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ABSTRACT 

In this study, I developed Deep Learning interatomic potentials to model a multi-phase and 
multi-component system of Ni-based Superalloys. The system has up to three major phase 
constituents, namely Gamma, Gamma Prime, and Transition-metal rich Carbide. I utilized 
invariant scalar-based and/or equivariant, tensor-based neural network (NN) approach as 
implemented in DEEPMD, NEQUIP/ALLEGRO codes, respectively, and Moment Tensor 
Potential (MTP). For the training and validation sets, I employed the ab-initio molecular 
dynamics (AIMD) trajectory results and ground state DFT calculations, including the energy, 
force, and virial database from highly diverse compositions, temperatures, and pressures 
following a “High Entropy Strategy.” The Deep learning potential was systematically developed 
for 4, 5, 7, and 10 component systems based on the complexity level of the phase mixtures. To 
optimize the hyperparameters, I used a series of machine learning (ML) algorithms to lower the 
RMSE of the force components and then compare the accuracy of both the potentials developed 
using the two types of Deep Learning potentials through a variety of large-scale molecular 
dynamics (MD) simulations The GPU-based supercomputer support from NERSC (Perlmutter) 
is gratefully acknowledged. 
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INTRODUCTION 

 

Literature Review 

Nickel-based superalloys are a class of high-performance materials widely used in 

various applications due to their excellent mechanical properties, such as high strength, good 

corrosion resistance, and high-temperature stability. They are used in aerospace, power 

generation, and chemical processing industries. These superalloys typically contain nickel as the 

primary element, with additions of other elements such as cobalt, chromium, molybdenum, and 

tungsten. These additions provide the alloy with unique properties, and the specific composition 

can be tailored to meet the demands of different applications. One of the most well-known 

nickel-based superalloys is Inconel 718, which contains nickel (50-55%), chromium (17-21%), 

molybdenum (2.8-3.3%), niobium (4.75-5.5%), titanium (0.65-1%), aluminum (0.2-0.8%), and 

cobalt (1%). This alloy has a high strength-to-weight ratio and is used in aerospace components 

such as turbine blades and discs. 

Another important nickel-based superalloy is Haynes 282, which is a cobalt-based 

superalloy with nickel (22-25%), cobalt (20-22%), chromium (14-16%), tungsten (6-8%), 

molybdenum (3-4%), and tantalum (1%). This alloy is known for its excellent high-temperature 

strength and resistance to oxidation and corrosion. One of the research areas that has attracted 

attention in recent years is the use of additive manufacturing to produce nickel-based 

superalloys. This technology offers the ability to produce complex geometries with improved 

mechanical properties and reduced weight. The specific composition can be tailored to meet the 

demands of different applications, and the use of additive manufacturing technology has 

attracted attention in recent years for producing complex geometries with improved properties. 
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High entropy alloys (HEAs) are a class of materials that contain multiple metallic 

elements in roughly equal proportions. This unique composition results in a high degree of 

randomness, or entropy, in the atomic arrangement, leading to improved mechanical properties 

such as high strength and toughness. The correlation between HEAs and nickel-based 

superalloys is that both types of alloys contain multiple metallic elements, but the key difference 

is that HEAs contain roughly equal proportions of the elements, while nickel-based superalloys 

have a high percentage of nickel and other elements in specific proportions to give it its specific 

properties. Both HEAs and nickel-based superalloys have the potential for high-temperature 

applications, but nickel-based superalloys have been more extensively studied and have a more 

established role in industries such as aerospace and power generation. In recent years, 

computational materials science has played an increasingly important role in the discovery and 

design of HEAs. The use of first-principles calculations, statistical mechanics, and machine 

learning methods has enabled the identification of new HEA compositions and the prediction of 

their properties. However, there is still much to be discovered and understood about these alloys, 

and ongoing research efforts are focused on further exploring the properties and behavior of 

HEAs. 

Machine learning interatomic potentials (MLIP) are a type of computational model used 

to predict the behavior of materials at the atomic scale. These potentials are trained on large sets 

of data, such as quantum mechanical calculations or experimental measurements, and can be 

used to simulate the properties of a wide range of materials, including nickel-based superalloys. 

They can be used to simulate the properties of nickel-based superalloys in a computationally 

efficient manner. These potentials can be trained on data from quantum mechanical calculations 

or experiments and can be used to predict the behavior of the material under different conditions, 
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such as high temperatures or high stress. This can be useful for designing new alloys or 

optimizing existing ones. Overall, Machine learning interatomic potentials are a promising 

approach to simulate the properties of nickel-based superalloys. This can be used to design new 

alloys or optimize existing ones. Computational methods can be useful in materials research for 

developing predictive models of material properties in different conditions. When compared to 

other methods like density functional theory(DFT), molecular dynamics (MD) simulations offer 

a fine balance between accuracy and efficiency. The quality of the interatomic potentials (IAP), 

however, is crucial to MD's accuracy. In order to reliably reproduce the material's properties, 

conventional IAPs are parametric models, which are then fitted to experimental or computational 

data.  

In this work, we developed the Deep Learning potentials for highly concentrated multi-

component metallic systems by utilizing Deep Learning/Machine Learning code. The complex 

system has up to ten elements with three major phase constituents, namely Gamma, Gamma 

Prime, and Transition-metal rich Carbide. We systematically developed the Deep Learning 

potentials for 5, 7, and 10 component systems based on the complexity level of the phase 

mixtures. To optimize the hyperparameters, we used a series of machine learning (ML) 

algorithms to lower the RMSE of the force components. We then compare the accuracy of both 

the potentials developed using the two types of Deep Learning potentials through a variety of 

large-scale molecular dynamics (MD) simulations.  

 

Nickel Based Superalloy  

Nickel-base superalloys are high-temperature corrosion-resistant alloys that are typically 

used at temperatures above 500°C. They typically contain up to ten alloying elements, including 
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light elements such as boron or carbon, and heavy refractory elements such as tantalum, 

tungsten, or rhenium. Even at temperatures close to their melting points, superalloys exhibit 

excellent resistance to creep, sulfidation, and oxidation. Ni-based superalloys exhibit excellent 

mechanical behavior even at high temperatures because they have a two-phase γ/ γ' matrix-

precipitate microstructure. Aluminum and/or titanium are the essential solutes in nickel-based 

superalloys, with a total concentration of less than 10 atomic percent. This results in a two-phase 

equilibrium microstructure made up of gamma (γ) and gamma-prime (γ'). It is the γ' that is 

largely responsible for the material's elevated-temperature strength and incredible resistance to 

creep deformation (1). In Figure 1, we can see the gamma (γ) and gamma-prime (γ'), and 

carbides in the grain boundary. These phases make nickel-based superalloy strong and give 

excellent creep properties.  

 

 

Figure 1. Nickel based superalloy microstructures 
 

High Entropy Alloy  

          High entropy alloy (HEA) is a type of metallic alloy that is characterized by having a high 

degree of randomness or disorder in the distribution of its constituent elements. These alloys 

typically contain five or more elements in roughly equal atomic proportions. Because of their 
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high degree of disorder, HEAs exhibit unique mechanical, thermal, and physical properties that 

differ from those of traditional alloys made from just one or a few elements. One of the key 

benefits of high entropy alloys is their ability to maintain strength and other properties at high 

temperatures. The high degree of disorder in the atomic structure of these alloys helps to prevent 

the formation of defects and other structural weaknesses that can occur in traditional alloys at 

high temperatures. Additionally, the high degree of randomness in the distribution of elements in 

HEAs can lead to unique combinations of properties, such as high strength, high ductility, and 

high thermal stability, which are difficult to achieve with traditional alloys. 

One of the key findings in HEA research has been the observation of solid solution 

strengthening, where the presence of multiple elements in the alloy leads to a strengthening 

effect beyond what would be expected from a single element. This has been attributed to the high 

degree of configurational entropy in the atomic arrangements. Another important aspect of HEA 

research has been the study of phase stability and microstructure. Many HEAs exhibit a single-

phase solid solution microstructure, while others may exhibit multiple phases or complex 

microstructures. These microstructures have been found to play a critical role in determining the 

mechanical properties of the alloys. HEAs have also been found to exhibit high corrosion 

resistance, thermal stability, and exceptional wear resistance. 

There are many different types of HEAs that have been studied, including those based on 

transition metal elements, refractory metals, and metal-nonmetal combinations. These alloys 

have been found to have potential applications in a wide range of fields, including aerospace, 

defense, transportation, biomedical, and energy. Some examples of high entropy alloys include 

AlCoCrCuFeNi and AlNiCo, which are known for their high strength and corrosion resistance. 

Another example is the AlCrFeCoNi alloy, which is known for its high strength and high thermal 
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stability, making it a candidate for high temperature applications such as jet engine components. 

HEA's are still a relatively new area of research, and scientists are still discovering new ways to 

use these alloys, but they show great potential in aerospace, automotive, and biomedical 

applications.  

          To create new materials known as high-entropy alloys, a new alloying technique that 

combines several principal elements in high concentrations has gained popularity over the past 

15 years. Although only a small portion of the multi-dimensional compositional space has been 

studied thus far, it is practically infinite. An additional intriguing justification for studying these 

alloys was offered by Jien-Wei Yeh and colleagues (2). They suggested that the presence of 

several (five or more) elements in nearly equal atomic proportions would increase the 

configurational entropy of mixing by an amount sufficient to outweigh the enthalpies of 

compound formation, preventing the formation of potentially hazardous intermetallics. It was 

counterintuitive to think that the more elements there were in concentrated alloys, the more 

likely it was that some of them would react to form compounds. This belief was probably based 

on binary phase diagrams, in which solid solutions are typically found at the ends and 

compounds near the centers. They coined a catchy new name for this High-entropy alloys 

(HEAs)  (3). Alloying has long been used to impart desirable properties to materials. Typically, it 

entails the addition of small amounts of secondary elements to a primary element. However, for 

the past decade and a half, a new alloying strategy that involves the combination of multiple 

principal elements in high concentrations to create new materials known as high-entropy alloys 

has been popular  (4). 

 



7 
 

Computational Methods for Materials Research 

In addition to experimental research, computational methods can be used to investigate 

the structure and properties of materials (5). Experimental results always contain sources of 

uncertainty, and computational methods rely on varying degrees of approximation due to the 

extreme computational requirements for solving the physical equations precisely. Different 

computational methods can range from fully quantum mechanical calculations that explicitly 

account for the electronic structure to classical molecular dynamics simulations in which the 

interaction between individual atoms is described by approximated IAP. A profound 

understanding can be of great assistance in the design and development of materials, but it 

requires experimentally characterized material properties and a theoretical framework for the 

observed qualities. Simulations of materials physics can aid in the comprehension of the 

microscopic phenomena and characteristics observed in experimental work, and in many 

instances serve as a bridge between experiment and theory. 

 

Review of the Models of Interatomic Interaction 

This section will provide an overview of various interatomic interaction models. The 

term force field or interatomic potential is frequently used in place of interatomic interaction 

model. Interatomic potential provides a functional dependence of the energy of the atomistic 

system on the positions and types of atoms constituting the system: 

                                                      E = E(x)                                                             

From here x will be used to denote the configuration, meaning x = {ri , zi}, where ri and zi 

denote the position vector and the atomic number of the ith atom in configuration. 
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Empirical Potentials. In order to avoid solving the governing quantum-mechanical 

equations, empirical potentials are employed. In place of this, they offer an explicit analytical 

form with coefficients derived from fitting experimental or quantum-mechanical data. Majority 

of the empirical potentials\sare local, i.e., they account for interaction of each atom only with its 

nearest\sneighborhood, usually within some cutoff radius. Non-local potentials are typically 

applied to charged systems where the contribution of Coulomb forces at great distances is 

crucial. For local potentials, E is subdivided into the contributions V of individual atomic 

neighborhoods. The function V is referred to as an interatomic potential. To define the 

neighborhood of the ith atom ni, we define rij as the position of the jth atom relative to the ith 

atom (rij is a vector) and zj as the type of the jth atom. The ith atom's neighborhood is the 

collection of rij and zj, and the previous equation can be rewritten as follows: 

𝐸(𝑥) = ∑𝑉
𝑖

(𝑛𝑖) 

Locality of the potential is expressed by the stipulation that V(ni) only depends on atoms 

that are closer to the atom i than some cutoff distance Rcut, which is typically around 5 Å. In 

metallic systems this typically means the closest neighbors up to some order are included in the 

atomic environment[6]. Examples and definition of potentials are given below: 

Pair Potentials. Due to the fact that pair potentials are only two-body interactions, the 

total energy of a configuration can be expressed as the sum of all contributions made by two 

bodies. Examples of pair potenrials are Lennard-Jones potential and Morse potential. 

