
BearWorks BearWorks 

MSU Graduate Theses 

Summer 2023 

SC-MATRL: Semi-Centralized Multi-Agent Transfer Reinforcement SC-MATRL: Semi-Centralized Multi-Agent Transfer Reinforcement 

Learning Learning 

Ayesha Siddika Nipu 
Missouri State University, Nipu62@MissouriState.edu 

As with any intellectual project, the content and views expressed in this thesis may be 

considered objectionable by some readers. However, this student-scholar’s work has been 

judged to have academic value by the student’s thesis committee members trained in the 

discipline. The content and views expressed in this thesis are those of the student-scholar and 

are not endorsed by Missouri State University, its Graduate College, or its employees. 

Follow this and additional works at: https://bearworks.missouristate.edu/theses 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Nipu, Ayesha Siddika, "SC-MATRL: Semi-Centralized Multi-Agent Transfer Reinforcement Learning" (2023). 
MSU Graduate Theses. 3884. 
https://bearworks.missouristate.edu/theses/3884 

This article or document was made available through BearWorks, the institutional repository of Missouri State 
University. The work contained in it may be protected by copyright and require permission of the copyright holder 
for reuse or redistribution. 
For more information, please contact bearworks@missouristate.edu. 

https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/theses
https://bearworks.missouristate.edu/theses?utm_source=bearworks.missouristate.edu%2Ftheses%2F3884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=bearworks.missouristate.edu%2Ftheses%2F3884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bearworks.missouristate.edu/theses/3884?utm_source=bearworks.missouristate.edu%2Ftheses%2F3884&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu


i 

 

SC-MATRL: SEMI-CENTRALIZED MULTI-AGENT TRANSFER REINFORCEMENT 

LEARNING 

 

 

A Master’s Thesis 

Presented to 

The Graduate College of 

Missouri State University 

 

TEMPLATE 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science, Computer Science 

 

 

 

By 

Ayesha Siddika Nipu 

August 2023 

  



ii 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2023 by Ayesha Siddika Nipu 

  



iii 

SC-MATRL: SEMI-CENTRALIZED MULTI-AGENT TRANSFER REINFORCEMENT 

LEARNING 

Computer Science 

Missouri State University, August 2023 

Master of Science 

Ayesha Siddika Nipu 

 

ABSTRACT 

Distributed decision-making in multi-agent systems (MAS) poses significant challenges for 

interactive behavior learning in both cooperative and competitive environments. While 

reinforcement learning (RL) has shown great success in single-agent domains like Checkers, 

Chess and Go, researchers are motivated to extend RL to MAS. However, as the number of 

agents increases, effectively dealing with each agent becomes increasingly complex. To mitigate 

the resulting complexity, a semi-centralized Multi-Agent Influence Dense Reinforcement 

Learning (MAIDRL) algorithm was previously developed, enhancing agent influence maps to 

facilitate effective multi-agent control in StarCraft Multi-Agent Challenge (SMAC) scenarios. 

While MAIDRL shows improved performance in homogeneous multi-agent scenarios, it 

struggles to make optimal decisions in complex heterogeneous systems. In this research, two 

major objectives are pursued: first, extending MAIDRL to improve performance in both 

homogeneous and heterogeneous scenarios, and second, unifying the representations in state 

space and action space for enabling transfer learning (TL) to leverage knowledge gained from 

one scenario for other unseen scenarios. To achieve the first objective, this study extends the 

DenseNet in MAIDRL architecture and introduces a semi-centralized Multi-Agent Dense-CNN 

Reinforcement Learning framework (MAIDCRL) by incorporating convolutional layers into the 

deep model. The results demonstrate that the CNN-enabled MAIDCRL significantly enhances 

learning performance and achieves a faster learning rate compared to the existing MAIDRL, 

particularly in more complex heterogeneous SMAC scenarios. Additionally, a novel framework 

is introduced to enable TL for Multi-Agent RL by unifying diverse state spaces into fixed-size 

inputs, allowing for a unified deep-learning policy applicable across different scenarios within 

MAS. Furthermore, Curriculum Transfer Learning is adopted, enabling progressive knowledge 

and skill acquisition through pre-designed homogeneous learning scenarios organized by 

difficulty levels. This approach facilitates inter- and intra-agent knowledge transfer, leading to 

high-performance multi-agent learning in more complex heterogeneous scenarios. 

 

 

 

KEYWORDS:  deep reinforcement learning, convolutional neural network, multi-agent system, 

transfer learning, curriculum learning, MAIDRL, MAIDCRL, SMAC, StarCraft II   



iv 

SC-MATRL: SEMI-CENTRALIZED MULTI-AGENT TRANSFER REINFORCEMENT 

LEARNING 

 

 

 

By 

Ayesha Siddika Nipu 

 

 

 

A Master’s Thesis 

Submitted to the Graduate College 

Of Missouri State University 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science, Computer Science 

 

 

 

August 2023 

 

  

Approved: 

 

 

Siming Liu, Ph.D., Thesis Committee Chair 

Ajay K. Katangur, Ph.D., Committee Member 

Mohammed Y. Belkhouche, Ph.D., Committee Member 

Julie Masterson, Ph.D., Dean of the Graduate College 

 

 

 

 

 

 

In the interest of academic freedom and the principle of free speech, approval of this thesis 

indicates the format is acceptable and meets the academic criteria for the discipline as 

determined by the faculty that constitute the thesis committee. The content and views expressed 

in this thesis are those of the student-scholar and are not endorsed by Missouri State University, 

its Graduate College, or its employees. 

  



v 

ACKNOWLEDGEMENTS  

 

I would like to express my heartfelt gratitude to my esteemed Supervisor, Dr. Siming Liu 

for his invaluable guidance, support, and mentorship throughout the course of my thesis. His 

expertise, insightful feedback, and dedication have greatly contributed to the success of this 

work. I would also like to extend my sincere appreciation to the members of my thesis 

committee, Dr. Ajay K. Katangur and Dr. Mohammed Y. Belkhouche for their time, insights, 

and valuable input. Their constructive feedback and thoughtful suggestions have played a crucial 

role in shaping this thesis and improving its quality. 

To my beloved parents, Badiul Alam and Shahanaz Begum, I owe an immeasurable debt 

of gratitude. Their sacrifices, unconditional love, and unwavering support throughout my 

academic journey have been constant sources of motivation for me. I would like to express my 

deepest appreciation to my sisters, Umma Salma and Jafrin Anika, for being pillars of mental 

peace during this challenging journey. Finally, I want to thank my loving husband, K M Sajjadul 

Islam, for his continuous support, understanding, and encouragement. His unwavering belief in 

my capabilities, along with his patience, has been my rock during the highs and lows of this 

thesis, enabling me to overcome challenges and remain focused on my goals. 

