
BearWorks BearWorks 

MSU Graduate Theses 

Spring 2023 

Understanding and Advancing College Students' Mathematical Understanding and Advancing College Students' Mathematical 

Reasoning Using Collaborative Argumentation Reasoning Using Collaborative Argumentation 

Rachel Kay Heili 
Missouri State University, Rachel433@live.missouristate.edu 

As with any intellectual project, the content and views expressed in this thesis may be 

considered objectionable by some readers. However, this student-scholar’s work has been 

judged to have academic value by the student’s thesis committee members trained in the 

discipline. The content and views expressed in this thesis are those of the student-scholar and 

are not endorsed by Missouri State University, its Graduate College, or its employees. 

Follow this and additional works at: https://bearworks.missouristate.edu/theses 

 Part of the Algebra Commons, Curriculum and Instruction Commons, Educational Methods 

Commons, Higher Education Commons, Science and Mathematics Education Commons, and 

the Secondary Education Commons 

Recommended Citation Recommended Citation 
Heili, Rachel Kay, "Understanding and Advancing College Students' Mathematical Reasoning Using 
Collaborative Argumentation" (2023). MSU Graduate Theses. 3841. 
https://bearworks.missouristate.edu/theses/3841 

This article or document was made available through BearWorks, the institutional repository of Missouri State 
University. The work contained in it may be protected by copyright and require permission of the copyright holder 
for reuse or redistribution. 
For more information, please contact bearworks@missouristate.edu. 

https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/theses
https://bearworks.missouristate.edu/theses?utm_source=bearworks.missouristate.edu%2Ftheses%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=bearworks.missouristate.edu%2Ftheses%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/786?utm_source=bearworks.missouristate.edu%2Ftheses%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1227?utm_source=bearworks.missouristate.edu%2Ftheses%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1227?utm_source=bearworks.missouristate.edu%2Ftheses%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=bearworks.missouristate.edu%2Ftheses%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/800?utm_source=bearworks.missouristate.edu%2Ftheses%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1382?utm_source=bearworks.missouristate.edu%2Ftheses%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bearworks.missouristate.edu/theses/3841?utm_source=bearworks.missouristate.edu%2Ftheses%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu


 

UNDERSTANDING AND ADVANCING COLLEGE STUDENTS’ MATHEMATICAL 

REASONING USING COLLABORATIVE ARGUMENTATION 

 

 

 

 

 

A Master’s Thesis 

Presented to 

The Graduate College of 

Missouri State University 

 

TEMPLATE 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science in Education, Secondary Education 

 

 

 

By 

Rachel Kay Heili 

May 2023  



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2023 by Rachel Kay Heili  



iii 

UNDERSTANDING AND ADVANCING COLLEGE STUDENTS’ MATHEMATICAL 

REASONING USING COLLABORATIVE ARGUMENTATION 

Mathematics 

Missouri State University, May 2023 

Master of Science in Education 

Rachel Kay Heili 

 

ABSTRACT 

This study explored students’ mathematical reasoning skills and offered supports to advance 

them through a collaborative argumentation framework in a college intermediate algebra class. 

The goals of this study were to make observations about student reasoning, identify specific 

actions to address those observations, and document student growth in reasoning as a result of 

those actions. An iterative analysis, mixed method study was conducted in which the researcher 

engaged students in responding to questions that required conceptual understandings using a 

collaborative argumentation framework as a tool to identify and code components of their 

responses—claim, evidence, and reasoning. After coding and analyzing students’ responses and 

evaluating themes from the researcher’s observations, the results increased the researcher’s 

understandings of students’ reasoning and indicated an advancement in conceptual 

understandings, pattern exploration strategies, and written mathematical arguments. By 

following the instructional guidelines and workshops of the collaborative argumentation 

framework, the frequency of reasoning and quality of evidence in students’ responses increased. 

Additionally, observations indicated advancements from procedural to conceptual 

understandings, recognizing and systematically exploring patterns, and communicating 

arguments in a cohesive manner. The researcher also identified challenges of getting students to 

use generalized reasoning strategies and creating enough class time for effective and thorough 

feedback and reflection. 
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CHAPTER I: INTRODUCTION 

 

Students often ask math teachers, “when will I use this in the future?” As teachers, we 

must ponder: Are we teaching math in such a way that students can use it in the future? That is, 

are the understandings developed in today’s math classrooms deep enough and of a nature that 

will allow students to call on those understandings and adapt them in future math courses and in 

life outside the classroom? If a student learns now that “keep change flip” is how we divide 

fractions, how else can they use that knowledge later? Unless they are given a non-contextual 

problem that explicitly asks them to divide fractions, that’s not very helpful. Now consider all 

the possibilities for later connections created if students understand that dividing by some 

number is the same as multiplying by its reciprocal. This idea can be called on in a multitude of 

situations, being especially helpful in the manipulation of equations and functions throughout 

algebra.  

The notion of developing mathematical understandings that can be transferred to other 

situations (mathematical or otherwise) later is often addressed through discussion of and research 

regarding conceptual understanding in mathematics (Nachowitz, 2019; Russell et al., 2020; 

DeCaro, 2016; Smith et al., 2018; National Council for Teachers of Mathematics [NCTM], 

2014). In fact, “build procedural fluency from conceptual understanding” is one of the eight 

effective teaching practices outlined by NCTM (2014, p. 42). The existing research explores the 

development of conceptual understanding through the lens of written response, progression of 

problem complexity, class discussion, and one-on-one coaching (Nachowitz, 2019; Russell et al., 

2020; DeCaro, 2016; Smith et al., 2018; NCTM, 2014). These studies also involve requiring 
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students to communicate their understanding either verbally or in writing. A component of such 

communication is mathematical reasoning. 

Creating opportunities for students to reason mathematically has also been recommended 

by NCTM (2014) as an effective teaching practice. When conceptual understandings and 

reasoning collide in the math classroom, students are given the tools to problem solve, make 

claims, and support those claims. In my experiences as a math teacher, making claims and 

supporting them does not come naturally to all students. In answering math questions, 

specifically those that ask for explanation, students can be stumped by the math, but they can 

also be stumped by the task of clearly communicating their thinking or understanding why their 

own reasoning led them to the correct answer. For example, in a high school geometry class, 

almost all my students could accurately tell me that two triangles were similar due to side-angle-

side similarity. However, when asked to create a flow chart explaining this statement, few could 

do so, and many rejected the task as “tedious and dumb.” I realized that up to that point, my 

students had not been taught how to organize their thoughts in a mathematical context. So often 

“showing your work” looks like a series of disjoint procedural executions with little labeling or 

description of why this work supports the final answer or claim. I needed a framework to coach 

my students to be able to effectively communicate their mathematical thinking. This idea led to 

an exploration of argumentation in the classroom.  

 

Rationale for the Study 

According to the National Council of Teachers in Mathematics (NCTM), using 

mathematical argumentation in the classroom is an evidence-based practice essential to 

developing conceptual understanding and mathematical proficiency (Rumsey & Langrall, 2016). 
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Research has suggested that critical thinking skills benefit from argumentation practices, and 

such processes lead students to create multiple connections between mathematical concepts 

(Wagner et al., 2014). Furthermore, there is a positive correlation between argumentation and 

knowledge construction (Hershkowitz et al., 2001). Several researchers have introduced teaching 

frameworks for the use of argumentation in the classroom (Toulmin, 2003; Ervin-Kassab, 

Roddick, Vickery, & Tapper, 2020; Zwiers, 2019).  

However, from my experience using Toulmin’s (2003) Claim-Evidence-Warrant model 

in a previous study, students had a difficult time internalizing the framework due to confusing 

language. Ervin-Kassab, et al.’s (2020) Claim-Rule-Connection framework had success, but the 

article gave few recommendations for implementation. Zwier’s (2019) Collaborative 

Argumentation model was developed as a generalized framework for all subjects, not just 

mathematics. My plan was to combine these frameworks and develop teaching materials and 

guidelines with respect to argumentation. Then, I wanted to implement the framework and 

guidelines to improve student reasoning. 

 

Purpose of the Study 

 The purpose of this iterative analysis study was to explore how algebra students’ 

reasoning changes over the course of a semester when using a collaborative argumentation 

framework with specific instructional guidelines motivated by student need. The collaborative 

argumentation model was defined as a combination of Toulmin’s model (2003), Claim-Rule-

Connection (Ervin-Kasaab, et al., 2020), and Zwier’s Collaborative Argumentation steps (2019). 

Students were asked to argue open-ended questions—those in which students must draw on 

multiple algebra concepts and may take multiple pathways to draw a conclusion for which they 
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must provide justification. Key indicators of student responses observed included correct claims, 

use of mathematical rules or theorems, and a statement connecting or comparing concepts or 

ideas.  

 

Research Questions 

The existing research on argumentation models in mathematics classrooms and previous 

teaching experiences led to the research questions: 

 

1. What does using a collaborative argumentation framework in an algebra classroom reveal 

about student mathematical reasoning?  

2. In what ways does the use of such a framework advance student mathematical reasoning? 

 

The goals of answering this question were to  

 

a. use suggested framework to make observations about student reasoning 

b. identify specific actions to address those observations 

c. document the progression of growth in student reasoning over the course of the 

study 

 

At the end of each four-week period of instruction (iteration), the researcher analyzed 

data and observations through the lens of the following three questions: (1) What are the data 

telling me? (2) What is it I want to know? (3) What is the dialectical relationship between what 

the data are telling me and what I want to know? Through this reflection, the researcher 

identified a new focus for each iteration. The first iteration focus was developing need for and 

adopting the collaborative argumentation framework. The second iteration focus was breaking 

old reasoning patterns and giving students confidence. The third iteration focus was reflecting, 

revising, and questioning against the collaborative argumentation framework. The fourth 
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iteration focus was to make observations about student internalization of the framework and 

reasoning advancements. 

 

Research Design 

 This study followed the iterative analysis for qualitative research framework as outlined 

in the International Journal of Qualitative Methods. This is a method in which the researcher 

recognizes that many patterns and themes emerge as data is collected and new, deeper 

understandings of the material develop. Thus, iterative analysis outlines a reflexive process. 

Reflexivity in qualitative research allows for the researcher to reflect on their own experiences in 

relation to the data collection and observations to be able to separate themselves from the 

research and make necessary changes (Srivastava & Hopwood, 2009). Iterative analysis starts 

with a research question, then answers the following three questions outlined by Srivastava and 

Hopwood (2009) with each iteration: 

 

Q1: What are the data telling me? (Explicitly engaging with theoretical, subjective, 

ontological, epistemological, and field understandings) 

Q2: What is it I want to know? (According to research objectives, questions, and 

theoretical points of interest) 

Q3: What is the dialectical relationship between what the data are telling me and what I 

want to know? (Refining the focus and linking back to research questions) (p. 78) 

 

  

The researcher chose iterative analysis for this study because of the nature of research 

involving education practices. Since teaching mathematics is already such a reflexive process—

that is, the teacher reflects on lessons, gauges student understandings, and adjusts accordingly—

it was fitting to choose a reflexive research process. Collecting data in iterations also gave the 

researcher flexibility to adjust the argumentative framework supports throughout the semester 
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and focus the research questions and observations with respect to such adjustments. By 

systematically documenting this development, the research is better suited for use by other 

educators. 

 All iterations were done using two intermediate algebra classes of 30 students each, 

taught by the researcher at a midwestern 4-year university during one fall semester. The 

undergraduate course catalog describes the course as recommended for students who have not 

yet mastered the algebra concepts necessary for success in college algebra. Students in this class 

had most likely been introduced to the topics of the class in high school algebra courses but 

based on their ACT scores and/or university mathematics placement test results, they did not 

qualify for enrollment in a college algebra course at the university.  

 In the first iteration, students participated in two weeks of instruction during which they 

worked in groups to solve problems and explain concepts. There was at least one question 

requiring a conceptual understanding (CEQ) each class period and on each assignment. This was 

followed by the unit 1 test of CEQs. During the next two weeks of instruction, students 

participated in Collaborative Argumentation Workshop I, during which the collaborative 

argumentation framework was introduced. Then, students took the unit 2 test. Responses on unit 

2 assignments and tests were coded based on the collaborative argumentation framework 

developed for this study and compared to the nature and quality of the responses from unit 1. 

During this iteration, the research focus was to introduce and create a need for the collaborative 

argumentation framework. The researcher reflected on observations about student engagement, 

specific teaching moves, areas of student growth, and areas that needed improvement. The 

researcher then used these observations to develop a new Collaborative Argumentation 

Workshop, amend instructional guidelines, and identify the research focus, marking the 
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beginning of the second iteration. This pattern continued for a total of four iterations, each with a 

new research focus and updated workshops and guidelines. These are described in detail in 

Chapter III. 

 

Significance of the Study 

 This study holds significance for secondary and post-secondary mathematics teachers. 

Due to the unique nature of the course used to collect data—that is, post-secondary students 

being retaught secondary topics—this study offers insight into gaps in high school knowledge 

and misunderstandings. It aimed to identify missing pieces in student reasoning and 

argumentation skills as well as suggest a teaching framework to help improve such responses.  

 The researcher identified very specific instructional guidelines and collaborative 

argumentation framework supports, made observations about their effectiveness, and offered 

suggestions for improvement. This provides an outline for other teachers to use when wanting to 

implement collaborative argumentation in a mathematics classroom. 

 

Assumptions 

In conducting this study, it was assumed that: 

 

1. The researcher employed the curriculum through argumentation models consistently.  

2. Students participating in the study maintained some level of engagement during class and 

with course materials. 
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Limitations 

1. All student participants in this study were college students enrolled at the same 

midwestern university, limiting the generalizability of these results.  

2. Data collection spanned only one semester, so observations about knowledge retention 

were not as long as high school courses may require.  

3. Students’ previous knowledge or experiences with mathematics could not be controlled 

by the researcher and may have affected their response to the teaching materials and 

engagement in the course. 

 

Definition of Terms  

The following terms are defined as such for the entirety of this paper.  

