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ABSTRACT 

Silvopasture systems are becoming increasingly popular among sustainable agriculture 
ranchers, due to the increase in knowledge of benefits to the cattle and ability to grow cool 
season grasses beneath the canopy. This project focuses on the forest crop aspect of 
silvopasture systems from monitoring of the health of the trees over time to recommendations 
for thinning management to keep it functioning as viable silvopasture.  The study site consists 
of five acres of upland hardwood forest area in Southern Missouri with 18 monumented fixed-
area plots.  Arial and ground data was collected at each plot throughout the growing season, 
along with data from a weather station located in the stand.  Multispectral indices and cover 
percentages were extracted from aerial data through Metashape and ArcGIS processing.  The 
data was used to develop prediction models for chlorophyll and water potential as well as 
canopy cover percentages.  An additional analysis was conducted, comparing data from our 
drone operations with publicly accessible data through Landsat and local weather stations. It 
was determined that with multiple years of data collected from the same month, strong 
prediction models are achievable for all three of the variables in question.  While ground 
metrics do improve the models, they can be removed when modeling over multiple years, with 
little decrease in model predictive power.  Climate metrics had little influence on any of the 
models and were therefore not used for most final predictions. Similarly, Landsat multispectral 
indices are also able to predict strong models without the inclusion of weather station or 
ground metrics.  
 
 
 
 
 
 
 
 
KEYWORDS:  silvopasture, ArcGIS, Landsat, prediction models, multispectral, R Studio  



   
 

iii 

MODELING GROWTH AND STRESS FACTORS FOR CONVERTED SILVOPASTURE SYSTEMS IN THE 

MISSOURI OZARKS 

 

 
 
 

By 

Bailee Suedmeyer 

 
 
 

A Master’s Thesis 
Submitted to the Graduate College 

Of Missouri State University 
In Partial Fulfillment of the Requirements 

For the Degree of Master of Science, Plant Science 
 
 

May 2023 
 
  
Approved:  
 
Michael Goerndt, Ph.D., Thesis Committee Chair 

Melissa Bledsoe, Ph.D., Committee Member 

Will McClain, Ph.D., Committee Member 

Julie Masterson, Ph.D., Dean of the Graduate College 

 
 
 
In the interest of academic freedom and the principle of free speech, approval of this thesis 
indicates the format is acceptable and meets the academic criteria for the discipline as 
determined by the faculty that constitute the thesis committee. The content and views 
expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State 
University, its Graduate College, or its employees. 



   
 

iv 

ACKNOWLEDGEMENTS  

 

             I would like to say thank you to many people that have helped me out over the course of 

my graduate studies at Missouri State University.  They have helped me in growing in my 

academics as well as a person and I will forever be grateful for their support.   First, I want to 

thank my professor, Dr. Michael Goerndt, for allowing me to come to Missouri State University 

and trusting me with this project.  He has helped me throughout this whole experience, being 

there for me when I needed it, but also letting me gain independence and confidence in my 

work.  I will forever be grateful for the small jokes and experiences Dr. Goerndt has opened the 

door for.  Next, I want to thank Dr. Toby Dogwiler for the many questions answered regarding 

the GIS aspect of this project. Dr. Dogwiler not only helped me with this project, but also has 

helped me gain a love for this line of work and the problem solving that comes with it.  I would 

also like to thank Dr. McClain and Dr. Bledsoe for all their help with the field data collection 

aspect of this project.  I am very thankful for the great team we were able to have at all the 

field collection days.  Carsen Goodman and Stewart McCollum have also helped me throughout 

this project.  I want to thank Carsen for all the help throughout my first year at Missouri State 

with data collection and maintenance.  Finally, I want to thank my family and everyone that I 

have met through this process and throughout my time at Missouri State University.  I could not 

have done it without the overwhelming support.   

 



   
 

v 

TABLE OF CONTENTS 
 
 
 

Introduction  Page 1 
 
 
Page 3 
Page 4 
Page 5 
Page 5 
Page 6 
Page 6 
Page 7 
Page 9 
 
 
Page 11 
Page 12 
Page 13 
Page 14 
Page 14 
Page 15 
Page 16 
Page 17 
Page 20 
Page 21 
 
 
Page 23 
Page 23 
Page 25 
Page 29 
Page 31 
Page 36 
Page 38 
Page 41 
 
 
Page 44 
Page 44 
Page 45 
Page 46 
Page 48 

 
Literature Review 

Silvopasture 
Remote Sensing in Forestry 
Weather Stations 
Canopy Cover Modeling 
Landsat 
Chlorophyll and Water Potential 
Multispectral Predictors 
Statistical Modeling 
 

Methods 
Study Site 
Ground Data 
Aerial Data  
Weather Station Data 
Stand Model 
Canopy Height Model 
Multispectral Indices 
Statistical Analysis 
Landowner Modeling System 
Study Limitations 
 

Results 
Climate Stress Models 
        2020 
        2020-2022 
        July No Cover 
        July with Cover 
        July Landsat Comparison 
        Landsat 
Crown Cover Model 
 

Discussion 
Climate Stress Models        
        2020 
        2020-2022 
        July No Cover 
        July with Cover 



   
 

vi 

        July Landsat Comparison 
        Landsat  
        Model Type Comparison 
Thinning Prediction 
 

Conclusion 
 

Page 49 
Page 50 
Page 52 
Page 52 
 
Page 55 
 
Page 57 
 
 
Page 60 
Page 61 
Page 64 
Page 69 
 
 
 
 
 
 

References 
 

Appendices 
Appendix A: Timeline 
Appendix B: Processing Workflows 
Appendix C: P-values for All Models 
Appendix D: Cross Validation for All Models 

 
 



   
 

vii 

LIST OF TABLES 
 
 
 

Table 1. List of covariates for the models 

Table 2. Stand level ground data summary 

Table 3. list of covariates for the models 

Table 4. P-values for 2020 models 

Table 5.  P-values for 2020-2022 models 

Table 6. P-values for July no cover models 

Table 7. P-values for July with cover models 

Table 8. P-values for cover prediction 

Table 9. P-values for July Landsat Comparison models 

Table 10. P-values for Landsat Models 

 

 

Page 10 

Page 18 

Page 19 

Page 24 

Page 27 

Page 30 

Page 33 

Page 34 

Page 37 

Page 39 

 

 

 

 



   
 

viii 

                                                                     LIST OF FIGURES 
 
 
 
Figure 1. Reflected band chart 

Figure 2. Journagan Ranch map 

Figure 3. Converted stand plot map 

Figure 4. Canopy cover model 

Figure 5. Canopy height model creation 

Figure 6. Multispectral indices equations 

Figure 7. Residuals for 2020 model 

Figure 8. Residuals for full 2020-2022 model 

Figure 9. Cross-validation 2020 and 2020-2022 

Figure 10. Residuals for the July 2020-2022 model not including cover 

Figure 11. Cross-validation 2020-2022 and July only 2020-2022 

Figure 12. Residuals for the July 2020-2022 model including cover 

Figure 13. Residuals for the July 2020-2022 cover prediction model 

Figure 14. Cross-validation for July 2020-2022 with and without cover 

Figure 15. Cross-validation for July 2020-2022 cover prediction 

Figure 16. Residuals for the July Landsat comparison model 

Figure 17. Residuals for the Landsat model 

Figure 18. Cross-validation for July Landsat Comparison and Landsat 

Figure 19. Canopy cover changes 2020-2022 

Figure 20. Canopy cover prediction chart  

 

 

Page 8 

Page 11 

Page 13 

Page 14 

Page 16 

Page 17 

Page 25 

Page 28 

Page 28 

Page 31 

Page 31 

Page 35 

Page 35  

Page 36 

Page 36 

Page 38 

Page 40 

Page 41 

Page 42 

Page 43 



   
 

1 

INTRODUCTION 

 

Increases in degradation of land by intensive agriculture have caused a worldwide 

movement to discover more sustainable ways of reaching producer goals.  For the cattle 

industry, this has meant implementing practices such as rotational grazing and the 

incorporation of silvopasture systems.  Silvopasture is a form of sustainable agroforestry and 

has positive impacts both for livestock and the land.  Research has focused primarily on the 

livestock aspect of silvopasture and studies have shown there have been many positive impacts 

of rotating cattle through savannah like stands.  Benefits to livestock have included increased 

weight gain, decreased heat stress, and continued growth of nutrient dense, cool season 

grasses through hot summer months. 

While the health of trees have not been studied extensively for silvopasture, studies in 

forested areas to identify stressors related to climate change and other factors are common.  

Remote sensing has been used to positively link stress indicators such as water potential with 

multispectral bands and indices through statistical analysis.  Increased fluctuations and seasonal 

changes from year to year also can play a major role in stress of the trees.  Weather stations 

can help to capture these changes and potentially be used as variables to predict stress factors.   

Canopy cover changes are another factor that has not been heavily studied in 

silvopasture systems.  Natural savannahs however, have been studied in this realm.  Since this 

study uses a converted forest stand in the central hardwoods region, it will likely not show 

exact growth rates of a natural savannah and will require more frequent work to maintain the 

ideal canopy cover due to the absence of disturbance.  It is important to ensure that canopy 
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cover stays under 40-60% to ensure adequate light can reach ground level of the understory.  

This will allow growth of cool season grasses to provide forage for grazing cattle.   