Three-Body Potentials. Tersoff and Stillinger-Weber potentials are among these. While 

two-body terms are often connected with bond lengths, three-body terms are typically related 

with bond angles. 
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Many-Body Potentials. The embedded atom approach, often known as the EAM 

potential, is the type of empirical potential that is used the most frequently for metals  (6). It 

stems from the concept of imbedding each atom in an electronic atmosphere of a certain density, 

which is influenced by the density of the surrounding atoms. 

Quantum-Mechanical Models and Density Functional Theory. Different 

approximations of the time-independent Schroedinger equation serve as the foundation for 

quantum-mechanical models. As the solution is generally impossible, the Born-Oppenheimer 

approximation is frequently employed. Due to a three-orders-of-magnitude difference in mass 

and comparable electrostatic forces, it locks up the nuclei, which move much more slowly than 

electrons. The Born-Oppenheimer approximation still can't be solved in general, and more 

simplifications, like density functional theory, are needed. Hybrid functionals in DFT also use 

predictions from Hartree-Fock theory (7). They can calculate many chemical systems with high 

accuracy by making changes to the exchange-correlation functionals. Aside from heavy methods 

like DFT hybrid functionals or quantum Monte Carlo (which uses an exact many-body 

wavefunction and deals directly with quantum effects), some QM models are semi-empirical and 

designed for fast calculations. They can make close but often accurate predictions for large 

systems, whose evaluation would take too long with heavier methods, like linear scaling DFT, 

which includes some screening of interatomic interactions. 

One of the most common approaches is density functional theory (DFT), which is 

particularly useful for metals and alloys because it provides an appealing trade-off between 

calculation accuracy and computational speed. This method was used in my research to calculate 

ab initio properties of alloys, and it deserves special attention and a more detailed description 

because of the aforementioned. The cost of conventional DFT scales as O(N3) with the number 
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of atoms, whereas there is also a "linear scaling DFT" implementation with O(N) scaling, which 

is less accurate but still applicable, particularly for large systems. 

Density functional theory comes from the Thomas-Fermi model, in which the ground 

state energies of atomic systems are calculated as an approximation of a function of electron 

density. This is also the main idea behind modern DFT: instead of solving for the many-body 

wavefunction of the electrons, find the electron density and study the properties of the system as 

functions of this density. Pierre Hohenberg and Walter Kohn laid the groundwork for the current 

DFT by giving rigorous proofs to two important theorems, now called Hohenberg-Kohn 

theorems, which state that  the external potential is a unique function of the electron density of 

the system and the function that gives the ground-state energy of the system reaches the 

minimum value with respect to possible electron densities if and only if the input density is the 

true ground-state density. The properties defined by the external potential are uniquely 

determined by the ground-state density, according to the first theorem. As is customary in multi-

atom quantum mechanical computations, the Born-Oppenheimer approximation is assumed in 

DFT (8). 

Due to the interaction between the electrons and the imprecision of the kinetic energy 

term, the problem remained intractable until W. Kohn and L. J. Sham devised a solution: instead 

of solving the system of interacting electrons, replace it with non-interacting particles moving in 

a fictitious effective potential so that the density of the particles remains the same. The equations 

(known as KohnSham equations) describing this fictitious system are KohnSham equations: 

                          (−ℏ2

2𝑚𝑖
∇i

2 + V𝑘𝑠(r))ψi(𝑟) = eiψi(r), i ≤ Ne                                               

𝑛(𝑟) = ∑|𝜓𝑖(𝑟)|2
𝑁

𝑖=1
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where εi is the orbital energy of the Kohn-Sham orbital ψi and n is the density of the N-

particle system. The energy functional becomes: 

𝐸[𝑛(𝑟)] = 𝑇[𝑛(𝑟)] + 1
2∬ 𝑛(𝑟)𝑛(𝑟′)

4𝜋𝜀0|𝑟 − 𝑟′|
 𝑑𝑟𝑑𝑟′  + ∫ 𝜐𝑒𝑥𝑡 (𝑟)𝑛(𝑟)𝑑𝑟 + 𝐸𝑥𝑐[𝑛(𝑟)]              

 Here T[n(r)] is the kinetic energy of the system of non-interacting particles, the second 

term is the electronic coulomb energy, 𝜐𝑒𝑥𝑡  is the external coulomb potential due to the nuclei, 

and 𝐸𝑥𝑐  is the exchange-correlation functional. Unfortunately, the exact form of the exchange-

correlation functional is unknown, but in recent decades a large number of approximate 

functionals have been developed. The electron density and ground state energies are determined 

by solving the Kohn-Sham equations iteratively. First, an initial estimate of the electron density 

is provided, followed by the computation of the electron density based on the obtained potential. 

This cycle is repeated until self-consistency is achieved. The VASP-software (9) used in the 

thesis work uses plane-wave basis sets: 

                                𝜓𝑚,𝑘(𝑟) =  ∑ 𝑐𝑚
|𝐺|<𝐺𝑚𝑎𝑥
𝐺 (𝑘 + 𝐺)𝑒𝑖(𝑘+𝐺).𝑟                                           

where 𝜓𝑚,𝑘 is the component of the wave function of an electron at band m, k is the wave 

vector and G are reciprocal lattice vectors. Since the basis set is infinite in terms of vectors G, a 

cutoff value 𝐺𝑚𝑎𝑥 is used. There are many benefits to using the plane-wave basis, but due to the 

rapid oscillations of the wavefunctions, the orbitals close to the atom cores need to be simplified. 

Since valence electrons are almost never involved in chemical bonds, pseudopotentials are used in 

the core region to keep the wavefunctions unchanged and, by extension, the system's dynamics 

unchanged. 

Classical Molecular Dynamics. Quantum mechanical calculations are computationally 

expensive, so classical Molecular Dynamics (MD) is used in materials simulations. Though less 

accurate, Molecular Dynamics simulations can study larger systems with longer simulation 
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times, making them useful in materials research. MD accuracy depends on interatomic 

potentials.  Classical Molecular Dynamics simulations treat atoms and molecules as classical 

particles interacting artificially and numerically solve Newton's equations of motion to study 

their movement. 

                                                          𝑚𝑖
d2𝑟𝑖
d𝑡2 = 𝑓𝑖                                                                      

                                                          𝑓𝑖 =  − ∇𝑖𝑉                                                                      

where ri, mi and fi are the position, mass and force acting on particle i respectively and V 

is the potential energy. The Born-Oppenheimer approximation, electron eigenstates, and nuclei 

motion under the potential are assumed again. Interatomic potential includes atom bonds. The 

timestep should be small enough for accuracy but not at the expense of efficiency because the 

equations of motion are integrated by adding small increments to positions and velocities 

depending on the forces acting on the particles. The simple Euler algorithm can integrate 

Newton's equations of motion, but the Velocity Verlet and Predictor-Corrector algorithms 

provide more accurate calculations with less computation time and memory usage and allow for 

larger timestep values. Many MD interatomic potentials only affect nearby particles, so it is 

unnecessary to compute all particle interactions with every step. Thus, interactions are limited to 

a cut-off distance. Periodic boundary conditions in the simulation cell can model larger systems 

since even the smallest experimental systems usually have more atoms than can be simulated. 

Most of the time, it's helpful to look at the system as a whole and make comparisons to what's 

been discovered through experimentation. Since the ergodic hypothesis is satisfied and averages 

over time can be used to investigate macroscopic properties, MD simulations are frequently used 

for this purpose. Because experiments are typically conducted in a controlled environment with 

constant temperature and pressure, it is important to regulate these thermodynamic properties of 
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the system in a way that limits the number of artifacts that can arise in computer simulations. 

This is achieved by fine-tuning the dynamics to ensure that the simulated thermodynamic 

process is accurate. There are a variety of temperature and pressure regulators available for this 

purpose, including the Berendsen and Nosé-Hoover thermostats and the Andersen and 

Parrinello-Rahman barostats. 

 

Machine Learning Interatomic Potential  

Types of MLIP’s. Machine Learning Potential (MLP) is an interatomic potential that is 

derived with or employs any kind or variety of machine learning technologies. The Gaussian 

Approximation Potentials (GAP) and the Neural Network Potentials (NNP) are two of the most 

common approaches. Bartok et al. were the ones who developed the GAP method, and it has 

been put to good use in the production of a GAP for graphene. In the meantime, neural networks 

as a type of machine learning and as a potential for machine learning have been present for some 

time. However, the works of Behler and Parrinello, which will be mentioned in a moment, made 

significant improvements to neural networks' machine learning potential. In the context of our 

study, we shall continue to concentrate on NNPs. 

Neural Networks. Neural networks are a type of supervised machine learning in which a 

computer attempts to learn and predict from data. Neural networks do this by constructing a 

network of 'neurons' composed of layers of linked nodes designed to simulate biological 

cognitive processes. Figure 2 depicts a simple neural network design. Each input layer sends data 

to each corresponding output layer, forming a network. The hidden layers in the figure, for 

example, each get data from the inputs multiplied by a specific weight. The weights are used to 

lend significance to the data. For example, if this was a classification neural network, data that 
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better captured distinctions and aided in classification would be given more weight. At the 

receiver node, this data is subsequently transmitted through an activation function. The goal is to 

eliminate network linearity and regulate the flow of information. A neural network is a set of 

linear equations without an activation function, and hence merely gives a linear regression 

model. As the model learns to detect traits that contribute to classification, the weights and bias 

values are adjusted (10). 

 

 

Figure 2. General representation of a neural network 
 

Neural Network Potential Implementation. A neural network can be used for potential 

development by training it on a dataset of inputs and outputs that are relevant to the task at hand. 

Once the network has been trained, it can be used to make predictions on new inputs it has never 

seen before. This process can be used for a variety of tasks such as image recognition, natural 

language processing, and prediction. To use a neural network, one will typically need to use a 

software library, such as TensorFlow or PyTorch, that provides an implementation of the 

network architecture and training algorithm of need. After that, we will need to prepare data, 

choosing the right architecture and fine-tune the hyperparameters, then evaluate the performance 
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of the model, and iterate until we achieve the desired performance. Behler and Parrinello 

proposed a neural network architecture called "Behler-Parrinello Neural Network" (BPNN) 

which is a type of artificial neural network that is designed to model the properties of materials. 

The BPNN architecture consists of multiple layers of artificial neurons, which are connected by 

weights and biases. The network is trained using a set of input-output pairs, where the input is a 

set of structural features of a material, and the output is a set of properties of that material. The 

BPNN is highly effective in modeling the properties of complex materials, such as those found in 

the field of computational materials science. The BPNN has been widely used in various 

applications such as prediction of crystal structures, phase transitions, and thermodynamic 

properties of materials. 

Utilizing the neural network structure shown above, this creates several problems. 