 

1. Collaborative Argumentation: derived from Zwiers (2019) and Conner (2013), students 

working together to build up multiple arguments, evaluate evidence, and draw their own 

conclusions  

2. Reasoning: according to Lannin, Ellis, and Elliott (2011), “an evolving process of 

conjecturing, generalizing, investigating why, and developing and evaluating arguments” 

(p. 12) 

3. Conceptual Understandings: based on the ideas of Hiebert (1986), “knowledge that is rich 

in relationships” (p. 3) and that focuses on why mathematics works and how it works 

together 

4. Connections: according to NCTM (2000), the ability to “recognize and use connections 

among mathematical ideas; understand how mathematical ideas interconnect and build on 

one another to produce a coherent whole; recognize and apply mathematics outside of 

mathematics.” (p. 64) 

5. Scaffolding: according to Wood, Bruner, and Ross (1976), “an interactive system of 

exchange in which the tutor operates with an implicit theory of the learner’s acts in order 

to recruit his attention, reduces degrees of freedom in the task to manageable limits, 

maintains ‘direction’ in the problem solving, marks critical features, controls frustration 

and demonstrates solutions when the learner can recognize them.” (p. 99), Bakker, Smit, 

and Wegerif (2015) note that it involves adapting teaching based on student actions 

6. Shared Understanding: term used by the researcher to reflect when ideas or expectations 

are developed as a class, e.g., students know when a question asks them to “justify their 

answer,” the teacher is expecting a written argument with all the pieces outlined in a 

framework developed in class through exemplars, card sorts, practice, and discussion 

7. Questions requiring conceptual explanations (CEQs): term used by the researcher to 

reference those that require students to draw on multiple conceptual understandings or 

have more than one procedural pathway, often embedded in real-world context with 

varying correct reasoning approaches 
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Summary  

Intentionally implementing argumentation in the mathematics classroom under specific 

framework and considerations has support from the National Council for Teachers of 

Mathematics (Rumsey & Langrall, 2016), but existing research offers a variety of models to 

choose from and says little about argumentation as a class structure rather than a way to 

approach certain tasks. This study explored how algebra students’ reasoning changes over the 

course of a semester when using a collaborative argumentation framework and specific 

instructional guidelines motivated by student need and existing research. 

The researcher conducted a mixed method, iterative analysis to answer the research 

questions “What does using a collaborative argumentation framework in an algebra classroom 

reveal about student mathematical reasoning?” and “In what ways does the use of such a 

framework advance student mathematical reasoning?” The study spanned four iterations, 

characterized by four weeks of instruction, a Collaborative Argumentation Workshop, and two 

tests. During instruction, students worked in groups to answer questions that required conceptual 

understandings (CEQs) and evaluate their responses against the framework defining claim, 

evidence, and reasoning as the components of a solid mathematical argument. The focus of the 

first iteration was to develop a need for and introduce the collaborative argumentation 

framework. The focus of the second iteration was advancing students’ prior reasoning strategies. 

The focus of the third iteration was reflection and revision against the framework. The focus of 

the fourth iteration was internalization of the framework. To address each iteration focus, the 

researcher coded sample student responses to track the frequency and quality of argument 

components, kept a reflective journal with observations about student engagement and 
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interactions, and updated a running list of instructional guidelines to follow based on student 

need and existing research.  

This study holds significance for secondary and post-secondary mathematics teachers that 

wish to understand and advance the reasoning of their own students. It provides a detailed 

account of implementing instructional guidelines and a collaborative argumentation framework 

in an algebra classroom. The researcher identifies specific areas of student growth and areas in 

which students need more support.  
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CHAPTER II: LITERATURE REVIEW 

 

Introduction  

 In a push for reform in mathematics education during the 1990s, it was noted that when a 

class is structured in an “I do, we do, you do” format, the students come to believe that there is 

one way to solve each problem and there is no need to reflect on the reasonableness of their work 

(Schoenfeld, 1992; Stein et al., 1996). Beginning in 2010, organizations such as the National 

Council for Teachers of Mathematics (NCTM) and the Common Core State Standards Initiative 

(CCSSI) have published recommendations and goals to engage in practices that encourage more 

creativity and reflection among students. One such recommendation is to use mathematical 

argumentation to develop conceptual understanding and mathematical proficiency (Rumsey & 

Langrall, 2016; CCSSI, 2010).  

According to the CCSSI (2010), mathematical argumentation involves making 

conjectures or conclusions and justifying them with definitions, logical reasoning, 

counterexamples, or previously established results. The researcher broke down mathematical 

argumentation as a lens for teaching into three questions: What prompts a mathematical 

argument? What does a solid mathematical argument look like in the classroom? What support 

do students need to participate in mathematical argumentation? The existing literature addressing 

these questions points to four themes: (1) Asking questions that require conceptual explanations 

to create reason for (2) collaborative argumentation, through which students start with current 

understandings and are urged to practice (3) mathematical reasoning by using appropriate (4) 

language and developing shared understandings. 
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Questions that require conceptual explanations prompt a mathematical argument because 

they require students to develop and test ideas (Klavir & Hershkovitz, 2008), and then justify 

those ideas with explanations (Yee, 2002). However, students need support in developing solid 

mathematical arguments (Ervin-Kassab, Roddick, Vickery, & Tapper, 2020). One method of 

support has been described and refined using variations on collaborative argumentation models 

(Ervin-Kassab et al., 2020; Wagner et al., 2014; Zwiers, 2019). Within collaborative 

argumentation, students are required to reason mathematically (Zager, 2016; Conner, 2013; 

Yackel, 2001). However, when students lack such skills, they need support through specific 

language and developing shared understandings (NCTM, 2009; Brendefur & Frykholm, 2000; 

Conner et al., 2014; Weber et al., 2008). 

 

Questions Requiring Conceptual Explanations (CEQs) 

 Across researchers, teachers, and organizations, there is a consensus that purposeful or 

“good” questions are essential in the mathematics classroom, and a common theme among 

definitions of such questions is that they require conceptual understandings (NCTM, 2014; Smith 

et al., 2018; Bingölbali & Bingölbali, 2021; Rahayuningsih et al., 2021; Kwon et al., 2006; 

Aziza, 2021; Fatah et al., 2016; Sholihah et al., 2020; Hancock, 1995). That is, they require 

students to draw on multiple conceptual understandings or have more than one procedural 

pathway, and they are often embedded in real-world context with varying reasoning approaches. 

For example, the task in Figure 1 is a CEQ because it requires students to understand the 

conceptual underpinnings of integers, exponents, and equivalence, and there are many 

approaches they can take to solving as well as varying explanations they can provide.  
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Figure 1. CEQ, modified from (Pelfrey, 2000) 

 

Many argue that CEQs are a way to both develop and assess students’ mathematical 

creativity (Fatah et al., 2016; Kwon et al., 2006; Rahayuningsih et al., 2021), confidence (Fatah 

et al., 2016; Masitoh & Fitriyani, 2018), and critical thinking skills (Smith et al., 2018). 

Additionally, using CEQs regularly in the classroom shows students that while procedures are 

often useful in mathematics, understanding and explanation are equally if not more important 

(Yee, 2002). Thus, CEQs are acting as a motivator for students to engage in mathematical 

thinking and learning by showing them that there is value in the ability to develop and test ideas 

(Klavir & Hershkovitz, 2008) and by revealing gaps in their knowledge. After building and 

implementing an applied mathematics curriculum around five CEQs, Cline (2005) noted that 

“because these open-ended problems lacked the normal cues that tell students how to get started, 

they were very effective at revealing student misconceptions and illuminating weaknesses in 

their understanding.” (p. 274).  

If the purpose of using CEQs in the mathematics classroom is to encourage creativity and 

connections between concepts (Klavir & Hershkovitz, 2008), it is important that such questions 

do not become just an opportunity for students to regurgitate procedures with memorized 

definitions or rules. For example, in a study exploring the nature of mathematical questions in 

relation to mathematical thinking and reasoning, 53% of the CEQs meant to produce meaningful 
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connections led students to only carry out procedures. Researchers noted that the difference 

between question intention and answer production showed a lack of student ability to engage in 

mathematical thinking (Stein et al., 1996). To clarify, the teacher may present students with the 

following CEQ. 

 

A student claims that the expression (2𝑥 + 3)  is equivalent to 4𝑥 + 9. The student’s 

reasoning is, ‘I just applied the distributive property.’ Provide a mathematical argument 

either supporting or refuting the student’s reasoning. 

 

 

The teacher’s intention with the question is to get students to think deeply about the meaning and 

application of the distributive property and how it does not apply to exponentiation over 

addition, but it could be used to expand the original expression (2𝑥 + 3) = (2𝑥 + 3)(2𝑥 +

3) = 4𝑥 + 12𝑥 + 9. However, if most student responses focus on showing that (2𝑥 + 3) ≠

4𝑥 + 9 with a counterexample, then there is a lack of student inclination to engage in the 

mathematical thinking that was asked of them. There may also be a lack of teacher support or 

structures in place to assist students with such thinking. That is, were students given tools to help 

them answer that question in a way that satisfies the teacher’s intent? CEQs can be used to 

encourage students to think critically as well as realize gaps in their conceptual understandings, 

but the success of such a teaching strategy may have some dependence on the level and nature of 

teacher support.  

 

Collaborative Argumentation 

 One way to support students through explanations and problem solving required when 

answering CEQs is through collaborative argumentation (Wagner et al., 2014; Rumsey & 
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Langrall, 2016; Hershkowitz et al., 2001). Collaborative argumentation, as derived from Zwiers 

(2019) and Conner (2013), is students working together to build up multiple arguments, evaluate 

evidence, and draw their own conclusions. If the teacher develops supportive actions and 

responses before implementation, collaborative argumentation can allow students to draw their 

own mathematical conclusions and internalize their understandings (Conner, 2013). However, 

asking students to participate in mathematical argumentation is asking them to provide more than 

their typically produced procedural explanations (Nachowitz, 2019). That is, students are pushed 

past outlining a series of steps as an explanation and are asked to provide a strong mathematical 

argument. Although different authors use different terminology, the commonly mentioned 

attributes of a strong mathematical argument can fit into the categories of claim/answer, evidence 

supporting that claim (such as a computation, diagram, definition, and/or a rule), and a 

connection or reason why the evidence supports the claim (Toulmin, 2003; Ervin-Kassab, et al., 

2020; Zwiers, 2019). For example, in response to the CEQ shown in Figure 2, a group of 

students may present the argument shown in Figure 3. The response has been coded with the 

attributes of a solid mathematical argument. This is an example of a desired response during 

collaborative argumentation because the students have clearly explained their thinking and 

incorporated all three pieces of an argument. The claim is addressed in their direct response to 

the question, their evidence is shown in a description of, and hopefully visible, systematic testing 

of number combinations, and they explain the reasoning behind their approach by making 

connections between place value and multiplication. Following the collaborative argumentation 

model, if another group of students had questions or a countering argument, the two would be 

evaluated side-by-side and the evidence strengthened (Zwiers, 2019).   
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Figure 2. CEQ two 

 

 
Figure 3. Mathematical argument exemplar 

 

 The collaborative portion of collaborative argumentation is supported by the notion that 

discourse among students strengthens their abilities to problem solve, consider 

counterarguments, and synthesize information (Vogel et al., 2016). That is, when students are 

working together to form or critique arguments, they are exposed to multiple perspectives and 

approaches as well as challenged to communicate their own thinking. In a study analyzing the 

interactions between students in an inquiry/argument culture, researchers found that students 

built and checked for consensus and took over the traditional teacher’s role of validating 
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mathematical ideas (Woods et al., 2006). Furthermore, a study regarding science education 

showed that collaborative argumentation helped students develop accurate conceptual 

understandings over time (Li, Li, & Wang, 2021).     

Additionally, using collaborative argumentation routinely in the classroom supports the 

Common Core Math Practice 3: Construct viable arguments and critique the reasoning of others. 

As described on the Common Core (2010) website, 

 

Mathematically proficient students understand and use stated assumptions, definitions, 

and previously established results in constructing arguments. They make conjectures and 

build a logical progression of statements to explore the truth of their conjectures. They 

are able to analyze situations by breaking them into cases and can recognize and use 

counterexamples. They justify their conclusions, communicate them to others, and 

respond to the arguments of others. They reason inductively about data, making plausible 

arguments that take into account the context from which the data arose. Mathematically 

proficient students are also able to compare the effectiveness of two plausible arguments, 

distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in 

an argument—explain what it is. (p. 6) 

 

 

Research has supported these claims by revealing that pushing students to form or discuss 

mathematical arguments in class leads to deeper discussions (Bostiga et al., 2016), and supports 

the completion of instructional and learning goals (Forman et al., 1998). Krummheuer’s (1995) 

argumentation approach combines collaborative argumentation and Toulmin’s (2003) model and 

has been used to show that emphasizing explanations through argumentation in the classroom 

centers mathematics learning around reasoning (Yackel, 2001), which is the second part of Math 

Practice 3.  
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Mathematical Reasoning 

Within collaborative argumentation, students are required to use reasoning skills and 

strategies (Zager, 2016; Conner, 2013; Yackel, 2001; Hoffman et al., 2009). Reasoning is 

defined as “an evolving process of conjecturing, generalizing, investigating why, and developing 

and evaluating arguments” (Lannin et al., 2011). Student ability to reason is a foundational skill 

necessary for success in mathematics (Zager, 2016; Alawiya & Prasetyo, 2018; NCTM, 2000), 

and both critical thinking and problem solving involve mathematical reasoning (Mansi, 2003). 

Students who are adept at reasoning mathematically also possess highly transferrable skills. That 

is, students who can consistently reason through a problem demonstrate mastery of a way of 

thinking and analyzing situations that will allow them to problem solve, make connections, and 

communicate arguments outside of mathematics (Wenger, 2019; Papageorgiou et al., 2016). 

However, the repeated use of only examples to teach mathematics has resulted in students 

placing little value on investigating why an example or statement is true (Bieda & Lepak, 2014; 

Rowland, 2008), which is a part of reasoning. Many students can do mathematics without using 

reasoning skills, but this demonstrates only surface level knowledge (Mansi, 2003) which is 

inconsistent with the current goals of mathematics education (NCTM, 2014).  

