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1. INTRODUCTION

A few key terms will be addressed. We will assume the reader’s familiar-

ity with the basics of groups using general notation, terminology, and some results

from Dummit and Foote [3].

DEFINITION 1.1: A group covering is a set of proper subgroups of a given group

whose union is the group itself. The group is said to be covered by these subgroups.

THEOREM 1.2: No cyclic group has a covering.

Proof. By it’s definition, a cyclic group is generated by a single element. Assume to

the contrary that there is a covering for some cyclic group, then one of these sub-

groups must contain a generating element. Therefore, that subgroup is the group

itself and thus not a proper subgroup. This contradicts our definition for cover-

ing.

The converse for this is also true, giving a more powerful conclusion.

THEOREM 1.3: A group has a covering if and only if it is not cyclic.

Proof. Because of our previous theorem, all that needs to be shown is that ev-

ery non-cyclic group has a covering. Suppose G is a non-cyclic group. Therefore,

no single element generates it. Collect the subgroups generated by each element.

While wildly inefficient, we have created a set of proper subgroups such that every

element of G is contained in at least one of them, hence a covering.

DEFINITION 1.4: The covering number of a group, denoted σ(G), is the min-

imal number of subgroups required to cover the group. If a group cannot be cov-

ered, then σ(G) = ∞.

A covering using the fewest number of proper subgroups may be referred to

as a minimal covering. Our goal going forward is to observe the nature of minimal
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coverings and covering numbers. Since the subgroups must be proper, it should be

clear that no group has covering number 1. We continue by observing the possibil-

ity of other covering numbers.

THEOREM 1.5: No group has a covering number of 2.

Proof. Let G be any group such that its covering number is 2. Therefore, there are

two proper subgroups, which we will call A and B such that G = A ∪ B. Pick

elements a ∈ A such that a ̸∈ B and likewise b ∈ B such that b ̸∈ A.

If this cannot be done then either all elements of A are contained in B or

vice versa. This means that one of the groups is not necessary for the covering, con-

tradicting that 2 subgroups are needed.

If ab ∈ A, then since a−1 ∈ A, we have b ∈ A. This is a clear contradiction.

This similarly holds if ab is contained in B. So, G cannot be covered by only two

proper subgroups.
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2. PRELIMINARIES

The first thing to note is that the focus of this thesis will be on finite groups,

and so it will be assumed of all groups going forward. To start, we will need a few

tools introduced by Cohn [2].

LEMMA 2.1: If N ✂G, then σ(G) ≤ σ(G/N).

Proof. Begin with a minimal covering of G/N , labeled

{H1/N,H2/N, ..., Hn/N} for some n = σ(G/N) where each Hi is a subgroup of

G containing N . In other words, G/N =
n
⋃

i

(Hi/N). We then have that G/N =

(
n
⋃

i=1

Hi)/N and so G =
n
⋃

i

Hi. Hence σ(G) is at most n.

COROLLARY 2.2: Given a surjective homomorphism φ : G → H, σ(G) ≤ σ(H).

COROLLARY 2.3: σ(H ×K) ≤ min(σ(H), σ(K)).

These corollaries are useful tools for finding an upper bound for the covering

number of groups. Finding a lower bound on the covering number tends to be more

of a case-by-case situation unique to each type of group. The case where the first

upper bound is equal to the covering number prompts the following definition.

DEFINITION 2.4: A group G is called primitive if there exists no normal sub-

group N for which σ(G) = σ(G/N).

When looking for specific covering numbers, we can focus on primitive groups.

LEMMA 2.5: A minimal covering for any given group G can always be expressed

as a union of maximal subgroups.

Proof. Since we assume that G is finite, any proper subgroup is contained in a

maximal subgroup. Therefore, any non-maximal proper subgroup used in a cov-

ering can be substituted with a maximal subgroup that contains it. The number of

subgroups has not increased, and so this is still a valid covering.
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LEMMA 2.6: If gcd(|H|, |K|) = 1 then σ(H ×K) = min(σ(H), σ(K)).

Proof. Let G be the group G = H × K. If G is cyclic, then H and K are cyclic

and we are done. We therefore will assume that G is non-cyclic and that σ(G) =

n for some n. Because gcd(|H|, |K|) = 1, any subgroup of G will be of the form

X × Y , where X ≤ H and Y ≤ K. By Lemma 2.5 we can cover G with maximal

subgroups, which satisfy either X = H or Y = K. This gives us a covering for G,

using n maximal subgroups:

G =

( p
⋃

r=1

H × Yr

)

∪

( q
⋃

s=1

Xs ×K

)

= G1 ∪G2

for some non-negative integers p, q such that p + q = n. We aim to show that either

G1 = G or G2 = G.