Atomic locations are used as the NNP's input. This mistake results from a type of "double 

dipping." For instance, the system i-j-k will return a specific energy value if it consists of three 

identical atoms, such as atoms i, j, and k. Now, if we take the exact same system but move two 

atoms around, let's say we have j-i-k, we still have the same system. Sadly, the NNP won't view 

it that way; instead, it will consider this to be a completely new system, and it's possible that it 

may receive a different energy value than it did earlier. Behler suggested a set of atom-centered 

symmetry functions to get around this issue by defining local atomic surroundings rather than 

precise atom placements. These functions are designed to eliminate the variation in system 

energy that would occur if the system's atom coordinates were exchanged, or if the system were 

rotated or translated. Equations 8 and 9 are examples of radial and angular symmetry functions:  

𝐺𝑖 =  ∑ cos(𝑘𝑅𝑖𝑗) . 𝑓𝑐(𝑅𝑖𝑗)     𝑤ℎ𝑒𝑟𝑒 𝑓𝑐(𝑅𝑖𝑗)  =   {
0.5 [cos (𝜋𝑅𝑖𝑗

𝑅𝑐
) + 1] 𝑓𝑜𝑟 𝑅𝑖𝑗 ≤ 𝑅𝑐

0 𝑓𝑜𝑟 𝑅𝑖𝑗  > 𝑅𝑐 
𝑗     
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𝐺𝑖 = 21−𝜁  ∑ (1 + 𝜆 cos𝜁(𝜃𝑖𝑗𝑘
𝑎𝑙𝑙
𝑗,𝑘≠𝑖 ) . 𝑒−𝜂(𝑅𝑖𝑗

2 +𝑅𝑖𝑘
2 ). 𝑓𝑐(𝑅𝑖𝑗). 𝑓𝑐(𝑅𝑖𝑘)                                    

In addition to their recommendation that we use symmetry functions to transform the 

inputs, Behler and Parrinello also offered a slightly modified form for the neural network. Figure 

3 depicts this network, which first converts Cartesian coordinates to symmetry functions (11), 

then uses separate neural networks for each atom to determine that atom's contribution to the 

system's energy, and finally adds up all of the atoms' contributions. Although the aforementioned 

techniques have garnered widespread acclaim and are used in the present work, it is important to 

remember that NNPs' inputs may be tailored to suit a variety of purposes. 

 

 

Figure 3. NN suggested by Behler and Parrinello  
 

 For my thesis, I have used invariant and equivariant NNs. Invariant neural networks are 

designed to be robust to certain types of transformations or changes in the input data. For 

example, a neural network that is invariant to translations in an image would be able to recognize 

an object regardless of its location within the image. This can be achieved by using pooling 

layers or other types of down-sampling in the network architecture. Equivariant neural networks, 

on the other hand, are designed to maintain certain properties of the input data after it has been 

processed by the network. For example, a neural network that is equivariant to rotations in an 
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image would be able to recognize an object regardless of its orientation. This can be achieved by 

using equivariant layers such as Steerable CNNs or group convolution. 

Invariant and equivariant neural networks have been used in a variety of applications, 

including image recognition, object detection, and natural language processing. For example, in 

image recognition, invariant networks have been used to improve the robustness of the network 

to translation and rotation of the image. Equivariant networks have been used to improve the 

ability of the network to recognize objects in the image regardless of their orientation. In natural 

language processing, equivariant networks have been used to improve the ability of the network 

to understand and generate text despite the variations in word order. Invariant and equivariant 

neural networks have been widely studied as a way to improve the robustness and generalization 

of deep learning models. They have been used in a variety of applications, and have shown 

promising results in many cases. 

DeePMD. I have used DeePMD-kit as an invariant NN for the thesis. DeePMD (Deep 

Potential Molecular Dynamics) is a deep learning based method for simulating the dynamics of 

molecular systems. It has been used in a variety of research studies to investigate the properties 

of different materials, including liquids, solids, and biomolecules. DeePMD-kit is a software 

package for deep learning potential energy surface (DL-PES) fitting and molecular dynamics 

(MD) simulation (12). It is designed to work with the Atomistic Machine Learning (AML) 

framework, which utilizes neural networks to represent the potential energy of a system of 

atoms. The software package is developed with the goal of providing a simple and user-friendly 

interface for performing DL-PES fitting and MD simulation. It includes various tools for data 

preprocessing, neural network training, and MD simulation, as well as a variety of utility 

functions for analyzing and visualizing the results. One of the key features of DeePMD-kit is its 
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ability to handle large datasets. It can handle datasets with millions of data points and is capable 

of training neural networks with thousands of parameters. Additionally, it includes built-in 

support for parallel computing, which allows for efficient training and simulation on high-

performance computing clusters. 

DeePMD-kit has been used in a variety of studies, including the prediction of potential 

energy surfaces for various materials, such as metals and semiconductors, as well as the 

simulation of complex chemical reactions and biological systems. One of the first studies to use 

DeePMD was published in 2017 by Han et al., who used the method to investigate the properties 

of liquid water (13). The study found that DeePMD was able to accurately predict the structural 

and dynamical properties of water, including the radial distribution function and the diffusion 

coefficient. Since then, DeePMD has been used in a number of studies to investigate the 

properties of different materials. In a study by Lu et al. (14), the DeePMD-kit was used to train a 

DL-PES for various systems. The results showed that the DL-PES was able to accurately predict 

the potential energy of the system, with a mean absolute error of less than 1 meV/atom. 

Additionally, the study showed that the DL-PES was able to accurately predict the properties of 

the system, such as the phonon dispersion and thermal conductivity. In another study  (15), the 

authors describe utilizing a DeePMD-kit-generated deep learning potential to predict the thermal 

and mechanical properties of a high-entropy ceramic material. The scientists trained the deep 

learning potential on first-principles calculations to estimate the material's thermal conductivity, 

thermal expansion coefficient, specific heat capacity, Young's modulus, and Poisson's ratio. The 

authors claim that the deep learning potential methodology can efficiently and accurately 

anticipate the properties of high-entropy materials, which are difficult to examine using typical 

computational methods. 
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The procedure for using DeePMD involves some steps. We need to collect a dataset of 

molecular configurations and energies. This dataset is used to train the deep neural network. 

After that, a deep neural has to be trained to predict the potential energy of the system. The 

network is trained using the dataset collected in first step, and is used to predict the potential 

energy of new configurations of the system. Using the trained neural network to perform 

molecular dynamics simulations. The network is used to predict the potential energy of the 

system at each time step, and the equations of motion are solved using this potential energy. The 

key formula used in DeePMD is the equation of motion, which describes the motion of the 

particles in the system. The force is calculated using the potential energy predicted by the deep 

neural network, and the equations of motion are solved using this force. Atomic environment 

descriptors are used by DeePMD-kit as input for training a neural network. By establishing a cut-

off radius and using the interactions of the atoms within it, the atomic environment is produced. 

DeePMD-kit preserves the system's rotational, translational, and permutational symmetry by 

generating descriptors through the atomic environment. For each atom, it records local 

coordinates by constrcting local frames. The descriptor can be expressed as: 

                      𝐷𝑖𝑗
𝛼 = { 1

𝑅𝑖𝑗
, 𝑥𝑖𝑗

𝑅𝑖𝑗
, 𝑦𝑖𝑗

𝑅𝑖𝑗
, 𝑧𝑖𝑗

𝑅𝑖𝑗 
}(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛).                                       

                     𝐷𝑖𝑗 = 1
𝑅𝑖𝑗

 (radial information)                                                                        

Only radial information about the atoms is available when  𝛼 is 0. While 𝛼 = {1, 2, 3, 

full}offers radial in addition to angular information on the atoms. Rij represents the relative 

location of atom i with respect to atom j, while (xij, yij, zij) are the coordinates of the atoms' 

relative positions. The total coordinate information describes the bound interactions between 

atoms, whereas the radial coordinate information describes the non-bonded interactions. The 

overall energy of the system is calculated by adding the atomic energies of all the atoms. The NN 
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trained on the descriptors predicts the atomic energies of the coordinates. DeePMD-kit seeks to 

minimize the loss function in order to maximize accuracy: 

                     𝐿(𝑝𝜀, 𝑝𝑓, 𝑝𝜉) = 𝑝𝜉

𝑁
Δ𝐸2 + 𝑝𝑓

3𝑁
∑ |Δ𝐹𝑖|2 + 𝑝𝜀

9𝑁𝑖 ||ΔΞ||2                                       

here ΔE, ΔFi, and ΔΞ are root mean square (RMS) errors of energy, force, and virial 

respectively. 𝑝𝜀, 𝑝𝑓, 𝑝𝜉 are the perfectors which alter during the optimization process in training 

and obtained from the learning rate. TensorFlow's Adam stochastic gradient descent approach is 

used to optimize the model. 

It's important to mention that DeePMD is a combination of two different models, one for 

the neural network and another for the MD simulations. The neural network model is a fully-

connected feedforward neural network that receives the coordinates of the atoms of the system as 

an input, and outputs the potential energy of the system. The MD simulation model is a classical 

MD model, where the force is calculated from the potential energy and then the equations of 

motion are solved using an integration algorithm (such as Verlet algorithm). 

The ML model is trained by transforming the generated training data to frames. Each 

coordinate frame is labeled with the energy and force associated with it. Along with coordinates, 

energies, and forces, DeePMD-kit requires the dimensions of the system's box and a file 

containing the system's atom kinds. After converting the training data to the right format, the NN 

is trained using input scripts that specify the training hyperparameters. The cut-off radius for the 

atomic environment, the number of hidden layers, and other training parameters are specified 

here.  

E(3)-equivariant Graph Neural Network. Neural Equivariant Interatomic 

Potentials(NequIP) is a highly data-efficient deep learning technique for learning interatomic 

potentials from reference first-principles computations. This proposed method is claimed to 
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achieve greater precision than existing ML-IP methods for a wide range of systems, including 

tiny molecules, water in different phases, an amorphous solid, a reaction at a solid/gas interface, 

and a Lithium superionic conductor. Furthermore, NequIP is proven to demonstrate outstanding 

data efficiency, permitting the creation of accurate interatomic potentials from data sets 

including less than 1000 or as low as 100 reference ab-initio computations, whereas other 

methods require orders of magnitude more. Notably, on small molecular data sets, NequIP beats 

not just other neural networks, but also kernel-based techniques, which normally achieve higher 

predictive accuracy on short data sets than NN-IPs (although at significant additional cost scaling 

in training and prediction). From reference (16), a training set of molecular data obtained at the 

quantum chemical coupled-cluster level of theory is utilized to exhibit excellent data efficiency 

and accuracy. They were able to validate the method through a series of simulations and 

demonstrate that we can accurately duplicate the structural and kinetic parameters estimated 

from NequIP simulations in comparison to ab-initio molecular dynamics simulations (AIMD). 

They proved that the performance gains are a result of the new NequIP model's E(3)-equivariant 

convolution architecture. 

Machine learning in atomistic systems uses equivariance because physical properties 

have well-defined transformation qualities under translation, reflection, and rotation of atoms. 

An equivariant transformation rotates a molecule's atomic dipoles or forces when rotated in 

space. Equivariant neural networks can better reflect physical system tensor characteristics and 

operations (e.g. vector addition, dot products, and cross products). Because they are expressly 

constructed from equivariant processes, equivariant neural networks ensure the transformation 

features of physical systems under coordinate changes. A function f:X →Y is equivariant with 

regard to the group G acting on X and Y if and only if: 
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                                 𝐷𝑦[𝑔]𝑓(𝑥) = 𝑓(𝐷𝑥[𝑔]𝑥)   ∀𝑔∈ 𝐺, ∀𝑥∈ 𝑋                                            

Here where Dx[g] and Dy[g] are the group element representations in vector spaces X and 

Y, respectively. The goal is to determine the total potential energy Epot and the forces acting on 

the atoms Fi, given a set of atoms. This total potential energy is calculated by adding the 

potential energies of individual atoms. The derivatives of this estimated total potential energy 

with respect to the atomic positions are then used to calculate the forces. 