The objective of this study was to further the knowledge of tree health in silvopasture 

systems.  This was done through the creation of models for predicting stand stress and growth 

for the converted silvopasture system at Journagan Ranch (Missouri State University, Mountain 

Grove, MO).  Many different models were used to compare predicting potential of the 

covariates.  This included models with only one year of data, two years of data, only one month 

of data per year, inclusion of cover percentages, and a comparison between drone and satellite 

data.  From these models, statistics was done in R Studio to determine relationships between x 

and y variables and analyze the ability of the model to create predictions based on the variables 

and datasets.  An additional study was conducted to determine how often thinning needs to 

take place to keep the stand functioning as a silvopasture.   
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LITERATURE REVIEW 

 

Silvopasture 

For generations, ranchers have looked at forested land as having little value.  However, 

as a natural resource, silvopasture is beneficial for carbon sequestration and soil fertility 

(Soares et al., 2018). Through research, the value of actively managed, savannah like, forest 

systems has gained popularity in their benefits to both livestock and the environment (USDA, 

2008). 

Livestock benefit from silvopasture stands in many ways.  Shaded understory has been 

positively linked with increased weight gain in hot, summer months.  Understory can be 11-25 

℉ cooler allowing for protection from heat and less weight loss due to sweat (Klopfenstein et 

al., 1997).  Forage is also improved in the understory due to the ability to grow cool season 

grasses.  In a typical system, lower quality warm season grasses will begin to grow as the 

summer gets hotter and less water is available.  Growth of cool season grasses throughout the 

growing season gives cattle access to more nutritious, dense forage (Klopfenstein et al., 1997).  

Maintaining 40-60% light penetration into the understory will allow cool season grasses to grow 

and survive in the understory (USDA, 2008).  Silvopasture also retains more water than a 

standard system due to protection of soil by the canopy (USDA, 2008).  Protection of soil and 

retention of water could help keep forage from experiencing drought-like conditions. 
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Remote Sensing in Forestry 

Remote sensing of forested areas has gained interest and popularity to study effects of 

disturbances and changes in the environment caused naturally or by human involvement 

(Lausch et al., 2016).  Multispectral data are commonly used for forest composition and 

classification with advances in technology continuing to improve accuracy of data (Ustin et al., 

1998). 

Data from remote sensing allows for visualization and statistical analysis of what is 

happening to those trees under specific conditions.  The results help to define what is a healthy 

stand and what are ideal conditions for keeping the stand functioning at its best (Lopez-Sanchez 

and Roig, 2017).  When a stand is under stress, whether disturbance or a resource limitation, 

stress indicators will be apparent in statistical analysis. Agencies at federal and state levels have 

developed programs for monitoring these changes and identifying patterns and trends to better 

understand what is happening as well as what this may mean for the future of forests (Lausch 

et al., 2016).  

Historically, forest health has had many definitions depending on what is being studied.  

At tree level, forest health is commonly determined by visual characteristics such as: disease 

presence, damage, crown status, or leaf characteristics (Lausch et al., 2016).  Remote sensing 

offers many other forest health indicators.  Without multispectral indices, observations are 

limited to wavelengths of the visible light spectrum (Sykas, 2020).   

Remote sensing also helps bridge data gaps locally, and across the world.  Online data 

clouds allow for mass sharing and availability of resources from around the globe (Lausch et al., 



   
 

5 

2016).  Historical archived data can also be used for various future projects to effectively 

analyze trends over time without spending years collecting data before results can be obtained. 

   

Weather Stations 

Traditionally, weather stations have not accounted for forest stands.  Guidelines set out 

by the World Meteorological Organization state that sensors should be installed far away from 

all trees (De Frenne et al., 2016). Lack of forest weather station data puts a large gap in data 

regarding climate change and indicators because 27% of land surface is under forest cover.  

Forests are also home to two-thirds of the biodiversity on Earth that are being affected by 

different climatic factors (De Frenne et al., 2016).     

 

Canopy Cover Modeling 

In forestry, relationships between aerial photography and multispectral imagery have 

been used to examine health of trees.  However, recent studies have examined canopy cover 

changes with normalized difference vegetation index changes (Soares et al., 2018).  Monitoring 

change in forests using aerial data has been shown to be effective in seeing changes over time 

and in reducing time used for data collection (Ustin et al., 1998).  Arial data with GPS pinpoints 

allow for exact comparisons of stands overtime by directly overlaying images. Lining data up 

accurately is important when pinpointing factors leading to mortality such as infections, 

pollution, natural die off, and drought (Ustin et al., 1998). Distinguishing between trees and 

herbaceous understory can help to understand changes in ecology and composition of a site 

(Carreiras et al., 2006). Due to changes in interception of rainfall and radiation, separating the 
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canopy can give us better measure of water and chlorophyll fluxuation within trees leading to 

stronger prediction for the future (Carreiras et al., 2006).     

 

Landsat 

Landsat was created in the 1960s to capture Earths dynamics and changes in the land 

overtime (Loveland and Dwyer, 2012).  Since it’s original launch, there have been six successful 

missions.  These missions have improved capabilities and clarity of satellite imagery. Landsat 

data used in this project is from Landsat 9.  Vandenberg Space Force Based launched Landsat 9 

from California in September of 2021 (NASA, 2020).  NASA states that the satellite orbits Earth 

14 times a day and takes over 700 images per day.  Landsat 9 is equipped with more sensors 

than the 8th version.  It now can extract nine spectral bands and two thermal inferred bands 

(Lulla et al., 2021).  Spatial resolution of the Landsat 9 satellite has also increased to 15m, 30m 

or 100m, depending on the band.  Lulla et al. (2021) states that testing has been done to check 

scientific usage of different Landsat Satellite based location accuracy.  It was determined that 

the satellite images are accurately calibrated to use as long-term comparisons.  The ability to 

compare data long-term has made Landsat Satellites the backbone of Earth observations 

overtime (Lulla et al., 2021).  All 50+ years of data collected from various Landsat satellites can 

be used to look at changes over time without issues in lining up images.   

 

Chlorophyll and Water Potential 

Studies have shown there is a relationship between chlorophyll and water potential 

contents in leaves of vegetation with image spectrometer data.  Seasonal changes and drought 
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have been detected and can be predicted with spectral data (Ustin et al., 1998). Chlorophyll 

content in leaves plays a key role in analyzing the health of many crops (Zhou et al., 2020).  

Chlorophyll plays a crucial role in photosynthesis as it absorbs light.  Changes in abundance and 

presence of chlorophyll can impact survival of many plants.  Chlorophyll can be analyzed using 

remote sensing techniques will not damage the plant itself (Zhou et al., 2020).  One major cause 

of stress on trees starts with lack of water.  Drought is a dangerous, but natural, occurrence in 

the world and monitoring helps understand effects of climate change (Abid et al., 2018).  

 

Multispectral Predictors 

Light reflectance is used commonly for identification of objects based on the visible light 

spectrum. Using multispectral sensors, images can be manipulated to enhance or alter coloring 

of certain factors to help distinguish between objects (Horning, 2004).  Multispectral images 

have been shown to be effective in identifying healthy and unhealthy vegetation.  There are 

five bands, all consisting of different wavelengths, that are commonly used and combined to 

emphasize different factors of a landscape.  These bands are red, blue, green, red edge, and 

near inferred (NIR) (Sykas, 2020).  The human eye is only able to distinguish between blue, 

green, and red, but plant stress is most visible at the red edge band and near inferred 

wavelengths (Micasense, 2018).  The red color band helps distinguish vegetation out of an 

image.  Vegetation absorbs all red light making it useful when determining vegetation from soil 

or other features. The red band can be referred to as the chlorophyll absorption band (Horning, 

2004) The blue color band is commonly used for distinguishing between plant life or soil and 

water and the green band (Horning, 2004).  Red edge shows the greatest difference in 
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reflectance between health and stressed vegetation will be seen while NIR is where stressed 

plants reflectance will exceed healthy plants reflectance as seen in Figure 1 (Micasense, 2018).  

  

 

Figure 1. Micasense Red Edge-M reflected band chart showing health of vegetation in relation 
to light reflectance (Micasense, 2018) 

 

With five color bands, different combinations can be created to help create a greater 

emphasis on target factors of vegetation such as chlorophyll and water presence in the leaves.  

The Normalized Difference Vegetation Index (NDVI) is a combination of the NIR and red bands.  

NDVI combination highlights NIR reflectance indicating healthy vegetation and has also been 

referred to as the green-ness index.  A lower value for NDVI would indicate vegetation that is 

weak or stressed (Sykas, 2020).  NDVI is commonly used to map vegetation cover and 

characteristics.  NDVI changes throughout the season allowing for visualization of what is 

happening to the canopy throughout the growing period.  NDVI is also used commonly for 

chlorophyll predictions due to having a strong relationship between the NDVI value and 

chlorophyll presence in vegetation (Ustin et al., 1998).  Green Normalized Difference 

Vegetation Index (GDNVI) uses green and near inferred bands to estimate photosynthetic 
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activity.  GNDVI combination is used to visualize nitrogen and water movement into the canopy 

(Evangelides and Nobajas, 2020).  Red Edge Normalized Vegetation Index (RENDVI) is similar to 

NDVI but focuses on a smaller waveband for chlorophyll absorption and is more related to 

chlorophyll absorption than NDVI.  Due to the narrow band used, sensitivities are also more 

prevalent in the RENDVI combination (Evangelides and Nobajas, 2020). 