Furthermore, only about 6% of problems in textbooks and curriculums in the U.S. give 

students opportunities to reason about questions that require conceptual understandings 

(Thompson et al., 2012), which is “knowledge that is rich in relationships” (p. 3) and that focuses 

on why mathematics works and how it works together (Hiebert, 1986). Through analyzing 

different curricula, Thompson, Senk, and Johnson developed a list of different task requirements 

that lead to opportunities for students to reason. These include the requirement to make or 

investigate a conjecture, develop or evaluate an argument, find a counterexample, identify and 
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correct a mistake, or identify pieces of an argument. Here, developing an argument is listed as a 

specific way to incorporate reasoning in the classroom. In fact, all these requirements are 

satisfied when students participate in collaborative argumentation. Studies that used tasks with 

these requirements to engage students in reasoning revealed some patterns in the nature of 

student reasoning prior to more directed practice. Specifically, they showed that the reasoning 

skills students often bring to the mathematics classroom lean more toward inductive—deciding 

their claim is true because they tried something that worked, necessary for beginning a 

mathematical argument—as opposed to deductive—using conceptual understanding to determine 

their claim is true in general (Edwards, 1997), which is necessary for finishing a mathematical 

argument. That is, students must be able to recognize patterns, provide rationale for procedures, 

and make connections between mathematical concepts in order to use deductive reasoning to 

develop an argument.  

NCTM (2000) defines making connections as the ability to “recognize and use 

connections among mathematical ideas; understand how mathematical ideas interconnect and 

build on one another to produce a coherent whole; recognize and apply mathematics outside of 

mathematics.” (p. 64). Thus, making connections, which is a large part of the reasoning process, 

is a determining factor in student ability to transfer mathematical knowledge. Kaur and Toh 

(2012) citing Coxford (1995) note “Teachers must provide students with opportunities to 

experience connections in the mathematics they learn. This is possible through links between 

conceptual and procedural knowledge, connections among mathematical topics and equivalent 

representations of the same concept.” (p. 6). In order to form a solid mathematical argument, 

students must use reasoning skills and make connections to demonstrate a conceptual 

understanding of mathematics topics. 
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Promoting reasoning in the mathematics classroom makes mathematics a more cohesive, 

useful, and interesting subject for students (Bartels, 1995; NCTM, 2009). Research supports 

using iterative action/reflection cycles and generalizing using deductive reasoning (Ellis, 2007), 

as well as making predictions and reflecting on those predictions (Kasmer & Kim, 2011) to 

improve students’ mathematical experiences as they relate to the current goals and 

recommendations of NCTM. Each of these pieces of support are reflected in the components of 

collaborative argumentation as outlined for this study—making and reflecting on predictions 

happens during the claim making process, generalizing using deductive reasoning is part of the 

reasoning component, and the iterative action/reflection cycle is incorporated through evaluating 

and editing peers’ arguments during collaboration.  

 

Language and Shared Understandings 

One of the biggest qualities that students look for when evaluating mathematical 

arguments is clear communication of ideas (Bieda & Lepak, 2014). Research also claims that 

good reasoning skills follow good communication skills (Brendefur & Frykholm, 2000). Both of 

these claims support emphasizing good communication among students and teachers to allow 

collaborative argumentation to take place. For collaborative argumentation to be effective in the 

classroom, teachers and students must have a shared understanding of what constitutes a solid 

mathematical argument and the language that will be used in questions and responses (Yackel & 

Cobb, 1996; Ervin-Kassab, et al., 2020; Woods et al., 2006). Several frameworks that involve 

developing a shared understanding of expectations and classroom language for mathematical 

argumentation and reasoning have been developed and tested in the classroom (Hoffman et al., 
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2009; Nordin & Boistrup, 2018; Weber et al., 2008; Conner et al., 2014), leading to research-

based suggestions for successful implementation of collaborative argumentation. 

The first of such suggestions is that the responsibility of determining whether an 

argument is acceptable during class discussion should be given to the students (Weber et al., 

2008). This encourages them to share partial ideas without fear of being corrected by the teacher 

and makes them stakeholders in the development of classroom knowledge and shared 

understandings. This is also supported by Hoffman’s, et al. (2009) use of the Math Talk Learning 

Community Framework (Hufferd-Ackles et al., 2004) to implement argumentation in the 

classroom. This framework describes levels of classroom characteristics to foster discourse. The 

teacher roles in the highest level are described as follows: 

 

The teacher follows along closely to student descriptions of their thinking, encouraging 

students to make their explanations more complete…The teacher expects students to be 

responsible for co-evaluation of everyone’s work and thinking. She supports students as 

they help one another sort out misconceptions. (Hufferd-Ackles et al., 2004, p. 90) 

 

 

The second suggestion is that the teacher should pay attention to all modes of 

communication by students both during the development and presentation of an argument 

(drawings, scratch work, gestures, speech, writing, etc.). The teacher can then support students 

by showing them how to redirect all of these modes into one meaningful argument (Nordin & 

Boistrup, 2018; Conner et al., 2014).  

The third suggestion is that students and teachers need to know why or why not a specific 

reasoning approach is appropriate. First, everyone involved in the classroom needs to be able to 

identify if reasoning is present. Second, students should collaborate in evaluating the strength of 

the reasoning. Inductive reasoning should prompt the class to work toward developing a backing 
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that uses deductive reasoning. In doing so, they will either produce a solid mathematical 

argument, or they may determine that the reasoning is not mathematically sound at all (Weber et 

al., 2008). 

Each of these suggestions centers around the class developing a shared understanding of 

expectations and language regarding argumentation. Shared understanding is developed through 

small group answer construction and representative tools (Michalchik et al., 2008), gestures 

(Alibali et al., 2013), shared experiences (Cobb et al., 1992), and whole class 

reflection/comparison of student responses as well as intentional positive reinforcement of 

desired response characteristics (Yackel & Cobb, 1996). 

 

Summary 

As teachers work to break the cycle of “I do, we do, you do” teaching in mathematics, 

one area to be explored is mathematical argumentation as a lens for teaching. Existing research 

on using mathematical argumentation in the classroom begins to address three questions: What 

prompts a mathematical argument? What does a solid mathematical argument look like in the 

classroom? What support do students need to participate in mathematical argumentation?  

CEQs that require students to draw on multiple conceptual understandings or have more 

than one procedural pathway and are embedded in real-world context with varying reasoning 

approaches can act as a motivator for students to engage in argumentation. These types of 

questions do not offer the same cues that students are used to and instead assess students’ 

mathematical creativity, confidence, and gaps in understanding. With CEQs, students must use 

critical thinking and reasoning skills to get started and focus on patterns and concepts rather than 

procedures.  
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A synthesis of various argumentation frameworks used in the classroom classifies a solid 

mathematical argument as one including a claim, evidence to support that claim, and reasoning 

about how the evidence fits with the claim. Additionally, effective argumentation in the 

mathematics classroom involves collaboration in which students compare and critique arguments 

and develop shared understandings.  

Students need a framework to work from when developing an argument, but ultimately, 

they need to be part of the experience of determining whether an argument is satisfactory. 

Students need to be involved in the process of identifying and evaluating the claim, evidence, 

and reasoning within an argument. Furthermore, students need flexibility and variety with modes 

of communication. It should be acceptable to communicate thinking verbally, through writing, 

gestures, and images or diagrams.  

Using the above information, the focus of this study is refining the support students 

receive to make mathematical argumentation a more integral part of lessons and more accessible 

for all students and teachers.  
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CHAPTER III: METHODS 

 

The purpose of this iterative analysis study was to explore how algebra students’ 

reasoning changes over the course of a semester when using a collaborative argumentation 

framework with specific instructional guidelines motivated by student need. Presented in this 

methodology will be: (a) instrumentation and design, (b) site and subjects of the study, (c) data 

collection, and (d) analysis of data. 

 

Instrumentation and Design 

 This was a mixed method, iterative analysis study, following the iterative analysis for 

qualitative research framework outlined in the International Journal of Qualitative Methods 

(Srivastava & Hopwood, 2009) and comparing coded student responses across two units after 

each iteration. Iterative analysis allowed the researcher to recognize patterns and themes as they 

emerged during data collection, which lent itself to the nature of teaching and learning in the 

mathematics classroom. The ability to reflect and make adjustments during the data collection 

process helped prevent the researcher from continuing to give students ineffective or 

inappropriate materials and lessons as soon as data collection indicated they needed adjustments. 

Iterations were defined by a four-week period of instruction, during which the researcher 

implemented practices designed to support students with collaborative argumentation, and at the 

end of which the researcher made adjustments to these practices based on observations. During 

all four weeks of each iteration, students participated in instruction of two units of material by 

the researcher. This consisted of two lecture classes and two lab classes each week. In lecture 

classes, students worked in groups of three or four at whiteboards while the teacher facilitated 
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discussion through scaffolded problems and questions. In lab classes, students worked in the 

same groups to complete assignments of open-ended problems related to the lecture content from 

the previous day. Students were given an 8-10 question test every two weeks (2 tests per 

iteration). During the second unit of each iteration, students participated in a Collaborative 

Argumentation Workshop designed based off existing research and study observations to support 

students with collaborative argumentation. At the end of each iteration, the researcher coded 

assignment and test responses from the two units and recorded observations about student 

engagement, specific teaching moves, areas of student growth within the collaborative 

argumentation framework, and areas that needed improvement. These qualitative and 

quantitative data were analyzed through the lens of the three iterative analysis framework 

questions from Srivastava and Hopwood (2009). 

 

Q1: What are the data telling me? (Explicitly engaging with theoretical, subjective, 

ontological, epistemological, and field understandings) 

Q2: What is it I want to know? (According to research objectives, questions, and 

theoretical points of interest) 

Q3: What is the dialectical relationship between what the data are telling me and what I 

want to know? (Refining the focus and linking back to research questions) (p. 78) 

 

 

After analysis, the researcher made adjustments to the research focus and course materials as 

suggested by the data, developed the next Collaborative Argumentation Workshop, and repeated 

the process over the next four weeks. The specific research foci and Collaborative 

Argumentation Workshops are outlined in the data collection section of this methodology. 

The collaborative argumentation framework referenced in this study is a theoretical framework 

adapted from a synthesis of tested frameworks (Toulmin, 2003; Ervin-Kassab, et al., 2020; 

Zwiers, 2019). It was used to support students in developing mathematical arguments.  
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Toulmin’s model (2003) is a general framework designed to help students develop 

arguments in any subject. It breaks down an argument into three pieces: claim, evidence, and 

warrant. The claim is a statement of some mathematical solution, usually the direct answer to a 

problem or question. The evidence consists of data or work that supports the claim. The warrant 

explains why the data is valid and makes sense with the claim (Toulmin, 2003). Singletary and 

Conner (2015) analyzed the use of Toulmin’s (2003) framework in a math classroom, noting the 

importance of the “warrant” piece as an avenue for addressing the “why?”  

The Claim-Rule-Connection model (Ervin-Kassab, et al., 2020) was developed by middle 

school math teacher Alison Vickery, specifically to teach students how to justify their reasoning. 

“The ‘claim’ was the answer or response to the question; the ‘rule’ was the theorem, fact, or 

proof; and the ‘connection’ was an explanation of how the rule applied or connected to the 

claim.” (p. 1004). Vickery (2020) found the language of this framework to be accessible to 

students, applicable across mathematical and nonmathematical arguments, and found that 

students eventually began approaching problems from the Claim-Rule-Connection perspective 

without being explicitly asked to.  

The Collaborative Argumentation model (Zwiers, 2019) outlines six steps in the 

argumentation process, designed to be used in any classroom. In this framework, students work 

together to (1) make claims and state initial evidence, (2) build up all sides of the argument with 

more evidence, (3) poke holes in evidence, (4) decide on criteria to evaluate the evidence, (5) use 

criteria to evaluate the evidence and compare claims, (6) choose an argument and communicate 

why it is best. Although this specific model is not referenced, “Authentic Argumentation with 

Prospective Secondary Teachers: The Case of 0.999…” written by high school math teacher 

AnnaMarie Conner (2013) discusses a task in which the collaborative argumentation steps were 
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followed as students debated whether 0.999… = 0. Conner (2013) notes that the keys to this 

successful implementation were choosing appropriate tasks/questions, clearly outlining 

classroom norms/expectations, and developing supportive responses/actions prior to class. This 

last key was imperative to ensure students came to their own conclusions through argumentation.  

Each of these three frameworks address a different issue when it comes to argumentation 

in math. In Toulmin’s (2003) model, the use of a warrant helps illuminate the “why?” in 

mathematics. That is, conceptual understandings become imperative for students when using this 

model. However, the Claim-Rule-Connection (2020) model offers a less nuanced and more 

classroom friendly language for students to work with. Then, the Collaborative Argumentation 

(2019) model focuses on students editing and developing arguments together as well as taking 

ownership of new knowledge. Together, these frameworks led to the researchers Claim-

Evidence-Reasoning framework. The components of this framework are described in Figure 4. 

Similar to the pyramid structure, if the reasoning component is removed from an argument, the 

argument falls apart. 

 

 
Figure 4. Collaborative argumentation framework 
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Student written and oral arguments were coded using these three characteristics of a 

strong mathematical argument suggested by the framework. This coding took place on written 

unit tests and in-class group work, as well as on responses during argumentation workshops. 

Additionally, the researcher kept a reflective record of classroom observations and themes 

emerging during each iteration.   

 

Site and Subjects of the Study 

This study took place at a midwestern state university with an enrollment of about 

24,000. Students participating in the study were enrolled in the university’s Intermediate Algebra 

course. Enrollment in this course is recommended by the university to students who have not 

mastered algebra concepts needed for college algebra. This is typically determined by the 

student’s mathematics ACT score and/or the university mathematics placement exam. If placed 

in this course, students must receive a “C” or better to advance to other mathematics classes. 

Topics covered include linear and quadratic equations, absolute value equations and inequalities, 

linear and nonlinear inequalities, properties of exponents, rectangular coordinate systems, lines, 

circles, parabolas, systems of equations, polynomials and rational expressions, and functions. 

The course consists of 3 lecture contact hours and 2 lab contact hours.  