                                              𝐸𝑝𝑜𝑡 =  ∑ 𝐸𝑖,𝑎𝑡𝑜𝑚𝑖𝑐  𝑖𝜖𝑁𝑎𝑡𝑜𝑚𝑖𝑐                                                       

                                               𝐹𝑖⃗⃗ =  − ∇𝑖 𝐸𝑝𝑜𝑡                                                                           

The local atomic energies The graph neural network predicts the scalar node 

characteristics Ei,atomic. Even while NequIP's output, the anticipated potential energy Epot, is 

invariant under translations, reflections, and rotations, the network's core characteristics are 

geometric tensors that are equivariant to rotation and reflection. This is the fundamental 

distinction between NequIP and existing scalar-valued invariant graph neural net- work 

interatomic potentials(GNN-IPs). Each atom in NequIP is associated with characteristics 

consisting of scalars, vectors, and tensors of various orders. Formally, the feature vectors are 

geometric objects consisting of the direct sum of irreducible representations of the O(3) 

symmetry group. The feature vectors 𝑉𝑎𝑐𝑚
𝑙,𝑝 are indexed by keys l, p, where  “rotation order” 

l=0,1,2,... is a non-negative integer and parity is one of p ∈ (1, −1) which together designate the 

irreducible representations of O(3). The indices a, c, and m correspond to the atoms, the channels 

(elements of the feature vector), and the representation index m∈[l, l] accordingly. The 

convolutions that work on these geometric objects are equivariant functions rather than invariant 

ones, meaning that if a feature at layer k is modified by a rotation or parity transformation, the 

output of the convolution at layer k→k+1 is also transformed. Since their filters act on relative 
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interatomic distance vectors, convolution processes are intrinsically translation invariant. In 

addition, they are permutation invariant, as the sum of contributions from various atoms is 

invariant under permutations of those atoms. Notably, whereas atomic properties are equivariant 

to permutation of atom indices, the total potential energy of the system is permutation-invariant 

globally. To achieve rotation equivariance, the convolution filters 𝑆𝑚
𝑙 (𝑟𝑖𝑗⃗⃗  ⃗) are limited to be 

products of SO(3) equivariant learnable radial functions and spherical harmonics. 

                                                𝑆𝑚
𝑙 (𝑟𝑖𝑗⃗⃗  ⃗) = 𝑅(𝑟𝑖𝑗)𝑌𝑚

𝑙  (𝑟𝑖𝑗̂)                                                         

where if (𝑟𝑖𝑗⃗⃗  ⃗) represents the relative position from atom position i to neighboring atom j, 

𝑟𝑖𝑗̂ and rij are the associated unit vector and  interatomic distance, respectively, and 𝑆𝑚
𝑙 (𝑟𝑖𝑗⃗⃗  ⃗) 

denotes the corresponding convolutional filter. 

Most MLIPs use just invariant inputs to provide energy invariance. In invariant, atom-

centered message-passing interatomic potentials, each atom's hidden latent space is a feature 

vector of only invariant scalars. Recently, equivariant neural networks have been created to 

directly respond on non-invariant geometric inputs such displacement vectors in a symmetry-

respecting manner. Only E(3)-equivariant operations create a model that is equivariant with 

regard to the 3D Euclidean group. Interatomic potential models have been developed using 

equivariant topologies. The NequIP model, followed by numerous other equivariant 

implementations, showed unprecedentedly low error on a wide range of molecular and materials 

systems, accurately characterizes structural and kinetic features of complex materials, and has 

outstanding sample efficiency. In NequIP, the representation DX[g] of an operation g ∈ O(3) on 

an internal feature space X is a direct sum of irreducible representations (irreps) of O(3). The 

feature vectors are composed of geometric tensors corresponding to irreps that explain how they 

transform under symmetry operations. A tensor inhabits an irrep l, p if it transforms according to 
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its rotation order and parity. In many circumstances, one can skip the parity index and design 

features that are merely SE(3)-equivariant (translation and rotation), simplifying network 

construction and reducing memory needs. 

An essential operation in such equivariant networks is the tensor product of 

representations, an equivariant operation that combines two tensors x and y with irreps ℓ1, p1 and 

ℓ2, p2 to produce an output residing in an irrep ℓ𝑜𝑢𝑡, pout that satisfies |ℓ1 − ℓ2| ≤ ℓ𝑜𝑢𝑡 ≤

|ℓ1 + ℓ2| and  𝑝𝑜𝑢𝑡 = 𝑝1𝑝2: 

                             (x⨂y)ℓ𝑜𝑢𝑡,𝑚𝑜𝑢𝑡 =  ∑ (ℓ1  ℓ2  ℓ𝑜𝑢𝑡
𝑚1 𝑚2 𝑚3

)𝑚1,𝑚2 xℓ1,𝑚1yℓ1,𝑚1                                 

here the products under multiplication is Wigner 3j symbol. This tensor product is 

bilinear (linear in both x and y) and combines tensors from separate irreps in a symmetrically 

valid manner. 

Allegro. For my thesis, I mostly used Allegro. The original equivariant message-passing 

graph neural network model for force fields is NequIP (Neural Equivariant Interatomic 

Potentials). Allegro (17) is a newer equivariant model that is strictly local and thus massively 

parallelizable, allowing for quick and precise simulations. Both models are PyTorch-based and 

incorporate ASE and the LAMMPS (18) molecular dynamics code. For Allegro, the potential 

energy of a system is decomposed into per atom energies 𝐸𝑖. 

                                                    𝐸𝑠𝑦𝑠𝑡𝑒𝑚 =  ∑ 𝜎𝑧𝑖𝐸𝑖 + 𝜇𝑧𝑖
𝑁
𝑖                                                     

where 𝜎𝑧𝑖 and 𝜇𝑧𝑖 are perspecies scale and shift parameters. Allegro decompose the per 

atom energy into a summation of energy pairwise and it is indexed by the central atom and their 

local neighbors. 

                                                    𝐸𝑖 =  ∑ 𝜎𝑍𝑖,𝑍𝑗𝐸𝑖𝑗𝑗 𝜖 𝑁(𝑖)                                                           
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where j is the range of atom i's neighbors, and again, a per-species-pair scaling factor 

𝜎𝑍𝑖,𝑍𝑗 may be applied. While these pairwise energies are indexed by the atom i and its neighbor j, 

they may be affected by all nearby atoms k in the immediate environment N(i). Eij and Eji 

contribute to separate site energies, Ei and Ej, we chose to limit them to the surroundings of the 

corresponding central atoms. As a result of this and by design, Eij ≠ Eji. Finally, the force acting 

on atom i, 𝐹𝑖⃗⃗ , is estimated using autodifferentiation as the negative gradient of total energy with 

respect to atom i's position and this gives an energy-conserving force field: 

                                             𝐹𝑖 ⃗⃗ ⃗⃗ =  − ∇𝑖𝐸𝑠𝑦𝑠𝑡𝑒𝑚                                                                       

Figure 4 depicts the Allegro architecture, which is an arbitrarily deep equivariant neural 

network with Nlayer ≥1 layers. The architecture discovers representations for ordered pairs of 

nearby atoms using two latent spaces : an invariant latent space with scalar (ℓ= 0) features and an 

equivariant latent space with tensors of arbitrary rank ℓ ≥ 0. At each layer, the two latent spaces 

interact with one another. A multi-layer perceptron (MLP) acting on the final layer's scalar features 

then computes the final pair energy Eij. The notations that are used here is the following: 𝑟 𝑖 is the 

position of the ith atom within the system. 𝑟 𝑖𝑗 is the relative displacement vector 𝑟 𝑖 − 𝑟 𝑗 from i to 

j. rij is corresponding interatomic distance. 𝑌⃗ 𝑙,𝑝
𝑖𝑗  is the projection of rij  onto the ℓ-th real spherical 

harmonic whose parity is 𝑝 = (−1)ℓ. We omit the m = -ℓ,..., 0,...ℓ index from the representation 

of the compactness notation. Zi is chemical species of atom i. MLP(... ) is  multi-layer perceptron—

a fully connected, possibly nonlinear, scalar neural network. x𝑖𝑗,𝐿 is invariant scalar latent features 

of the ordered pair of atoms ij in layer L. 𝑉𝑛,ℓ,𝑝
𝑖𝑗,𝐿  is equivariant latent features of the ordered pair of 

atoms ij at layer L. These transform according to a direct sum of irreps indexed by the rotation 

order ℓ 𝜖 0, 1,… . ℓ𝑚𝑎𝑥 and parity 𝑝 𝜖 − 1, 1; therefore, they consist of both scalars (ℓ = 0) and 
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higher-order tensors (ℓ > 0). The ℓ𝑚𝑎𝑥  hyperparameter determines the maximum rotation order 

to which network features are truncated. In Allegro, n represents the channel index that ranges 

from 0 to nequivariant -1 

 

 

Figure 4. Allegro Netwrok (a) Model architecture (b) Details of a tensor product layer  
 

It omits the m index from the compactness notation for each irreducible representation. 

Each Allegro tensor product layer consists of the following four elements: An MLP that 

generates weights to embed the environment of the center atom, a tensor product using those 

weights that is equivariant, an MLP that updates the scalar latent space with scalar information 

derived from the tensor product and a linear equivariant layer that combines channels in the 

equivariant latent space.  

The motive behind tensor product was to add interactions between the current equivariant 

state of the center-neighbor pair and other neighbors in the environment, and the tensor product 

is the most logical way to interact equivariant features. We therefore define the updated 
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equivariant features on the pair ij as a weighted sum of the tensor products of the current features 

with the geometry of the various other neighbor pairs ik in i's local environment.  

In Allegro, they use the advantage of the bilinearity of the tensor product to express the 

update in terms of a single tensor product, rather than one for each neighbor k, which 

significantly reduces the computational effort required. This is a variant of the "density trick." 

                            𝑽𝑛,(ℓ1,𝑝1,𝑙2,𝑝2)→(ℓ𝑜𝑢𝑡,𝑝𝑜𝑢𝑡)
𝑖𝑗,𝐿 =  ∑ 𝑤𝑛,ℓ2,𝑝2

𝑖𝑘,𝐿 (
𝑘∈𝒩(𝑖)

𝑉𝑛,ℓ1,𝑝1

𝑖𝑗,𝐿−1⨂𝑌⃗ 𝑙2,𝑝2
𝑖𝑘 )                                    

                                                                       =  ∑ 𝑉𝑛,ℓ1,𝑝1

𝑖𝑗,𝐿−1⨂ ((𝑤𝑛,ℓ2,𝑝2
𝑖𝑘,𝐿 𝑌⃗ 𝑙2,𝑝2

𝑖𝑘 )
𝑘∈𝒩(𝑖)

                                   

                                                                       = 𝑉𝑛,ℓ1,𝑝1

𝑖𝑗,𝐿−1   ( ∑  𝑤𝑛,ℓ2,𝑝2
𝑖𝑘,𝐿

𝑘∈𝒩(𝑖)

𝑌⃗ 𝑙2,𝑝2
𝑖𝑘 )                                   

Tensor product's second argument, ∑  𝑤𝑛,ℓ2,𝑝2
𝑖𝑘,𝐿

𝑘∈𝒩(𝑖) 𝑌⃗ 𝑙2,𝑝2
𝑖𝑘  is a weighted sum of the 

spherical harmonic projections of the various neighbor atoms in the local environment. The 

atomic density is projected onto a weighted spherical harmonic basis, analogous to how ACE 

and SOAP project onto a spherical-radial basis. ∑  𝑤𝑛,ℓ2,𝑝2
𝑖𝑘,𝐿

𝑘∈𝒩(𝑖) 𝑌⃗ 𝑙2,𝑝2
𝑖𝑘  is therefore considered to 

be the "embedded environment" of atom i. The scalar products of the tensor product are 

reintroduced into the scalar where ∥ denotes concatenation and ⊕ denotes concatenation over all 

tensor product paths whose outputs are scalars (ℓ𝑜𝑢𝑡 = 0, 𝑝𝑜𝑢𝑡 = 1), each of which contributes 

nequivariant scalars.  