If p ̸= 0, then G1 is non-trivial, implying there exists some element (h1, k1) ∈

G that is not an element of G2. More generally, (h1, k) ̸∈ G2 for any k ∈ K. There-

fore, (h1, k) ∈ G1. So, if (h1, k) is contained in G1 for any k ∈ K and H ≤ G1, then

(h, k) ∈ G1 for any h ∈ H, k ∈ K. Hence G1 = G and so q = 0 and p = n.

This then gives us that G = G1 = H×(
n
⋃

r=1

Yr). This means that K = (
n
⋃

r=1

Yr)

and thus σ(K) ≤ n. The same argument with q ̸= 0 yields σ(H) ≤ n. Corollary 2.3

then gives us equality, the desired result.
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3. COVERING NUMBER THREE

The route for this section follows [1] as it cleverly uses very little outside

results from group theory.

We start with a group G such that σ(G) = 3. So, G = A ∪ B ∪ C, where A,

B, and C are proper subgroups of G. Our goal is to find out what kind of group G

can be.

Let K denote the intersection of the three proper subgroups. Being the in-

tersection of groups, K is also a subgroup of G. As well, let Ã = A − (B ∪ C),

B̃ = B − (A ∪ C), and C̃ = C − (A ∪B). See figure 1.

Figure 1. Venn Diagram of Covering Groups A, B, and C, with labeled regions.

An important note is that these four regions are all non-empty. For the tilde

groups, we only need to observe that if one of them is empty, say Ã, then G = B ∪

C, which contradicts our assumption of needing three. Therefore, Ã, B̃, and C̃ are

all non-empty. We have e ∈ K, so K is also non-empty.

With those four regions labeled, we are left with only three more:

(A∩B)−C, (A∩C)−B, and (B∩C)−A. These sets can be thought of as elements

belonging to exactly two of the subgroups.
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THEOREM 3.1: The set (B ∩ C)− A is empty.

Proof. Let X be the set (B∩C)−A. Assume that X is non empty, choosing h ∈ X.

Then, pick an element a from the set Ã. We have ah ∈ G, and so ah is contained in

A, B, or C.

If ah ∈ A, then we know a−1 ∈ A, and so h = a−1ah ∈ A, a contradiction. If

ah ∈ B, then since h−1 ∈ B, a = ahh−1 ∈ B, but a ∈ Ã, once again a contradiction.

Likewise, ah ∈ C implies that a ∈ C, a contradiction. Therefore, H is empty.

This same rationale shows that the other two sets, A∩C −B and A∩B−C

are empty as well.

LEMMA 3.2: Suppose ã ∈ Ã, b̃ ∈ B̃, and c̃ ∈ C̃. Then, ãb̃ ∈ C̃, ãc̃ ∈ B̃, and

b̃c̃ ∈ Ã.

Proof. We will show ãb̃ ∈ C̃, since the other two relations will follow by analogous

arguments. Given ã ∈ Ã and b̃ ∈ B̃.

First, ãb̃ ̸∈ A, since this would imply b̃ ∈ A, a contradiction. Likewise,

ãb̃ ∈ B implies ã ∈ B, another contradiction. Therefore, ãb̃ ∈ C and ãb̃ ̸∈ A ∪ B.

So, ãb̃ ∈ C̃, and hence we are done.

LEMMA 3.3: The sets Ã, B̃, and C̃ are each closed under inverses.

Proof. As before, we will work with Ã, but note that arguments hold for B̃ and C̃.

Pick ã ∈ Ã. Since ã ∈ A, ã−1 ∈ A. This gives us two cases for its location:

either ã−1 ∈ Ã, or ã−1 ∈ K.

Assume ã−1 ∈ K. Then, since ãã−1 = e ∈ K, as is ã−1, this then implies

that ã ∈ K. Since this is a contradiction, the only option is ã−1 ∈ Ã.

This result lets us extend Lemma 3.2 a little further, giving the converse.