 

Statistical Modeling 

Regression is used to find relationships between independent and dependent variables 

in many statistical analyses.  Variables used for predicting stress can be seen in Table 1.  Linear 

regression models are commonly used in accessing relationships between aerial and LiDAR 

(Light Detection and Ranging) data (Soares et al., 2018).  Once determined to have a linear 

relationship, models can then be used to estimate different factors based on already collected 

data.  Statistical modeling involves examining the relationship and significance of all of  

independent variables in determining dependent variable.  Data can be split into training and 

testing sets to then check predictability of the final model through cross-validation (Zach, 2019).  
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Table 1. List of covariates for the models including multispectral bands, multispectral indices, 
ground measurements, and weather station measurements 

Description Variables 

Multispectral Bands Red 
Blue 

Green 
Red Edge 

NIR 

Multispectral Indices NDVI 
GDNVI 
RENDVI 
Cover 

Ground Measurements Temperature 
Moisture 

Weather Station 
Measurements 

 
 
  

Pressure Monthly (pm) 
Pressure Weekly (pw 

Temperature Monthly (tm) 
Temperature Weekly (tw) 
Moisture Monthly (mm) 
Moisture Weekly (mw) 
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METHODS 

 

Study Site 

The data for this study was collected from a converted silvopasture stand at Journagan 

Ranch in Mountain Grove, Missouri.  Journagan was donated to Missouri State University in 

2010. The 3300-acre ranch is in the heart of the Ozarks and includes many habitats such as 

grasslands, woodlands, and riparian areas.  The study area is in a valley that consists of open 

pastures, dense woodland, and glades as seen in Figure 2.  The five-acre stand was selected in 

2019 and is on a NW facing slope.  Soil in the converted stand is very rocky, increasing towards 

the southeast corner.  Species composition is diverse, including oaks (Quercus), hickories 

(Carya), walnuts (Juglans), ash (Fraxinus), dogwood (Cornus), redbud (Cercis), sassafras 

(Sassafrass), spicebush (Lindera), and buckbrush (Ceanothus).   

 

 

Figure 2. Journagan Ranch map (McCollum, 2021) 
 

The original thinning of the converted stand took place in 2019.  Prior to thinning, an 

inventory was done to determine the stocking level.  Trees were selected to be removed and a 
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bulldozer was used to extract trees, including roots.  After thinning, a secondary inventory was 

done.  With around 50% of the stand removed and 30% stocking remaining, the stand went 

from fully stocked to understocked, according to the Gingrich Stocking Chart (Gingrich, 1967).  

Once removed, the ground was smoothed and later seeded for fescue in 2020.  A timeline can 

be found in the Appendix (A-1). 

 

Ground Data 

Ground data was taken around three times per growing season, depending on weather 

conditions. These were July, August, and September. Data was taken systematically with five 

marked points for all 18 (.1 acre) plots in the stand as seen in Figure 3.  At these points, light 

intensity, soil moisture, and soil temperature were recorded. At the beginning and end of each 

row, full light intensity was recorded to have a baseline measurement. An Apogee Instruments® 

MQ-306 Line Quantum Photosynthetically Active Radiation sensor was used to measure light 

intensity, a Campbell Scientific® HydroSense II handheld soil moisture meter measured soil 

moisture, and a SpotOn® digital temperature probe measure soil temperature at all 90 points 

within the stand. Leaves in the upper canopy of marked trees in all 18 plots were extracted by 

shotgun and put into pressure chambers to record chlorophyll and water potential. Chlorophyll 

was measured using an Apogee Instruments MC-100 chlorophyll meter and was given a relative 

value based on greenness of the leaves.  Water potential in the leaves were measured using a 

PMS Instrument Company Model 600 pressure chamber. Water potential and chlorophyll data 

were entered into a datasheet for statistical analysis.  Annual inventories consisting of diameter 
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at breast height (DBH), basal area (BA), crown width, and crown density were also collected for 

annual growth comparisons.  

 

 

Figure 3. Layout of the 18 - .1-acre plots in the stand. The stand boundary is outlined in blue, 
and individual plots are outlined in red. Numbers represent the plot identification number.  
Each plot has five marked subplots, including the plot center, where ground data was taken 
(McCollum, 2021) 
 

Aerial Data 

Aerial data was collected using a Phantom 4 Professional Quadcopter Unmanned Aerial 

Vehicle (UAV). The drone was equipped with multispectral and remote sensing cameras 

including Micasence Red Edge-M, allowing for five bands: red, green, blue, red edge, and near 

inferred (NIR).  Arial data was recorded during full sun hours of the day (11am-1pm) on low 

wind, low cloud cover days.  The drone flew a predetermined pattern at 85 meters above 

ground with 80% forward and side overlap, resulting in around 25 images for every point on the 

ground.  Resolution for remote sensing images was 2.3 cm and multispectral images where 5.9 

cm. Markers were set in specific areas to use during later processing to ensure accuracy during 

modeling. Figure 4 shows the product of a drone flight, post processing. 
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Figure 4. Pictured is the canopy cover model for 2022 with .1-acre plots circled and a star 
representing approximate location of the weather station in the stand. 
 

Weather Station Data 

A weather station was positioned in the middle of the converted stand at Journagan 

Ranch.  The weather station collected data on temperature above and below ground, soil 

moisture, humidity, pressure, precipitation, and wind direction and speed. Due to issues with 

data collection and extraction from the Journagan weather station during certain time periods, 

data was also collected from a nearby weather station in Mountain Grove, about nine miles 

North of the stand location.  The Mountain Grove weather station is owned by the University of 

Missouri and is at the Fruit Experiment Station.   

 

Stand Model 

The stand model was created using both remote sensing and multispectral images 

extracted from the drone.  Sensors on the drone capture height of the canopy and ground 

layers by shooting lasers straight down and capturing time it takes to return to the drone.  

Differences in time are caused by canopy interactions with the laser and can then be used to 
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make canopy height or cover models.  The same interactions are done to record values for 

multispectral bands by determining what is being absorbed and reflected by the object the 

laser is interacting with. Images were then put into Agisoft Metashape PhotoScan where they 

were put through many processes to create the full stand model.  Metashape workflow, USGS 

Unmanned Aircraft Systems Data Post-Processing, was used to create the models, with minor 

alterations to account for noise reduction in the canopy (USGS, 2017).  Model creation in 

Metashape was done for remote sensing and multispectral images separately.  Products of each 

model were a digital elevation model (DEM), digital surface model (DSM), and an orthomosaic 

photo.  A processing workflow can be seen in Appendix B-1. 

 

Canopy Height Model (CHM) 

The canopy height model was created using DEM and DSM products from Agisoft 

Metashape.  These images were opened in ARCGIS Pro and clipped to the stand boundary.  

CHM was produced by subtracting DSM from DEM as seen in Figure 5. CHM calculation was 

done with a raster calculator and resulted in a model of just the canopy.  From the CHM 

product, canopy cover percentages for each plot were extracted.  The reclassify tool in ARCGIS 

was used to change all pixel values of the canopy image as either “1” or “NO DATA”.  

Reclassification of the CHM created a clipped polygon of the crown itself.  Plot boundaries were 

then added to the image and the sum of pixels in every plot was extracted using zonal statistics.  

To convert summed pixel values into percentages, reclassification was set to make all values 

equal “1”.  The number of pixels contained in every plot were recorded and became the 

baseline for percentages of crown cover per plot.  The baseline value for number of pixels per 
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plot was re-calculated for every data collection date due to slight changes in values between 

flights.  Changes in values between flights was likely due to variations in height of the drone 

over the plot from one flight to the next.  A workflow of the CHM process in ArcGIS Pro can be 

seen in Appendix B-2. 

 

    
A 

 

  
B 

 
 

C 

 
 

D 

Figure 5. Canopy Height Model (CHM) creation images. Image A, DSM (highpoints), minus B, 
DEM (Ground points), creates C, canopy height model. Image D is the reclassified polygon. 

 

Multispectral Indices 

The multispectral indices were extracted using the orthophoto derived from the MS 

stand model in Metashape.  The orthophoto was then put into ArcGIS Pro and red, blue, green, 

NIR, and red edge bands were extracted separately.  Raster calculations shown in Figure 6 were 

used to extract the remaining indices (NDVI (1), GNDVI (2), RENDVI (3)).  Once these were all 
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separate images, plot boundaries were included into the images.  Spatial analyst zonal statistics 

were performed on all images and averages were recorded for each plot. Full workflow for 

creating and extracting multispectral indices in ArcGIS Pro can be seen in Appendix B-3. 

 

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁   (1) 

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

=  𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (2) 

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

=  𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (3) 

Figure 6. Equations for multispectral indices (Iizuka et al., 2019).  Bands were respective of 
program band numbering used for the drone data and Landsat data. 

 

Statistical Analysis 

Statistical analysis of data was completed using R Studio Statistical Software.  Our 

variables of interest for predicting were chlorophyll (CH), water potential (WP), and cover 

percentage (Cover).  A stand level summary of ground data measurements for each data 

collection day can be viewed in Table 2.   

Seven sets of data (Table 3) were run with six types of variable combinations for each 

set. Variable combinations included: WP with ground data included (WGW), WP without 

ground data (NGW), WP with only multispectral data (MSW), and respectively for CH 

predictions (WGC, NGC, MSC).  The July data set was also run to predict cover percentage and 

had three additional sets for predicting cover (WGCover, NGCover, MSCover).   

As seen in Table 3, gray shaded boxes were not considered for specific models. August 

2020 data was corrupted and was therefore not included for the 2020 or 2020-2022 datasets.  
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Cover was only used for July with cover dataset. Landsat 9 satellite does not include sensors for 

Red Edge which also impacts availability of RENDVI data which was also not included in the 

model.  While cover was available for the Landsat dates based on our image collection, it was 

not publicly available data and was not considered in the Landsat model.   

 

Table 2. Summary Table including estimates of mean, min, max, and standard deviation for 
stand level ground data (CH, WP, Soil Moisture, Soil Temperature) for each collection date. 
(n=18).  

 

 
 

The first analysis step on individual, month-specific data sets was stepwise selection 

(Marhuenda et al. 2014).  Weather data was not considered in any month-specific analysis due 
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Table 3. The Table shows variables included prior to stepwise selection for all six data sets.  
Gray boxes symbolize factors that were not included in models for the specific data sets. 

 
 

to inability to run linear models on data with duplicated values.  Stepwise selection tests 

significance of independent variables in the model and how they relate to the dependent 

variable (Marhuenda et al., 2014). The remaining variables were put into the full model for the 

next step. Once significant variables were identified, month-specific linear models were run 

using the lm() function from the LMER package in R Studio (Bates et al., 2015). Results of the 

lm() function included p-values and adjusted-r2 values which were assessed for model strength.  