 

I humbly dedicate this thesis to my deceased grandfather Sirajul Islam, who had a profound 

influence on my early career. His strong moral character and tireless work ethic have left an 

indelible mark on my life, shaping me into the person I am today. I am eternally grateful for the 

values he instilled in me. This accomplishment is a heartfelt tribute to his enduring presence in 

my life, and I carry his memory with me as I embark on new endeavors. 



vi 

TABLE OF CONTENTS 

 

 

 
INTRODUCTION 1 

 
BACKGROUND 7 

Supervised Learning 7 

Unsupervised Learning 8 

Reinforcement Learning 9 

The Fundamentals of Reinforcement Learning 10 

Reinforcement Learning Algorithms 15 

Transfer Reinforcement Learning 17 

 
RELATED WORK 18 

 
SIMULATION PLATFORM 23 

 
METHODOLOGY 29 

Experimental Features 29 

Advantage Actor Critic (A2C) Algorithm 31 

Semi-centralized Multi-Agent Influence Map 33 

Multi-Agent Influence Dense-CNN Reinforcement Learning (MAIDCRL) 35 

Multi-Agent Transfer Reinforcement Learning (MATRL) 36 

Curriculum Transfer Learning (CTL) 42 

 
RESULTS AND DISCUSSION 44 

MAIDCRL Learning Performance 44 

Robustness of MAIDCRL Architecture 52 

Pre-trained Policy Selection for Transfer Learning 51 

Transfer Learning Performance 52 

Curriculum Transfer Learning Performance 58 

Learned Behavior Analysis of StarCraft Agents 60 

 
CONCLUSION AND FUTURE WORK 67 

 
REFERENCES 69 

 



vii 

LIST OF TABLES 

 

 

 
Table 1. Performance Comparison between MAIDRL and MAIDCRL on Extended Scenarios 50 

Table 2. Best Performing RL Models Learning from Scratch 52 

Table 3. Performance Evaluation of TL in SMAC scenarios 58 

Table 4. Performance Evaluation of CTL on 2𝑠3𝑧 Scenario 60 

 

 



viii 

LIST OF FIGURES 

 

 

 
Figure 1. Illustration of a MAS in Built-in SMAC Scenario 2 

Figure 2. Illustration of Supervised Learning 8 

Figure 3. Illustration of Unsupervised Learning 9 

Figure 4. Illustration of Reinforcement Learning 10 

Figure 5. Illustration of The Agent-Environment Interaction in R 10 

Figure 6. Transfer Between Reinforcement Learning Tasks 17 

Figure 7. The Actor-Critic Architectu 19 

Figure 8. Sample SMAC Scenarios 24 

Figure 9. Single Agent’s Sight Range in SMAC Scenario 25 

Figure 10. 3𝑚 SMAC Scenario with 3 Marines on Each Group 28 

Figure 11. 8𝑚 SMAC Scenario with 8 Marines on Each Group 28 

Figure 12. 25𝑚 SMAC Scenario with 25 Marines on Each Group 28 

Figure 13. 2𝑠3𝑧 SMAC Scenario with 2 Stalkers and 3 Zealots on Each Group 28 

Figure 14. Advantage Actor Critic (A2C) Model Architecture 31 

Figure 15. DenseNet-style Grouping of 𝑛 128-neuron Layers 33 

Figure 16. Outline of MAIDCRL Architecture 36 

Figure 17. Scenario-dependent Local Observation Across Different SMAC Scenarios 37 

Figure 18. A Sample 19 × 19 Heatmap Generated from Local Observation on 8𝑚 40 

Figure 19. Transfer Learning Model Representation for Single Unit 41 

Figure 20. Curriculum Transfer Learning Architecture 42 

Figure 21. Average of the Running Average Episode Reward on 3𝑚 Scenario 45 

Figure 22. Average of the Running Average Episode Reward on 8𝑚 Scenario 46 

Figure 23. Average of the Running Average Episode Reward on 25𝑚 Scenario 47 



ix 

Figure 24. Average of the Running Average Episode Reward on 2𝑠3𝑧 Scenario 48 

Figure 25. Average of the Running Average Episode Reward on 1𝑐3𝑠5𝑧 Scenario 49 

Figure 26. Total Number of Winning Across All Seeds 53 

Figure 27. Average Number of Episodes for First Winning 53 

Figure 28. Average of the Running Average Episode Reward on 3𝑚 TL 55 

Figure 29. Average of the Running Average Episode Reward on 8𝑚 TL 56 

Figure 30. Average of the Running Average Episode Reward on 25𝑚 TL 57 

Figure 31. Result of Curriculum Transfer Learning on 2𝑠3𝑧 Scenario 59 

Figure 32. Random Agents Positioning on 3𝑚 Scenario 62 

Figure 33. MAIDCRL Agents dominance over SC2 AI on 8𝑚 Scenario 63 

Figure 34. Travelling Units position on 25𝑚 Scenario 65 

Figure 35. Zealots Attacking Stalkers on 2𝑠3𝑧 Scenario 66 

 

  



x 

LIST OF EQUATIONS 

 

 

 
Equation 1. Discounted Reward Calculation 12 

Equation 2. State Value Function Definition 12 

Equation 3. Action Value Function Definition 12 

Equation 4. Monte-Carlo State Value Function Update 13 

Equation 5. Iterative Policy Evaluation State Value Function Update 14 

Equation 6. Single Step Temporal Differencing State Value Function Update 14 

Equation 7. Q-Learning Action Value Function Update 16 

Equation 8. Sarsa Action Value Function Update 16 

Equation 9. Generic Policy Gradient Calculation for Parameters θ 16 

Equation 10. StarCraft Multi-Agent Challenge Default Reward Function 26 

Equation 11. ε Calculation for Time Step t 30 

Equation 12. Actor Parameter Gradient Calculation 32 

 

  



xi 

LIST OF ABBREVIATIONS 
 

 

 
Abbreviation Definition 

AC Actor-Critic 

A2C Advantage Actor-Critic 

AI Artificial Intelligence 

AIM Agent Influence Map 

ALE Arcade Learning Environment 

CL Curriculum Learning 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

CTL Curriculum Transfer Learning 

DCNN Deep Convolutional Neural Network 

DNN Deep Neural Network 

DP Dynamic Programming 

DQN Deep Q-Network 

DRL Deep Reinforcement Learning 

ELU Exponential Linear Unit 

GCLA Global Critic - Local Actor 

GNN Graph Neural Network 

GPU Graphics Processing Unit 

IM Influence Map 

MADDPG Multi-Agent Deep Deterministic Policy Gradient 

MAIDRL Multi-Agent Influence Dense Reinforcement Learning 

MAIDCRL Multi-Agent Influence Dense-CNN Reinforcement Learning 



xii 

MAIM Multi-Agent Influence Map 

MAIRL Multi-Agent Influence Reinforcement Learning 

MAPPO Multi-Agent PPO 

MARL Multi-Agent Reinforcement Learning 

MAS Multi-Agent System 

MATRL Multi-Agent Transfer Reinforcement Learning 

MDP Markov Decision Process 

ML Machine Learning 

MOBA Multiplayer Online Battle Arena  

NN Neural Network 

PPO Proximal Policy Optimization 

RL Reinforcement Learning 

RNN Recurrent Neural Network 

RTS Real-Time Strategy 

SARSA State, Action, Reward, State, Action 

SC2 StarCraft II 

SC2LE StarCraft II Learning Environment 

SCDDPG Semi-Centralized Deep Deterministic Policy Gradient 

SL Supervised Learning 

SMAC StarCraft Multi-Agent Challenge 

STD Standard Deviation 

TCLA Total Critic - Local Actor 

TD Temporal Difference 

TF Tensorflow 

TG Thought Game 



xiii 

TL Transfer Learning 

TRL Transfer Reinforcement Learning 

TRPO Trust Region Policy Optimization 

TTL Transitive Transfer Learning 

UL Unsupervised Learning 

 



1 

INTRODUCTION 

 

Artificial Intelligence (AI) has advanced significantly in many aspects of our lives in 

recent years. The rapid progress in AI has reached the human level or even outperformed human 

champions in a wide variety of tasks including autonomous driving, game playing, protein 

folding, and robotics [1], [2], [3]. However, most of these achievements of AI are limited to 

single-agent systems where interaction among agents is not considered. Since there are a large 

number of applications that involve cooperation and competition between multiple agents, I was 

interested in AI techniques that work not only on single-agent systems but also on multi-agent 

systems (MAS). Reinforcement Learning (RL) has emerged as a promising approach for 

handling MAS in recent years. 