LEMMA 3.4: An element belongs to a given tilde set if and only if it is the prod-

uct of elements from the other two.
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Proof. We already have one direction from Lemma 3.2, so all that is left to show is

that every tilde element is expressed as a product from the other two tilde sets.

Pick any ã ∈ Ã. Given any c̃ ∈ C̃, we have that c̃−1 ∈ C, and so ãc̃−1 = b̃ for

some b̃ ∈ B̃. Therefore, ã = b̃c̃.

A similar proof works for B̃ and C̃.

LEMMA 3.5: If ã1 and ã2 are elements in Ã, then ã1ã2 ∈ K.

Proof. We start with ã1 and ã2 as elements in Ã. Since these are elements also con-

tained in A, we know ã1ã2 is as well. By our previous lemma, ã2 = b̃c̃ for some

elements b̃ ∈ B̃ and c̃ ∈ C̃. Then ã1ã2 = ã1b̃c̃. Notice then that ã1b̃ ∈ C, and also

c̃ ∈ C, hence ã1ã2 ∈ C. Likewise, we could define ã2 as the product of some b̃2 and

c̃2. Now, ã1c̃2 is an element of B and thus the product ã1ã2 is contained in B.

This means ã1ã2 is contained in each of A, B, and C. Hence, it is contained

in K.

A similar argument holds for the other two tilde sets.

LEMMA 3.6: K ✂G.

Proof. Normality holds in A if aka−1 ∈ K for any a ∈ A and k ∈ K. If a ∈ K, then

we are done. So, pick an element ã ∈ Ã and any k ∈ K. Now, ãk is contained in A.

More specifically, ãk ∈ Ã or ãk ∈ K. If ãk ∈ K, then ã ∈ K, and clearly this is

false. Since ãk ∈ Ã and ã−1 ∈ Ã, Lemma 3.5 gives us ãkã−1 ∈ K.

A similar process can be done to show normality in B and C. Hence K is

normal in G.

LEMMA 3.7: If ã ∈ Ã, then ãK = Ã.

Start with elements ã ∈ Ã and k ∈ K. Then, the product is contained in

either Ã or K. If ãk ∈ K, then ã ∈ K, a contradiction, so ãk ∈ Ã. Therefore,

ãK ⊆ Ã.
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For the other direction, let ã be an element of Ã. Then ã1 = ãã−1ã1 ∈ ãK

since ã−1ã ∈ K using lemmas 3.3 and 3.5.

THEOREM 3.8: A group has covering number 3 if and only if G/K ∼= C2 ×C2 for

some normal subgroup K.

We already have proved the forward direction. The previous lemmas show

that G/K = {K, ãK, b̃K, c̃K}. The identity element is K, every element has an

order of 2, and the product of 2 non-identity elements results in the remaining non-

identity element. This is precisely C2 × C2, the Klein 4-group.

For our other direction, we start by assuming that there exists K ✂ G such

that G/K ∼= C2 × C2. We can express C2 × C2 as {1, x, y, xy}. This gives all non-

trivial proper subgroups of ⟨x⟩, ⟨y⟩, and ⟨xy⟩. These cover C2 × C2 minimally, so

σ(C2 × C2) = 3. From this, we have that σ(G) ≤ σ(G/K) = σ(C2 × C2) = 3. Since

no group has covering number less than 3, σ(G) = 3.
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4. COVERING p-GROUPS AND ABELIAN GROUPS

Our investigation will follow the techniques used by Cohn [2]. If G is our

group in question and is covered by n many proper subgroups so that G =
n
⋃

i=1

Hi,

then order these subgroups so that

|H1| ≥ |H2| ≥ ... ≥ |Hn|

This ordering will be assumed for our proofs going forward. It should also be useful

to recognize that this ordering is reversed in terms of index:

[G : H1] ≤ [G : H2] ≤ ... ≤ [G : Hn]

THEOREM 4.1: If G =
n
⋃

i=1

Hi, where each Hi is a proper subgroup of G, then

|G| ≤
n
∑

i=2

|Hi|.

Proof. First, the number of elements contained in any Hi that are not contained in

H1 is |Hi|−|H1∩Hi|. Factoring makes this |Hi|

(

1− |H1|
|H1Hi|

)

, since |H1∩Hi| =
|H1||Hi|
|H1Hi|

.

As well, |G| ≥ |H1Hi| leads to |Hi| − |H1 ∩Hi| ≤ |Hi|

(

1− |H1|
|G|

)

.