The two sections of the Intermediate Algebra course used for the study took place on 

Mondays and Wednesdays from 1:00 – 2:15 pm or 2:30 – 3:45 pm and Tuesdays and Thursdays 

from 1:00 – 1:50 pm or 2:30 – 3:20 pm. Students also had the opportunity to attend office hours 

offered twice a week or visit the free tutoring center at the university library. 

Although the whole class was receiving the same instruction, participation in the study 

was entirely voluntary. The researcher described the study and gave students consent forms at 
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the beginning of the semester. 51 out of 61 students participated in this study. Participants 

completed an anonymous demographics and mathematics experience survey. Responses 

indicated that students in the course ranged from age 18 to 30 with over 75% between the ages of 

18 and 20. Of those participants, 21 were first generation college students, five were English 

second language (ESL) and international students, and 10 were retaking the course. About 70% 

of the students reported they had passed Algebra II or a higher mathematics course in high 

school prior to enrolling in the Intermediate Algebra course at the university. 42% said they felt 

successful in past mathematics courses.  

 Classrooms had multiple whiteboards on each wall for students to work on and a 

projector at the front of the room for the teacher to display problems and questions. Students 

completed tests and assignments on paper and turned in test papers but submitted pictures of 

assignments on the classes Blackboard website. Answer keys with thorough examples of written 

arguments/explanations were posted on Blackboard for every assignment and test. Additionally, 

course materials such as PowerPoints, instructional videos, handouts, and supplemental materials 

were posted on Blackboard for student access at any time.  

 

Data Collection 

Permission to conduct this study was obtained from the International Review Board and 

Missouri State University with IRB number IRB-FY2022-530 on April 7, 2022 as seen in 

Appendix A. Subjects provided consent through signed forms.   

First Iteration: Developing Need and Adopting the Framework. Under the research 

questions, “What does using a collaborative argumentation framework in an algebra classroom 

reveal about student mathematical reasoning?” and “In what ways does the use of such a 
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framework advance student mathematical reasoning?” the first iteration focus was developing 

need and adopting the framework. Through this focus, the researcher wanted to observe student 

response and receptiveness to the collaborative argumentation framework and identify students’ 

initial capacity to engage with the framework. This iteration spanned units 1 and 2, written by the 

researcher and the research supervisor, covering integer subtraction, equal exchanges, operations 

with fractions, ratios, and percentages.  

 To address the first iteration focus, the researcher used the suggestions of previous 

studies on implementing collaborative argumentation (Hoffman et al., 2009; Nordin & Boistrup, 

2018; Weber et al., 2008; Conner et al., 2014) and developing need and a shared understanding 

(Michalchik et al., 2008; Alibali et al., 2013; Cobb et al., 1992; Yackel & Cobb, 1996), to 

introduce content through the following guidelines.  

 

1. Questions requiring conceptual explanations (CEQs) to disrupt students’ current 

understandings 

2. Collaboration (small groups, partners, whole class) to expose students to communicating 

mathematical thinking 

3. Focus on the difference in students’ current understandings and desired understandings 

4. Use what motivates students to create a need for the collaborative argumentation 

framework 

5. Collaborative Argumentation Workshop I (Appendix B) – introduction to the framework 

 

Unit 1 instruction took place in this manner prior to students being introduced to the 

collaborative argumentation framework developed for this study. After exposure to CEQs and 

receiving feedback and scores on the unit 1 test, students participated in Collaborative 

Argumentation Workshop I, in which they were introduced to the collaborative argumentation 

framework. Then, students participated in unit 2 instruction and took the unit 2 test. The 
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researcher kept a record of observations about this iteration’s focus and coded student responses 

to CEQs from units 1 and 2 (Appendix C). 

Second Iteration: Breaking Old Habits and Boosting Confidence. Now that steps 

were taken to create need for and introduce the collaborative argumentation framework and the 

researcher had identified students’ current capacity for engaging with the framework, the second 

iteration focus was defined. Through instruction of units 3 and 4 and Collaborative 

Argumentation Workshop II (Appendix D), the researcher focused on breaking old reasoning 

patterns and giving students confidence in their ability to utilize the framework.  

In addition to the instructional guidelines used for the first iteration, observations from 

the first iteration and results from an educational study that found self-grading to drastically 

improve test scores among middle school science students (Sadler & Good, 2006) led to the 

development of new guidelines. 

 

1. No ideas are shut down by the teacher (instead, collaboration and questioning are used to 

move students to recognize faulty evidence or reasoning) 

2. Students view exemplar arguments and practice coding them against the framework 

3. Focus on difference between concepts and procedures 

4. Collaborative Argumentation Workshop II (Appendix D) – practice coding an exemplar 

mathematical argument 

 

 

This iteration followed the same four-week format as the first iteration—two weeks of 

instruction by the guidelines, unit 3 test, Collaborative Argumentation Workshop II and two 

more weeks of instruction, unit 4 test. Topics covered include maximizing area, pattern 

recognition, writing equations, exponents, doing & undoing (solving equations), and functions. 

The researcher kept a record of observations about this iteration’s focus and coded student 

responses to CEQs from units 3 and 4 (Appendix E). 
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Third Iteration: Reflecting, Revising, and Questioning. For the third iteration, 

observations that student responses were still frequently lacking the reasoning component when 

coding and existing research suggesting that cues and corrective feedback can have valuable 

effects on learning (Hattie & Timperley, 2007) led to the development of the focus on reflecting, 

revising, and questioning against the collaborative argumentation framework. The following 

guidelines were added to the instructional practices.  

 

1. Whole class reflection and revision of arguments (teacher models language and 

provides positive reinforcement) 

2. Focus on components as cohesive rather than disjoint 

3. Collaborative Argumentation Workshop III (Appendix F) – real-time self-reflection 

and grading by students as well as the teacher modeling grading and feedback. 

 

  

Following the four-week format of the first and second iterations, students participated in 

two weeks of instruction per the guidelines, the unit 5 test, Collaborative Argumentation 

Workshop III and two more weeks of instruction, then the unit 6 test. Topics covered include the 

distributive property, difference of squares, rate of change, and linear and exponential 

relationships. The researcher kept a record of observations about this iteration’s focus and coded 

student responses to CEQs from units 5 and 6 (Appendix G). 

Fourth Iteration: Internalization and Advancements. Based on the record of 

observations from previous iterations, no additional instructional guidelines were added for the 

fourth iteration aside from Collaborative Argumentation Workshop IV (Appendix H), which 

asked students to explain the framework and use it to edit previous arguments. The focus of this 

iteration was to make observations about student internalization of the collaborative 

argumentation framework by no longer consistently prompting them to use the framework and to 
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continue advancing the rigor of varying reasoning strategies using the instructional guidelines 

from prior iterations.  

Due to the semester lasting 15 weeks, this iteration spanned three weeks instead of four. 

There were three weeks of unit 7 instruction and Collaborative Argumentation Workshop IV, 

followed by a final argumentation evaluation and a comprehensive course final. Topics covered 

in unit 7 include quadratic relationships, more linear and exponential relationships, area, and 

volume. The final argumentation evaluation consisted of five CEQs pulled from previous unit 

tests. Students were to choose three of these problems to complete and craft their best 

mathematical arguments. The researcher kept a record of observations about this iteration’s focus 

and coded student responses to CEQs from unit 7 (Appendix I) and the final argumentation 

evaluation (Appendix J). Figure 5 shows an overview of the four iterations including the topics 

covered, research focus, and important characteristics of each Workshop. 

 

 
Figure 5. Iteration overview 
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Analysis of Data 

Both quantitative and qualitative data were collected over the course of the study. As 

student responses were collected during each iteration, the researcher coded and tabulated the 

arguments according to the framework described in the Instrumentation and Design section. This 

coding labeled the components of “claim,” “evidence,” and “reasoning” if they were present. 

Additionally, each component was labeled with a plus sign to indicate “complete/correct” or a 

minus sign to indicate “incomplete/incorrect.” The coding for each iteration was tabulated to 

create counts and percentages indicating the frequency of claims, evidence, and reasoning 

components throughout each iteration and the quality (plus/minus) of the existing components. 

For reference, Table 1 provides examples of each coding.  

 

Table 1. Examples of framework response coding 

Claim 

+ 

Terrel ate more pizza. 
 - 

Carlos ate more pizza. 

Evidence 

+ 

It takes 8 eighths to make a whole and 6 

sixths to make a whole. 8 − 7 = 1 piece left 

for Terrell and 6 − 5 = 1 slice left for 

Carlos. Eighths are smaller than sixths, so 

Terrell has less left over, which means he 

ate more initially. 

 - 

=   

=   

(does not show how they produced these 

equal exchanges) 

Reasoning 

+ 

The more of a certain unit it takes to make 1 

whole, the smaller the size of the unit. To 

compare amounts, we either need the 

quantity or unit size the same. If we look at 

what they have left over, the quantity is 1 

for each of them, so we compare the size of 

eighths and sixths. 

 - 

 is split into more pieces than . 

(does not describe why this is relevant or 

how they know) 
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Argument components are in response to the CEQ, “Two pizzas are the same size. Carlos ate 5 

sixths of one of the pizzas and Terrell ate 7 eighths of the other pizza. Who ate more pizza? 

Provide a solid mathematical argument for your answer.”  

Along with response coding, the researcher kept a reflective record of themes and 

observations. This record was updated in regard to student engagement, specific teaching moves, 

areas of student growth within the collaborative argumentation framework, and areas that needed 

improvement. These themes and observations were the driving force behind the creation of each 

argumentation workshop and any changes made to research foci or reflection techniques between 

each iteration. 

 

Summary 

This study was a mixed method, iterative analysis, allowing the researcher to reflect and 

make adjustments during the data collection process. There were four iterations defined as four-

week periods of instruction including one Collaborative Argumentation Workshop. During each 

iteration, the researcher kept a journal of observations about student engagement, specific 

teaching moves, areas of student growth within the collaborative argumentation framework, and 

areas that needed improvement. Additionally, they coded student responses to CEQs according 

to the collaborative argumentation framework developed for the study. This framework 

identified three components of a solid mathematical argument—claim, evidence, reasoning.  

 Participants in the study were enrolled in an intermediate algebra class taught by the 

researcher at a midwestern state university. These classes took place four days a week and 

consisted of group work and class discussions. Topics covered include linear and quadratic 

equations, absolute value equations and inequalities, linear and nonlinear inequalities, properties 
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of exponents, rectangular coordinate systems, lines, circles, parabolas, systems of equations, 

polynomials and rational expressions, and functions. During each iteration, students completed 

two CEQ assignments per week and one test every two weeks.  

 Permission to conduct this study was obtained from the International Review Board and 

Missouri State University. The research questions were “What does using a collaborative 

argumentation framework in an algebra classroom reveal about student mathematical 

reasoning?” and “In what ways does the use of such a framework advance student mathematical 

reasoning?” The focus in the first iteration was developing need for and adopting the 

collaborative argumentation framework. The second iteration focused on breaking old reasoning 

patterns and giving students confidence in their ability to utilize the framework. Reflecting, 

revising, and questioning against the collaborative argumentation framework was the focus that 

guided the third iteration. Finally, the fourth iteration focused on making observations about 

student internalization of the framework and continuing to advance student reasoning strategies. 

Over the course of the four iterations, the following list of teaching guidelines was used when 

introducing content: 

 

1. Questions requiring conceptual explanations (CEQs) to disrupt students’ current 

understandings 

2. Collaboration (small groups, partners, whole class) to expose students to communicating 

mathematical thinking 

3. Focus on the difference in students’ current understandings and desired understandings 

4. Use what motivates students to create a need for the collaborative argumentation 

framework 

5. Collaborative Argumentation Workshop I – introduction to the framework 

6. No ideas are shut down by the teacher (instead, collaboration and questioning are used to 

move students to recognize faulty evidence or reasoning) 

7. Students view exemplar arguments and practice coding them against the framework 

8. Focus on difference between concepts and procedures 

9. Collaborative Argumentation Workshop II – practice coding an exemplar mathematical 

argument 
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10. Whole class reflection and revision of arguments (teacher models language and provides 

positive reinforcement) 

11. Focus on components as cohesive rather than disjoint 

12. Collaborative Argumentation Workshop III – real-time self-reflection 

13. Collaborative Argumentation Workshop IV – internalize framework and edit arguments 

 

 

These guidelines were updated and amended with each iteration according to the previous 

iteration’s data collection themes. These themes were identified through coding and comparing 

student responses to CEQs and synthesizing journal observations. For an example of coded 

responses, see Table 1 in the Analysis of Data section.  
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CHAPTER IV: RESULTS 

 

These results include quantitative data consisting of response coding tabulations and 

qualitative data consisting of a synthesis of themes and observations from the researcher’s 

reflective journal. Some sample student responses that encapsulate overall student responses are 

included to show how responses changed throughout the iterations. This will cover (a) frequency 

of reasoning component in student responses, (b) student interaction with the framework, (c) 

areas of student growth, (d) areas that still need addressed. 

 

Frequency of Reasoning Component in Student Responses 

Argumentative responses to open-ended questions were collected and coded throughout 

each iteration to track the frequency and quality of each framework component. Students 

responded to in-class group tasks, tests, and argumentation workshops. Each response was coded 

first by “claim”, “evidence”, and “reasoning” components (frequency), then each component was 

coded with a plus to denote “complete/correct” or a minus to denote “incomplete/incorrect” 

(quality). Overall, frequency of a claim component remained above 90% for each iteration, with 

more than 70% of those claims being coded with a plus. Coding tabulations revealed growth in 

the evidence and reasoning components. Table 2 shows the percent of responses including each 

component within each iteration. Additionally, it lists what percentage of those components were 

complete/correct versus what percentage were incomplete/incorrect. For example, the first row 

of the evidence column shows that 95.71% of student responses coded in the first iteration 

included an evidence component. It also shows that 35.82% of the evidence components that 

were included were complete/correct and 67.42% were incomplete/incorrect. 
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Table 2. Response coding tabulations for framework components 

Iteration Evidence Reasoning 

First 

 

95.71 

 

34.29 
+ 

35.82 

 

- 

67.42 

 

+ 

31.25 

 

- 

68.75 

 

Second 

 

92.54 

 

44.03 
+ 

62.10 

 

- 

37.91 

 

+ 

40.68 

 

- 

59.32 

 

Third 

 

92.16 

 

41.18 
+ 

72.34 

 

- 

27.66 

 

+ 

23.81 

 

- 

76.19 

 

Fourth 

 

97.44 

 

66.03 
+ 

75.66 

 

- 

24.34 

 

+ 

39.81 

 

- 

60.19 

 

 

Although most students included an evidence component throughout the iterations, Table 

2 shows that the quality of student evidence improved throughout the study. In the first iteration, 

only 35.82% of evidence components were complete/correct. This percentage continued to grow 

with each iteration, and by the fourth iteration, 75.66% of evidence components were 

complete/correct. Table 2 also shows that the frequency of a reasoning component increased 

throughout the iterations. In the first iteration, only 34.29% of student responses included a 

reasoning component—this would be about 18 students. By the end of the study, 66.03% of 

student responses included a reasoning component—this would be about 35 students. 