Recently, Deep Reinforcement Learning (DRL) has been considered some of the most 

effective AI techniques to solve problems, i.e., AlphaGo and AlphaStar [4], [3]. Extending DRL 

to enable interaction and communication among agents is critical to building artificially 

intelligent systems in multi-agent environments. One of the main challenges of Multi-Agent 

Reinforcement Learning (MARL) is that the canonical RL algorithms including Q-Learning and 

policy gradient algorithms do not generalize well to MAS due to the exponential growth of the 

number of states as the number of agents increases. The reason behind this issue is the necessity 

of mapping state-action values for each of the agents in the environment. The second challenge 

in MARL is that the stationary Markovian property from an individual agent’s perspective no 

longer exists in MAS due to the dynamic activities of other agents. These non-stationary states 

lead to significant stability issues to MARL in the learning process. In addition, MAS themselves 

introduce extra cooperative and competitive learning tasks 2 to achieve team objectives for 



2 

individual agent decision-making. Deep Q-Network (DQN), an integration of Deep Neural 

Network (DNN) with Q-learning, resolved the issue of dimensionality by approximating the 

action for each state representation [5], [6]. 

There are numerous simulation environments for both single and muti-agent scenarios 

that augmented the implementation of DRL techniques. Atari games are used for learning in 

Arcade Learning Environment (ALE). Minecraft is used by Johnson et al. [7], likewise Vinyals 

et al. [8] used StarCraft II Learning Environment (SC2LE), and Samvelyan et al. [9] considered 

StarCraft Multi-Agent Challenge (SMAC). These versions of StarCraft are deployed in the 

StarCraft II (SC2) environment. Figure 1 illustrates a multi-agent scenario in the SMAC 

environment. Researchers are able to run hundreds or even thousands of tests concurrently when 

using video games, especially ones with research-oriented tools and environments like those 

indicated above. This becomes helpful due to the learning process followed by the RL 

methodology.  

 

 
Figure 1. Illustration of a MAS in Built-in SMAC Scenario 

 



3 

A popular approach is to provide MARL with complete information for training agents, 

commonly named centralized learning. In centralized learning, each of the agents shares both 

local and global states with the train agents. Considering the availability of such information, it is 

avoided in multi-agent environment systems. Researchers then focused on using decentralized 

learning as it’s not dependent on global information. However, this approach sometimes failed to 

match the expected outcome as it only focuses on local observations. To overcome this 

challenge, Foerster et al. and Lowe et al. [10], [11] proposed a hybrid approach named semi-

centralized learning which undertakes hybrid centralized learning with decentralized execution 

of the model. In this technique, instead of focusing on the complete global state information, 

only the imperfect generalized scenarios are considered. By creating a two-level actor-critic 

network, Semi-Centralized Deep Deterministic Policy Gradient (SCDDPG) model provides both 

local and global information to the environment [12]. Wang et.al used global information with 

macro-level control in StarCraft Commander [13]. Though researchers were able to unravel the 

challenge, it is still questionable how to represent the global observations to make fine-grained 

decisions. 

In 2021, Agent Influence Maps (AIM) are introduced and aggregated into a global Multi-

Agent Influence Map (MAIM), which is then used in addition to local agent observations for 

fine-grained decision-making [9]. The influence of this semi-centralized representation defined 

as Multi-Agent Influence Reinforcement Learning (MAIRL) improved the performance of the 

system significantly. I then combined MAIRL and the DenseNet model architecture, which 

defined Multi-Agent Influence Dense Reinforcement Learning (MAIDRL), and evaluated 

MAIDRL’s performance in SMAC scenarios in a real-time strategy (RTS) game, SC2 [9], [14]. 

By extracting a descriptive representation from the complete global information and combining it 



4 

with the DenseNet architecture, MAIDRL demonstrated a significant improvement in 

centralized, decentralized, and hybridized methods. In this study, I extended MAIDRL with the 

use of a Convolutional Neural Network (CNN) and introduced Multi-Agent Dense-CNN 

Reinforcement Learning (MAIDCRL) for solving MAS problems. This reformulation of 

extracting spatial features from MAIM by utilizing multiple CNN layers further improved the 

learning performance of MAIDCRL in a variety of SMAC scenarios. To evaluate how the 

influence map (IM) affects the multi-agent learning performance of MAIDCRL, I, therefore, 

performed a rigorous analysis of the agent’s behavior and found several fascinating behavioral 

attributes determined by the agent in the testing scenarios. 

Although DRL and MARL have made tremendous successes in many fields, the 

enormous amount of training samples and extensive learning duration significantly limit their 

applicability to complex problems, especially in large scale multi-agent settings. To alleviate 

sample complexity and accelerate the learning process of autonomous agents in tackling complex 

learning tasks, transfer learning (TL) has attracted much attention from researchers. TL proposes 

to reuse knowledge from previous tasks or external sources, such as demonstrations from 

humans or advice from other learning agents, to speed up the learning process. Unprincipled 

reuse of knowledge, however, can lead to negative transfer, making learning more difficult. To 

develop flexible and robust methods for autonomously reusing knowledge, TL for single-agent 

RL has evolved significantly to be usable in complex applications. Nevertheless, multi-agent TL 

approaches still require further development to find real-world applications and achieve 

autonomous learning. 

Significant efforts have been made in developing dedicated neural networks (NN) and 

comprehensive training techniques to enable TL in multi-agent settings [15]. Efficiently learning 



5 

policies from scratch in multi-agent settings is difficult and time-consuming, particularly for 

tasks with exploration challenges. In such settings, how to unify multi-modal data encoding and 

decoding to enable agents’ knowledge transferring and curriculum learning is essential to 

increase MARL performance. One attempt to enable TL for Multi-Agent Deep Deterministic 

Policy Gradient (MADDPG) has been made by Zhang et al. in [16] for training agents in multi-

UAV combat. In that study, the input dimension of the network structure is proportional to the 

number of agents, representing the agent’s observation of the entire environment. However, this 

approach can only be applied for transfer training when the number of agents is consistent. The 

question of enabling autonomous agents that can learn faster by reusing knowledge from various 

sources in MAS remains open. 

To build a generalized approach in a model-free RL environment where the agents 

transfer the learning from a simpler scenario to a complex one, the state representations need to 

be unified. For StarCraft micromanagement, the traditional RL technique takes decisions that are 

made sequentially. To obtain the terrain’s information, Shantia et al. used a fixed number of 

inputs depending on the number of units in each simulation [17]. The lack of cooperation and 

teamwork deteriorates efficiency as the models need to be trained for individual scenarios. It 

takes a lot of time to train a complex multi-agent scenario in the decision-making process. 

Though the prior model was able to take decisions collaboratively from the current action space, 

it cannot transfer the knowledge from one scenario to another. One probable approach should be 

modifying the representation of local observations in a unified way so that the knowledge could 

be transferred to the source without modifying the original state representation. This will bring 

stability to the model from the very early episodes of each iteration. This approach benefits not 

only in the domain of gaming, but also in other platforms such as document classification [18], 



6 

sentiment analysis [19], and other problems where machine learning-based approaches are 

utilized to conclude a result. 