We then have the inequality |G| ≤ |H1|+

(

1− |H1|
|G|

)

n
∑

i=2

|Hi|. Now, 1−
|H1|
|G|

=

|G|−|H1|
|G|

. Our inequality can then be expressed as |G| − |H1| ≤

(

|G|−|H1|
|G|

)

n
∑

i=2

|Hi|.

Multiplying both sides by |G|
|G|−|H1|

then gives the desired inequality.

LEMMA 4.2: If σ(G) = n, then [G : H2] ≤ n− 1.

Proof. First, we have that |G|
|H2|

≤ |G|
|H3|

, otherwise written as |H3|
|H2|

≤ 1. This likewise

holds so that |Hi|
|H2|

≤ 1 so long as i ≥ 2. So, we take our result from Theorem 4.1

9



and divide out by |H2|, giving

|G|

|H2|
≤

n
∑

i=2

|Hi|

|H2|
≤

n
∑

i=2

1 = n− 1

which completes the proof.

COROLLARY 4.3: If [G : H2] = n, then σ(G) ≥ n+ 1.

These tools give an alternative route for finding the groups with a covering

number of 3.

Suppose that σ(G) = 3, and so we have that G = H1 ∪H2 ∪H3, where each

Hi is a proper subgroup. By Lemma 4.2, [G : H2] ≤ 2. Since H2 ̸= G, [G : H2] = 2,

thus implying that [G : H1] = 2. So, G has two subgroups of index 2.

If G has any group with two subgroups of index 2, labeled A and B, then

these subgroups are both normal in G. We then have that the subgroup AB ≤ G

while A < AB. Therefore, [G : AB][AB : A] = [G : A] = 2, where [AB : A] > 1.

This implies that [G : AB] = 1 and hence G = AB.

Therefore, there is a surjective homomorphism from G to G/A × G/B with

kernel A ∩ B. If we let K be the kernel of this action, then G/K ∼= G/A × G/B ∼=

C2 × C2, implying that σ(G) ≤ 3. The smallest possible covering number is 3, and

so σ(G) = 3.

LEMMA 4.4: If p is a prime integer, then the group Cp×Cp has the covering num-

ber p+ 1, and it is primitive.

Proof. Every proper subgroup of Cp × Cp has index p. Corollary 4.3 gives the lower

bound σ(Cp × Cp) ≥ p + 1. So, if there exists a set of p + 1 proper subgroups that

cover Cp × Cp, then we have found its covering number.

The group Cp × Cp is generated by two elements, which we will call a and

b. Let H1 = ⟨ab⟩, H2 = ⟨ab2⟩, ..., Hp−1 = ⟨abp−1⟩, as well as letting Hp = ⟨a⟩

and Hp+1 = ⟨b⟩. To show that the union of these covers Cp × Cp, pick any element
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from the group, which can be written in the form of axby, where x and y are non-

negative integers. If x = 0, then this element is contained in Hp+1, likewise if y = 0

it is contained in Hp. Otherwise, let i = yx−1(mod p). We have that axby = (abi)x

and is thus contained in Hi.

Lastly, showing that it is primitive comes from the fact that every quotient

group of Cp × Cp is cyclic, and so no quotient group shares its covering number.

THEOREM 4.5: If G is a non-cyclic p-group, then σ(G) = p + 1, with it being

primitive if and only if G = Cp × Cp.

Proof. Since every proper subgroup of a p-group will have an index of p, Corollary

4.3 gives us that σ(G) ≥ p+ 1.

For the other direction, we have two case: When G is abelian, and when G

is not abelian. If G is abelian, then it is the direct product of other p-groups. So,

G = H1 ×H2 × ...×Hk

for some k, where each Hi is also an abelian p-group. Since the direct product of

H2 × ... × Hk is itself an abelian p-group, G can be expressed as the direct prod-

uct of exactly two p-groups. These two p-groups both have a quotient group that

is isomorphic to Cp, hence G has a quotient group isomorphic to Cp × Cp. So,

σ(G) ≤ σ(Cp × Cp) = p+ 1.

The non-abelian case will utilize mathematical induction. To start, |G| = pk,

where k is some positive integer. Note that by assuming G is non-cyclic, we have

that k ≥ 2. For the case k = 2, G is simply Cp ×Cp, which has the covering number

p + 1. For the inductive step, assume that the covering number is p + 1 given k ≤

n for some n. For the case of k = n + 1, we find that since the center of any p-

group is non-trivial, G/Z(G) would be a smaller non-cyclic p-group. So, σ(G) ≤

σ(G/Z(G)) = p+ 1.