              𝐱𝑖𝑗,𝐿 = MLP𝑙𝑎𝑡𝑒𝑛𝑡
𝐿 (x𝑖𝑗,𝐿 ∥  ⨁⏟

(ℓ1,𝑝1,𝑙2,𝑝2)
𝑉𝑛,(ℓ1,𝑝1,𝑙2,𝑝2)→(ℓ𝑜𝑢𝑡=0,𝑝𝑜𝑢𝑡−1)

𝑖𝑗,𝐿−1 ) . 𝑢(𝑟𝑖𝑗)             

The smooth cutoff envelope from equation is repeated as the function 𝑢(𝑟𝑖𝑗). The latent 

MLP's goal is to integrate and compress data from the tensor product of arbitrary dimensions into 

a latent space with a fixed dimension. Since the scalars extracted from the tensor product include 
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information about non-scalars that was previously only accessible to the equivariant latent space, 

this operation completes the coupling of the scalar and equivariant latent spaces. 

After that, equivariant features are generated by linearly mixing the results from different 

paths of tensor product computations that share the same irrep (ℓ𝑜𝑢𝑡, 𝑝𝑜𝑢𝑡). 𝑉𝑛,ℓ ,𝑝 

𝑖𝑗,𝐿 with n 

channels, where n is the number of channels in the input features: 

                       𝑉𝑛,ℓ ,𝑝 

𝑖𝑗,𝐿 =  ∑ 𝑤𝑛,𝑛́,((ℓ1,𝑝1,𝑙2,𝑝2)→(ℓ,𝑝)
𝐿 𝑉𝑛́,(ℓ1,𝑝1,𝑙2,𝑝2)→(ℓ ,𝑝 )

𝑖𝑗,𝐿−1

𝑛′
(ℓ1,𝑝1,𝑙2,𝑝2)

                                      

The weights, 𝑤𝑛,𝑛́,((ℓ1,𝑝1,𝑙2,𝑝2)→(ℓ,𝑝)
𝐿  are memorized. This operation, regardless of the 

number of paths, compresses the equivariant information from various paths with the same 

output irrep (ℓ, 𝑝) into a single output space. Finally, a SE(3)-equivariant version of Allegro, 

which is sometimes useful for computational efficiency, can be built in the same way as the 

E(3)-equivariant model described here by simply omitting all parity subscripts p. Allegro 

employs a residual update in the scalar latent space after each layer, which updates the previous 

scalar features from layer L-1 by adding the new features. The residual update enables the 

network to easily propagate scalar information forward from earlier layers. A fully connected 

neural network is applied with output dimension 1 to the latent features output by the final layer 

to predict the pair energy Eij: 

                                         𝐸𝑖𝑗 = MLPoutput(x𝑖𝑗,𝐿=𝑁𝑙𝑎𝑦𝑒𝑟)                                                       

Moment Tensor Potentials. Moment Tensor Potentials are a class of systematically-

improvable interatomic potentials invented at Skoltech by Shapeev et al. and implemented in the 

MLIP software package (19) . MTPs are capable of actively selecting setups and configuring the 

potential while running. Demonstrably, MTPs accurately duplicate ab-initio-calculated energy, 

forces, and stresses (20). This section is largely influenced by Novoselov et al's outline. 
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As is the case with the vast majority of interatomic potentials, it is assumed that the 

overall interaction energy of a configuration may be represented as the sum of atomic 

contributions (21). The contribution from a single atom i is defined as V(ri), where V is the 

interatomic potential and ri = (ri,1,..., ri,n) is a collection of vectors pointing from atom i to its 

neighbours within the potential cut-off. MTP then postulates linear representations for every 

atomic contribution V(ri). 

                                                         𝑉(𝑟𝑖) =  ∑ 𝜃𝑗𝐵𝑗(ri)𝑚
𝑗=1                                                     

Here 𝜃𝑗 can be adjusted, 𝐵𝑗 defines as basis function and m is number of functions in that 

basis. The total energy of the system can be written as the sum of V(ri) over all atoms. 

                                                          𝐸(𝑥) =  ∑ ∑ 𝜃𝑗𝐵𝑗(r𝑖)𝑚
𝑗=1

𝑁
𝑖=1                                                

N is the atom number in x configurations. The force can de determined as a derivative of 

𝐸(𝑥) with respect to atom position and virial with respect to lattice vectors L. 

                                                           𝑓𝑗(𝑥) =  − ∇𝐸(𝑥)                                                             

                                                            𝜎(𝑥) = 1
|det(𝐿)|

(∇L𝐸(𝑥))𝐿T                                              

According to equations above, the energy, forces, and stresses for a particular configuration 

are defined by the set of basis functions Bj and the values of the adjustable parameters 𝜃𝑗. These 

parameters can be determined by fitting an unfitted MTP to the DFT calculation data. Assume that 

DFT computations were performed for some number of time steps on the training set, which is a 

collection of configurations XTS. For every configuration xi in the set XTS, the "precise" energy  

(E DFT(xi)), per-atom forces (fjDFT(xi)), and stress tensor components (𝜎𝑗
𝐷𝐹𝑇(𝑥𝑖)) are known. 

Hence, the MTP energy error for configuration xi is 

∆𝐸(𝑥𝑖) = |𝐸(𝑥𝑖) − 𝐸𝐷𝐹𝑇(𝑥𝑖)| 

We can minimize the functional to get the value of 𝜃𝑗. 
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                                      ∑ [𝐶𝐸
2  ∆𝐸(𝑥𝑖)2 + 𝐶𝑓

2 ∑∆𝑓𝑖(𝑥𝑖)2 + 𝐶𝑠
2∇𝜎(𝑥𝑖)2

𝑁𝑖

𝑗=1

]
𝑥𝑖∈𝑋𝑇𝑆

                                     

CE, Cf, and Cs weight energy, forces, and stress. These weights are modified during fitting 

to reduce inaccuracy. Fitting weights indicate property relevance during fitting. MTPs choose 

training set configurations based on per-atom energy (V(ri)), configuration energy (E(xk)), forces 

(fi(xk)), and stresses (j(xk)). These traits are selected by neighbours, energy, forces, or stresses. 

Like the fitting process in eq., the strategies might be utilised simultaneously. Weights establish 

the relative importance of each strategy in the selection process. A threshold value controls the 

number of selected configurations for a given set of weights, limiting extrapolation. If the 

threshold is exceeded, the configuration is added to the optimised training set, hence decreasing 

the threshold increases the number of picked configurations.  

Conventional machine learning is passive learning, in which an algorithm or machine 

learning model is fed data until convergence. In ambiguous regions, the model cannot discard 

points or seek new data. Active Learning (AL) tackles this problem by providing an unlabeled 

data set from which the model can query important points. This strategy is effective because all 

learners, whether algorithms or living organisms, gain from the capacity to explore, pose 

questions, and collect new information (22). The AL model requires an oracle, or instructor, to 

accurately identify the newly selected data points and quantify the uncertainty in its projection in 

order to maximise the data set's potential for extension and improvement. By accumulating more 

data, the pre-trained model is improved iteratively and by reading oracles provide data labels that 

may improve model performance (23). 

AL's iterative method begins with a model trained on low-accuracy data or a data set that 

is too small to generalise the data trend. This model can be initialised at random or left empty to 
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avoid initial training data. This model predicts data without labels without training. In this phase, 

the model must be capable of estimating its prediction errors or extrapolation grade. These 

values can then sort the prediction data. The growth of training set. Then, a selection of these 

data points is chosen and the oracle is asked for the actual labels. After expanding the training 

sets with fresh tagged data, the model can be retrained to improve its performance when 

predicting near the spots. The parameter space for the model's projected data is scanned by 

repeatedly labelling high error data points and expanding the training set. The model will 

accurately reflect data patterns without major extrapolation or error. 

Hyperparameter Optimization in Machine Learning Models. Machine learning 

entails predicting and classifying data and employing various machine learning models based on 

the dataset. Machine learning models are parameterized in order to be tuned for a specific 

problem. These models can have a large number of parameters, and determining the best 

combination of parameters can be viewed as a search problem. A model hyperparameter is an 

external configuration of the model whose value cannot be estimated from data. They are 

frequently used to estimate model parameter values. They are frequently optimized for a 

particular predictive modeling issue. One cannot determine the optimal model hyperparameter 

value for a given problem. We can use rules of thumb, copy values from other issues, or use trial 

and error to determine the optimal value. When a machine learning algorithm is tuned for a 

specific problem, you are essentially tuning the model's hyperparameters to determine which 

parameters produce the most accurate predictions. A popular book titled "Applied Predictive 

Modelling" states: "Many models have crucial parameters that cannot be directly estimated from 

the data. In the K-nearest neighbor classification model, for instance. This type of model 

parameter is known as a tuning parameter because there is no analytical formula to determine an 
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appropriate value." Frequently, model hyperparameters are referred to as model parameters, 

which can be confusing. The following is a good rule of thumb for avoiding this confusion: If a 

model parameter requires manual specification, it is likely a model hyperparameter (24).  

Number of Hidden Layers. Hidden layers are those that exist between the input and 

output layers. A large number of hidden units within a layer using regularization techniques can 

improve accuracy. A lower number of units may result in underfitting. 

Dropout. To boost its generalization ability, dropout is a regularization technique that 

reduces the likelihood of overfitting (improves validation accuracy). In most cases, a small 

dropout value of 20%-50% of neurons is appropriate, with 20% being a good baseline. If you set 

the probability too low, it won't have much of an impact, but if you set it too high, the network 

won't learn enough. When applied to a more extensive network, dropout increases the model's 

chances of acquiring accurate results by allowing it to form more distinct representations. 

Network Weight Initialization. It's possible that different weight initialization schemes 

would be optimal for each layer's activation function. Typically, a fairly even distribution is 

employed. 

Activation function. Activation functions are used to introduce nonlinearity into models, 

enabling deep learning models to discover nonlinear prediction boundaries. In general, the most 

popular function is rectifier activation. In the output layer, sigmoid is used when making binary 

predictions. Softmax is utilized in the output layer when making predictions for multiple classes. 

Learning Rate. The learning rate specifies the rate at which a network modifies its 

parameters. The learning process is slowed by a low learning rate, but it converges smoothly. A 

higher learning rate accelerates the learning process, but it may not converge. Typically, a 

degrading Learning rate is favored. 
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Number of Epochs. The number of epochs represents the number of times the entire 

training set is presented to the network during training. Increase the number of epochs until 

validation accuracy begins to decline even as training accuracy rises (overfitting). 

Batch size. Mini batch size is the number of subsamples provided to a network before a 

parameter update occurs. The default batch size could be 32 items. Additionally, one can tr 32, 

64, 128, 256, etc. 
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METHODS 

 

High Entropy Alloy Structures for Ab-initio Simulation 

We need to generate structures for computing the DFT and ab-initio calculation. It is 

important to have all the possible combinations of samples. The basic strategy we adopted in this 

study showin in Figure 5, which we dubbed the "high-entropy strategy" is a sampling technique 

that aims to maximise the statistical variance in volumetric/pressure and energy environments of 

the phase of interest (25). We started with HEA because we can easily exchange information to 

other binary rich or pure rich composition.  Such a method may also be extended to higher-order 

systems by sampling the high-entropy alloy (HEA) of different phases, which include a relatively 

equal proportion of transition metals.  

 

 

Figure 5. High entropy alloy strategy 
 

The complete phase space is sampled in a different manner by expanding a large range of 

simulated temperatures and volumes at a given temperature. I studied the various temperature–
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volume domains by randomising the transition metal in order to discover more comprehensive 

compositional changes. I varied the Vienna Abinitio Simulation Program(VASP) input file, 

POSCAR which contains lattice geometry and ionic positions and changed the universal lattice 

scaling vector from 0.95 to 1.2. Different volumes were made either by scaling up or down by 

increasing and decreasing the relaxed structure.  