In order to address the aforementioned issues and overcome the existing challenges, I 

propose a novel spatial and feature encoding framework for unifying the state inputs of 

individual agents to the neural network along with a generalized output representation regardless 

of different multi-agent scenarios. I utilize a spatial abstraction technique IM, to unify various 

local observations into a fixed dimension in combination with abstracted global information 

using MAIM [14] for agents to achieve scenario-independent capability. This spatial and feature 

representation is aggregated to an agent’s previous and current states and trained with fixed-size 

neural network policies preserving domain knowledge across multiple scenarios in MAS. I then 

conducted a rigorous analysis to evaluate the performance of my proposed TL model in different 

SMAC scenarios. This approach shows promising results regarding robustness and scalability 

among agents for intra- and inter-agent knowledge transfer. 

The remainder of this thesis is partitioned as follows: the Background section introduces 

various concepts regarding machine learning, with emphasis on CNN and TL, while the Related 

Work section explores the contribution of CNN models in the broad area of AI and MARL 

spectrum, in addition to the current progress made in the area of transfer learning. The 

SIMULATION PLATFORM section provides describes the requirements of environment 

configuration. The Methodology section elaborates the current architecture along with the 

proposed model for the experiments. The Results and Discussion section subsequently presents 

the results from my experimentation, as well as the observed behaviors that were learned by the 

various considered methodologies, and the Conclusion And Future Work section draws the 

conclusions and suggests future works.  



7 

BACKGROUND 

 

Machine learning (ML) is a branch of AI that involves using computational techniques to 

improve predictions of future information by analyzing historical data [18]. ML methods can 

generally be classified into three main categories, and many advanced ML techniques 

incorporate elements from multiple categories. These categories are supervised learning, 

unsupervised learning, and reinforcement learning [20]. The following subsections provide an 

overview of each of these categories. 

 

Supervised Learning  

Supervised Learning (SL) is a highly effective approach that involves finding a function 

f, which maps inputs X to corresponding target outputs Y, with the aim of minimizing cost or 

risk [21]. The specific cost or risk involved depends on the problem at hand and influences the 

quality of the resulting feature mapping. The power of SL increases as the amount of labeled 

data grows, as both the data and the learned function become more representative of the entire 

range of possible input-output combinations. This enhanced representation leads to improved 

generalization, even for previously unseen pairs. In addition, SL can complement RL by 

providing a starting point for RL agents through behavioral cloning or imitation learning [22], 

enabling faster and more efficient insights. While SL is widely used in classification, regression, 

and ranking problems, it has a significant limitation: reliance on labeled data. Although SL is the 

preferred method when labeled data is available, there are numerous situations where such data 

is not readily accessible. Figure 2 illustrates the concept of SL where the input takes the 

annotation along with the data and predicts the outcome based on the given information. 



8 

 

 
Figure 2. Illustration of Supervised Learning 

 

Unsupervised Learning  

In situations where labeled output data is unavailable for a given set of inputs, 

Unsupervised Learning (UL) is commonly employed as an alternative to supervised learning. UL 

involves using an unlabeled set of feature data to gain insights about the entire feature space and 

is primarily used in clustering, which is the unsupervised counterpart of categorization [20]. 

Clustering aims to identify similarities among subsets of inputs, grouping inputs within a cluster 

based on logical similarity while maintaining separation from inputs in other clusters. However, 

due to the inherent uncertainty in determining clusters compared to true categories, assessing the 

effectiveness of UL methods is challenging. Nonetheless, certain metrics like the Silhouette 

score have been devised to provide some indication of the quality of identified clusters [23]. 

Similar to SL, UL still relies on the availability of feature data, but without the need for 

corresponding labels. Consequently, UL is applicable only when such feature data is accessible. 

Figure 3 shows how UL clusters each of the group of fruits based on the similarities in their 

characteristics. 



9 

 

 
Figure 3. Illustration of Unsupervised Learning 

 

Reinforcement Learning  

RL is a distinct learning approach compared to SL and UL because it does not rely on 

data availability. Instead, RL is a goal-oriented methodology that learns through interacting with 

an environment [24]. This shifts the focus from data availability to the ability to interact with the 

environment and generate experiences for insights into future interactions. Unlike other machine 

learning methods, RL learns through evaluating the outcomes of interactions rather than aiming 

for a "correct" action. Figure 4 shows the learning process of reinforcement learning through trial 

an error. When the dog, functioning as an agent in the environment, moves, it receives a positive 

reward, thereby enabling it to learn the optimal action. This learning process resembles how 

living creatures learn, such as a child learning to walk by exploring their environment and 

experimenting with available tools. While other factors may influence the learning process, such 

as observing intelligent behavior, the fundamental concept of RL remains intact. There are three 

different approaches in the field of reinforcement learning: Value-Based, Policy-Based, and 

Model-Based. The Value-Based approach aims to maximize a value function by anticipating 

long-term returns of current states. In Policy-Based methods, strategies are developed to achieve 

maximum rewards in the future based on actions taken in each state, with two subtypes: 



10 

deterministic and stochastic. Model-Based methods involve creating a virtual model for the agent 

to facilitate learning in specific environments. 

 

 
Figure 4. Illustration of Reinforcement Learning 

 

The Fundamentals of Reinforcement Learning  

In this study, I focused on RL, presenting a detailed exploration of the various 

components and methodologies employed in traditional RL. Figure 5 provides a comprehensive 

overview of the agent-environment interactions in reinforcement learning. It depicts how the 

agent interacts with the environment, showcasing the dynamic relationship between the two 

entities. The figure highlights the flow of information and actions exchanged between the agent 

and the environment during the learning process. 

 

 
Figure 5. Illustration of The Agent-Environment Interaction in RL [22] 



11 

To illustrate these concepts, I refer to a contextual example, considering a child as the 

agent navigating their surrounding environment. The state variable corresponds to the observed 

condition of the environment at a specific time step, while the child's action is defined by their 

interaction with the environment based on the given state. The reward signal in this context is 

defined by the distance covered using bipedal means. It serves as a measure of success or 

achievement for the agent's actions in navigating the environment. By quantifying the distance 

traveled, the reward signal provides a mechanism for the agent to evaluate the effectiveness of its 

decisions and learn optimal strategies. Maximizing the accumulated reward over time becomes 

the primary objective for the agent, driving it towards actions that lead to greater distances 

traveled through bipedal locomotion. The learner or decision-maker acts as the agent, while 

encompassing all external factors such as the environment. The prevalent modeling approach for 

such scenarios involves the utilization of Markov Decision Processes (MDP) [24], [25], [26]. 

MDPs are a type of non-deterministic search problem in which the outcome of an action in a 

state is independent of preceding states. Each action taken by the agent at a given state leads to a 

numerical reward, a new state, and can be represented as a 4-tuple: (state, action, reward, state'), 

denoted by (s, a, r, s') [26]. The agent's behavior is determined by a policy π, which is a mapping 

from states to probabilities of selecting each possible action, denoted as 𝜋(𝑎|𝑠). In RL methods, 

the policy is updated based on the agent's experience, with the overall goal being to maximize 

the expected return over a certain number of steps. The utility or expected value of a state is 

defined as the sum of discounted rewards over time. This is shown in Equation 1, where γ is the 

discount rate satisfying the condition 0 ≤ 𝛾 ≤ 1, R represents the rewards received in the 

subsequent time steps, k denotes the number of future time steps considered, and T is the 

terminal time step. The discount rate determines the value of future rewards, with each future 



12 

reward being worth 𝛾𝑘−1 times its immediate value [24]. This process continues at each time 

step until the MDP reaches a terminal state specific to the problem, and the sequence of 

transitions from the initial state to the terminal state is referred to as an episode.  