The last part of this theorem is that the only primitive case is Cp×Cp. What

11



we have already shown is that every non-cyclic p-group satisfies the condition that

there exists a normal subgroup N such that G/N ∼= Cp × Cp and that σ(G/N) =

σ(Cp × Cp). So, there is nothing more needed.

A valuable result following from this is the covering number for any non-

cyclic finite abelian group.

THEOREM 4.6: Given G is a non-cyclic finite abelian group, σ(G) = p+ 1, where

p is the smallest prime number such that G has two p-groups in its cyclic decompo-

sition.

Proof. Decomposing G into the direct product of cyclic groups gives us

G = Cp
α1

1

× Cp
α2

2

× ... × Cp
αn
n

for some non-negative integer n where each pi is

some prime. Since G is not cyclic, there must exist some j, k such that pj = pk.

Reorder these cyclic groups so that the groups with pj power order are first. We

then have that G is the direct product of Cp
α1

j
× Cp

α2

j
× ... × Cp

αm
j

for some m

with the remaining direct product of cyclic p-groups, which we’ll label H. These

two groups have relatively prime order, and so we can utilize lemma 2.5 to obtain

σ(G) = min(σ(Cp
α1

j
× Cp

α2

j
× ...× Cp

αm
j

), σ(H)).

The group Cp
α1

j
× Cp

α2

j
× ...× Cp

αm
j

, being a non cyclic p-group, has covering

number pj + 1. If H is non-cyclic, then we can repeat the process, finding more p-

groups until we are left with a direct product of non-cyclic p-groups and eventually

a cyclic group. The result is then that σ(G) is the minimum covering number over

all of these non-cyclic p-groups. This concludes our proof.
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5. COVERING NUMBER FOUR

For this problem, we first need what is called the normal core of a subgroup.

Let G be a group with subgroup A. Let G act on the set of left cosets of A, de-

noted G/A, by left multiplication. We define this operation, σg : G/A → G/A as

for each g ∈ G, σg(xA) = gxA for any coset xA in G/A. We can see that this is

one-to-one and onto as σg(x1A) = σg(x2A) means that gx1A = gx2A, which left

multiplication by g−1 gives us that x1A = x2A, covering that this is one-to-one. For

onto, given any xA that we wish for output, σg(g
−1xA) = gg−1xA = xA.

This means that this action permutes the elements of G/A.

DEFINITION 5.1: The core of A, is defined to be the kernel of this action. We

denote it by core(K).

Note that since this is the kernel of a homomorphism from G to Sym(G/A),

the core of A is normal in G. From this we have core(A) = {g ∈ G | gxA = xA,

∀x ∈ G}. This distinction that gxA = xA can then become x−1gxA = A. This is

the same as x−1gx ∈ A. We then can simplify this last piece to get our other way of

constructing the normal core: core(A) = {g ∈ G | g ∈ xAx−1 ∀x ∈ G} =
⋂

x∈G

xAx−1.

LEMMA 5.2: Given a group G, core(A) is the largest subgroup of A that is nor-

mal in G.

Proof. Suppose N is a normal subgroup of G and also a normal subgroup of A.

Then, for every x ∈ G, N = xNx−1 ≤ xAx−1. So, N ≤
⋂

x∈G

xAx−1 = core(A).

THEOREM 5.3: Given a group G such that σ(G) ̸= 3, σ(G) = 4 if and only if

there exists some K ◁ G such that G/K is isomorphic to either C3 × C3 or S3. The

groups C3 × C3 and S3 are the only primitive 4-coverable groups.

Proof. Suppose that σ(G) = 4, so that G = H1 ∪ H2 ∪ H3 ∪ H4. Lemma 4.2 then

gives [G : H2] ≤ 3. Now, if [G : H2] = 2, then [G : H1] = 2 as well. As previously

13



shown, this implies that σ(G) = 3, so we conclude that [G : H2] = 3. Following with

Theorem 4.1, |G| ≤ |H2|+ |H3|+ |H4|. Dividing out by |H2|, we have

3 =
|G|

|H2|
≤ 1 +

|H3|

|H2|
+

|H4|

|H2|
≤ 3

as these groups are ordered in non-increasing order. Therefore, we have equality

and so H2, H3, and H4 all have an index of 3.