Additionally, the number of students consistently using complete/correct reasoning grew from 

about 6 students in the first iteration to about 14 in the fourth iteration.    
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 For reference, the sample response from the first iteration in Table 3 was coded with an 

incomplete/incorrect evidence component and no inclusion of a reasoning component. Here, the 

“claim” that “3/4 is more” is correct. The “evidence” is “the unit (4) is smaller than 5, but the 

quantities are the same.” This was coded as “incomplete/incorrect” because the units are fourths 

and fifths, not 4 and 5, and fourths are greater than fifths, not lesser. There is no reasoning 

component explaining why the size of the unit helps determine which number is greater or how 

to know which unit is greater. 

 

Table 3. Incomplete/incorrect evidence or complete/correct evidence and reasoning 

Incomplete/Incorrect Complete/Correct 

Task 

 

Which is more: 3 fourths or 3 fifths? Why? 

 

Two pizzas are the same size. Carlos ate 5 

sixths of one of the pizzas and Terrell ate 7 

eighths of the other pizza. Who ate more 

pizza? How do you know? 

 

Response 

 

¾ is more because the unit (4) is smaller than 

5, but the quantities are the same, making ¾ a 

larger quantity. 

 

Claim: Terrell ate more pizza. 

 

Evidence: 1/8 is smaller than 1/6 so Carlos 

has more pizza left which means Terrel ate 

more. 

 

Reasoning: 

One pizza 

that is split into 8 units has smaller units than 

a pizza that is split into 6 units. Since each 

pizza only has 1 unit leftover, the pizza with 

the smallest unit would have the least left. 
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Alternatively, the sample response from the fourth iteration in Table 3 was coded with a 

complete/correct evidence component and a complete/correct reasoning component. Here, the 

evidence component (labeled by the student) was coded as complete/correct because the student 

drew a diagram showing that Carlos and Terrel both had one piece left, then stated which of 

those pieces would be greater based on unit size. That is, they showed enough work and provided 

enough evidence to lead to the correct claim. Additionally, the response included a reasoning 

component (labeled by the student) that explains why 1 eighth is lesser than 1 sixth and why the 

leftover piece mattered. 

 

Student Interaction with the Framework 

 Based off experiences in a previous study that the researcher conducted, Using 

Mathematical Arguments as a Tool to Develop Conceptual Understanding in a Developmental 

Mathematics Class, the researcher knew that students needed clear opportunities that 

necessitated writing conceptual mathematical explanations as well as a framework that supported 

them in this process. Intentional actions by the teacher created a need within students for the 

chosen framework and caused them to internalize it. 

Creating a Need. During the first iteration up to Test 1, not a lot of class time was given 

for students to reflect on the quality of their own responses, and the teacher had not yet trained 

students to evaluate the quality of their responses against the argumentation framework of claim, 

evidence, reasoning. Argumentation Workshop I did not take place until after Test 1, and before 

this, students were often frustrated when being questioned in class. Many students held the belief 

that they already knew quick tricks, such as “keep change flip,” and did not need to go back and 

explain concepts. This belief had to be disrupted through questions that required a conceptual 
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understanding and/or explanation. To be effective, such questions had to create cognitive 

dissonance by exposing the limitations of students’ tricks and reasoning strategies. Questions 

that require conceptual explanations exposed limitations by doing at least one of three things for 

students: (1) provide an experience in which their trick does not work, (2) ask them to find a 

pattern that takes more exploration than they are typically inclined, or (3) the procedures they 

need to use are so heavily embedded in context that students need to understand the concepts 

behind their tricks. Examples of questions doing each of these things are provided in Table 4. 

Instead of reflection or evaluation, the major teaching focus during the first iteration but 

before Test 1 was getting students comfortable sharing mathematical ideas within their groups 

and familiar with the types of problems outlined above. On Test 1, students were expected to 

respond to such questions and responses were scored based off the argumentation framework. By 

having students create written responses, providing feedback on their responses, and providing 

scores to characterize the quality of their response based on a framework they had not yet seen, 

students were confronted with the fact that they were not meeting the standards necessary to 

achieve higher scores. Students desired higher scores, but they did not know what the higher 

standards for responses included. This drove them to ask, “What should our responses look 

like?” That is, they saw a need for the framework. The teacher created this need, but the students 

were the ones that asked for it.  

Upon asking for it, students were participated in Workshop I, in which they were exposed 

to the collaborative argumentation framework. Figure 6 offers a description of the focus and 

activities of Collaborative Argumentation Workshop I. This workshop defined the components 

of claim, evidence, and reasoning in both non-mathematical and mathematical contexts. Students 

had the opportunity to practice crafting arguments and comparing them to the teacher’s 
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expectations that they include each component. They also practiced collaborating to make their 

arguments better. Initially, the researcher noted in observations that students participated in the 

argumentation workshop, but then reverted to their old response patterns. However, the teacher 

kept consistently high and unchanging expectations that students satisfy the framework. This led 

students to realize that reluctance would not change what was required of them to achieve 

desired scores.  

 

Table 4. Examples of CEQ disruptions 

Disruption Question Explanation 

1. Provide an 

experience in which 

their trick does not 

work 

Explain why (−3) ∗ (−3)  

has a different answer than 

((−3) ) . 

Simply “adding the exponents” or 

“multiplying the exponents” does 

not explain why these expressions 

simplify differently. Students must 

know where those tricks came 

from. 

2. Ask them to find a 

pattern that takes 

more exploration than 

they are typically 

inclined 

What do you think might 

happen to the area of a 

rectangle if you increase the 

perimeter? Explain your 

reasoning. 

If students just come up with one 

example, say a 3x3 square 

increasing to a 4x4 square, they 

will draw an incorrect conclusion. 

They need to test multiple 

examples systematically to reach 

the correct conclusion. 

3. The procedures they 

need to use are so 

heavily embedded in 

context that students 

need to understand the 

concepts behind their 

tricks 

You have 4 pizzas to portion 

out to a group. You want each 

person to receive 2 thirds of a 

pizza. How many people can 

be fed? Explain your 

reasoning. 

If students do not know the 

concepts behind division and 

fractions, they will not recognize 

that this question prompts them to 

do 4 ÷ . Since they do not set up 

this expression, they do not use the 

“keep change flip” trick. 
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By the end of the first iteration, classroom observations showed an increase in student 

buy in. Such buy in was shown through students using argumentation language during group 

work and asking the teacher questions such as, “How would I put my reasoning into words for 

this response?” or “Is this enough evidence to support my claim?” By asking students questions 

that required a conceptual explanation, scoring responses before introducing the framework, and 

keeping expectations consistent, the teacher created a need for the collaborative argumentation 

framework. After the first iteration, the need for the argumentation framework was motivated by 

less than desired scores on test one responses. However, for the framework to be truly effective 

in improving student reasoning skills, students needed to view the process as a tool to improve 

their understanding rather than just a tool to satisfy teacher expectations. The students needed to 

internalize the framework. 

 

 
Figure 6. Collaborative argumentation workshop i focus 

 

Internalization. While students recognized the need for an argumentation framework, 

they were still seeking specific examples of what the teacher was looking for. When shown these 

examples, many students expressed a lack of confidence in their abilities to generate responses of 

similar quality. When the researcher inquired about this lack of confidence, students indicated 
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that previous teachers had never had high mathematical expectations for them because they 

already struggled to meet the “normal” mathematical expectations. That is, many of them had 

never even been asked to try to produce mathematical arguments. Given this fact and the fact 

that less than desired test one scores seemed to be their primary motivation, students were more 

concerned with teacher approval of arguments rather than growing in their understanding of 

mathematical concepts through the argumentation process. The researcher noted this through 

observations of student questions centering around “Is this what you are looking for?” or “Is this 

what you would want us to say on the test?” The researcher identified two things that needed to 

happen for students to internalize the framework: (1) students needed to feel confident in their 

ability to identify a solid mathematical argument, and (2) student focus needed to shift from 

reaching desired scores to reaching a desired understanding.  

To address 1—students need to feel confident in their ability to identify a solid 

mathematical argument—the teacher consistently referred to the pieces of mathematical 

arguments when they were modeling responses and thinking throughout the second iteration. 

Additionally, Workshop II included opportunities for students to code an exemplar as well as 

craft and code one of their own. Figure 7 offers a description of the focus and activities of 

Collaborative Argumentation Workshop II. Figure 8 shows an example of one of the coded 

exemplars used in the workshop. Students were first given this response without the coding, and 

then compared their own coding to that of the teacher.  

After this, students crafted and coded a response to the question “Are the expressions 

(𝑥 )  and 𝑥 ∙ 𝑥  equivalent? Why or why not?” This activity along with other opportunities for 

self-reflection in class were designed to push students to pay attention to the quality of their 

responses against the argumentation framework. After this workshop, students were observed 
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referencing the framework when developing responses, which served as evidence that they were 

beginning to internalize the framework.  

 

 
Figure 7. Collaborative argumentation workshop ii focus 

 

 
Figure 8. Coded response exemplar 

 

Then, in the third iteration, Workshop III was aimed at pushing students to feel confident 

in their own evaluations of arguments rather than seek approval from the teacher after each 
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response. Figure 9 offers a description of the focus and activities of Collaborative Argumentation 

Workshop III. 

 

 
Figure 9. Collaborative argumentation workshop iii focus 

 

Specifically, Workshop III consisted of an activity in which groups of students developed 

and presented arguments, and then received real time feedback from the researcher and peers. 

This made it clear to students that even though their thinking and reasoning seem clear and 

complete to them, other readers may be left with questions if they do not clearly connect each 

piece of their argument and fully elaborate on their reasoning. The teacher continued to 

implement small activities like this during class where students were prompted to share their 

arguments and others were encouraged to ask questions. In observations after Workshop III, the 

researcher noted students telling the teacher that they finally felt like they knew what was 

expected of them and could see the difference between their previous responses and the 

exemplars. 

To address 2—student focus needed to shift from reaching desired scores to reaching a 

desired understanding—and further solidify student internalization, the researcher wanted to 

present questions that emphasized reasoning rather than correct answers. To accomplish this, 
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many of the questions in the third and fourth iterations either provided a claim for students and 

asked them to develop the rest of the argument, or they provided a potential claim and asked 

students to come up with an argument that supports or refutes it. For example, the CEQ from the 

fourth iteration, “A student claims that (𝑥 − 3)  is an equal exchange for 𝑥 − 9. Do you agree 

or disagree? Why?” provides a claim and requires the student to agree or disagree. 

By the end of the fourth iteration, the researcher’s observations reflected that many 

students were enthusiastically participating in class discussions and activities, and the comradery 

among student groups was very high. For example, the researcher noted having to use attention 

getters to call back the whole class after small group discussions because the groups were so 

involved in the task and argumentation process. Students were willing to make mistakes in front 

of their peers, question others’ thinking respectfully, and ask others for help when they needed it. 

The researcher witnessed groups planning their own study sessions, swapping responses to give 

feedback, and comparing their own work to keys. For example, while it once was common for 

students to ask the teacher to read their response and let them know if it “made sense” or “was 

right,” the researcher now observed students asking this of their group members. Additionally, 

some students were coding their own responses even when they were not prompted. The 

example in Table 5 shows a side-by-side comparison of a student response to a similar question 

from the first and fourth iterations.  

This example shows the student coding their own response without prompting in the 

fourth iteration response, as well as using reasoning strategies (comparing quantity and unit 

sizes, looking at what is leftover) and conceptual language (equal exchange, unit) discussed in 

class. These observations showed that students were using the framework as a helpful tool to 
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write solid mathematical arguments and understand concepts. That is, students had internalized 

the collaborative argumentation framework. 

 

Table 5. Comparison of first and fourth iteration CEQ responses 

First Iteration Fourth Iteration 

Task 

Which is more: 3 fourths or 3 fifths? 

Why? Use words and pictures. 

Two pizzas are the same size. Carlos ate 5 sixths 

of one of the pizzas and Terrell at 7 eighths of the 

other pizza. Who ate more pizza? How do you 

know? 

Response 

3 fourths has more than 3 fifths because 

the fourths is greater than fifths. 

Claim: Terrell ate more pizza. 

Evidence & Reasoning: When it comes to who ate 

more, we know that it was Terrell because they 

started with pizzas of the same size which were 

then cut into 6 and 8 pieces respectively. The 8 

pieces were smaller than the 6 pieces so the 

portions that were leftover from the pizzas were 

different sizes. The 1 from Carlos’ pizza being 

larger. Also, if you take 5/6 and 7/8 then do an 

equal exchange to get them to a common unit, it 

will show 5/6 = 40/48 and 7/8 = 42/48.  

42/48 is greater than 40/48 so Terrell ate more 

pizza.  

 

Areas of Student Growth 

 Through coding responses across iterations, the researcher identified three major areas of 

growth in student reasoning. The first was a shift from procedural understanding and reasoning 

to conceptual understanding and reasoning (Procedural to Conceptual Understandings). The 

second was an increase in the rigor with which students evaluated their conclusions (No Longer 
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Jumping to Conclusions). The third was a shift from creating disjoint and incomplete arguments 

to creating cohesive and complete arguments (Disjoint to Cohesive Arguments). These findings 

are supported by the following examples of student work. 