Workflow for multiple linear regression for month-specific data can be seen in Appendix B-4. 

Stepwise selection was also run first on yearly data sets from Table 3.  Once variables of 

interest were determined, mixed linear regression models were run from the LMER package 

using the lmer() function (Bates et al., 2015).  For mixed regression analysis, date was 

considered a random time variable.  Weather data was included prior to stepwise selection, but 

not significant enough to be included for most mixed models. Once mixed models were 

complete, summary data including p-values were obtained.  Residual plots were then created 

and extracted from R Studio.  In these models, p-values under .05 indicate significance for 
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individual variables.  P-values between .05 and .1 indicate marginal significance.  Workflow for 

mixed regression models can be seen in Appendix B-5. 

Leave one out cross validation was then run on the models to determine their ability to 

predict values not included in observations.  Cross validation removes observation specific 

effects that could cause bias in the model.  The result is a percentage error showing precision of 

the model predictions for a set of data not used in formulation of the model versus actual 

measure values for that same dataset.  This was done by randomly splitting the dataset into 

training and testing models. Predictions from the testing dataset were then preformed.  Glm() 

function was used, from the Boot package, and cross validation error was extracted from the 

results (Davison and Hinkley, 1997).   Cross validation errors for all models were compared to 

look for predictability based on the model.  

 

Landowner Modeling System 

A landowner modeling system was developed using information that is publicly available 

for landowners to freely access. Information for the landowner model was extracted from 

Landsat 9 and a University of Missouri weather station.  Landsat 9 is not equipped to capture 

Red Edge band, which excludes RENDVI and Red Edge raster values from the model. Canopy 

cover is available through Landsat Cover Analysis but is not calculated annually and was 

therefore not used for the landowner model. ArcGIS was used for the model as well to 

duplicate the process of the rest of the models on this project.  The landowner model was 

designed for individuals who do not have the ability to use a drone or weather station can do to 

capture and predict canopy closure and stress levels on their stands. Data used for these 



   
 

21 

models were taken on dates close to the July 2020-2022 dates which allowed for comparisons 

between drone and satellite data.  Using these similar images, it can be determined how 

accurately plant stress metrics can be predicted with publicly available information.  For a 

landowner to predict stress in their own stands, ground measures of CH and WP would be 

needed for model training.  The statistical software, R Studio, is available to the public for free 

downloading and usage.  

 

Study Limitations 

One limitation stated previously is inability to use climate metrics that were collected 

from the weather station directly in the stand.  This was due to missing dates.  While the 

weather station that was used had similar values, they were all higher and could have been why 

climate metrics are not significantly used in any models.   

Potential causes of error with the landowner model included changes in raster cell sizes 

from drone data to satellite data.  The drone has a resolution of 6cm while the satellite’s lowest 

band resolution is 15m.  Inability to extract RedEdge and RENDVI values from Landsat data was 

a limitation, but these covariates were excluded for the July comparison model. However, with 

future Landsat Missions, these indices may be available. Another limitation with the Landowner 

model is inability to get images from the exact same day and time as drone collected data.  

Satellite images were chosen based on date proximity and clarity.  

The cover models and cover prediction models were also limited on accuracy of the 

cover models due to movement of the canopy creating noise in the dataset and inability to 

capture every leaf on the trees.  Days were selected to reduce noise by wind and cloud cover, 
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and the same processing was performed when removing noise from the models to ensure 

adequate detection of growth changes.  The thinning model was also limited to using plots 

experiencing increases in crown cover.  This reduced sample size when developing the growth 

prediction model and did not account for natural mortality in the canopy.   
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RESULTS 

 

Climate Stress Models 

2020. From the July month-specific multiple regression model, majority of p-values for 

water potential were significant and adjusted-r2 was relatively high. The chlorophyll model had 

low significance of variables with only one variable having a p-value below .05 for both the 

model including and excluding ground data. Adjusted-r2 was also low for the chlorophyll model. 

The September 2020 model for water potential had no p-values under .05 and had a low 

adjusted-r 2. The chlorophyll model for September did improve with an adjusted-r2 of 47% 

without ground data and 52% with ground data included. P-values were only significant in the 

model excluding ground data.  

The full 2020 data was put into three mixed models for predicting WP and CH: all 

variables (WGW and WGC), no ground data (NGW and NGC), and MS data only (MSW and 

MSC).  When looking at p-values, there was overall low significance for covariates among all 

models when compared to later models as seen in C-1 through C-6 of the Appendices. The 

model with highest significance, relative to p-values, for water potential was the WGW model. 

The chlorophyll model with highest significance was the MSC model. According to Table 4, the 

NGC model was the same as MSC due to including the same variables, excluding weather data. 

Variable selection among chlorophyll models stayed consistent, using NIR, RedEdge, and NDVI 

in every model. For WG and NG models, weather station data was included, but was eliminated 

in the stepwise selection process for all models except the model including ground data for CH.  

The CH model only used month-long pressure average, and it was deemed to have marginal 
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significance indicating that it does not have a strong influence in prediction of CH. In models 

including ground data, moisture and temperature were used every time. P-values for these 

models can be seen in Table 4. 

 

Table 4. Mixed regression model p-values for the variables used to predict water potential and 
chlorophyll from the lmer() function of the LMER package in R Studio (Bates et al. 2015) using 
the 2020 data. Predictions models were created using ground data (WGW and WGC), excluding 
ground data (NGW and NGC) and multispectral data only (MSW and MSC). P-values with two 
stars (**) indicate significance (p-value < .05). P-values with a single star (*) indicate marginal 
significance (p-value < .1).   

 Water Potential Chlorophyll 

Coefficiant WGW NGW MSW WGC NGC MSC 

intercept 0.7140* 0.7443 0.0001** 0.0563* 0.0000** 0.0000** 

Red  0.1137     

Blue     0.1073 0.1073 

Green  0.0561*     

NIR 0.0530*   0.0011** 0.0003** 0.0003** 

RedEdge 0.0510*  0.0909* 0.0021** 0.0005** 0.0005** 

NDVI 0.0447** 0.1060  0.1601 0.1583 0.1583 

GNDVI 0.1207 0.0546*     

RENDVI   0.0879*  0.0005** 0.0005** 

Moisture 0.0005**   0.0022**   

Temperature 0.0014**   0.1474   

Pressure M    0.0606*   

Pressure W       

Temperature M       

Temperature W       

Moisture M       

Moisture W       
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The residual plots for 2020 models can be seen in Figure 7. When looking at residuals, 

we can assume that the data is normal due to lack of heteroscedasticity or bias in the plots. 

While margins of residual values on the y axis are not large, residual points within the plot are 

not as tightly clustered about the zero-line, indicating that predictions were not as strong as 

they could be. When comparing models that included ground data (A and D) excluded ground 

data (B and E) and multispectral only (C and F), there is no obvious change in predictability as 

they all have similar shapes and scatter of residuals along the x and y axes.  

 

Figure 7. These are the residual plots for the 2020 model.  Plots A, B, and C are predicting water 
potential in bars and plots D, E, and F are predicting chlorophyll. Plots A and D include ground 
data, B and E do not include ground data, and C and F include only multispectral data. 
 

2020-2022. For the multiple linear regression model, individually looking at each month, 

adjusted-r2 WP for most months was under 50% and CH percentages did not exceed 70%.  For 

month-specific models, 60% of variables were considered at least marginally significant in 

individual models. 40% of variables that remained in the model after stepwise selection were 

not significant enough to contribute greatly to the model. Covariates selected to stay in the 
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model most often were red and green bands.  Ground variables, moisture and temperature, 

were only included half of the time.  

When comparing models based on significance of p-values alone from the mixed model, 

there was high significance for most variables across all models as seen Table 5. For 

multispectral variable selection when predicting water potential, red band, NIR and NDVI were 

used for all models. When looking at chlorophyll, red band, blue band, green band, NIR, NDVI, 

and GNDVI were included in every model. 

The residual plots for mixed models of predictions based on the 2020-2022 models 

(Figure 8) show relatively similar patterns and margins, when compared to the 2020 residual 

plots in Figure 7. With inclusion of more points, but no obvious change in residual margins, it 

can be inferred that the model is becoming stronger with inclusion of more data. This is 

because additional residual points are clustered about the zero line tighter, which means 

predictions were closer to the actual value. An increase in residual margins would indicate 

prediction potential is not changing or getting worse with more data. Predictions for WGW are 

more spread out across the x axis, however, remain close to the zero-line.  

Leave one out cross-validation is a test of the models' ability to predict values from a 

dataset that were not included in model creation.  Error is determined by percent change from 

the actual, measured, value to the predicted value based on the model equation.  When 

comparing cross-validation error percentages (Figure 9) for the models including only one year 

(2020) and three years (2020-2022), it was evident that three years had less error in the 

prediction calculations for both chlorophyll and water potential. For water potential 
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predictions, models including ground data (WG) had a lower percentage error. However, for 

chlorophyll predictions, ground data increased percentage error.   

 

Table 5. Mixed regression model p-values for the variables used to predict water potential and 
chlorophyll from the lmer() function of the LMER package in R Studio (Bates et al. 2015) using 
the 2020-2022 data. Predictions models were created using ground data (WGW and WGC), 
excluding ground data (NGW and NGC) and multispectral data only (MSW and MSC). P-values 
with two stars (**) indicate significance (p-value < .05). P-values with a single star (*) indicate 
marginal significance (p-value < .1).   