Going forward, we just need to work with knowing that G has 2 subgroups

of index 3. So, let G be such a group and σ(G) ̸= 3. Then we have the following

cases: Either both A and B are normal, or at least one of them is not.

Case 1: A and B are both normal. Then their intersection, A ∩ B, as well as

AB must be normal as well. So, 3 = [G : A] = [G : AB][AB : A], which implies

that [AB : A] = 1 or 3. Since B is assumed to be distinct from A, [AB : A] must

be equal to 3, and so [G : AB] = 1. Thus, G = AB. Using an exercise result from

Dummit and Foote [1],

G/(A ∩ B) ∼= G/A×G/B ∼= C3 × C3

Since C3×C3 is a p-group, we know σ(G) ≤ σ(C3×C3) = 4. The assumption

σ(G) ̸= 3 implies equality here.

Case 2: Without loss of generality, let A ⋬ G. Let G act on the set G/A of

left cosets of A, with K being the kernel of this action, φ : G → Sym(G/A) so that

K is the normal core of A. Therefore, G/K ∼= im(φ) ≤ Sym(G/A) ∼= S3. In other

words, G/K is isomporphic to a subgroup of S3.

The left cosets of A are A, xA, and yA, for some x, y ∈ G. By prior work,

K = A∩ xAx−1 ∩ yAy−1. Note that this intersection is of 3 distinct subgroups of G,

all of which K is normal in. Therefore, A/K, xAx−1/K, and yAy−1/K are all three

distinct subgroups of G/K, all of which have the same order. Because of this, G/K

cannot be cyclic. Another way to reach this conclusion is that these subgroups are

14



in fact proper subgroups of G/K and cover it, implying that G/K cannot be cyclic.

Since all proper subgroups of S3 are cyclic, G/K must not be a proper subgroup

and hence, G/K ∼= S3.

With our forward direction covered, the reverse is a direct application of

Lemma 2.1 with the assumption that σ(G) ̸= 3.
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6. THE COVERING NUMBER OF A DIHEDRAL GROUP

To clarify notation, we use D2n to denote the dihedral group of order 2n.

More specifically, we express this as D2n = ⟨r, s | rn = s2 = 1, rs = sr−1⟩. We begin

by exploring the proper subgroups of any such group.

LEMMA 6.1: No proper subgroup of D2n contains both the elements r and sri for

any i.

Proof. By way of contradiction, assume that D2n has some proper subgroup, H,

containing the elements r and sri. By group closure, rn−i ∈ H. Therefore, srirn−i =

s ∈ H, implying that H = G. So, H cannot be proper and we are done.

Since no proper subgroup can contain both r and sri, it naturally follows

that in a valid covering for D2n, at least one of the subgroups used must be ⟨r⟩.

LEMMA 6.2: Given prime integer p and any distinct non-negative integers i, j less

than p, no proper subgroup of D2p contains both sri, srj.

Proof. By way of contradiction, let H be a subgroup of D2p such that sri ∈ H and

srj ∈ H for some distinct positive i, j less than p. Without loss of generality, let

j > i.

It follows that, srisrj = S2rj−i = rj−i ∈ H. Call this element ra, where a = j − i.

Since j > i, a is a positive integer less than p. Therefore, there exists an integer b

such that ab ≡ 1 (mod p). So, (ra)b = r ∈ H.

By Lemma 6.1, H cannot be a proper subgroup as it contains r as well as sri. There-

fore, a contradiction is met, and our proof is complete.

COROLLARY 6.3: If H is a proper subgroup of D2p and sri ∈ H for some inte-

ger i, then H = ⟨sri⟩ = {1, sri}.

THEOREM 6.4: Given prime integer p, σ(D2p) = p+ 1.

16



Proof. As mentioned prior, at least one subgroup used in a covering must be H1 =

⟨r⟩. By Corollary 6.3, there must also be p many subgroups of the form ⟨sri⟩ for

each 0 ≤ i < p. Any element of D2n is contained in these p + 1 total subgroups, as

all powers of r are contained in H1, and any sri has its own subgroup. Hence, this

covers D2n and we are done.

The natural direction is to extend this towards all dihedral groups. We can

do this by broadening Lemma 6.2.

LEMMA 6.5: Given non-negative integers i, j, n, where i < j < p, with p being the

smallest prime integer dividing n, then the only subgroup of D2n containing sri and

srj is the group D2n.