Procedural to Conceptual Understandings. Observed from responses coded in the first 

iteration, students showed that they could write out steps and interpret mathematical procedures 

done by others, but they struggled to generalize this work and develop reasoning for it in relation 

to the context. They consistently answered “why” with “because that’s the way it is based on 

what I did” instead of “because this is what’s going on conceptually, so I did this work that 

demonstrates it.” For example, Table 6 shows an example of a student response to a task from 

the first iteration that asks them to interpret different reasoning strategies. The student speaks 

procedurally about Macy and Ezra’s work with phrases like “Macey took two of the 4 pancake 

recipes and added them” and “they took the number of tbsp in one batch and multiplied it by the 

number of batches they were making.”  

A more conceptually focused response would reference the ratio relationship between 

batches of four pancakes and the amount of each ingredient. That is, “Why do each of the 

procedures work?” or “How do you know Macey and Ezra arrived at the correct amounts?” 

Ultimately, the student’s procedurally focused explanation proves to the teacher that they know 

how to interpret a problem. It does not prove to the teacher that the student could apply one of 

these strategies to a different contextual problem. However, by the fourth iteration, students were 

demonstrating much more conceptual understanding in their mathematical arguments. This is 

demonstrated in Table 7 by the fourth iteration student response in which the student converts 

algebraic symbols to conceptual understandings by explaining what someone would be trying to 

figure out if they were to put 3 ÷ 0.01 into a calculator. They also demonstrate a conceptual 
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understanding of the numbers “3” and “0.01” by discussing wholes, hundredths, and how many 

hundredths are in a whole.  

Additionally, the fourth iteration student response to a question about function rules in 

Table 8 shows a student demonstrating the ability to consider “what if?” Specifically, they 

address “What if a product is negative?” This type of reasoning shows a depth in understanding 

and conceptual understanding of multiplication, function rules, and graphs.  

 

Table 6. CEQ response with procedural explanation 

Task 

Macey and Ezra want to make 10 pancakes using the recipe for a batch of 4 pancakes which 

requires 6 tbsp of flour and ½ a cup of milk. They each figured out the amount of these 

ingredients differently, as shown below. 

Macey: 

4 + 4 + 2 = 10 pancakes 

6 + 6 + 3 = 15 tbsp flour 

+ + =  cups milk 

 

Ezra: 

10 ÷ 4 = 2.5 batches 

6(2.5) = 15 tbsp flour 

(2.5) = 1.25 cups milk 

 

(See Appendix B for image) 

Explain each of their reasoning, describing not only what they do, but why it makes sense. 

Response 

Macey took two of the 4 pancake recipes and added them and then took another 2 pancakes to 

get 10. Which 2 is half of the 4. Then she did the same thing but with the amount of flour you 

need. She took the 6 and added another 6 and then another half which is 3 to get 15 tbsp. She 

then did the same thing with the milk.  

Ezra takes the amount of pancakes they want, 10, and divides it by the amount the recipe 

makes, 4, to see how many batches they are making. Then they took the number of tbsp in one 

batch and multiplied it by the number of batches they were making. Then the same with the 

milk.  

They both got the same answer, Macey just did addition, Ezra did multiplication. 
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Table 7. CEQ response with conceptual explanation 

Task 

You input the expression 3 ÷ 0.01 into your calculator. The output is 300. Explain why this 

output makes mathematical sense. 

Response 

The problem is asking how many 1 hundredths fit into 3 wholes. Another way to find the 

answer is to make an equal exchange. 3 wholes is 300 hundredths if you make an equal 

exchange of it. Then you take 300 hundredths ÷ 1 hundredth = 300. 

 

Table 8. CEQ response considering “What if?” 

Task 

Explain how you know by “looking through” the function rule 𝑦 = 3𝑥  that there will be no 

negative output values. How will this impact the shape of the graph of the function rule? 

Response 

For a product to be negative, we have to multiply a negative times a positive. 3 is positive, 

so 𝑥  would need to be negative. This means the graph will have symmetric points. For 

example, (2, 12) and (-2, 12). 

 

 No Longer Jumping to Conclusions. The content in the second iteration (exponents, 

maximum area, writing and solving equations) required students to recognize structure and 

patterns, and then draw conclusions about mathematical concepts and rules from those structures 

and patterns. Through coding responses, the researcher noted a tendency of jumping to 

conclusions. That is, many student responses included only one example that supported their 

claim without testing any other examples. They would use this one example as evidence that 

their claim was true in general. Not only did this exploration strategy involve faulty reasoning, 

but it also led many students to the wrong conclusions. For example, the second iteration 
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response in Table 9 shows an instance in which a group of students jumped to a conclusion and 

developed only one example that supported this.  

 

Table 9. CEQ response that jumps to conclusions 

Task 

What do you think will happen to the area of a rectangle if you increase the perimeter? 

Explain the reasoning for your choice. Give examples. 

a. The area will also increase b. The area will decrease c. It depends 

Response 

A. If the perimeter increases, the area will also increase as 

shown.  

 

Here, the students chose “a. the area will also increase” by developing an example where this is 

true. However, if they would have considered other possible dimensions of perimeters closer in 

length, they would have discovered a counterexample to their claim. Students still needed to 

develop a capacity to reason about their conclusions, systematically explore patterns, and know 

when they had enough evidence.  

 The researcher’s plan was to develop this capacity through a focus on the reasoning 

component of the collaborative argumentation framework. For, if the students in the example 

above had been pushed to provide reasoning for why they chose those particular rectangles and 

dimensions, they may have been confronted with a dilemma. Providing a reason for pattern 

exploration forces the thinker to question “Is this always true? What if I change these 

conditions?” Thus, students continued to participate in tasks that required a conceptual 
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understanding, but now with an emphasis on those that also required pattern exploration. 

Additionally, Workshop III focused on peer and teacher feedback and questioning, in which 

students identified holes in their reasoning or times that they jumped to conclusions. By the 

fourth iteration and final exam, the students were demonstrating the capacity to systematically 

explore patterns and recognized a need for testing multiple examples. For example, the student 

responses in Table 10 are from the fourth iteration before Workshop IV and from the final exam 

after Workshop IV.  

 

Table 10. CEQ responses pre and post workshop iv 

Task 

A student claims that (𝑥 − 3)  is an equal exchange for 𝑥 − 9. Do you agree or disagree? 

Provide mathematical evidence to support your claim. 

Pre-Workshop IV Response Post-Workshop IV Response 

 

No, (𝑥 − 3)  is not an equal exchange for 

𝑥 − 9. If 𝑥 = 2 and the two were equal 

exchanges, they would result in the same 

solution, which they do not. 

I do not agree. When testing the same inputs in 

each expression, they give different outputs. 

 

Figure 10 offers a description of the focus and activities of Collaborative Argumentation 

Workshop IV. During Workshop IV, the class discussed responses like the pre-workshop one in 

Table 10 that only test one example. Students were posed with the question, “What if the input 
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we chose to test was 3?” Then, their response approach shifted to include multiple inputs on the 

final. 

 

 
Figure 10. Collaborative argumentation workshop iv focus 

 

Disjoint to Cohesive Arguments. Another target area identified by the researcher during 

the coding of second iteration responses was disjoint argument components. Observations 

reflected more attempts at including all three argument components (claim, evidence, 

reasoning/connection), but these components were often disjoint. That is, the components were 

either disconnected, meaning students did not use their reasoning to connect the claim and 

evidence, or contradictory, meaning the evidence or reasoning refuted their claim. Many student 

responses left the researcher asking, “how do you know?” Table 11 shows an example of a 

disconnected response and an example of a contradictory response from the second iteration. The 

task provides a claim for the students and asks them to provide evidence and reasoning. 

In the disconnected response, the student provides an incomplete reasoning component, 

noting that 2  and 2  are reciprocals, and 4 and ¼ are reciprocals but not explaining how they 

know or why this is significant. They also provide a list of calculations as evidence, but it is 

unclear how this evidence relates to the idea of reciprocals. Providing a response like this 
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demonstrates that the student remembers strategies from class but does not have enough 

understanding of them to apply them in any situation. In the contradictory response, the student’s 

reasoning component states that the exponents indicate getting “4 times bigger” or “¼ smaller.” 

However, their evidence shows that the exponents indicate multiplying by 2 or by ½. Once 

again, this shows a student regurgitating calculations or language without a complete 

understanding.  

The collaborative feedback element of Workshop III raised conversations about making 

arguments cohesive and showed students that there was more than one way to craft a solid 

mathematical argument. When confronted with the task of having to verbally explain their 

thinking to a group of peers, they were forced to only use evidence and reasoning that they fully 

understood. These experiences made it clear to students that even though their thinking and 

reasoning may seem clear and complete to them, other readers may be left with questions if they 

do not clearly connect each piece of their argument and fully elaborate on their reasoning. The 

teacher continued to implement small activities like this during class where students were 

prompted to share their arguments and others were encouraged to ask questions. 

By the fourth iteration, observations of student responses indicated that students were 

beginning to take ownership of reasoning and craft cohesive arguments. Specifically, students 

recognized that the elements could be intertwined and developed responses in which components 

had to be labeled with circles and arrows, indicating cohesive arguments. There was also more 

variation in approaches to questions, indicating an ownership and understanding of reasoning 

rather than a regurgitation. For example, Table 12 shows a cohesive response from the fourth 

iteration that includes all three argument components. Each component specifically references 
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the others—the evidence reiterates that Terrel ate more and the reasoning discusses why the 

evidence refers to unit size and leftovers. 

 

Table 11. CEQ responses with disjoint components 

Task 

If 2  is 4, why does it make mathematical sense that 2  is ¼?   

Disconnected Response Contradictory Response 

2  is the reciprocal of 2  and the reciprocal 

of 4 is ¼.  

2 = 4 

2 = 2 

2 = 1 

2 =
1

2
 

2 =
1

4
 

2  and 2  are reciprocals, meaning they are 

opposites. As the exponents go up by 1, they 

get 4 times bigger, and as we go down by 1, 

they get ¼ smaller. 

 

2 = 2 ∗ 2 = 4 

2 =
1

2
∗
1

2
=
1

4
 

 

Table 12. CEQ response with cohesive components 

Task 

Two pizzas are the same size. Carlos ate 5 sixths of one of the pizzas and Terrell at 7 eighths 

of the other pizza. Who ate more pizza? Provide a solid mathematical argument for your 

answer. 

Response 

Claim: Terrell ate more pizza. 

Evidence: 1/8 is smaller than 1/6 so Carlos has more 

pizza left which means Terrel ate more. 

Reasoning: One pizza that is split into 8 units has smaller 

units than a pizza that is split into 6 units. Since each pizza only has 1 unit leftover, the pizza 

with the smallest unit would have the least left. 
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Area for Improvement 

 Through coding responses across iterations, the researcher also identified an area for 

improvement or future focus that was not fully addressed through the collaborative 

argumentation framework and workshops. This was characterized as guiding students from 

specific to general reasoning strategies. 

In observations from the third iteration, the research recorded students expressing some 

exhaustion with approaching each new task or question with such rigor. Attendance and 

assignment completion began to decline during this iteration as well. In fact, many students were 

only getting through one or two problems on lab assignments in class. Additionally, students 

started to send emails to the teacher asking how long the final would be and if they would be 

expected to produce mathematical arguments for every question. The researcher postulated that 

part of this exhaustion may have stemmed from students’ lack of generalization. That is, students 

seemed to approach each task as something completely new and different rather than 

generalizing strategies to be transferred across problems. For example, pattern recognition and 

exploration was a strategy referenced in lessons on exponents, maximizing area, multiplication, 

linear and exponential relationships, and function rule development, but students consistently 

referred to these concepts as separate entities that each required a new set of skills. Students 

centered their arguments around details very specific to the problem instead of making more 

general connections and using reasoning that could be transferred to other problems. Table 13 

shows an example of specific reasoning and Table 14 shows an example of general reasoning. 

Table 13 reflects specific reasoning because the student relies on computing 80 ∗ 3 ∗ 3 ∗

3 ∗ 3 and the context of growing followers to connect representations for scenario 1, and 

similarly computing 80 + 3 + 3 + 3 + 3 and using the context of filling a tank to connect 
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representations with scenario 2. General reasoning would instead rely on recognizing scenario 1 

is exponential (repeated multiplication) and scenario 2 is linear (repeated addition). This 

generalized reasoning could be applied to any representation and context.  

 

Table 13. CEQ response with specific reasoning 

Task 

Match each of the lettered representations to one of the scenarios. Provide an 

explanation for each match. 

Scenario 1: A person has 80 followers on 

social media. The number of followers 

triples each year. How many followers 

will she have after 4 years? 

 

Scenario 2: A tank contains 80 gallons of 

water and is getting filled at a rate of 3 

gallons per minute. How many gallons of 

water will be in the tank after 4 minutes? 

A. 80 ∗ 3 ∗ 3 ∗ 3 ∗ 3 

 

C. 80 + 3 + 3 + 3 + 3 

 
E.  

B.  

    D. 80 + 4 ∗ 3   

F. 80 ∗ 81 

Specific Reasoning Response 

Scenario 1: A, B, F 

A shows the initial number of followers, but then it shows the followers increasing 3 

times. Since 3 ∗ 3 ∗ 3 ∗ 3 = 81, A & F are equivalent. B shows the number of followers 

being tripled each year. 

 

Scenario 2: C, D, E 

E shows the amount of water increasing by 3 gallons per minute. C shows the original 

volume, then increases by 3, 4 times. Since 3 + 3 + 3 + 3 = 4 ∗ 3, C & D are equivalent. 

 

While the specific reasoning example reflects what most students were doing, the 

generalized reasoning example in Table 14 was pulled from student work as an exemplar of an 

achievable goal to work toward. This response uses both specific and general reasoning by 

referencing the specific ways in which the outputs change, multiplying by 0.75 or adding 11.25 
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(specific), and the general connection these patterns have with exponential and linear 

relationships (general). Knowing key differences between linear and exponential relationships 

and a habit of looking for repeated addition or repeated multiplication can be transferred to other 

problems and contexts as an entry point to get them started.  