 Water Potential Chlorophyll 

Coefficiant WGW NGW MSW WGC NGC MSC 

intercept 0.01917** 0.0006** 0.1375 0.0741* 0.0051** 0.0051** 

Red 0.0050** 0.0053** 0.0062** 0.0000** 0.0004** 0.0004** 

Blue    0.0188** 0.0732 0.0732 

Green    0.0000** 0.0000** 0.0000** 

NIR 0.0085** 0.0106** 0.0117** 0.0000** 0.0000** 0.0000** 

RedEdge       

NDVI 0.0267** 0.0430** 0.2470 0.0001** 0.0001** 0.0001** 

GNDVI   0.0649 0.0000** 0.0000** 0.0000** 

RENDVI       

Moisture 0.0000**      

Temperature 0.0000**   0.0159**   

Pressure M  0.0001**     

Pressure W  0.0331**  0.0396**   

Temperature M       

Temperature W       

Moisture M 0.0000** 0.0258**     

Moisture W       
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Figure 8. These are the residual plots for the full 2020-2022 model.  Plots A, B, and C are 
predicting water potential in bars and plots D, E, and F are predicting chlorophyll. Plots A and D 
include ground data, B and E do not include ground data, and C and F include only multispectral 
data. 

 

 

Figure 9. Cross Validation Error Percentage when predicting water potential (WP) and 
chlorophyll (CH) for 2020 and 2020-2022 data.  WG = all variables, NG = without ground 
measurements, MS = multispectral indices only. 
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July No Cover. When looking at p-values (Table 6) from mixed regression of the July 

dataset, not including cover, all models showed high significance for individual variables. Every 

variable included in the models after stepwise selection had a p-value of less than .05. Across all 

models for July No Cover models, the most used covariates after stepwise selection were the 

green band, GNDVI, and RENDVI. These indices were kept in the final models after stepwise 

selection 67% of the time. Temperature was included in every model that it was available.  

The residuals for these models (Figure 10) continue to show similar patterns as previous 

residual plots. Margins for the residual points for both water potential and chlorophyll are 

smaller, as the points are clustered tighter about the zero-line. These plots continue to support 

assumptions that the model does not have any issues with bias or non-linearity. Like the 2020-

2022 residual plots in Figure 9, the WGW plot continues to be stretched further on the x axis.  

The comparison of percent error from cross validation of the 2020-2022 models and the 

July no cover models in Figure 11, July no cover had a lower percentage error in making 

predictions for water potential and chlorophyll. The pattern of ground data increasing the 

ability for the model to predict water potential accurately and decreasing accuracy for 

chlorophyll continues with July no cover model.  
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Table 6. Mixed regression model p-values for the variables used to predict water potential and 
chlorophyll from the lmer() function of the LMER package in R Studio (Bates et al. 2015) using 
the July no cover data. Predictions models were created using ground data (WGW and WGC), 
excluding ground data (NGW and NGC) and multispectral data only (MSW and MSC). P-values 
with two stars (**) indicate significance (p-value < .05). P-values with a single star (*) indicate 
marginal significance (p-value < .1).   

 Water Potential Chlorophyll 

Coefficiant WGW NGW MSW WGC NGC MSC 

intercept 0.0005** 0.0287** 0.0287** 0.0374** 0.0062** 0.0062** 

Red    0.0117**   

Blue  0.0028** 0.0028**    

Green 0.0072**   0.0045** 0.0054** 0.0054** 

NIR 0.0073**   0.0161** 0.0048** 0.0048** 

RedEdge  0.0004** 0.0004**    

NDVI    0.0074**   

GNDVI 0.0049** 0.0024** 0.0024** 0.0084**   

RENDVI  0.0034** 0.0034**  0.0423** 0.0423** 

Moisture 0.0032**      

Temperature 0.0001**   0.0189**   

Pressure M 0.0000**      

Pressure W 0.0012**   0.0381**   

Temperature M       

Temperature W       

Moisture M       

Moisture W       
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Figure 10. These are the residual plots for the July 2020-2022 model not including cover.  Plots 
A, B, and C are predicting water potential in bars and plots D, E, and F are predicting 
chlorophyll. Plots A and D include ground data, B and E do not include ground data, C and F. 
 

 

Figure 11. Cross Validation Error Percentage for all data sets from 2020-2022 and only July data 
sets from 2020-2022 for water potential (WP) and chlorophyll (CH) predictions.  WG = all 
variables, NG = without ground measurements, MS = multispectral indices only. 
 

 

July with Cover. The mixed regression model for the July data from 2020-2022 including 

cover had p-values that were all less than .05 as seen in Table 7. Percentage canopy cover was 
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added in these models to assess the influence on cover percentage on prediction capability of 

the models. Cover was eliminated during stepwise selection in all WP models, but kept in CH 

models. Water potential models remained the same as the July without cover models (Table 6). 

Cover was also used as a dependent variable and did have significant covariates as seen in Table 

8. For the July model including cover, variables kept in the full models most often were NIR and 

GNDVI.  In models including temperature and moisture, temperature was used in both the 

WGW and WGC models and moisture was used in only the water potential model. 

The residuals for the models (Figure 12) for water potential remain the same as 

previously viewed residuals for no cover data (Figure 10). For chlorophyll models, residual plots 

had very little change with inclusion of cover. The residual points are slightly more spread out 

when cover is included. In Figure 13, cover prediction residuals appear fairly scattered with 

large margins.  This shows that cover is not being accurately predicted in this model. 

As previously mentioned, the water potential models between the July models including 

and excluding cover used the same variables and therefore have the same cross validation 

percent error (Figure 14). When looking at chlorophyll models, use of cover in the models did 

slightly help reduce error for this set of models. The same pattern does continue with ground 

data hindering the ability of chlorophyll to be predicted. As expected, cover prediction cross 

validation error in Figure 15 is extremely high.   
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Table 7. Mixed regression model p-values for the variables used to predict water potential and 
chlorophyll from the lmer() function of the LMER package in R Studio (Bates et al. 2015) using 
the July with cover data. Predictions models were created using ground data (WGW and WGC), 
excluding ground data (NGW and NGC) and multispectral data only (MSW and MSC). P-values 
with two stars (**) indicate significance (p-value < .05). P-values with a single star (*) indicate 
marginal significance (p-value < .1).   
 Water Potential Chlorophyll 

Coefficiant WGW NGW MSW WGC NGC MSC 

intercept 0.0005** 0.0286** 0.0286** 0.0362** 0.010** 0.0080** 

Red    0.0531*   

Blue  0.0028** 0.0028**    

Green 0.0072**   0.00953** 0.0016**  

NIR 0.0073**   0.0150** 0.0014**  

RedEdge  0.0004** 0.0004**    

NDVI    0.0203**   

GNDVI 0.0049** 0.0024** 0.0024** 0.0205**  0.0028** 

RENDVI  0.0034** 0.0034**  0.1061 0.09729* 

Cover    0.0131** 0.0133** 0.0151** 

Moisture 0.0005**      

Temperature 0.0032**   0.0124**   

Pressure M 0.0000**      

Pressure W 0.0012**   0.0363**   

Temperature M       

Temperature W       

Moisture M       

Moisture W       
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Table 8. Mixed regression model p-values for the variables used to predict cover percentage 
from the lmer() function of the LMER package in R Studio (Bates et al. 2015) using the July 
2020-2022 data. Predictions models were created using ground data (WG), excluding ground 
data (NG) and multispectral data only (MS). P-values with two stars (**) indicate significance (p-
value < .05). P-values with a single star (*) indicate marginal significance (p-value < .1).   

 Cover 

Coefficiant WG NG MS 

intercept 0.0521* 0.0521* 0.3606 

Red 0.0005** 0.0005** 0.0457** 

Blue    

Green   0.0918* 

NIR 0.0169** 0.0169**  

RedEdge    

NDVI   0.1210 

GNDVI   0.0588* 

RENDVI    

Moisture    

Temperature    

Pressure M .0505** .0505**  

Pressure W    

Temperature M    

Temperature W    

Moisture M    

Moisture W    
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Figure 12. These are the residual plots for the July 2020-2022 model including cover.  Plots A, B, 
and C are predicting water potential in bars and plots D, E, and F are predicting chlorophyll. 
Plots A and D include ground data, B and E do not include ground data, and C and F include only 
multispectral data. 
 

 
Figure 13. These are the residual plots for the July 2020-2022 model predicting cover. Plots A 
includes ground data, B does not include ground data, and C includes only multispectral data. 
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Figure 14. Cross Validation Error Percentage for July data sets from 2020-2022 with and without 
the inclusion of cover for water potential (WP) and chlorophyll (CH) predictions..  WG = all 
variables, NG = without ground measurements, MS = multispectral indices only. 
 

 

Figure 15. Cross Validation Error Percentage for cover predictions for July 2020-2022 data.  WG 
= all variables, NG = without ground measurements, MS = multispectral indices only. 

 

July Landsat Comparison. The July dataset was used for these models, excluding cover, 

red edge, and RENDVI to allow for a direct comparison with Landsat satellite models. P-values 
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for variables used to predict water potential were all significant. The chlorophyll models only 

using multispectral data did have less significance. For both predictions, WG models had higher 

significance as seen in Table 9. Variables kept in the equation after stepwise selection most 

often were NIR and GNDVI for the July Landsat comparison models, both being used in all 

models. Temperature was used every time that it was available, but moisture was only used for 

WP prediction modeling. 

 

Table 9. Mixed regression model p-values for the variables used to predict cover percentage 
from the lmer() function of the LMER package in R Studio (Bates et al. 2015) using the July 
Landsat comparison data. Predictions models were created using ground data (WG), excluding 
ground data (NG) and multispectral data only (MS). P-values with two stars (**) indicate 
significance (p-value < .05). P-values with a single star (*) indicate marginal significance (p-value 
< .1).   