Proof. We start with such integers, i, j, n, p, noting that p is the smallest prime di-

visor of n and i < j < p.

The first thing to note is that 0 < j − i < p. Since p is the smallest prime factor of

n, j − i is relatively prime to n. Therefore, j − i a unit in Zn and so there exists an

integer a such that a(j − i) ≡ 1 (mod n).

Let H be any subgroup of D2n that contains the elements sri and srj. By group

closure, srisrj = s2rj−1 = rj−i ∈ H. We then also have that (rj−i)a = r ∈ H, and

therefore all powers of r are all contained in H.

Therefore, Srjr−j = S ∈ H. We then have that H contains generators for D2n, and

so H = G.

THEOREM 6.6: Given positive integer n with p being the smallest prime factor

of n, σ(D2n) = p+ 1.

Proof. Just as before, we start with this notion that given a set of proper subgroups

that cover D2n, we have an initial one being H1 = ⟨r⟩. Knowing that p is the small-

est prime divisor of n, each unique sri for 0 ≤ i < p will be contained in sepa-

rate subgroups. This gives us an additional p subgroups, meaning we have a lower

bound of σ(D2n) ≥ p+ 1
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For an upper bound, the subgroup generated by rp is normal in D2n. Taking a quo-

tient with it yields D2n/⟨r
p⟩ ∼= D2p, which has the covering number p + 1. By

Lemma 2.1, σ(D2n) ≤ σ(D2p) = p+ 1 and hence σ(D2n) = p+ 1.
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7. COVERING NUMBER OF A GENERALIZED DIHEDRAL

GROUP

DEFINITION 7.1: A generalized dihedral group is the semi-direct product of an

abelian group H with an element x that inverts elements through conjugation. We

denote it as Dih(H) = ⟨H, x | x2 = 1, xhx−1 = h−1 for every h ∈ H⟩.

The standard dihedral groups are the case where H is a cyclic group gener-

ated by r, with x being replaced by s. Since the cyclic case is already proven, we

will be assuming H is non-cyclic going forward.

THEOREM 7.2: Every subgroup of G = Dih(H) is either a subgroup of H or a

generalized dihedral group.

Proof. Let K ≤ G. If K ≤ H, then we are done, so assume otherwise. Therefore,

there exists hx ∈ K for some h ∈ H. Let A = H ∩K. We show that K = A⋊ ⟨hx⟩

by showing (i) A✂K, (ii) A ∩ {hx} = 1, and (iii) K = A⟨hx⟩.

For (i), H ✂G, H ∩K ✂K and hence A✂K.

To show (ii), hxhx = hh−1 = 1 and thus ⟨hx⟩ = {1, hx}. Since hx ̸∈ H,

A ∩ ⟨hx⟩ = {1}.

For (iii), since A ≤ K and hx ∈ K, it follows that A⟨hx⟩ ≤ K. For our

other direction, let k ∈ K. If k ∈ H, then k ∈ A and hence A⟨hx⟩. If k ̸∈ H, then

k = h1x for some h1 ∈ H. Consider k(hx)−1 ∈ K. Then k(hx)−1 = h1xxh
−1 =

h1h
−1 ∈ H and thus k(hx)−1 ∈ H ∩K = A. So, k ∈ A⟨hx⟩. Therefore, K ≤ A⟨hx⟩

and thus K = A⟨hx⟩.

Note that for any k ∈ K, (hx)k(hx)−1 = hxkxh−1 = hk−1h−1 = k−1. It then

follows that K = Dih(A).

LEMMA 7.3: If G = Dih(H), then each maximal subgroup used to cover G con-

tains a non-trivial subgroup of H.
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Proof. By way of contradiction, let M be a maximal subgroup of G that contains

no non-trivial subgroup of H. Therefore, the only non-identity elements in M are

of the form ax where a ∈ H. If M contains distinct elements ax and bx, then

axbx = ab−1 ∈ H is contained in M , a contradiction.

So, M only has two elements: some ax and the identity. However, M is thus

not maximal, as M < ⟨a, x⟩ < G. This completes our proof.

LEMMA 7.4: Each maximal subgroup of G = Dih(H) that is not H contains at

least one element of the form hx for some h ∈ H.

Proof. This follows directly from Theorem 7.2. Subgroups of G are either sub-

groups of H or generalized dihedral groups utilizing some element hx. The only

subgroup of H that is maximal in G is H itself.