 

Table 14. CEQ response with general reasoning 

Task 

Which table shows an exponential relationship? Which table shows a linear relationship? 

Provide evidence to support your claim. 

Table 1: The 

table 

represents the 

relationship 

between the 

number of 

years since 

purchase of a 

vehicle and its 

value (in $). 

 

Table 2: The 

table represents 

the relationship 

between time 

worked (in 

hours) and the 

amount of 

money earned 

(in $). 

General Reasoning Response 

Table 1 shows an exponential relationship because the values are increasing by 0.75 each 

time by multiplication and because it is multiplication, it makes it exponential. If we were 

to keep going it would increase by multiplying 0.75. 

(calculations shown for how they came up with 0.75 in table) 

 

Table 2 shows a linear relationship because you add 11.25 to each amount earned and 

that gets you your answer and it’s consistent. Because the function is adding, it’s linear. If 

you were to keep adding 11.25 to amount earned, you could figure out any amount of 

time. 

 

Most student work did not include this type of thinking. Instead, students were observed 

saying “we haven’t had a question like this before” when presented with a new representation or 

context surrounding a familiar concept. While students were introduced to the idea of specific 
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versus general reasoning and the teacher made a point to show different looking problems that 

utilized the same concepts, combatting the specific reasoning line of thinking was a need 

identified too late in the study by the researcher to fully address and needs more research to be 

developed. 

 

Summary 

 To answer the research questions “What does using a collaborative argumentation 

framework in an algebra classroom reveal about student mathematical reasoning?” and “In what 

ways does the use of such a framework advance student mathematical reasoning?”, the 

researcher carried out a series of intentional actions, then analyzed and coded student responses, 

and recorded observations. These moves allowed the researcher to identify details about the 

frequency of reasoning components in student responses, student interaction with the framework, 

areas of student growth, areas that still need addressed. The intentional actions taken by the 

researcher include: 

 

1. Disrupt students’ previous understandings through questions that require conceptual 

explanations. 

2. Score responses based on the collaborative argumentation framework before students 

have seen it. 

3. Implement the four Collaborative Argumentation Workshops throughout the semester 

that provide (a) coded exemplars and teacher modeling, (b) opportunities to collaborate 

about reasoning, (c) practice coding and reflecting on arguments, and (d) practice 

revising and presenting arguments 

 

 

Then, coding student responses based on the components of claim, evidence, and reasoning 

and further categorizing these by completeness/correctness showed that only 35.82% of evidence 

components were complete/correct in the first iteration, and 75.66% of evidence components 
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were complete/correct by the fourth iteration. Additionally, only 34.29% of student responses 

included a reasoning component in the first iteration, and 66.03% of student responses included a 

reasoning component. Both the quality of the evidence component and the frequency of 

reasoning component increased throughout the study. 

 Additionally, the analyzing and coding process and recorded observations illuminated 

themes about the nature of these increases. In this study, students expressed a need for the 

collaborative argumentation framework, specifically requesting a tool for support. They engaged 

with the framework to a point of internalization, eventually coding their responses without 

prompting. While most students began the study with strictly procedural understandings, their 

responses in the fourth iteration provided evidence of improved conceptual understandings. 

Students began to systematically explore patterns instead of jumping to conclusions, providing 

multiple examples to support their claims in fourth iteration responses. Lastly, by the fourth 

iteration, students demonstrated a capacity to revise previously disjoint arguments with 

disconnected components or contradictory components to make them cohesive.  

 An area still needing improvement identified through observations was students tending 

to use specific reasoning rather than general reasoning, approaching each new task without 

considering utilizing strategies from previous tasks.   
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CHAPTER V: DISCUSSION 

 

The purpose of this iterative analysis study was to explore how algebra students’ 

reasoning changes over the course of a semester when using a collaborative argumentation 

framework with specific instructional guidelines motivated by student need. Presented in this 

section will be: (a) summary of results, (b) relating results to research, (c) recommendations for 

implementation, (d) recommendations for future research, and (e) conclusion. 

 

Summary of Results 

 This mixed method, iterative analysis study aimed to answer the research questions: 

 

1. What does using a collaborative argumentation framework in an algebra classroom reveal 

about student mathematical reasoning? 

2. In what ways does the use of such a framework advance student mathematical reasoning? 

 

With the goals of: 

 

a. use suggested framework to make observations about student reasoning 

b. identify specific actions to address those observations 

c. document the progression of growth in student reasoning over the course of the study 

 

The researcher coded student responses to questions that required a conceptual understanding 

(CEQs) across four iterations and kept a journal of observations about student engagement, 

specific teaching moves, areas of student growth within the collaborative argumentation 

framework, and areas that needed improvement. 



64 

 Coding responses against the collaborative argumentation framework with components 

claim, evidence, and reasoning showed an increase in the frequency of a reasoning component 

and an increase in the quality of evidence components. Inclusion of a reasoning component grew 

from 34.29% of responses to 66.03% of responses by the end of the study. The percentage of 

evidence components coded as complete/correct grew from 35.82% to 75.66% by the end of the 

study. 

 Observations showed students expressing a need for a collaborative argumentation 

framework after being exposed to CEQs and receiving scores and feedback on responses prior to 

introducing the framework. Additionally, after four iterations, students began to internalize the 

framework, showing this by using it without being prompted and utilizing the language during 

group work.  

 Observations also showed student growth in the areas of advancing from procedural to 

conceptual understandings, no longer jumping to conclusions, and revising disjoint arguments to 

make them cohesive. At the end of the study, students still needed support to use generalized 

reasoning strategies rather than approach each CEQ as separate from all others with specific 

reasoning strategies. 

 

Relating Results to Research 

According to the National Council of Teachers in Mathematics (NCTM), using 

mathematical argumentation in the classroom is an evidence-based practice essential to 

developing conceptual understanding and mathematical proficiency (Rumsey & Langrall, 2016). 

Research has suggested that critical thinking skills benefit from argumentation practices, and 

such processes lead students to create multiple connections between mathematical concepts 
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(Wagner et al., 2014). Furthermore, there is a positive correlation between argumentation and 

knowledge construction (Hershkowitz et al., 2001). Based on existing frameworks for using 

argumentation in the classroom (Toulmin, 2003; Ervin-Kassab et al., 2020; Zwiers, 2019), the 

researcher developed a framework with the components claim, evidence, and reasoning, and 

used it to explore student reasoning over the course of a semester. 

According to Yoon, Kensington-Miller, Sneddon, and Bartholomew (2011), 

undergraduate mathematics students consider themselves passive participants in their courses 

and are reluctant to engage in mathematical activity during a lecture. In concurrance with this 

existing research, observations from this study indicated that students began the semester 

reluctant to participate in argumentation practices and confused about what was “wrong” with 

their old ways of thinking about mathematics.  

 Additionally, existing research (Nachowitz, 2019; Bieda & Lepak, 2014; Rowland, 2008) 

revealed that the nature of students’ mathematical understandings was primarily procedural. 

Observations from this study about student responses and coding tabulations in the first iteration 

also revealed that students tend to answer a mathematical “why” with procedural evidence alone. 

This meant that, consistent with the findings of Stein, Grover, and Henningsen (1996), there was 

a disconnect between the teacher’s intention with a CEQ and the students’ engagement with that 

CEQ. At the beginning of the semester, the teacher was intending that students engage with 

mathematical reasoning and communicate conceptual understandings, but typical student 

responses contained only a claim with evidence in the form of calculations or vague references to 

tricks and rules. Although using collaborative argumentation in the classroom centers 

mathematics learning around reasoning (Yackel, 2001), students expressed confusion about  

what was expected of them and a need for additional support.  
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Turning to recommendations from other studies and ideas from previous experiences, the 

researcher adopted a series of instructional guidelines and intential teaching moves to motivate 

and support students. Part of student motivation to engage with the framework stemmed from the 

consistent use of CEQs. According to the recommendations of previous research (NCTM, 2014; 

Smith et al., 2018; Bingölbali & Bingölbali, 2021; Rahayuningsih et al., 2021; Kwon et al., 2006; 

Aziza, 2021; Fatah et al., 2016; Sholihah et al., 2020; Hancock, 1995), these questions either 

provided an experience in which previously learned “tricks” do not work, asked students to find 

a pattern that takes more exploration than they were typically inclined, or had necessary 

procedures so heavily embedded in context that students needed to understand the concepts 

behind their tricks.  

The other part of student motivation to engage with collaborative argumentation stemmed 

from their desire to meet teacher expectations and earn positive feedback and scores. High 

school mathematics teacher Conner (2013) previously noted that clearly outlined and understood 

expectations were a key to successful implementation of collaborative argumentation in the 

mathematics classroom. In this study, the researcher exposed students to the types of open-ended 

questions and engaged them in creating arguments before introducing the framework and 

expectations. By doing so, the students felt a need for more clarity and found value in the 

framework once it was introduced. That is, they had previous experiences to apply it to and 

motivation in the form of wanting to improve scores.  

Introducing the argumentation framework and expectations at a time when students had 

previous experiences to apply it to and a sense of relevance fits with existing research and 

suggestions about developing shared understandings to engage students in argumentation. Shared 

understanding is developed through small group answer construction and representative tools 
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(Michalchik et al., 2008), gestures (Alibali et al., 2013), shared experiences (Cobb et al., 1992), 

and whole class reflection/comparison of student responses as well as intentional positive 

reinforcement of desired response characteristics (Yackel & Cobb, 1996). Each of these things 

were done during argumentation workshops. 

Aside from motivation, observations about student responses and interactions with CEQs 

showed that students needed support moving toward conceptual understandings, recognizing and 

systematically exploring patterns, and communicating arguments in a cohesive manner.  

To support students moving from procedural to conceptual understandings, the researcher 

considered an argument from Yoon, et al. (2011) that stated “the success of small group 

interactions during large-scale lectures depends on students and lecturers establishing supportive 

social norms, and adjusting their lecture goals from ‘covering the content’ to ‘developing 

mathematical understanding’” (p. 1107). Supportive social norms were developed through time 

spent at the beginning of the semester establishing student groups and facilitating discussions to 

get to know one another. Additionally, by the recommendations of Sadler and Good (2006), no 

ideas were shut down by the teacher. Instead, collaboration and questioning were used to help 

students recognize areas of growth. With students acting as their own evaluators, there was a 

focus on growth and improvement rather than an anxiety about avoiding mistakes. To focus 

students on conceptual understandings instead of covering procedural content, the researcher 

developed CEQs that provided students with an answer or procedure and asked them to respond 

explaining the concept and reasoning. For example, the CEQ “Explain why (−3) ∗ (−3)  has a 

different answer than ((−3) ) .” gives students the claim that the solutions are different and 

focuses their attention the concept of exponentiation rather than on doing exponentiation.  
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To support students recognizing and systematically exploring patterns, the researcher 

used suggestions from Hattie and Timperley (2007) by implementing opportunities for real-time 

self-reflection and teacher feedback during which the teacher modeled reasoning strategies and 

argument development and revision. These opportunities were whole class discussions analyzing 

samples of student work. Specifically, the researcher pulled samples of student work in which 

students had jumped to a conclusion without fully exploring a pattern. That is, with systematic 

exploration, a counterexample could have been found that refuted their claim or the reader could 

be satisfied that the claim was true in all cases. The teacher presented such samples and asked 

targeted questions to poke holes in the existing pattern exploration, then modeled a more 

thorough reasoning approach.  

To support a transition from disjoint to cohesive arguments, the researcher used 

suggestions from Nordin and Boistrup (2018) to pay attention to all forms of communication 

from the students and assist them in redirecting their ideas into one cohesive and presentable 

argument. Because of the nature of the CEQs students were engaging in, the teacher knew they 

were using some reasoning strategies. However, students struggled to communicate these on 

paper or whiteboards. When they did communicate their reasoning, it was often entirely separate 

from the rest of their argument. It became imperative that the teacher listen to small group 

discussions, look at scratch work, and ask students to talk through their thought process so she 

could aid students in incorporating a reasoning component into their written arguments and relate 

all components to one another. 

 Previous research had shown that argumentation could be used as an evidence-based 

practice in the mathematics classroom to develop reasoning skills (Thompson et al., 2012) and 

deepen conceptual understandings (Rumsey & Langrall, 2016). In this study, the frequency of 
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reasoning inclusion in written arguments increased from the first to the fourth iteration, and 

fourth iteration student responses reflected conceptual understandings, demonstrated systematic 

pattern exploration, and communicated thinking in a cohesive manner. These findings support 

similar findings from a study analyzing the interactions between students in an inquiry/argument 

culture, in which students built and checked for consensus and took over the traditional teacher’s 

role of validating mathematical ideas (Woods et al., 2006). Furthermore, a study regarding 

science education showed that collaborative argumentation helped students develop accurate 

conceptual understandings over time (Li et al., 2021), as seen through the growth of student 

mathematical arguments during this study.    

Additionally in this study, students internalized the collaborative argumentation 

framework. Their questions shifted from asking the teacher “Is this right?” and “Is this what you 

want?” to asking their peers “Does my reasoning make sense here?” and “Why did you use this 

evidence instead of this evidence?” They also used the language of the framework to organize 

arguments on a regular basis and without prompting. Specifically, they labeled arguments on the 

final and homework assignments without being asked and used the framework language when 

collaborating in class. This indicated that they viewed the collaborative argumentation 

framework as a helpful tool to reach understanding of concepts and meet teacher expectations. In 

a different study, other mathematics teachers found that with consistent implementation of their 

argumentation framework, students began to use it as a tool for approaching problems without 

being prompted (Ervin-Kassab et al., 2020).  

By the third and fourth iterations, the researcher identified a need to move students 

toward a more generalized and transferrable reasoning approach because, as suggested by Ellis 

(2007), the use of iterative action/reflection styles and generalizing with deductive reasoning 
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improves mathematical understanding. Furthermore, getting students in the habit of a more 

generalized reasoning approach would give them the tools to confidently approach different 

kinds of problems with different contexts because they are trained to look for underlying 

concepts and patterns as opposed to procedures and specific details. This type of reasoning and 

connection making has been shown to develop in students through engaging consistently in 

argumentation (Wagner et al., 2014). However, even once the frequency of reasoning 

components in student responses increased, much of it was context and problem specific 

(inductive) rather than generalized and conceptual (deductive). This focus was identified as an 

area for further study. 