 Water Potential Chlorophyll 

Coefficiant WGW NGW MSW WGC NGC MSC 

intercept 0.0005** 0.2013 0.2013 0.0374** 0.7913 0.7913 

Red    0.0117** 0.0586* 0.0586* 

Blue  0.0358** 0.0358**    

Green 0.0072**   0.0045** 0.0278** 0.0278** 

NIR 0.0073** 0.0052** 0.0052** 0.0161** 0.0885* 0.0885* 

NDVI    0.0074** 0.0705* 0.0705* 

GNDVI 0.0049** 0.0422** 0.0422** 0.0084** 0.0733* 0.0733* 

Moisture 0.0032**      

Temperature 0.0001**   0.0189**   

Pressure M 0.0000**      

Pressure W 0.0012**   0.0381**   

Temperature M       

Temperature W       

Moisture M       

Moisture W       
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The residual plots remained similar to previous July model residual plots. The WGW plot 

continues to be stretched further across the x axis showing a larger range of predicted values 

(Figure 16). Chlorophyll models all remain similar with the ground data causing a slight wider 

spread of residuals. 

 

 
Figure 16. These are the residual plots for the July 2020-2022 model not including cover, red 
edge, or RENDVI.  Plots A, B, and C are predicting water potential in bars and plots D, E, and F 
are predicting chlorophyll. Plots A and D include ground data, B and E do not include ground 
data, and C and F include only multispectral data. 

 

LandSat. The variables used after stepwise selection to create predictions for the 

satellite captured Landsat data were very limited and showed little consistency in variable 

selection as seen in Table 10. Variables that were kept in the equation for water potential 

predictions showed high significance. The chlorophyll prediction model including ground (WGC) 

also showed high significance, but the multispectral model had only marginal significance. 

During stepwise selection for WP models, all Landsat satellite data was excluded when ground 

variables were available. In models excluding ground data, only NDVI showed significance in 
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predicting water potential. All three chlorophyll models were consistent in using blue and green 

bands.  

 

Table 10. Mixed regression model p-values for the variables used to predict cover percentage 
from the lmer() function of the LMER package in R Studio (Bates et al. 2015) using the Landsat 
data. Predictions models were created using ground data (WG), excluding ground data (NG) and 
multispectral data only (MS). P-values with two stars (**) indicate significance (p-value < .05). P-
values with a single star (*) indicate marginal significance (p-value < .1).   

 Water Potential Chlorophyll 

Coefficiant WGW NGW MSW WGC NGC MSC 

intercept 0.0002** 0.0000** 0.0000** 0.5139 0.4081 0.4081 

Red    0.0161**   

Blue    0.0236** 0.0626* 0.0626* 

Green    0.0036** 0.4660 0.4660 

NIR    0.0163**   

NDVI  0.0054** 0.0054**    

GNDVI       

Moisture 0.0063**   0.0310**   

Temperature 0.0001**      

Pressure M 0.0003**      

Pressure W 0.0001**      

Temperature M       

Temperature W       

Moisture M       

Moisture W       

 
 

Although there were a limited number of variables used in prediction models for water 

potential and chlorophyll, the residual plots are relatively strong and show no issues within the 

data itself such as outliers or sways. When compared to July drone derived Landsat comparison 
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residual plots in Figure 17, there are very similar patterns, and the satellite residuals are tighter 

about the zero-line. 

       

 

Figure 17. These are the residual plots for the Landsat 2020-2022 model.  Plots A, B, and C are 
predicting water potential in bars and plots D, E, and F are predicting chlorophyll. Plots A and D 
include ground data, B and E do not include ground data, and C and F include only multispectral 
data. 

 

The landowner prediction model created through Landsat images resulted in a very 

similar, strong model when compared to the July LS model with the same available variables, 

before stepwise selection (Figure 18).  The Landsat model included less variables in model 

equations but had a slightly lower cross validation error for both CH and WP predictions. The 

decrease in error was most likely due to consistency of satellite imagery across all three 

growing seasons.  
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Figure 18. Cross Validation Error Percentage for drone derived July datasets from 2020-2022 
and Landsat derived July datasets from 2020-2022 for water potential (WP) and chlorophyll 
(CH) predictions.  WG = all variables, NG = without ground measurements, MS = multispectral 
indices Only. 

 

Crown Cover Modeling 

From year one to year two, 13 of the 18 plots experienced positive growth with an 

average of 9% growth. From year two to year three, 14 plots experienced an average of 23% 

growth. These changes across the stand can be seen in Figure 19. With an average yearly 

growth of 16%, an equation was formed to predict the years till 60% and 40% canopy cover 

within each plot for each year. The average predicted time for each plot to get to 60% cover 

from their year one canopy cover percentage was 9.5 years, year two was 9.2 years, and year 

three was 7.5 years. With an average of 16% growth for each year, it was expected that it 

would take an average of 7 years from initial thin to reach 60% cover based on Figure 12. For 

40% cover, the same process was done. Average predicted time from the first year of data to 

40% cover was 5.4 years, the second year of data was 5.2 years, and the third year was 4.7 
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years, with an average of five years from initial thin to 40%. Growth predictions based on 16% 

yearly growth can be seen on the graph in Figure 20.   

 

 
Figure 19. Changes in canopy cover from year one to year three across all 18 plots in the 
converted stand.  
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Figure 20. Average canopy cover prediction for the stand from 2020 to 2027 for an average 
growth of 16% per year.  
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DISCUSSION 

 

Climate Stress Models 

2020. The 2020 model was calculated using only July and September data for the year.  

Upon viewing, the August multispectral data was corrupted.  After recalculation, it was 

determined that errors were likely due to a defect in images for the August collection date.  As 

expected, accuracy of models using only July and September of 2020 was low when compared 

to other models.   

Looking specifically at results of the July and September multiple regression models, it 

could be inferred that water potential was not properly captured for the month of September. 

Limitations within our data collecting tools could be the reason for lack of significant variables 

and low adjusted-r2. Leading up to the September flight, the stand experienced drought 

conditions. It is possible that water potential exceeded what was able to be detected with the 

equipment used in this study.  The CH model, however, did show more significance within the 

individual variables and a higher adjusted-r2.  

For the 2020 mixed regression water potential models, covariate significance improved 

when ground data was added into the model (Table 4). This indicates that with only two 

months of data, soil moisture and temperature are required to produce useful prediction 

models. Chlorophyll prediction models did continue to show significance in covariates even 

when ground data was not present, showing that the relationship between chlorophyll and 

multispectral bands such as NIR and RedEdge, have a strong relationship.  
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Even with predictively weak water potential model for September, residual plots for 

these models did show predictability potential (Figure 7). While it is not tight in relation to 

residuals for other models, random scatter and even points above and below the zero-line for 

both water potential and chlorophyll residual plots give indication that with more data, 

strength could be improved. The WGW and MSC plots that were stronger models for p-values 

did prove to have the most linearity for residuals as well.  While p-values and residuals for only 

one year of data did show significance and ability to predict, when looking at Appendix C, these 

models did have the highest percentage error across all models for this study.   

2020-2022. The full 2020-22 model was developed using all six of the collection dates 

from July of 2020 to July of 2022, excluding the 7th date, August of 2020 due to errors in values 

as previously stated.   

For mixed regression models, stepwise selection was performed to identify which 

variables would create the strongest prediction model. Multispectral variables included in all 

models, red band, NIR, and NDVI, reflect what would be expected to have a relationship with 

water potential and chlorophyll. When given the option to include soil moisture for chlorophyll 

prediction, it was removed during stepwise selection. This indicated that soil moisture and 

chlorophyll did not have a strong enough relationship to create predictions.   

When looking at p-values for 2020-2022 models (Table 5), most values for individual 

covariates were highly significant. For water potential models, p-values remained significant 

when ground data was included. MSW values showed less significance in the model, but when 

compared to 2020 water potential models, there was an improvement in covariate significance 

without the need for soil moisture and temperature. Soil moisture was consistently removed 
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during stepwise selection for all chlorophyll prediction models. This indicates that while soil 

moisture and chlorophyll do have a relationship in the process of photosynthesis, the 

relationship is not strong enough to use in predictions.  

When viewing residual plots, all three CH models are similar and remain evenly 

distributed about the zero-line indicating no bias issues (Figure 8).  It can also be assumed that 

there is homogeneous error as there is no significant increase to the spread of residuals with an 

increase or decrease of prediction values. The observed grouping of residuals is expected, as CH 

is a variable with a narrow range of recorded values. WP models show less grouping and more 

linearity of residuals, with the strongest being models excluding ground data. WGW had the 

widest range of predictions but remains close to the zero-line indicating strong predictions.  

From the cross-validation error figure for 2020 and 2020-2022 data (Figure 9), it is 

obvious that inclusion of more years of data reduce error for water potential predictions. When 

predicting chlorophyll, based on this Figure, error decreases with inclusion of ground data, 

while water potential prediction error decreases with exclusion of ground data. 

July No Cover. The July no cover model was created to look at a direct comparison 

between using only one month of data for every year, versus multiple months of data for mixed 

regression models.   

After stepwise selection, many variables were included in the model (Table 6). For most 

models, green and NIR bands, along with MS indices GNDVI and RENDVI were included in the 

predictions. This is continues to show the relationship of light reflectance and absorbance in 

water potential and chlorophyll prediction. The strong relationship for stress identification in 
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trees with these indices have been found in other studies looking at drought response and 

chlorophyll content (Raddi et al., 2021). 

When looking at the significance of the covariates of mixed models, p-values for WP, the 

MSW model had the highest percentage of significant variables. The prediction equation using 

all variables for CH (WGC) had the most significant correlation of covariates for chlorophyll 

models. When comparing the full 2020-2022 models and July only models, p-values for 

covariates improved using only one date per year. This is likely due to reducing seasonal stress 

changes over the growing period by focusing on one specific month rather than a whole 

growing season. 