 

  

𝐺𝑡 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

𝑇−𝑡−1

𝑘=0

 

(1) 

 

Value functions play a crucial role in the majority of RL methodologies as they provide 

insights into the expected utility and potential usefulness of states or actions. These functions are 

defined based on the agent's policy and incorporate the discounted reward calculation 𝐺𝑡, as 

presented in Equation 1. Equation 2 and Equation 3 present the state value and action value 

functions corresponding to policy 𝜋, respectively [24]. It is important to highlight that the state 

value function is commonly known as the 𝑉 value function, while the action value function is 

called as the Q value function. 

 

  𝑉𝜋(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠] (2) 

  𝑄𝜋(𝑠, 𝑎) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3) 

 

The 𝑄 and 𝑉 value functions can be approximated using agent experience. In Monte-

Carlo methods, the agent maintains average rewards for each action in each visited state, 

allowing 𝑄 to converge to the true action-value and 𝑉 to converge to the true state-value as the 

number of state visits increases. Equation 4 presents an example of Monte-Carlo state value 

function update using an every-visit approach, where α represents the step-size parameter or 

learning rate. To handle large numbers of states, 𝑄 and 𝑉 are often defined as parameterized 



13 

functions, tuned to better reflect the actual values. The curse of dimensionality arises from the 

exponential increase in possible states relative to state variables, and parameterized value 

functions address this challenge [27]. Parameterized value functions also introduce experience 

replay, a method for storing and periodically revisiting agent experiences to enhance long-term 

stability and prevent catastrophic forgetting. Experience replay mitigates the risk of tuning 

parameters based solely on recent experiences, which may deviate from earlier episodes [28]. 

 

 𝑉(𝑆𝑡) = 𝑉(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)] (4) 

 

In certain RL methodologies, an additional component known as the model of the 

environment is utilized, enabling inferences about the expected behavior of the environment. 

This model consists of explicit transition and reward functions, denoted as 𝑇(𝑠, 𝑎, 𝑠′) and 

𝑅(𝑠, 𝑎, 𝑠′) respectively. The transition function 𝑇 represents the probability of the state 𝑠′ 

occurring given the state-action pair (𝑠, 𝑎) [26]. These methodologies, referred to as dynamic 

programming (DP), bootstrap their updates, meaning the value function updates are influenced 

by the current approximations of the value function in a future time step. Equation 5 illustrates 

this update process using the Bellman equation [25] for 𝑉 as an update rule, known as iterative 

policy evaluation [24]. DP methods determine the utility value 𝑉 of a given state 𝑆𝑡 based on the 

highest expected value at the state 𝑆𝑡+1. Essentially, DP simulates the entire episode using the 

environmental model and a specified reward discount rate to identify the optimal course of 

action. Although model-based methods like DP rely on a perfect model of the environment and 

are computationally expensive as the environment complexity increases, they are not as widely 

used as their model-free counterparts. 



14 

 

  𝑉(𝑆𝑡) = 𝑚𝑎𝑥
𝑎

𝐸[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5) 

 

Temporal-difference (TD) learning is a foundational methodology in RL that combines 

aspects of Monte-Carlo and dynamic programming methods [24]. Unlike dynamic programming, 

TD methods do not require a perfect understanding of the environment, and unlike Monte-Carlo 

methods, they can update estimates online without waiting for the completion of an episode. 

Equation 6 illustrates the state value function update for a single-step TD method known as 

TD(0). The key difference between TD and Monte-Carlo methods lies in their update targets, 

which are 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) and 𝐺𝑡, respectively. 

 

 𝑉(𝑆𝑡) = 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)] (6) 

 

In RL, a critical challenge is striking a balance between exploration and exploitation. RL 

Agents must explore the environment to discover actions that yield desirable rewards and then 

exploit this knowledge to maximize rewards. Two commonly used algorithms for balancing 

exploration and exploitation are ε-greedy and softmax. These algorithms, referred to as behavior 

policies, guide the agent's behavior while distinct from the agent's target policy 𝜋. Both on-

policy and off-policy RL algorithms can utilize these behavioral policies. On-policy algorithms 

update action values considering the value of the next state given the current policy, while off-

policy algorithms use a greedy approach to select the next action. In the ε-greedy algorithm, 𝜀 

represents the probability of selecting a random action, and it is initially set between 0 and 1, 

gradually decreasing over time. When the agent does not take a random action, it selects the 



15 

action deemed optimal by the current policy. In contrast, the softmax behavioral policy leans 

towards exploitation by selecting actions based on their proportionate action values relative to 

the sum of all valid actions' values, allowing for some level of exploration. These RL 

methodologies, including TD learning and behavior policies, play a crucial role in addressing the 

challenges of exploration and exploitation in RL, enabling agents to learn and optimize their 

actions in complex environments. 

 

Reinforcement Learning Algorithms 

At this point, I would like to discuss about the three well-established RL algorithms: Q-

Learning [29], Sarsa [30], and Policy Gradients [31]. These algorithms have significantly 

contributed to the progress of RL and have served as the basis or inspiration for numerous 

cutting-edge RL algorithms in practice. However, it should be acknowledged that when applied 

individually, these algorithms face limitations in scaling to Multi-Agent Systems (MAS) due to 

their inherent assumption of action value stationarity. This assumption assumes that the reward 

obtained from an action taken in the environment remains constant. 

Q-Learning. The influential Q-Learning algorithm, introduced by Watkins and Dayan in 

1989, represents a significant breakthrough in the field of RL [24], [29]. Operating as an off-

policy TD control algorithm, Q-Learning eliminates the explicit dependence on the policy during 

the training process. While the policy still governs the exploration of state-action pairs, the 

analysis and convergence proof are considerably simplified by focusing solely on the ongoing 

updates of these pairs. Equation 7 presents the update logic for the action value function, which 

bears a striking resemblance to the original TD learning state value function update logic. 

 



16 

 𝑄(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] (7) 

 

Sarsa. Sarsa, an acronym for State, Action, Reward, State, Action [30], represents a 

slightly customized variant of Q-Learning. Unlike Q-Learning, Sarsa utilizes a 5-tuple instead of 

a 4-tuple, considering the action in time step 𝑡 + 1 as well. In essence, Sarsa serves as the on-

policy counterpart to Q-Learning, as illustrated in Equation 8. Notably, the update logic only 

differs in the target. The greedy action is denoted by 𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) during action selection in 

Q-Learning, whereas Sarsa chooses an action based on the current policy. 

 

 𝑄(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)] (8) 

 

Policy Gradients. Policy gradient methods differ from Q-Learning and Sarsa in their 

focus on parameterized state and action value functions, allowing for generalizability [32]. While 

Q-Learning and Sarsa are tabular methods, policy gradients employ parameterized functions 

such as neural networks to approximate state and action values. This promotes intelligent 

decision-making on unseen states. In policy gradient methods, the weights of the neural network 

serve as the parameters being optimized. The gradients are calculated to maximize policy 

performance. Equation 9 demonstrates the complex gradient calculation involving reward 

assignment and the stationary distribution of states under the policy [31]. 