LEMMA 7.5: The maximal subgroups of G = Dih(H) are H and those of the

form A ∪ hxA where A is maximal in H.

Proof. Start with a maximal subgroup of G, M ̸= H. By Lemmas 7.2 and 7.3,

M = A ∪ Bx, where A is a proper subgroup of H and B is a subset of H. It follows

that B consists of cosets of A. Assume further that B contains two distinct cosets

of A, b1A and b2A, for some b1, b2 ∈ H. Since b1x ∈ M and b2x ∈ M , b1xb2x =

b1b
−1

2 ∈ M and hence b1b
−1

2 ∈ A. Therefore, b2A = b2(b1b
−1

2 )A = b1b2b
−1

2 A = b1A.

Therefore, B is exactly a coset of A.

To show A is maximal in H, assume otherwise. Then pick A′ such that A <

A′ < M . It follows that M = A ∪ hxA < A′ ∪ hxA′ < G, for any hx ∈ A. Therefore,

M is not maximal, and we have our desired result.

THEOREM 7.6: σ(Dih(H)) = p + 1, where p is the smallest prime dividing the

order of H.

Proof. Suppose C is a minimal covering of G.
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Case 1: H ̸∈ C. Then every element of C is of the form Ai ∪ hixAi for some

Ai < H and some hi ∈ H. Thus G =
n
⋃

i=1

Ai ∪ hixAi. Hence,
n
⋃

i=1

Ai = H and

n
⋃

i=1

hixAi = G−H = Hx. If we take each hi = 1, then we still have a valid covering.

It follows then that we simply choose Ai to be a minimal covering for H, giving us

σ(G) ≤ σ(H).

Case 2: H ∈ C. Then G is covered by H and subgroups of the form

Ai ∪ hixAi. This reduces to minimizing n where G − H = Hx =
n
⋃

i=1

hixAi. Let

k = max
1≤i≤n

{|Ai|}. We then have:

|H| = |Hx| = |

n
⋃

i=1

hixAi| ≤

n
∑

i=1

|hixAi| ≤ nk

This gives us |H|/k ≤ n.

The group H can be expressed as H = Cp
α1

1

× Cp
α2

2

× ... × Cp
αn
n

such that

p1 ≤ p2 ≤ ... ≤ pn. It follows that A = C
p
α1−1

1

× Cp
α2

2

× ... × Cp
αn
n

is a maximal

subgroup in H with index p1 and that p1 is the smallest non-trivial divisor of H.

Therefore, Hx =
p1
⋃

i=1

hixA where each biA is a distinct coset of A. Hence n ≤ p1.

Now, |H|/k ≤ n ≤ p1, where |H|/k is a non-trivial divisor of |H| and p1 is

the smallest non-trivial divisor of H. Therefore, n = p1. This implies a covering of

G using p+ 1 subgroups where p is the smallest prime divisor of |H|.

Since the two cases cover all possible coverings of G, the smallest result be-

tween them must be σ(G). It then follows that p+ 1 ≤ σ(H), and we are done.
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8. CONCLUSION

Finite non-cyclic groups can be expressed as the set-wise union of proper

subgroups, called a covering. We have given the term covering number to denote

the minimal number of proper subgroups required to cover a group.

The above work has shown that no groups exist with covering numbers 1

or 2, while finding fundamental groups for 3 and 4 for which all other groups with

covering numbers 3 and 4 have a homomorphism mapping onto them. These fun-

damental groups we have called primitive groups. The only primitive group for cov-

ering number 3 is C2 × C2, while the covering number 4 has two primitive groups:

C3 × C3 and S3.

As well, covering numbers for non-cyclic p-groups have been found to be p +

1, with the primitive p-groups being Cp × Cp. This lead to the covering number

for non-cyclic finite abelian groups, being p + 1, where p is the smallest p-group

for which the group has 2 in its cyclic decomposition. The covering number for any

dihedral group D2n is p+ 1, where p is the smallest prime factor of n. Similarly, the

generalized dihedral groups generated by an abelian group H we found to have the

covering number p+ 1, where p is the smallest prime factor of |H|.

Going forward, a further pursuit of research may be in attempting to gener-

alize our approach on the dihedral and/or generalized dihedral groups, looking in-

stead on the potential interactions between covering numbers and semi-direct prod-

ucts.
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