Looking at residual plots in Figure 10, the WGW model has the strongest plot for 

predicted water potential with no obvious grouping or swaying of residuals and shows the 

ability to predict a wider range with added ground data while keeping error the same across the 

points. The CH models do have slight grouping of residuals, regardless of the inclusion of 

ground data, and prediction potential remains consistent throughout the three model types.  

The cross-validation figure, comparing the July only and 2020-2022 models show an 

increase in error percentage with an increase in collection dates for one year (Figure 11). From 

this figure, it can be inferred that while ground data inclusion helps with water potential 

prediction, accuracy of the prediction model is still higher with just one day of multispectral 

data a year. For chlorophyll predictions of these models, percent error was lowest using only 

multispectral data for the July only models. From this study, it can be inferred that just one day 

of multispectral data for both water potential and chlorophyll will give strong predictions.  
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July With Cover. The July 2020-22 models including cover were used to show effects on 

the model when cover is available as a predictor variable and how well multispectral and 

ground data can predict cover.  Only July collection dates were included for the model due to 

inability to see changes in canopy cover percentages from month to month both due to noise 

and lack of visible change within the growing season.  Leaves moving in the canopy during 

drone data collection create noise in the image, which was later removed through processing 

steps.  Therefore, different growing season changes are more likely to have a higher degree of 

accuracy and change.  Even with a year's difference, there are many factors that can affect the 

percentage that we see, such as minute changes in height the drone is flew, movements in 

leaves, and general noise in the images.    

For this data set, cover was included as a potential variable for every model prior to 

stepwise selection. After stepwise selection, it was only kept in models predicting chlorophyll 

(Table 7). Since cover was not used for water potential, water potential will be left out of this 

discussion section. The chlorophyll cover relationship is likely because more leaves in the 

canopy would indicate more chlorophyll present. For these models, GNDVI was included in 

almost every model. For the cover prediction models created with this dataset, red band and 

NIR were used most often (Table 8).  

When looking at p-values for chlorophyll, and cover, almost all covariates included in 

the models showed significance, including cover.  When looking at residual plots in Figure 12 

the CH plots do have grouping similar to other models, but show very little bias.  This inclusion 

of cover or ground data did not change overall shape or prediction potential according to 

residual plots. Residuals for cover prediction in Figure 13 all have wide margins and no 
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grouping. This is likely due to variation in percentages of canopy cover in each plot and would 

require more years of data to strengthen the model. Based on these plots, there was no change 

with inclusion of ground data.   

The cross-validation error percentages for chlorophyll predictions slightly increase with 

inclusion of cover data (Figure 14). This could have been caused by variation in percent cover 

from plot-to-plot related to factors outside of this study such as death in the canopy, size of the 

trees, and presence of trees. This model may be more useful in an even-aged, pure plantation 

stand that would have less variation from plot to plot. Cover prediction cross validation was 

very high and accounts for the many outside factors mentioned above (Figure 15). 

July Landsat Comparison. The July Landsat Comparison models were created for a direct 

comparison with publicly accessible Landsat and weather station data. This dataset is a 

duplicate of the July no cover dataset but excludes RedEdge and RENDVI from the model prior 

to stepwise selection.  

The multispectral variables included in the model after stepwise selection remained the 

same throughout all three chlorophyll models and included red and green bands, NIR, NDVI, 

and GNDVI (Table 9). The WGC model also included temperature and one weather station 

variable. Water potential models all included NIR and GNDVI in the models. These are similar to 

all previous models.  

The p-values for water potential models were all significant and chlorophyll models 

were all at least marginally significant. All water potential models seem to be even in their 

strength based on number of significant variables in relation to available variables prior to 
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stepwise selection. The WGC model, however, is clearly strongest for chlorophyll predictions 

based on individual covariates.   

July’s Landsat comparison residual plots (Figure 16) for water potential using all three 

model types appear evenly distributed about the zero-line showing absence of bias and 

linearity issues within the model. Inclusion of ground variables for water potential (WGW) 

created a more linear pattern while maintaining the same assumption of constant error 

variance. This indicates that ground data allows for a wider range of predictions than with only 

multispectral data. This would likely result in slightly better predictions. For chlorophyll plots, 

general grouping seen in all previous CH models can be seen and residual points are even on 

top and bottom indicating a strong prediction model.  

Landsat. Landowner models included data only for July from 2020-2022. Dates were 

selected to be as close to the actual drone collected dates as possible. Data extracted from 

Landsat was used and compared to drone collected data. Images went through the same 

processing as drone collected data in ArcGIS. Weather information was derived from the 

weather station in Mountain Grove that previous datasets have included. Ground 

measurements, temperature and moisture did come from the drone datasets to use as a 

control for the model in the all variables models.  Model training predictor variables, WP and 

CH, were used from the July months datasets.   

From a side-by-side comparison for individual multispectral indices, Landsat data did 

have consistently higher values.  Similarity of the values resulted in similar prediction models to 

the drone collected data.  
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During stepwise selection process, many of the variables were excluded from the final 

models. Chlorophyll prediction models continually kept the blue band and green band in the 

models, and water potential models excluded all multispectral data for the WGW model and 

only kept NDVI for the NGW and MSW models.  

While this could mean that data from the Landsat satellite covariates were not strongly 

related to the chlorophyll and water potential variables, the high number of significant 

variables, of variables left in the models, indicate otherwise (Table 10). When looking only at p-

values it could be inferred that NG and MS only models for both water potential and 

chlorophyll would be unable to make predictions based on the lack of significant variables in 

the models.  

When looking at residuals (Figure 17) only, it appears to be normal and very similar to 

the previous residual models including ground data being able to extend the range of 

predictions for water potential and chlorophyll being relatively tightly grouped. Both water 

potential and chlorophyll residual points are closer together than previously mentioned 

residual models (Figure 16) of the comparison model indicating less variability in predicted 

values. 

The cross-validation percentage for the Landsat and Landsat comparison model (Figure 

18) also helps to re-enforce the idea that lack of variables can still create strong models for 

prediction. This figure shows that percentage error for cross-validation for both drone derived 

models and Landsat models are very similar.  Landsat cross validation error percentages are 

slightly lower for all of the models. While this could be due solely to consistency of the satellite, 

this could also be due to inability for Landsat to capture at the same level of precision as the 
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drone, causing each plot to have less variability in multispectral bands and indices compared to 

the drone model. There have been other studies conducted using Landsat-based multispectral 

imagery to extract bands, looking at the ability to quickly assess plant health with satellite data 

that have concluded that this is one step in the right direction, but there is still room for 

improvements and advancements (Gillani et al., 2023).  

 

Model Type Comparison 

For our three model types, with ground, no ground, and multispectral only, the with 

ground variable predictions for WP (WGW) were slightly stronger than no ground (NGW) and 

multispectral only (MSW) for most models.  The CH predictions decreased in model strength 

with the inclusion of ground data..  Using only multispectral variables will give relatively low 

error predictions for both predictions of WP and chlorophyll.  Previous studies have been 

successful in predicting water stress in orchards using only multispectral imaging and looking at 

narrow bands using a photochemical reflective index (Suarez et al., 2011).  By evaluating p-

values for all models (Appendices C-1 through C-6) and cross-validation error for all models 

(Appendix D-1) it can be determined that using multispectral variables only will result in 

relatively strong models with multiple years of data. This will result in faster data collection and 

less field days.  

 

Thinning Prediction 

The canopy heights were only compared for July dates due to inability to see 

measurable month to month changes.  In post processing of the images, noise was deleted 
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from the images.  Noise commonly includes leaves in the canopy if they move during the drone 

flight.  Even with mild filtering, allowing for noise, and low wind days, many of these points are 

deleted reducing the number of useable data points. While canopy was not as full in the images 

as it was in real life, growth predictions can still be done when comparing images that all went 

through the same filtering processes.   

Growth predictions were created by a simple model of average percent change by plot 

from year to year.  Some plots did have negative growth, or a decrease in canopy cover.  

Negative values could be due to changing conditions during the flight and noise in the images. 

For some plots, there were verifiable decreases due to death, such as ash trees in plots affected 

by the Emerald Ash Borer (Agrilus planipennis) and some trees injured during the thinning 

operation in 2020.  For the purposes of the model, negative percent change values were 

excluded.   

Model predictions indicate that the crown cover of the stand will increase by an average 

of 16% per year. This means that when the stand reaches a minimum of five years and a 

maximum of seven years after the initial thin, a thinning operation needs to take place to allow 

for 40% to 60% light into the understory (Figure 20). This coincides directly with the USDA 

Forest Services Working Trees Silvopasture brochure which recommends thinning every 5-7 

years for cool season grasses (USDA, 2008).  This will facilitate continued growth of cool season 

grasses in the understory which will maintain rich forage for cattle to graze in the silvopasture 

system.  This calculation is based on average growth of the stand and does not account for 

death or decreases in the plots. This calculation also does not account for other factors 

contributing to rate of canopy closure. Slowed expansion due to decrease of space in the 
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canopy will likely not be a factor for most plots if percent cover remains under 60%.  The trees 

should not reach a point where they have limited room for canopy growth.  
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CONCLUSION 

 

Multispectral and remote sensing data can be used to create prediction models for both 

stress and growth of the canopy in forested stands.  Stress in trees is best seen at wavelengths 

human eyes cannot see, making it difficult to detect health of a tree.  Multispectral imaging 

allows for manipulation of images to extract band level data that can then be used to formulate 

calculations of stress based on measurable responses of vegetation such water potential and 

chlorophyll. This allows for prediction of those responses based on imaging, which allows for 

plot and stand level data for large areas much quicker than taking water potential and 

chlorophyll measurements of every tree in a forest.  Looking at changes in canopy cover over 

time in response to thinning operations also allows for a quicker estimation of when a canopy 

may need to be thinned.  In a silvopasture, this is important in maintaining growth of cool 

season grasses throughout the entire growing season.  Waiting too long to thin a stand will 

result in a decrease of light into the understory and forage will not be able to grow. 