 In each sampled set of trajectories, the early frames are purposefully trimmed and not 

used for training or testing due to erroneous energy considerations caused by the normally 

randomly assigned initial velocity, hence enhancing the quality of the data as a whole. In my 

thesis, I am going to discuss potentials of 4 to10 components HEA including Ni, Cr, Co, Al, Fe, 

C, Mo, W, Ti, Nb. The DFT calculation for these composition were done at various temperature 

and volumes. The samples also had pure rich compositions of HEA including FCC, BCC, HCP 

and random phases. Starting configurations for first-principle molecular dynamics (FPMD) are 

derived from Materials Project crystallographic data in cif format for FCC, BCC and HCP 

phases, shown in Figure 6.  

 

 

Figure 6. Input structures for the DFT calculation. (a) FCC (b) HCP (c) Random/melt (d) BCC  
 

(a) (b)

(c) (d)
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These unit cells for AB-INITIO MD simulations have 50~120 atoms per unit cells. For 

each HEA composition, training data are created in accordance with the VASP documentation 

for canonical ensemble (NVT) FPMD sampling, including recommended GPAW 

pseudopotentials(Table1). To ensure reliable sampling, and given that explicit relaxation data are 

not sampled, a sufficient kinetic energy cutoff of 385~520 eV is determined for different 

compositions, with the greatest of each species' pseudopotentials being chosen. The self-

consistent field(SCF) iteration threshold is set at atleast 1E-05 eV, and the precision was 

accurate. Given a huge cell size of atleast 108 atoms, real-space projectors and distributions are 

enabled using mostly 1x1x1 and 2x2x2 KPOINTS grid for efficient data creation and some pure 

rich configurations with 3x3x3 KPOINTS.  

 

Table 1. Selection of ab initio data used for model training of HEA 4, 5, 7 

System Temperature(K) Frames 

HEA 4 1000~5000 148000 

HEA 5 1000~2500 2110 

HEA 7 1000~3000 25764 

HEA 10 1000~5000 200857 

 

After sampling different volumes in different temperature, the samples needs to process 

for obtaining the behaviour of these structures using ab-initio molecular dynamics with VASP. 

The goal of performing ab-initio molecular dynamics on the crystal structure is to provide 

information on energy, force, and strain at high temperatures. VASP supports many thermostat 

types in order to accomplish the NVT ensemble. The kinetic energy cutoff was set higher than 

the maximum energy cutoff for the species they had. This energy setting was used for all NVT 
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ensemble abinitio molecular dynamics (AIMD) calculations. The maximum number of self-

consistent field (SCF) iterations to perform to converge the electronic structure was kept atleast 

40. The field convergence of 1.0E-6 eV was employed. Similarly, for partial occupancies of a set 

of orbitals, Gaussian smearing with a smearing width of 0.05 eV was set. There are multiple 

methods for obtaining samples for various configurational spaces inside the structure and 

canonical NVT ensemble temperatures that would address the harmonic and anharmonic 

vibrations in the crystal structure. Therefore, the typical technique here is to first match the 

thermal fluctuation caused by harmonic vibration and then go to a higher temperature for 

sampling the anharmonic contribution for the specified configurational space. I use this method 

and run NVT ensemble simulations at temperatures of 1000K to 4000K for all given structures 

with volume scaling and deformations. 

 

Machine Learning Interatomic Potentials Training 

After ab-initio calculation of the HEA samples, the energy, force, and stress data must be 

fitted. For each ab-initio VASP computation, a vasprun.xml file containing energy, force, and 

stress information from molecular dynamics run is generated. NVT ensemble samples of 

hundreds of trajectories were produced for different temperature. The vaprun.xml file contained 

volume scaling for these trajectories. Each structure's trajectory was formed by altering lattice 

settings and randomly dislodging atoms. I will discuss results including three different NN build 

potentials. First, I used Deep Potential—Smooth Edition (DeepPot-SE) neural networks with 

DeePMD package. To improve the predictability of elastic characteristics, radial and angular 

descriptors from input frames are considered. Afterwards, further training parameters are 

determined based on prior literature and potential applications. Hence, according to (27), three-
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layer embedding and fitting networks consisting of [25, 50, 100] and [240, 240, 240] neurons are 

used. A cutoff radius of 5.8-6 Å guarantees significant neighbor interactions for up to the third 

closest neighbor in each training dataset. I have chosen three cut off radius like 2, 3 and 5 Å to 

see how well they predict the data. In Table 2, I am showing the RMSE error evaluation. I got 

better results with 6 for most of our systems. The choice of cut-off radius in neural network 

potential models specifies the maximum distance between atoms that will be considered when 

calculating atomic interactions. The choice of cut-off radius must strike a compromise between 

including enough surrounding atoms to capture all significant interactions and include too many 

atoms to render the computation impractical. A cut-off radius of 6 Å likely produced better 

findings than a cut-off radius of 3 or 2 Å because it includes more nearby atoms in the energy 

calculation. A bigger cut-off radius permits interactions between a greater number of atoms, 

which can result in a more precise energy computation. However, expanding the cut-off radius 

excessively may also include irrelevant interactions (8 Å) , leading to overfitting or slower 

calculation. Consequently, the choice of cut-off radius must be meticulously optimized based on 

the particular system and the available computational resources. Virial perfactors that are not 

zero are utilized to explicitly train the elastic data contained inside the datasets. The starting and 

end energy, force, and virial perfactors for one to five million training steps are [0.02, 1], [1000, 

1], and [100, 1], respectively. For Nequip or Allegro, the network architecture parameter was 

chosen in a similar way. However, I varied the cut off radius from 4 to 6 Å for this NN so that I 

can visualize how hyperparameters’ values affect the results. I have used more than 4 number of 

layers for both of these NN codes. In the context of NequIP, I've selected "l_max: 2", which 

refers to the maximum quantum number of angular momentum included in the basis functions 

used to characterize the atomic environment. 
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Table 2. Cut off radius and error 

Cut off radius(Å) Energy RMSE/Natoms(eV/A) 

8 6.459E-03 

6 6.000E-03 

3 1.087E-02 

2 2.370E-01 

 

This expansion is utilized to construct the neural network's input features, which are then 

used to estimate the potential energy surface. I look through the examples of training data input 

and scripts from (17) and choose parameters that gave me lowest error. The codes mentioned 

above had some type of inputs for all the compositions. For MTP, I had worked with OUTCAR 

which is a detailed output of a VASP run, including: a summary of the used input parameters, 

information about the electronic steps, KS-eigenvalues, stress tensors. forces on the atoms. I 

eliminated configurations where the smallest distance between atoms is less than 1.5. (19) has 28 

untrained MTP potential input files to choose from and I select the level 10 functional form of 

MTP, eight radial basis functions, and maximum cut off radius of 5 Å. After training data with 

these codes, I decided to verify and validate these potentials. For each of these MLIPs, I have 

validated them by evaluating how good they predict the input data such as energy, force and 

stress of the systems. I have used larger scale MD simulations to verify how well these MLIPs 

predict mechanical and thermal properties of the given systems. 
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RESULTS AND DISCUSSION 

 

DeePMD Model Accuracy 

The model accuracy was evaluated on how good the potentials were able to predict the 

input data. I am going to discuss results of three different number composition-based HEA. HEA 

4 is made of equal portion of Ni, Co, Cr and Al. HEA 7 is with Ni, Co, Cr, Fe, Al, Ti, Nb and 

HEA 10 which means 10 elements is made of Cr-W-Mo-C-Ni-Co-Fe-Al-Ti-Nb. Average RMSE 

training values for HEA4 from energy per atom, force, and virial per atom are 6.000E−03 eV, 

4.759E−1 eV/Å, and 2.414E−2 eV respectively, after 1750,000 training steps which is shown in 

Figure 7. 

 

 

Figure 7. Energy matching by DeePMD of (a) HEA4 (b) HEA7 (c) HEA10 as predicted by 
DeePMD potentials in y axis vs training-DFT data(x-axis) 

 

(a) (b)

(c)
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These training errors are within the same order of magnitude of other published work 

(26). Additionally, given inclusion of virial prefactors in this computation, it is reasonable that 

the total RMSE error is bigger than reported in other literature, where just force and energy are 

employed for training. Energy and virial matching in Figure 8 are linear in character, with a 

correlational coefficient of 0.999 and 0.999, respectively. I will discuss the force RMSE along 

with Allegro result as we found out better force convergence in equivariant NN. The energy and 

virial figures with these 3 different composition data with such near-linear connections show that 

the model well matches learned data. Numerical RMSE findings reveal that the model is typical 

of the trained ab-initio datasets. 

 

 

Figure 8. Virial matching by DeePMD potentials of (a) HEA4 (b) HEA7 (c) HEA10 as predicted 
in y axis vs training-DFT data(x-axis) 

 

(a) (b)

(c)
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The model accuracy for all of these 3 different elements systems are shown in Table 3. 

We can see that we got the most accuracy in prediction of energy and lower accuracy in terms of 

force prediction. Due to this reason, we opted to use new equivariant NN code which gave good 

accuracy to all of these three components. Additionally, DeePMD potential robustness is 

reflected in molecular dynamic simulations which sample untrained settings and properties-

serving to additionally check overfitting has not happened. 

 

Table 3. Error Analysis of three Models of DeePMD 

System Name Energy RMSE 

(eV/atoms) 

Force RMSE  

(eV/atoms) 

Virial RMSE 

(eV/atoms) 

HEA04 6.000E−03  4.759E−01  2.414E−02  

HEA07 8.044E-03 5.867E-01 3.648E-02 

HEA10 1.542E-02 4.894E-01 3.928E-02 

 

DeePMD Model Verification Using MD Simulations 

The microstructure of Nickel-based alloys consists of a primary matrix with embedded 

secondar y′ precipitates, the stress-strain as well as the creep deformation behavior at different 

physical conditions and environments depend on the microstructural characteristics. The 

mechanical behavior of these alloys is dependent on the volume fraction, shape and size of the 

precipitates, defect kinds and quantity, and their dislocation motion resistance. In this study, 

compression experiments were conducted to examine the dislocation dynamics in relation to the 

creep deformation of nickel-based superalloys with varied parameters. Figure 9 illustrates the 

uniaxial compression test at strain rate of 1010/s at 4 different temperatures using DeePMD 
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potential of 10 component systems. We have a replica simulation cell of almost half a million 

atoms of gamma phase like Haynes 282 alloy composition. I performed the constant pressure test 

(NPT) at 4 temperatures with same strain rate. If we compare with experimental results (27), we 

can see that in Figure 9 (b) that the ultimate tensile stress of the curves is decreasing with 

increase of temperature. Also, 9(c) includes the partial dislocation along (111) slip planes and 

loops that forms at the end of the simulation. This indicates that the potential was able to predict 

the mechanical behavior under compression test for one phase system. 

 

 

Figure 9. Compression test under various temperature using HEA10 potential (a) the model (b) 
stress vs strain graph (c) the dislocation band generation  

 

The next simulation cell that I used under the uniaxial compression test at 300K 

temperature with strain rate of 5x109/s was multilayer of Chromium Carbide (Cr23C6) with 

Gamma-Gamma prime in between. We have Ni as the FCC phase and Ni3Al as the gamma 

prime. In figure 10(a) and 10(b) showing the simulation cells with atoms whereas the 10(b) is the 
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condition at the end of the simulation. The rest of the figures are same, but they are without 

atoms for FCC phase. As FCC is the softest phase here, we can only see dislocation forming in 

this phase. The carbide multilayer is harder than the FCC phase and it’s difficult for the 

dislocation to pass in this layer. The DeePMD potentials with 10 components were able to 

predict this phenomenon. 