 

 𝜕𝜌

𝜕𝜃
= ∑ 𝑑𝜋(𝑠)

𝑠

∑
𝜕𝜋(𝑠, 𝑎, 𝜃)

𝜕𝜃
𝑎

𝑄𝜋(𝑠, 𝑎, 𝜃) 
(9) 

   



17 

Transfer Reinforcement Learning 

Transfer reinforcement learning (TRL) is a subfield of reinforcement learning that 

focuses on leveraging knowledge or experiences gained from one task or domain to improve 

learning and performance in another task or domain [33]. It aims to address the challenge of 

efficiently learning new tasks by transferring the knowledge acquired from previous related 

tasks. The goal is to accelerate learning, reduce sample complexity, and enhance generalization 

capabilities. TRL techniques involve transferring policies, value functions, or models from a 

source domain to a target domain, allowing the agent to benefit from prior knowledge and 

experiences [34]. This field has gained significant attention as it offers promising avenues for 

overcoming the limitations of learning from scratch and enables agents to learn more effectively 

in complex and diverse environments. Figure 6 provides an overview of knowledge transfer 

between RL methods, with the arrow-pointed section indicating the transfer strategy. 

 

 
Figure 6. Transfer Between Reinforcement Learning Tasks 



18 

RELATED WORK 

 

Extensive research has been conducted to apply various RL algorithms in controlling 

agents across single-agent systems, and cooperative or competitive MAS. Notably, the DQN 

method, an enhancement of Q-Learning, further advanced by stabilizing memory replay with 

prioritized replay memory sampling, facilitating more efficient network parameter tuning by 

retraining valuable state-action pairs, as demonstrated by Schaul et al. [35]. Simultaneously, Nair 

et al. introduced parallel learning using a distributed network and replay memory, effectively 

distributing the learning workload among multiple simulation instances to accelerate agent 

learning [36]. Van Hasselt, Guez, and Silver proposed the double DQN method to reduce policy 

over-estimation, decomposing action selection and evaluation for improved value estimations 

[37]. Wang et al. introduced dueling DQNs, leveraging innovative network architectures to 

simultaneously update state and action value function parameters, enhancing state value 

estimation [38]. Dong et al. presented higher sampling efficiency techniques for policy gradients, 

as discussed in [39]. Their approach combines model-free and model-based RL using a Gaussian 

process to generate supplementary off-policy samples, thereby enriching the on-policy 

experience pool and reducing training times. 

Figure 7 demonstrates the architecture of the Actor-Critic (AC) that used TD and linear 

approximator to train the actors. AC has been applied and enhanced by the DRL community, 

with numerous variants and supplements such as deep deterministic policy gradient, which uses 

experience replay and target network to increase overall learning efficiency [40]. Nair et al. 

introduced parallel learning with a distributed network and a shared memory replay to split the 

learning tasks across multiple instances of simulations, effectively increasing the exploration 



19 

speed at which agents learn [36]. Extracting complex features using Network in Network 

architecture assembles multi-layer perceptron along with convolutional layers is introduced by 

Lin et al. [41]. 

 

 
Figure 7. The Actor-Critic Architecture shown in [28] 

 

Hierarchical Deep Q-Network, introduced by Skrynnik et al. in [42], uses a replay buffer 

to eliminate poor-quality training data in MineCraft. Several researchers investigated the 

importance of Reward Shaping, which varies rewards based on incremental steps or objectives. 

Ng et al. proved that these additional training rewards enhance the probability of learning in the 

MDP [43]. Reward Shaping has been a successful technique in DRL algorithms, although it 

might cause over-optimization in sparse reward environments. This issue was addressed by 

Huong and Ontanon bringing Action Guidance in assisting the auxiliary agents learned through 

the shaped reward [44]. Zambaldi et al. introduced structured perception and relational reasoning 

enhanced DRL to improve the efficiency, generalization capacity, and interpretability of 

conventional DRL [45]. 



20 

Significant works on extending canonical RL from single-agent systems to MAS have 

been successfully published in recent years. Liu et al. modeled the problem of MARL for a 

constrained, partially observable MDP, where the agents need to maximize a global reward 

function subject to 8 both peak and average constraints. They proposed a novel algorithm, 

CMIX, to enable centralized training and decentralized execution under those constraints [46], 

[47]. Gu et al. described Multi-Agent Constrained Policy Optimization and MAPPO- Lagrangian 

algorithms that satisfy safety constraints in DRL where each individual agent has to not only 

meet its own safety constraints, but also consider those of others so that their joint behavior can 

be guaranteed safe [48]. Schulman et al. introduced Trust Region Policy Optimization (TRPO) in 

2015 and Proximal Policy Optimization (PPO) in 2017, and both of these methods have shown 

the ability to effectively reduce the variance in the results [49], [50]. Berner et al. further used 

PPO to train multiple agents capable of defeating top human players in the popular Multiplayer 

Online Battle Arena (MOBA) game Dota 2 [51]. Yu et al. extended the PPO into Multi-Agent 

PPO (MAPPO) specializing for multi-agent settings [52]. Their work showed that MAPPO 

achieved strong performance in three popular multi-agent testbeds with minimal hyperparameter 

tuning and without any domain specific algorithmic modifications or architectures. The research 

based on the use and improvement of PPO and MAPPO is distinct from my work as PPO’s focus 

is on improving the way in which models learn by clipping the gradient, while my focus is on 

state representation and global information extraction. 

A number of research has been conducted to explore the integration of CNNs into DRL 

applications. Stanescu et al. introduced a CNN for evaluating game states in real-time strategy 

games, incorporating spatial relations between units alongside material-based evaluations [53]. 

Naoki Kondo and Kiminori Matsuzaki developed a Deep Convolutional Neural Network 



21 

(DCNN) that employed supervised learning with multiple layers of convolutional networks, 

achieving remarkable scores [54]. CNNs have also been applied in various domains, such as 

checking electricity prices in a multi-microgrid cooperative system [55] and mimicking Go 

experts [56]. These applications primarily focused on CNN implementation, while my 

experiment integrates CNN with DenseNet for state representation and information abstraction. 

Numerous research has been performed using RL algorithms to train collaborative agents to 

achieve team goals in MAS environments. In multi-agent systems with large state spaces, 

determining suitable action strategies becomes challenging due to complex learning policies. 

Researchers have addressed this issue by leveraging information from other training models. 

However, Silva et al., in a recent survey, highlighted a potential flaw in transfer learning 

strategies, as the assumption of consistent knowledge during training may not hold in real-world 

applications where agents lack perfect task understanding [15]. Consequently, even with prior 

knowledge from previous tasks, agents must still explore the environment to learn the optimal 

policy. To address this, Koga et al. proposed aggregating multiple policies into a single 

stochastic abstracted representation, which performs well in multi-agent scenarios but encounters 

challenges in generalizing information and selecting the optimal policy, particularly when the 

amount of information is extensive [57]. Scaling issues arise, necessitating further investigation 

into feature extraction before policy generalization. Mahmud and Ray introduced the concept of 

negative transfer, utilizing conditional Kolmogorov complexity and the Bayesian framework to 

identify correlations [58]. Taylor et al. emphasized the reliance on standard metrics tuned during 

the training phase to determine the optimal knowledge transfer cautioning against arbitrary 

information selection due to potential learning biases [59]. Jason et al. proposed a methodology 

to measure the transferability of characteristics at individual layers of a neural network, 



22 

providing insights into the level of generalization [60]. Chen et al. introduced the Net2Net 

technique for knowledge transfer, utilizing weighted values in the input to preserve network 

function [61]. In contrast, my approach involves incorporating an additional state transformation 

to the input states without altering the neural network structures. 