This study shows that multispectral data is able to predict both chlorophyll and water 

potential.  When predicting water potential, model error decreases with inclusion of soil 

moisture and temperature.  The error of the models also decreases with inclusion of multiple 

years of data.  It was found that error is lowest when only looking at one month for every year 

versus one to three months for every year.  This means that rather than going into a stand 

multiple times a year to collect ground data, it is better to pick one day a year and collect that 

same day every year.  When cover was added there was no significant impact on the model's 

ability to predict chlorophyll or water potential.  While ground data does help increase model 
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strength for water potential, multispectral-only models had very similar results based on 

residual plots and cross validation.  With more years of data, multispectral only data will likely 

increase in strength for water potential prediction models.  When predicting chlorophyll, based 

on this study, using only multispectral data is sufficient on its own and decreases with inclusion 

of ground metrics.  Landsat satellite data proved to have low error percentages when predicting 

both chlorophyll and water potential and was very similar to the drone data, however, due to 

the limited variables that were used in the model and lack of precision due to cell size of 

Landsat images, it cannot be concluded that Landsat is more sufficient in making predictions.  

Landsat likely would not be able to detect small changes due to lack of variation in the dataset.  

More years of data would be needed to make further conclusions on the use of Landsat data in 

comparison to drone data.   

For canopy cover predictions in this study, there were many factors that went into 

percent change both for yearly changes and when comparing plots.  Some plots experienced 

mortality and were not able to be used to predict overall growth of the stand as a whole.  

Average growth among the plots that did not decrease was 16% per year. In order to maintain a 

silvopasture, the stand needs to be kept between 40-60% cover to ensure growth of cool 

season forage.  For the converted stand at Journagan Ranch, which was thinned to 30% in 2020, 

that will likely be around 5-7 years post thin. Maintaining this stand will lead to an increase in 

nutrient uptake for cattle, or grazing livestock, which increases weight gain.  Shaded canopy will 

also serve as a shelter from heat, helping maintain weight gain in cattle through the hottest 

summer months.  
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APPENDICES 

 

Appendix A: Journagan ranch converted stand timeline 
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Appendix B: Processing Workflows 

Appendix B-1: Metashape processing workflow for RGB and multispectral images. 

 
 
 

Appendix B-2: ArcGIS processing workflow for RGB Images to create canopy height 
models (CHM). 
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Appendix B-3: ArcGIS processing workflow for multispectral images to extract band 
specific data and create multispectral indices. 

 
 
 

Appendix B-4: R Studio workflow to run month-specific multiple linear regression. 
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Appendix B-5: R Studio workflow to run mixed regression models on the full datasets. 
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Appendix C: P-values for all models 

Appendix C-1: P-values for the Water Potential Predictions of all Datasets with all 
Available Variables Included. Some data sets have variable exclusions prior to the stepwise 
selection that can be seen in Table 3. P-values with two stars (**) indicate significance (p-value 
< .05). P-values with a single star (*) indicate marginal significance (p-value < .1).   

Coefficiant 2020 2020-2022 No Cover With 
Cover 

Landsat 
Comparison Landsat 

 
intercept 0.7140 0.0192** 0.0005** 0.0005** 0.0005** 0.0002**  

Red  0.0049**      

Blue        

Green   0.0072** 0.0072** 0.0072**   

NIR 0.0530* 0.0085** 0.0073** 0.0073** 0.0073**   

RedEdge 0.0509*       

NDVI 0.0447** 0.0267**      

GNDVI 0.1207  0.0049* 0.0049* 0.0049*   

RENDVI        

Cover        

Moisture 0.0005** 0.0000** 0.0032* 0.0032* 0.0032* 0.0063**  

Temperature 0.0014** 0.0000** 0.0001* 0.0001* 0.0001* 0.0001**  

Pressure M   0.0000** 0.0000** 0.0000** 0.0003**  

Pressure W   0.0012* 0.0012* 0.0012* 0.0001**  

Temperature M        

Temperature W        

Moisture M  0.0000**      

Moisture W        
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Appendix C-2: P-values for the Chlorophyll Predictions of all Datasets with all Available 
Variables Included. Some data sets have variable exclusions prior to the stepwise selection that 
can be seen in Table 3. P-values with two stars (**) indicate significance (p-value < .05). P-
values with a single star (*) indicate marginal significance (p-value < .1).   

Coefficiant 2020 2020-2022 No Cover With 
Cover 

Landsat 
Comparison Landsat 

 
intercept 0.0563* 0.0741* 0.0374** 0.0362** 0.0374** 0.5139  

Red  0.0000** 0.0117** 0.0531* 0.0117** 0.0161**  

Blue  0.0188**    0.0236**  

Green  0.0000** 0.0045** 0.0095** 0.0045** 0.0036**  

NIR 0.0011** 0.0000** 0.0161** 0.015** 0.0161** 0.0163**  

RedEdge 0.0021**       

NDVI 0.1601 0.0001** 0.0074** 0.0203** 0.0074**   

GNDVI  0.0000** 0.0084** 0.0205** 0.0084**   

RENDVI        

Cover    0.0131**    

Moisture 0.0022**     0.0301**  

Temperature 0.1474 0.0159** 0.0189** 0.0124** 0.0189**   

Pressure M 0.0606*       

Pressure W  0.0396** 0.0381** 0.0363** 0.0381**   

Temperature M        

Temperature W        

Moisture M        

Moisture W        

 

 

 

 

 

 



   
 

66 

Appendix C-3: P-values for the Water Potential Predictions of all Datasets with Ground 
Data Excluded. Some data sets have variable exclusions prior to the stepwise selection that can 
be seen in Table 3. P-values with two stars (**) indicate significance (p-value < .05). P-values 
with a single star (*) indicate marginal significance (p-value < .1).   

Coefficiant 2020 2020-2022 No Cover With 
Cover 

Landsat 
Comparison Landsat 

 
intercept 0.7443 0.0006** 0.0286** 0.0286** 0.2013 0.0000**  

Red 0.1137 0.0053**      

Blue   0.0028** 0.0028** 0.0358**   

Green 0.0561*       

NIR  0.0106**   0.0052**   

RedEdge   0.0004** 0.0004**    

NDVI 0.1060 0.0430**    0.0054**  

GNDVI 0.0546*  0.0024** 0.0024** 0.0422**   

RENDVI   0.0034** 0.0034**    

Cover        

Pressure M  0.0001**      

Pressure W  0.0331**      

Temperature M        

Temperature W        

Moisture M  0.0258**      

Moisture W        
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Appendix C-4: P-values for the Chlorophyll Predictions of all Datasets with Ground 
Data Excluded. Some data sets have variable exclusions prior to the stepwise selection that can 
be seen in Table 3. P-values with two stars (**) indicate significance (p-value < .05). P-values 
with a single star (*) indicate marginal significance (p-value < .1).   

Coefficiant 2020 2020-2022 No Cover With 
Cover 

Landsat 
Comparison Landsat 

 
intercept 0.0000** 0.0051** 0.0062** 0.0102** 0.7913 0.4081  

Red  0.0004**   0.0586*   

Blue 0.1073 0.0732*    0.0626*  

Green  0.0000** 0.0054** 0.0016** 0.0278** 0.4660  

NIR 0.0003** 0.0000** 0.0048** 0.0014** 0.0885*   

RedEdge 0.0005**       

NDVI 0.1583 0.0010**   0.0705*   

GNDVI  0.0000**   0.0733*   

RENDVI 0.0005**  0.0423** 0.1061    

Cover    0.0133**    

Pressure M        

Pressure W        

Temperature 
M 

       

Temperature 
W 

       

Moisture M        

Moisture W        
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Appendix C-5: P-values for the Water Potential Predictions of all Datasets with Only 
Multispectral Data Included. Some data sets have variable exclusions prior to the stepwise 
selection that can be seen in Table 3. P-values with two stars (**) indicate significance (p-value 
< .05). P-values with a single star (*) indicate marginal significance (p-value < .1).   

Coefficiant 2020 2020-2022 No Cover With 
Cover 

Landsat 
Comparison Landsat 

 
intercept 0.0001** 0.1375 0.0286** 0.0286** 0.2013 0.0000**  

Red  0.0062**      

Blue   0.0028** 0.0028** 0.0358**   

Green        

NIR  0.0117**   0.0052**   

RedEdge 0.0909*  0.0004** 0.0004**    

NDVI  0.2470    0.0054**  

GNDVI  0.0649* 0.0024** 0.0024** 0.0422**   

RENDVI 0.0879*  0.0034** 0.0034**    

Cover        

 

 Appendix C-6: P-values for the Chlorophyll Predictions of all Datasets with Only 
Multispectral Data Included. Some data sets have variable exclusions prior to the stepwise 
selection that can be seen in Table 3. P-values with two stars (**) indicate significance (p-value 
< .05). P-values with a single star (*) indicate marginal significance (p-value < .1).   

Coefficiant 2020 2020-2022 No Cover With 
Cover 

Landsat 
Comparison Landsat 

 
intercept 0.0000** 0.0051** 0.0062** 0.0080** 0.7913 0.4081  

Red  0.0004**   0.0586*   

Blue 0.1073 0.0732*    0.0626*  

Green  0.0000** 0.0054**  0.0278** 0.4660  

NIR 0.0003** 0.0000** 0.0048**  0.0885*   

RedEdge 0.0005**       

NDVI 0.1583 0.0010**   0.0705*   

GNDVI  0.0000**  0.0028** 0.0733*   

RENDVI 0.0005**  0.0423** 0.0973*    

Cover    0.0151**    
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Appendix D: Cross validation error across all datasets and model types. WG = all variables, NG 
= without ground measurements, MS = multispectral indices Only 
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