I will discuss thermal stability of the DeePMD potentials. During NPT simulations, 

thermal expansion is examined by alternating stages of heating and equilibration.  Figure 11 

demonstrates the expected linear trends for the carbides in the low-temperature range (300–1500 

K), as validated by high correlational coefficients in linear regression. 

 

 

Figure 10. Compression test under various temperature using HEA10 potential (a) the model (b) 
Stress vs strain graph (c) the dislocation band generation  

 

This qualitative behavior is anticipated in this temperature regime, given that the 

structure is stable and must exhibit low anharmonicity. Figure 11 shows the coefficient of 

thermal expansion (CTE) of HEA of 4 and 5 components (Ni, Al, Cr, Co, Fe). I used NPT 

(a) (b)

(c) (d)
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simulation from temperature 300K to 600 K with increment of 50K. The CTE from my 

simulation is similar to the reference which indicate this forcefield is simulating the material's 

underlying physics and interactions.  I also computed same NPT test on single phase Cr23C6 

from 100K to 1500K temperature using HEA10 potentials and compared with our previous 

potential of binary carbide. During NPT simulations, thermal expansion is examined by 

alternating stages of heating and equilibration. Figure 12 demonstrates the expected linear trends 

for the carbides in the low-temperature range (300–1500 K), as validated by high correlational 

coefficients in linear regression. This qualitative behavior is anticipated in this temperature 

regime, given that the structure is stable and must exhibit low anharmonicity. 

 

 

Figure 11. Coefficient of thermal expansion at 300K using HEA7 potential (a) HEA 
5(Ni,Al,Co,Cr,Fe) (b) HEA 4(Ni,Al,Co,Cr) 

 

The eventual modeling of creep deformation behavior requires an accurate prediction of 

elastic characteristics. Using LAMMPS, elastic constants and associated characteristics are 

calculated and compared to known literature for a near match. Developed potentials accurately 

reflect the following desirable elastic properties of Ni, Ni3Al, Cr23C6, Fe23C6 in Table 4: ground-

state elastic constants, Poisson Ratio, and Bulk Modulus. Interestingly, the elastic characteristics 
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are not explicitly sampled in the training dataset, and only NVT simulations are employed; 

despite this, correct predictions are made. 

 

 
Figure 12. Predicted average lattice constants of Cr23C6 varying by temperature. The orange 
boxes are using HEA10 potential and blue dots are using (Fe–Cr–Mo–W–C) potential.  

 

Table 4. Predicted CIJ 

Systems C11 (GPa) C12 (GPa) C44 (GPa) η K (GPa) 

Cr23C6 437.52397  

471.71(25) 

472.15(28) 

244.906 

232.48(25) 

215.7(29) 

136.809 

136.34(25) 

135.1(29) 

0.3588 

0.3301(25) 

0.3141(28) 

309.112 

312.221(25) 

301.01(29) 

Fe23C6 405.561 

466.84(25) 

490.7(29) 

285.1433 

301.42(25) 

255.9(29) 

100.421 

68.79(25) 

133.8(29) 

0.4107 

0.3923(25) 

0.34(29) 

315.5217 

356.557(25) 

334.2(29) 

Ni 235.5085 

276(30) 

175.9411 

159(30) 

121.617 

132(30) 

0.4276 

0.29(30) 

195.796 

198(30) 

Ni3Al 202.679 

239(30) 

145.101 

150(30) 

107.134 

129(30) 

0.4172 

0.30(30) 

164.293 

180(30) 
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The average percent error for all elastic are quite low, with near agreement with (15, 16). 

Thus, trained DeepPot-SE type potentials may forecast the ground- state elastic constants and 

bulk elastic characteristics of interested binary systems, pure system within ab initio ranges. The 

only exception is the C44 value of Al. This issue may be solved by further adding more adding 

training data or tweaking model architecture and hyperparameters. We tried our potentials to find 

out melting of different systems. Figure 13 illustrates this behaviour for the Fe23C6 system as 

determined by NPT simulation with 5E-4 picosecond timesteps for an initial equilibration of 

1000 steps and additional heating for 49,000 steps to 3500 K.  

 

 

Figure 13. Melting point of single phase Fe23C6 at two different heating rate using (a) HEA10 
potential(Ni,Al,Co,Cr,Fe,C,Mo,W,Ti,Nb) (b) Fe23C6 potential  

 

Before and after the phase transition, the system exhibits linear thermal expansion, with a 

nearly discontinuous change in volume at the melting point. Thus, MD provides a signal at 2000 

K for the melting point. We compared this with binary carbide components potentials (25) of two 

different heating rate and the results came out in similar temperature range. The same NPT 

melting test was done on pure systems like Ni, Al of 4000 atoms and in Figure 14, we can see the 
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melting point of Ni using HEA10 deep potential came out to be 1900K which a bit higher than 

(31). The Al melting point came out near 860K which is in near range to the melting point 

mentioned in (32) 

 

 

Figure 14. Melting point of single phase (a) Ni at 1900K (b) Al at 850K 

 

We also investigate dislocation behavior under varying stress for a simulation cell of 

similar to INCONEL 740H. I created a one phase structure with prolongated length in the Y axis 

and dislocation in between this length which will move the dislocation to the X axis. The tutorial 

from LAMMPS official page (33) using OVITO (34) was followed and in Figure 15, we can see 

the dislocation position and velocity with varying stress. When an extra half-plane of atoms 

disrupts the crystal lattice, dislocations form. Dislocations travel within the crystal structure, 

creating plastic deformation when a material is stressed. Atoms move dislocations, which takes 

energy. Low tensions make dislocation movement harder since the energy required to move it is 

large. When material stress increases, the energy required to move the dislocation reduces, 

making it easier to move. With larger stresses, the dislocation exerts more force, making it 

simpler to overcome crystal structural energy barriers. Increased force makes the dislocation 

move quicker and farther before hitting a barrier. Under larger stresses, crystal structure atoms 
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are more stimulated and more likely to engage in dislocation motion. This speeds the dislocation 

across the crystal structure. That’s why in figure 15 (b) we can see with increasing stress the 

velocity is increasing linearly. 

 

 

Figure 15. Dislocation mobility in INCONEL 740H using Deep Potential (a) disloclation in the 
beginning (b) the model at the end (c) dislocation loop at beginning (d) at end (e) positions with 
time (f) velocity of the dislocation with varying stress 

 

DeePMD Model Accuracy with Higher K-Points Input 

To evaluate how this NN perform with higher quality data, I have used HEA7 DFT data 

with 3x3x3 K-points, same configuration of the previous data. Due to higher K-points, I got 

trajectories near 6263 frames whereas the previous data with low K-points has 24154 frames. 

Though the comparison between this two data set model is not fair, I still trained the higher 

quality data with same configuration. In Table 5, the RMSE error are shown. Both of the RMSE 

are similar which indicate that with lower data of higher K points, we can achieve better results 

using DeePMD. 
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Figure IV-3.3 Analysis on edge dislocation applied to the g phase within the Inconel commercial alloys 
using 1.5 GPa shear stress. Initialed and equilibrated an edge dislocation line was introduced into the g 
phase as shown in (a) and (b). Then, the dislocation mobility as depicted here in (c) and (d) is evaluated. 
The same platform can now be used to assess the role of a wide range of compositional effect, stress level 
and temperatures toward the mobility of the dislocation.    
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Table 5. Error analysis of HEA7 

System Name Energy RMSE 

(eV/atoms) 

Force RMSE 

(eV/atoms) 

Virial RMSE 

(eV/atoms) 

HEA07 higher K points 6.400E−03  5.031E−01  3.593E-02 

HEA07  5.510E-03 5.891E-01 3.242E-02 

 
 
Allegro Model Accuracy 

Similar to DeePMD model, I evaluated Allegro by comparing the predicted energy, force, 

virial output data with DFT inputs. In Allegro, I choose equivariant NN. The choice of cut off 

radius from 4 to 6 Å with two different learning rate and batch size of 0.001, 0.005 and 1,3 

respectively. The goodness of fit in this comparison graphs in Figure 16 shows good accuracy as 

the predicted values are with goodness of fit for the input data. In Table 6, we can see how the 

force RMSE errors are less than DeePMD force RMSE, mentioned in Table 3. The configuration 

of hyperparameters will be discussed later which were same for some of them compared to 

DeePMD’s hyperparameters. The energy prediction with Allegro is similar to DeePMD except 

for the 10-component system. RMSE is only one of many possible evaluation measures, and 

other metrics may provide different insights into model performance. In addition, the 

performance of Allegro model can be affected by a variety of variables, such as the method and 

hyperparameters employed, and the nature of the issue being solved. When it comes to 

comparing the performance of different models, it is essential to conduct a comprehensive 

evaluation to draw meaningful conclusions. A thorough evaluation typically involves testing the 

models on various datasets and using various evaluation metrics to assess their performance. In 

terms of RMSE, Allegro performed better than DeePMD in terms of force RMSE. 
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Table 6. Error analysis of three models of Allegro 

System Name Energy RMSE (eV/atoms) Force RMSE (eV/atoms) 

HEA04 7.000E−03  1.082E−01  

HEA07 5.914E-03 1.951E-01 

HEA10 7.920E−03 1.034E−01 

 

 

Figure 16. Energy and virial matching by Allegro of (a) HEA4 energy (b) HEA7 energy (c) 
HEA4 energy (d) HEA7 virial as predicted in y axis vs training-DFT data(x-axis) 

(a) (b)

(c) (d)
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We have been getting higher RMSE error in force with invariant neural networks like 

DeepMD. That was one of the reasons that we chose Allegro. In Figure 17, one can see that the 

good ness of fit of the graph is better in Allegro, R2 value near 1 and for DeePMD, R2=0.87. If 

we evaluate force RMSE for HEA of 4 components in Figure 17 (c), the error is less than 0.2 eV 

 

 

 
Figure 17.  Force of HEA with 4 components (a) HEA4 Predicted force by DeePMD (b) HEA4 
Predicted force by Allegro (c) HEA4 Force RMSE Comparison (d) HEA4 force convergence 
with energy  

 

(a) (b)

(c) (d)
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for Allegro. DeePMD show comparatively higher error than Allegro which indicates the 

effectiveness of equivariant NN in capturing the essence of input component, force. Also Allegro 

has potential to get lower RMSE with enough training and hyper parameters optimization. 

 

Allegro Model Verification Using MD Simulations 

I was able to try NVT test using Allegro Potentials and the results that I am going to 

show is mostly stability under 300K and 1000K of different structures and phases. In Figure 18, 

there’s two different phases, the first one is gamma phase of HEA 4 near 7000 atoms and second 

structure represent gamma gamma prime phase. The figure shows their stable condition at 

different temperatures with radial distribution function(rdf) (35). 

 

 

 
 
Figure 18.  Thermal stability of supercell models of Gamma phase and Gamma Gamma Prime 
phase of HEA 4 at different temperature using HEA 4 Allegro Potential 
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It follows that the RDF can be used to monitor the melting process as for any given 

cluster size, the RDF will give an indication of stability and melting behavior. We can see that by 

coordination analysis, the first peak can be found and when these sharp peaks get neutralized; 

gets repetitive shape so the RDF plot can be assumed the characteristic shape of a typical fluid 

function. If g(r) remains constant with pair distance for 5000 frames at a specific temperature, 

this indicates that the system is in equilibrium and has a stable structure that is maintained 

throughout time. In other words, the particles are ordered in a manner consistent with the 

system's circumstances (e.g., temperature, pressure, etc.), and this arrangement does not change 

over the observation time. The precise value of g(r) at this temperature and for this system would 

depend on the nature of the particle interactions, the system's density, and other relevant 

considerations. Yet, the fact that g(r) remains constant over 5000 frames shows that the particle 

arrangement or structure of the system does not change significantly over time.  