Xu et al. proposed a novel approach that combines Graph Neural Network (GNN) with 

RL algorithms for multi-agent combat problems, achieving expeditious convergence in StarCraft 

by utilizing a generalized input state representation with GNN [62]. Khan et al. developed a 

transformer-based neural architecture for global state representation and build order prediction, 

addressing biases in Recurrent Neural Networks (RNN) and demonstrating the advantages of 

transformers with positional encoding input for the decoder [63]. However, this approach faced 

limitations in handling parallel loading due to dataset constraints. Tan et al. introduced the 

Transitive Transfer Learning (TTL) framework, focusing on knowledge transfer between 

domains through the identification of suitable intermediate domains, with effectiveness 

influenced by domain difficulty and distance [64]. In contrast, my research concentrates on 

knowledge transfer within the same domain, specifically addressing similar problems. Liu et al. 

presented the Thought Game (TG) abstract forward model for transfer learning, achieving 

significant success against StarCraft's level-10 AI [65]. My work shares a similar goal with Shao 

et al.'s gradient-based SARSA algorithm, incorporating the agent's local and abstracted global 

information in the state space, as well as specific move actions in the action space [66]. To 

address the challenge, I define a uniform state representation of local observations combined 

with an abstracted global state, regardless of the number of agents present. Furthermore, the 

agent's previous and current state information is integrated into the multi-agent training process 

to enhance decision-making.  



23 

SIMULATION PLATFORM 

 

SMAC is built upon the StarCraft II Learning Environment [8] and offers a diverse range 

of challenging scenarios for multi-agent micromanagement. The objective in these scenarios is to 

eliminate opponents controlled by the built-in StarCraft AI. My study specifically focuses on 

decentralized decision-making and micromanagement of a team of individual agents who share a 

common interest, rather than centralized macromanagement of the entire army. Each agent 

within the environment is treated as a distinct entity with independent actions, not constrained by 

group commands. SMAC provides both homogeneous and heterogeneous scenarios, featuring 

symmetric and asymmetric distribution of agents within each group. Though the distribution of 

scenarios is static and cannot be customized during gameplay, this does not limit the 

experimentation as SMAC provides a wider range of scenarios from simple to complex ones. 

Each episode in SMAC provides observations, state rewards, and accepts a list of actions, 

making it suitable for applying RL algorithms. The naming convention of SMAC scenarios 

indicates the number of active agents in each team and the type of these agents for instance: 

marines as m, stalkers as s, zealots as z, colossi as c [67] [68]. While choosing the scenarios, I 

focused on varying difficulty levels so that my experiments ensure generalizability instead of 

performing well in specific types of settings. One of the simplest homogeneous scenario 3𝑚 was 

chosen to test the experimented features more quickly. Then I upgraded to 8𝑚 and extendted the 

evaluation on 25𝑚 to evaluate intra-agent knowledge transfer among large number of agents. To 

enable inter-agent knowledge reuse among different types of units, I selected the SMAC 

provided heterogeneous scenarios such as 2𝑠3𝑧, 1𝑐3𝑠5𝑧.   



24 

Figure 8 displays a selection of heterogeneous SMAC scenarios. These scenarios can be 

effectively represented using a Markov game framework, which extends MDPs to accommodate 

multiple agents [69], [10]. In a Markov game with N agents, there exists a set of states S that 

encapsulates the properties of both the agents and the environment. Additionally, there are sets of 

actions 𝐴1, 𝐴2, . . . , 𝐴𝑁 and observations 𝑂1, 𝑂2, . . . , 𝑂𝑁 for each of the 𝑆 agents. Each agent 

considers the surrounding units as part of its local information and takes an action in the 

environment based on its own observation. The transition from state 𝑆 to state 𝑆′ is denoted by 

(𝑆 × 𝐴1 ×. . .× 𝐴𝑁 → 𝑆′), where each agent follows a policy π to determine its action at each step 

in the environment. 

 

 
Figure 8. Sample SMAC Scenarios [9] 

 

Two types of observation spaces are considered in this study: local and global. The local 

observation space represents a fully decentralized perspective, where each agent can only access 

information within its local vicinity. On the other hand, global observation space provides a fully 

centralized view of the environment. In the local observation space, the attributes are represented 

as a one-dimensional vector for both allied and enemy units within the agent's sight range, which 

is set to 9 by the SMAC environment. These attributes include distance, relative x and y 

coordinates, health, and unit type. The distance is calculated as the Euclidean distance between 



25 

the observing agent and the observed agent, while the relative x and y coordinates indicate the 

directional difference between the two agents. The health and unit type refer to the observed 

agent's health status and type, respectively. In the global observation space, information about all 

units on the map is provided, including their relative positions to the center of the map. This 

perspective also includes all the features from the local observations. Additionally, the global 

observation incorporates the cooldown and previous action for each unit. The cooldown 

represents the time interval that a unit must wait after attacking before it can attack again. All 

features in both the local and global observation spaces are normalized by their respective 

maximum values. No noise simulation is conducted in the SMAC environment, and it is assumed 

that the provided features accurately represent the true feature values. The available actions for 

living units are a discretized subset of the full action set in SC2. These actions include moving in 

the north, south, east, or west direction, attacking an enemy by identifier, and stopping. Defeated 

units are restricted to the no-op action and are not visible to surviving units. It is important to 

note that units in SMAC can only perform attack actions against agents within their shooting 

range, which is set to 6 [9]. The sight and shooting ranges are depicted in Figure 9, where the 

cyan and red circles represent sight and shooting ranges, respectively. 

 

 
Figure 9. Single Agent’s Sight Range in SMAC Scenario 



26 

In SMAC, the achievable reward within a single episode is normalized to a range of 0 to 

20 [9]. By default, negative rewards are ignored. The reward is distributed to the entire team, 

considering various factors such as the damage inflicted on enemy units, points obtained from 

unit eliminations, and a bonus for achieving victory. It is important to note that the reward is not 

individually assigned to each agent, but rather shared among the team. Equation 10 presents the 

computation for the shared reward in a full game episode. Here, t represents the current 

environmental step, T denotes the terminal step, n is the identifier of the agent, N represents the 

maximum number of agents, 𝐷𝑛 indicates the damage inflicted by agent n on enemy units at step 

t, k signifies the number of defeated enemies at step t, 𝑅𝑚𝑎𝑥 represents the maximum possible 

reward, and w takes the value of 1 for a win and 0 for a loss. The episode reward is computed at 

the end of the game, and a discounted reward with a decay factor of 0.9 is employed for training 

the RL models. 

 

 
𝑅 = 20 ×

∑ (∑ (𝐷𝑛) × 10𝑘𝑁
𝑛=1 )𝑇

𝑡=1 + 200𝑤

𝑅𝑚𝑎𝑥
 

(10) 

 

SMAC offers diverse scenarios that feature units from the three races in StarCraft II: 

Terran, Zerg, and Protoss. The Terran race represents a human faction known for its equilibrium 

between technological and biological units. On the other hand, the Zerg and Protoss races 

represent the opposite ends of the spectrum, with the Zerg being a purely biological race that 

emphasizes evolution and metamorphosis, while the Protoss are highly technologically advanced 

and rely less on biological units. In this research, the focus is exclusively on Marines for 

homogeneous scenarios, and zealots and stalkers for heterogeneous scenarios which are medium-

ranged infantry units belonging to the Terran race.  



27 

The SMAC combat scenarios utilized for training and evaluation purposes are shown 

Figure 10, Figure 11, Figure 12, and Figure 13. These scenarios include 3𝑚, 8𝑚, 25𝑚, and 

2𝑠3𝑧, respectively. The baseline scenario chosen for experimentation is the 8𝑚 scenario, where 

each team controls eight marines engaged in combat against each other. This scenario provides a 

suitable foundation for the research as it represents a medium-scale MARL scenario with a 

moderate number of units. The other selected scenarios are used to demonstrate the 

generalizability of the evaluated methods. Homogeneous scenarios involve only Marines, with 

the number of Marines per team indicated in the scenario name whereas heterogeneous scenarios 

involve equal number of Stalkers and Zealots in each side. Scenarios with a single number are 

symmetric, while the others are asymmetric, favoring the built-in SC2 game AI. The difficulty 

level of the AI is set to 7 in SMAC, which is equivalent to the Elite level in SC2. This poses a 

significant challenge to players who are unaware of the AI's aggressive yet predictable behavior. 