 

Recommendations for Implementation 

 The results indicate that using a collaborative argumentation framework in a mathematics 

classroom can improve the frequency of reasoning, the quality of evidence, conceptual 

understanding, pattern exploration, and communication of thinking. The researcher attributes this 

growth to the chosen framework, Collaborative Argumentation Workshops, and instructional 

guidelines. 

 The chosen framework was developed by the researcher as a synthesis of existing 

frameworks from Toulmin (2003), Ervin-Kassab et al. (2020), and Zwiers (2019). The 

framework identifies three major components of a solid mathematical argument and recommends 

that arguments be developed or discussed with peers as this provides opportunity for reflection 

and improvement. Figure 11 shows the three components of the framework—claim, evidence, 

reasoning—and provides a description of each. Reasoning is on the bottom of the pyramid 

because without it, the argument falls apart.  
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In order to introduce and practice using the framework, the researcher developed four 

Collaborative Argumentation Workshops to use during class every four weeks. The key effective 

criterion for each workshop is outlined in Figure 12. Additionally, the workshop slides are 

provided in the appendices. At the beginning of each iteration, the researcher used observations 

from previous iterations and existing research to add to a list of instructional guidelines for 

implementation shown in Table 15.  

 

 

Figure 11. Collaborative argumentation framework components 

 

Based on the observed positive student response, improvement in frequency of reasoning 

and quality of evidence, growth in conceptual understanding and pattern recognition, and 

students demonstrating an increased ability to develop solid mathematical arguments, this 

framework, Collaborative Argumentation Workshops, and instructional guidelines are 

recommended by the researcher for implementation in high school and undergraduate 

mathematics classrooms. 
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Figure 12. Collaborative argumentation workshop foci 

 

 

 

 

 

 

Workshop 1 (Introduce 
Framework)

•Start with students crafting non-mathematical arguments.

•Introduce mathematical argumentation framework.

•Students attempt mathematical argument alone on a task they have seen before.

•They then collaborate with small group, and then make suggestions as the teacher 
crafts and labels an argument on the board. 

Workshop 2 
(Exemplars & Low-

Stakes Practice)

•Show an exemplar argument and have students label it based on the framework.

•Students attempt a mathematical argument in small groups.

•Then, they see an exemplar response to the task they just completed.

•Students compare their argument to the exemplar, focusing on comparing each 
component. 

Workshop 3 
(Collaboration, 
Reflection, & 

Revision)

•Split the class into  groups, giving each pair of 2 groups an open-ended question.

•Groups craft a mathematical argument on the whiteboard.

•Then, paired groups switch whiteboards and make suggestions or ask questions in a 
different color marker.

•Finally, as a class, walk to each argument and model asking questions to strengthen 
their arguments. As you do this for more arguments, invite the students to start being 
the questioners. 

Workshop 4 
(Internalization & 

Growth)

•Students write their own definitions/descriptions of the framework.

•Then, display images of anonymous student arguments from Workshop 3 that will 
allow students to revise and show growth in understanding).

•Students work with the samples and edit to make the argument stronger.

•Students work in small groups to develop an argument to a new task, then approach 
these from the same lens they used in the previous task to edit and make the 
argument stronger.
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Table 15. Instructional guidelines for implementation 

Guideline Implementation 

1. Questions requiring conceptual 

explanations (CEQs) to disrupt 

students’ current understandings 

- provide an experience in which their trick does not work 

- ask them to find a pattern that takes more exploration than 

they are typically inclined 

- the procedures they need to use are so heavily embedded 

in context that students need to understand the concepts 

behind their tricks 

2. Collaboration to expose students 

to communicating mathematical 

thinking 

 

- put students in groups of 3 and spend time developing 

community 

- have groups work at whiteboards and frequently display 

thinking publicly  

- facilitate whole class discussions between groups 

3. Use what motivates students to 

create a need for the 

collaborative argumentation 

framework 

- engage students in CEQs before introducing framework 

- score test or assignment according to framework before 

students have seen it (do not actually enter this score as a 

grade) 

4. No ideas are shut down by the 

teacher. Focus on the difference 

in current and desired 

understandings. 

 

- provide exemplars to compare with sample student 

responses and let students be the judge of what is 

acceptable 

- allow students to develop arguments without help, then 

question their thinking to push understanding 

5. Students view exemplar 

arguments and practice coding 

them against the framework. 

Practice whole class reflection 

and revision of arguments. 

- consistently use the language of the framework when 

modeling responses 

- ask students to identify framework components during 

instruction and activities 

6. Focus on difference between 

concepts and procedures 

 

- anytime a procedure or trick can be used, do it, then ask 

the students why it works 

- eliminate the desire to use procedures by asking CEQs 

7. Focus on components as 

cohesive rather than disjoint 

- combine evidence component from one student response 

with the reasoning component of a different student 

response to the same CEQ, then discuss the flaws in this 

argument and how to relate components to one another 
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Recommendations for Future Research 

Observations from the study also highlighted areas for future improvement. After 

analysis and reflection about the results, the researcher identified three areas needing additional 

research and focus that would strengthen the recommendations for implementation. These areas 

are supporting students through using general over specific reasoning strategies, ways to 

realistically implement more reflection and feedback time, and developing more frequent 

workshops. 

The researcher noted a tendency in students to approach each CEQ as separate from all 

others and provide reasoning specific to and reliant on the context of the problem. This caused 

exhaustion with each new task and a lack of ability to transfer conceptual knowledge to CEQs in 

formats students had not seen before. For example, students tended to identify and relate 

different representations of linear and exponential relationships based on specific numbers or 

contextual labels. While this strategy worked, it was less transferrable to different CEQs than if 

they had focused on the differences between linear and exponential relationships in general. 

Student reluctance to reason generally was identified as an issue through observations late in the 

study. In future studies, this focus should be at the forefront with researchers testing different 

supports to address it and working to develop targeted activities and instruction. 

Furthermore, while the researcher did develop a workshop focused on reflection and 

feedback, they also identified a need for more. Obstacles preventing the inclusion of more 

reflection and feedback on student responses during the course of this study included a lack of 

class time for such activities, two-week long units, and attendance. Reflection activities eat up 

class time revisiting old topics and responses. While valuable, there is also a pressure to keep 

moving forward and introduce new content. Additionally, with each unit lasting only two weeks, 
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there was little turnaround time for the teacher to collect assignments or tests, give thorough 

feedback, and return them while such responses were still relevant or before students had an 

opportunity to show improvement. Couple this short turnaround time with frequent student 

absences and it becomes unlikely that students will have time to reflect on feedback before they 

have taken another test. Because of this predicament, the researcher recommends further study 

using the recommendations for implementation but restructuring the course to allow time for 

more effective feedback and reflection. Also, researchers could develop activities that may help 

the teacher give feedback in a timely manner. 

Related to the structure of the class, the researcher also recommends the development of 

more Collaborative Argumentation Workshops. They observed a definite increase in student use 

of the framework after each workshop. Developing more workshops would allow the teacher to 

target one area of improvement at a time. Shorter, more frequent workshops could help students 

internalize the framework earlier on in the study, allowing their reasoning to improve more.  

 

Conclusion 

 One of the most valuable applications of mathematics in everyday life is the transferrable 

reasoning skills developed through engaging with mathematical tasks. However, many students 

go their whole elementary and secondary mathematics education without developing these skills. 

That is, students are showing up to college with little conceptual knowledge or ability to 

recognize and systematically explore patterns. Additionally, they struggle to effectively 

communicate their thinking in a clear and cohesive manner. Teachers have noted struggles with 

motivating students to engage in argumentative mathematical tasks because of such challenges, 

and students fall into a pattern of thinking they are bad at mathematics but can get by if they 
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memorize procedures and meet low expectations. This study revealed that students do indeed 

have the less than desirable reasoning tendencies described above, but it also showed that these 

tendencies can be advanced through instruction using a collaborative argumentation framework, 

a series of workshops, and instructional guidelines for implementation. 
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Appendix B: Collaborative Argumentation Workshop I 
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Appendix C: First Iteration CEQs 

1. Which is more: 3 fourths or 3 fifths? Why? Use words and pictures. 

 

2. Write an example of a multiple digit addition problem that would lead you to “carry the 

one.” Explain why we do this and what is really going on. 

 

3. Here are the indredients to make 4 pancakes: 6 tablespoons of flour, ½ cup of milk, ½ 

cup of water, 1 pinch of salt, 1 egg. 

Macey and Ezra want to make 10 pancakes. Below is how each of them figured out how 

much flour and milk they would need. 

Explain each of their reasoning, describing not only what they do, but why it makes 

sense. How are they each thinking about the problem? What are the similarities and 

differences in their approaches? 

 

4. Two pizzas are the same size. Carlos ate 5 sixths of one of the pizzas and Terrell ate 7 

eighths of the other pizza. Who has more pizza left to eat the next day? Provide an 

explanation that would convince anyone of your answer. 

 

5. Shown in the table below is a relationship between temperature in degrees Fahrenheit and 

temperature in degrees Celsius. Is this type of relationship a ratio relationship? Explain. 
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Appendix D: Collaborative Argumentation Workshop II 
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Appendix E: Second Iteration CEQs 

1. What do you think might happen to the area of a rectangle if you increase the perimeter? 

a. The area will also increase. 

b. The area will decrease. 

c. It depends. 

 Explain the reasoning for your choice. Give examples. 

 

2. Fill in the equivalent expressions table below. Answer “yes” or “no” to say whether the 

expression is equivalent to x6. Then, back up your decision by either 

expanding/simplifying the expression or plugging in a number.  

 

 

 

 

 

 

 

 

3. Explain mathematically why (−3) ∗ (−3)  has a different answer than ((−3) ) . 

 

4. Think about the language you associate with simplifying expressions involving exponents 

such as 3 ∗ 3  and (3 ) . You learned a “trick,” but not the “why.” Exponentiation is 

considered repeated multiplication. Use this idea to explain why 3 ∗ 3 = 3  and 

(3 ) = 3 . 

 

5. If 22 is 4, why does it make mathematical sense that 2-2 is ¼?  

 

6. Grace ate 3 fourths of a whole Subway sandwich and Molly ate 2 thirds of a whole 

Subway sandwich. Explain how you could use the concept of equal exchanges to 

determine who ate more.  
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Appendix F: Collaborative Argumentation Workshop III 
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Appendix G: Third Iteration CEQs 

1. The actions on the inputs of three different function rules are shown below. 

Function Rule 1: “multiply by 3, square it” 

Function Rule 2: “square it, multiply by 3” 

Function Rule 3: “square it, multiply by 9” 

a. Complete the input/output table for each function rule. 

b. Use algebraic symbols to write the three function rules. 

c. Two of these function rules are equal exchanges of each other. Explain why 

this makes mathematical sense. 

 

2. Match each of the lettered representations with one of the following situations. Provide 

an explanation for each match.  

Situation 1: A person has 80 followers on social media. The number of followers triples 

each year. How many followers will she have after 4 years? 

Situation 2: A tank contains 80 gallons of water and is getting filled as a rate of 3 gallons 

per minute. How many gallons of water will be in the tank after 4 minutes? 

 

 

 

 

 

 

 

 

3. Which of the tables below represents a linear relationship? Which table represents an 

exponential relationship? Provide evidence to support your claim. 
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Appendix H: Collaborative Argumentation Workshop IV 

 

 

 

 

 

 

 

 

 

 

 



91 

Appendix I: Fourth Iteration CEQs 

1. Explain how you know by “looking through” the function rule 𝑦 = 3𝑥  that there will be 

no output values that will be negative. How does this impact the shape of the graph of the 

function rule? 

 

2. You input the expression 3 ÷ 0.01 into your calculator. The output is 300. Using ideas 

from this class, explain why this output makes mathematical sense. 

 

3. A student claims that (𝑥 − 3)  is an equal exchange for 𝑥 − 9. Do you agree or 

disagree? Provide mathematical evidence to support your claim. 

 

4. Also see “My Best Mathematical Arguments” problems 1 and 3. 
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Appendix J: My Best Mathematical Arguments 

The following 5 questions are ones you have seen before on previous tests. Throughout the 

semester, we have worked on developing our conceptual understandings of mathematics and 

using those understandings to write solid mathematical arguments including a Claim, Evidence, 

and Reasoning.  

 

Your Task: Choose 3 of the following questions and respond with your best mathematical 

argument. Clearly label your Claim, any Evidence you used, and the Reasoning that links your 

evidence to your claim. 

 

1. Two pizzas are the same size. Carlos ate 5 sixths of one of the pizzas and Terrell at 7 

eighths of the other pizza. Who ate more pizza? Provide a solid mathematical argument 

for your answer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. The table shows a relationship between temperature in degrees Fahrenheit and 

temperature in degrees Celsius. Is this relationship a ratio relationship? Provide a solid 

mathematical argument for your answer. 

Fahrenheit 41 50 68 104 

Celsius 5 10 20 40 
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3. If 2  is 4, what is 2  ? Provide a solid mathematical argument for your answer. 

 

 

 

 

 

 

 

 

4. A student claims that the algebraic expression (𝑥 + 1)  is an equal exchange for 𝑥 + 1. 

Do you agree or disagree? Provide a solid mathematical argument for your answer. 

 

 

 

 

 

 

 

 

 

 

 

5. Two different relationships are shown below. Which one represents an exponential 

relationship, and which one represents a linear relationship? Provide a solid mathematical 

argument for your answer. 

 

Table 1: relationship between the 

number of years since purchase of a 

vehicle and its value in dollars 

 

Years since 

purchase 
Value 

1 20,000 

2 15,000 

3 11,250 

4 8,437.50 

 

Table 2: relationship between time 

worked in hours and the amount of 

money earned in dollars 

 

Time Amount Earned 

4 45.00 

5 56.25 

6 67.50 

7 78.75 
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