 

Allegro Data Efficiency 

Nequip/Allegro uses the symmetry and invariance of the physical systems being 

described to get the most out of the data. Some features of physical systems don't change when 

the system is rotated or moved. By making neural network architectures that follow these 

symmetries and invariances, they can learn from fewer training examples and work better with 

new ones. To prove this claim, I used HEA 4 input data and divided them in three different input 

set. The total frames are 8075 from 35 DFT calculation files. The next input sets were chosen by 

randomly picking 17 DFT calculation files from the 35 data and the total frames they gave 

around 3000. I created three different training sets from these data where one is with all data, 

number of training sets 6000 and 2000, the last one with smaller input data which only has 2000 
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training sets. The results for training force RMSE is shown in Figure 19. Besides the number of 

training sets per epoch, every other hyperparameter was kept the same. It was observed that each 

of them performed and showed results at the same level. At 600 steps, the RMSE error with 

largest training set with 6000 training set is 0.0947 eV/atoms and with the smallest is 0.101 

eV/atoms. The dilemma here is that using large data we get same results like the small data gave 

us. It's conceivable that using a larger dataset didn't yield different results because the dataset 

was already large enough to capture the necessary information for the task at hand. In some 

cases, a certain quantity of data is sufficient to accurately model the system being studied, and 

adding more data beyond that point may not provide additional benefit. Additionally, there could 

be other factors that influenced the results beyond the magnitude of the dataset. For example, the 

quality and diversity of the data could be more essential than the quantity of the data. It's also 

conceivable that the hyperparameters of the model or the training process were not well-tuned, 

which can lead to similar results regardless of the dataset size. 

 

 
Figure 19. RMSE plot of different training sets of HEA 4 force RMSE  
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Hyperparameter Optimization 

As I mentioned earlier that importance of hyperparameters in training MLIP, I will 

mention here the hyperparameters value that we used in Allegro. We used cut off radius from 4 

to 6 Å and we get good results shown in Table 7 when we use 4~4.5Å for our HEA 

compositions. Learning rate was tweaked between 0.001 to 0.005, batch size 1. The Weights and 

Biases (wandb) (36) platform has a technique called "parallel coordinates" that lets users plot and 

explore high-dimensional data. In this way of showing data, each feature or variable is shown by 

a vertical axis, and all of the axes run in the same direction. Then, each data point is shown as a 

line that connects the values of each feature along the axis that goes with it(Figure 20). 

 

 
Figure 20.  Parallel coordinates of HEA 4 system  

 
 

The main benefit of parallel coordinates is that it makes it easy to find patterns and 

relationships between variables in data with a lot of dimensions. By looking at the lines, users 

can easily see which variables are strongly related to each other and how changes in one variable 
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affect other variables. This is especially helpful in machine learning, where models often work 

on high-dimensional data with many variables. Parallel coordinates in WandB also have 

interactive features, like filtering and highlighting, that let users explore and compare subsets of 

the data based on certain criteria. For example, users can filter the data to only show lines where 

a certain variable falls within a certain range or highlight lines where a certain variable has an 

extreme value. This makes it easier to find trends and patterns in the data that might not be 

obvious with other ways of displaying it. Another benefit of using parallel coordinates in WandB 

is that it works well with other features of the platform, such as the ability to track model 

performance and hyperparameters. This makes it easy for users to see how changes to model 

parameters or input data affect the way variables relate to each other. 

 

Table 7. Hyperparameters and RMSE 

Hyperparameters Energy RMSE (eV) Force RMSE (eV/atoms) 

Cut off radius 4 ~ 5 with training set 20,000 0.45-0.77 0.150 - 0.195 

Cut off radius 4 ~ 5 with training set 2,000 1.50 - 2.22 0.259 – 0.390 

 

For most of Allegro potentials, we got lower for RMSE when we used higher number of 

training data per batch. When a model has more training data, it can perform better and have a 

lower RMSE because it has more examples to learn from and apply to new data. In other words, 

when there is more training data, the model can pick up on a wider range of patterns and changes 

in the data, making it more accurate and stable. When a deep learning model is trained on a small 

amount of data, it might not be able to find all of the patterns and differences in the data. This 

can lead to overfitting, where the model becomes too specific to the training data and doesn't 

work well with new data it hasn't seen before. But if you give the model more training data, it 
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can see a wider range of examples and learn more general patterns. Also, having more training 

data can help make outliers and noise in the data less noticeable. When a model is trained on a 

small amount of data, outliers and noise can have a big effect on how well it works. With more 

training data, the model can tell the difference between real patterns and random noise in the data 

better. Also using wandb visualization tool, we can also inspect each species of our system. 

Figure 21 shows which species error of force with training steps for HEA4 and we can tell from 

this plot that Al has lowest RMSE. We can add more training data or improve the quality of the 

data of other elements to get a good potential. 

 

 
Figure 21. Error of force for individual species of HEA 4 (a) Ni (b) Al (c) Co (d) Cr 

 

MTP Model Accuracy 

We tried 4 and 5 elements HEA in MTP. With different training aproach and potential type, 

we got average RMSE training values for HEA4 from energy per atom, force, and virial per atom  

0.019 eV, 0.51 eV/Å, and 0.07 eV respectively. For HEA5, the values are lower than HEA4 for 
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energy and they are 0.0089 eV, 0.44 eV/Å and 0.089eV respectively.  In these training, we used 

functional form of MTP of level 10. I also tried for HEA 5 with level 02, the energy rmse was 

0.015eV and forces 0.62 eV/Å, level 06 was which is higher rmse than level 10. 

 

MTP Model Verification Using MD Simulations 

I am going discuss the results from HEA 5 NPT test. In Figure 22, the lattice constant of 

HEA4(Ni, Al, Co, Cr) using MTP and DeePMD 5 component potential for 300-600K is shown. 

The lattice constants fall into the range of 3.55 to 3.59 Å which is closer to the reference (37). 

The MLIPs are generously capturing the temperature-dependent behavior of the materials. I also 

got CIJ of Ni using this MTP potentials. The values I got for C11, C22, C44, η, K are 209.51 GPa, 

122.567 GPa, 147.133 GPa, 0.37, 151.608 GPa respectively which is not so close for some 

elements to the values described in Table 2 but closer to the reference (38) . 

 

 
Figure 22. Lattice constant of HEA4 using DeePMD and MTP Potentials 
 
 

Similar to Allegro, I was able to do an NVT test using MTP potentials of 5 elements, and 

the findings I'm going to provide are primarily stability between 300K and 1000K for various 

structures and phases. Figure 23 depicts one phase under two different temperatures of 300K and 
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1000K. The figure depicts their stable condition at various temperatures using a radial 

distribution function (rdf). 

 

 

Figure 23. Thermal stability of supercell models of Gamma phase of HEA 4 at different 
temperature using HEA 5 MTP Potential 
 
 

Since the RDF indicates stability and melting behavior for any cluster size, it can be used 

to monitor melting. Coordination analysis shows the first peak, and when these abrupt peaks are 

neutralized, the RDF plot becomes repeated, like a normal fluid function. If g(r) remains constant 

with pair distance for 5000 frames at a certain temperature, the system is in equilibrium and has a 

stable structure that persists over time. Hence, the particles are organized according to the 

system's conditions (temperature, pressure, etc.) and do not vary over time. The system's density, 

particle interactions, and other factors determine g(r) at this temperature and system. The 
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system's particle arrangement or structure does not change during 5000 frames since g(r) remains 

constant. 

 

MTP Active Learning and Future Work 

The process of calculating the melting point of aluminum through active learning with an 

MTP is outlined below. Aluminum is chosen as the benchmark system due to the availability of 

accurate DFT results. The tuning of the parameters of the potential is accomplished actively during 

a molecular dynamics’ simulation, and the training configurations are updated as needed by 

quantum mechanical calculations. During the MD simulation, the machine learning algorithm 

employs a "query strategy"—an algorithm that geometrically compares a given configuration with 

the training configurations—to assess whether the computed atomic configuration is sufficiently 

novel to be added to the training set. If it must be added, the program retrieves the quantum 

mechanical (QM) computations for this new configuration and modifies the MTP parameters in 

accordance with the derived atomic energies, forces, and stresses. In fact, the learning on the fly 

algorithm connects the LAMMPS-implemented molecular dynamics driver to a quantum 

mechanical model (VASP). Learning on the fly will continue until the MTP no longer detects new 

configurations during the MD. The training efficiency and accuracy of the resulting MTP are 

dictated by the extrapolation threshold, which is, in essence, the tolerance above which a 

configuration is deemed sufficiently novel. The active learning iterations are implemented in 

MLIP, following the steps described in Figure 24. The iteration begins by generating the state.als 

file based on the training set. Then, LAMMPS is used to run an MD simulation with active 

selection of configurations, and the extrapolative configurations are written to preselected.cfg. The 

select-add command is used to select representative configurations with maximal determinant, and 
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DFT calculations are performed on these configurations and written to computed.cfg. The 

computed.cfg is then appended to the previous training set, and the potential is re-fit on the 

expanded training set. The output of the iteration is an updated potential that can predict in a larger 

configurational space. 

 

 

Figure 24. Scheme of active learning iterations for training MTP 

 

Using active learning, the purpose of this study is to develop a valid DFT-trained 

potential for sampling Al solid and liquid configurations. In step 1, an initial training set is 

produced by conducting a 90-fs VASP MD trajectory, and a 108-atom FCC structure is used to 

execute an optimal NVT-MD to train the potential. Active learning iterations involve molecular 

dynamics and configuration collection, with the potential extrapolating in accordance with the 

procedure shown in figure 24. The study then advances to stage 1b, where active learning is 
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implemented via multi-scenario MD simulation. Parallel trajectories are done with lattice 

parameter a between 4.0 and 4.25 and temperatures, T between 700 and 800 K, and in the liquid 

scenario, 10,000 steps are executed with a = 4.25 and T = 1500 K, with the target temperature 

gradually decreasing a to the required value. To evaluate iterations of active learning, a 

validation set of 180 configurations is generated. After boosting data precision, this level's 186 

liquid and solid variations are computed using high-precision DFT. Five MTPs with random 

initialization of parameters are fitted to this training data, and the MTP with the lowest error is 

selected. Active learning iterations recommence using the same 180-configuration validation set, 

but with new DFT parameters for error evaluation. Active training reduces the validation error of 

the first 10 configurations from 13.5% to 12%, as shown by the results. On the 75th iteration, the 

trained potential samples a total of 186 solid and liquid options. The conclusion of the paper 

discusses the possibility for future research into whether MD probability distributions influence 

the accuracy of the potential and the efficacy of noise averaging as a method for increasing 

potential accuracy. 

This study emphasizes the possibility of active learning to generate accurate potentials for 

modelling atomic-level materials. The authors demonstrate that by combining simulations of 

molecular dynamics and configuration collection with DFT training, it is possible to develop a 

highly accurate potential that can consistently sample solid and liquid Al configurations. Further 

study in this area could aid in enhancing the precision of these potentials and enable simulations 

of materials and their properties that are more precise. 
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CONCLUSION 

 

I used three different machine learning approaches and developed Deep Learning 

interatomic potentials to model a multi-phase and multi-components system of Ni-based 

Superalloys. I have found that these machines learning interatomic potentials can predict DFT 

input data very well. They show excellent similarities in predicting mechanical and thermal 

properties using MD simulations. But there is still some room for improvement. I have found 

that we should focus carefully on what type of data we are feeding to these algorithms. The 

overall strategy for building interatomic potential by first fitting energy and force data at 

relatively low temperature and then adding high temperature data to match the potential is 

effective. It is noticeable that some of my ML potentials which shows great validation by 

predicting input data well, they cannot directly translate to recreate stable MD trajectories. So, to 

simulate a complex system of 10 component systems, we will need to employ iterative or on the 

fly learning strategy to refine the original potential. For future project, we should focus on active 

learning using DP-GEN (39), Psiflow (40)which are promising codes to create more robust 

potentials for multicomponent systems. Simulating larger domains with these accurate models 

will serve to strengthen our predictions to materials of interest, given the promise of exascale 

computing power. 
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