or lr drops below 1e-5 or no improvement on val loss 

for 100 epochs 

early_stopping_upper_bounds: 

  cumulative_wall: 604800. 
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early_stopping_lower_bounds: 

  LR: 1.0e-5 

 

early_stopping_patiences: 

  validation_loss: 100 
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