The objective for the agents in each scenario is to defeat the built-in SC2 game AI by eliminating 

all enemy units without losing all their allied troops. While this task may seem straightforward, it 

requires a deep understanding of the behaviors and capabilities of the agents on each team. 

Cooperation among allied agents is crucial for the team's success. They must work together, 

focusing their attacks on enemies, to efficiently minimize damage received and maximize 

damage dealt over time, thereby minimizing casualties sustained. 

 

 

 



28 

 
Figure 10. 3𝑚 SMAC Scenario with 3 Marines on Each Group 

 

 
Figure 11. 8𝑚 SMAC Scenario with 8 Marines on Each Group  

 

 
Figure 12. 25𝑚 SMAC Scenario with 25 Marines on Each Group 

 

 
Figure 13. 2𝑠3𝑧 SMAC Scenario with 2 Stalkers and 3 Zealots on Each Group  

 



29 

METHODOLOGY 

 

All experiments were conducted using Python 3.7.3 with NumPy (NP) 1.19.5 and 

TensorFlow (TF) 2.4.0 [70] as the framework for creating and training neural networks (NNs). 

The SMAC 1.0.0 environment, along with SC2 version 4.10 [9], was utilized for conducting the 

MARL experiments. To ensure the reproducibility of results, Graphics Processing Unit (GPU) 

acceleration was not employed, and the models were constrained to Central Processing Units 

(CPU). Random generators were seeded with values ranging from 1 to 31, corresponding to the 

experiment number relative to the specific methodology used. Although this approach led to a 

moderate increase in experimental completion time, especially for CNNs with larger parameter 

counts, it was considered a worthwhile trade-off to ensure the reliability and reproducibility of 

the experiments. 

 

Experimental Features 

The proposed policies were evaluated using a diverse set of SMAC scenarios ranging 

from simple homogeneous to complex heterogeneous cases. To ensure robust statistical analysis, 

I conducted each experiment with 31 different random seeds. For statistical analysis, I assessed 

the performance of my model in various SMAC scenarios in which each experiment 

encompassed a total of 2000 episodes, taking into account the considerable number of tuning 

parameters embedded in my neural network architecture. To implement the neural network, I 

built it upon the widely-used Advantage Actor-Critic (A2C) algorithm [71]. Both the actor and 

critic networks were incorporated into my architecture. I utilized an ε-soft method, which 

combines the greedy and softmax techniques. The initial value of ε was set to 1 and gradually 



30 

decreased over time. To determine ε at a specific time step, Equation 11 was followed, where 𝜀0 

was assigned a value of 0.0001, 𝜀𝑚𝑖𝑛 is 0.0001 and γ represented the total number of 

environmental steps, set to 30,000. 

 

 
𝜀𝑡 = 𝑚𝑎𝑥 (𝜀0 −

𝑡 × 𝜀0

𝛾
, 𝜀𝑚𝑖𝑛) 

(11) 

 

For all experiments, the A2C algorithm was incorporated, utilizing separate neural 

networks for the actor and critic components. The size of inputs to these networks varied 

depending on the specific MARL methods and combat scenarios being explored. Throughout the 

network layers, excluding the output layers, the Exponential Linear Unit (ELU) activation 

function with α=1.0 was utilized. The actor network employed softmax activation in its output 

layer, while the critic network used a simple linear activation. Categorical cross-entropy loss was 

applied to the actor, while mean squared error loss was used for the critic. Optimization of both 

networks was performed using the adam optimizer with a learning rate of 0.00001 [72]. Multiple 

layer of maxpooling and dropout were considered during the integration of CNNs [73], which 

have been explained in the detailed model architecture. The models have been saved using TF 

saved model format to store the actor and critic networks for future evaluation after the initial 

training phase. The networks were saved selectively, based on the condition that the running 

average reward at the end of an episode surpassed the previous maximum. As a result, the saved 

networks accurately represent the top-performing models obtained for each specific combination 

of seed, method, and scenario. 

 



31 

Advantage Actor Critic (A2C) Algorithm 

In the A2C RL algorithm, the actor and critic components are essential. To address this, 

Harris et al. utilized two separate neural networks with an identical hidden layer architecture for 

MAIRL and MAIDRL experiments [14]. This A2C implementation employs a single controller 

responsible for individual agent control. The shared parameter approach enables faster and more 

intelligent learning as the parameters are updated using the collective experiences of all agents. 

The A2C RL algorithm comprises two key components: the actor and the critic. To 

address this, I employed separate neural networks for each component, both sharing the same 

hidden layer architecture. Figure 14 displays the A2C implementation that involves a single 

controller responsible for individual agent control, enabling the utilization of shared parameters. 

This shared parameter approach facilitates accelerated and intelligent learning as the parameters 

are updated based on the collective experiences of all agents.  

 

 
Figure 14. Advantage Actor Critic (A2C) Model Architecture 

 

The critic component can be regarded as a model-free, value-based approximation of the 

state value function, as depicted in Equation 2, which estimates the expected reward for a given 

state based on the policy. Let 𝑉∗(𝑠) denote the optimal state value function, representing the 



32 

maximum reward achievable. The objective of the critic is to approximate 𝑉𝜋(𝑠; 𝜃𝑐) to closely 

match 𝑉∗(𝑠), where 𝜃𝐶  represents the critic's parameters. The critic parameters 𝜃𝐶  are updated 

using standard gradient ascent at the conclusion of an episode, employing the discounted reward 

values for a supervised update [74]. As the critic's update is crucial for calculating the advantage 

used in actor training, the update takes place subsequent to the advantage calculation. The actor 

component can be considered as a model-free, value-based approximation of the action value 

function which estimates the expected reward for a given action in a particular state and 

following the policy 𝜋(𝑎|𝑠). Let 𝑄∗(𝑠, 𝑎) denote the optimal action value function, representing 

the maximum achievable reward. The objective of the actor is to validate 𝑄𝜋(𝑠, 𝑎; 𝜃𝐴) ≈

𝑄∗(𝑠, 𝑎), where 𝜃𝐴 represents the actor's parameters. It is worth noting that, following the A2C 

algorithm, 𝑄𝜋(𝑎𝑡, 𝑠𝑡; 𝜃𝐴) − 𝑉𝜋(𝑠𝑡; 𝜃𝐶) serves as a target network representing the advantage of 

taking one action over another. This target network is influenced by both the action value 

estimation determined by the actor and the state value estimation determined by the critic. At the 

conclusion of an episode, the actor's parameters 𝜃𝐴 are updated based on the gradient ascent 

direction specified in Equation 12. 

 

 ∇𝜃𝐴
𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡)(𝑄𝜋(𝑎𝑡, 𝑠𝑡; 𝜃𝐴) − 𝑉𝜋(𝑠𝑡; 𝜃𝐶)) (12) 

 

The performance of the basic A2C model was enhanced through the introduction of a 

DenseNet-inspired model architecture for both the actor and critic components. The utilization of 

this DenseNet-style grouping of layers, as depicted in Figure 15, was incorporated into the 

proposed model design. The architecture consists of an arbitrary number of n layers, where the 

output of each layer is concatenated with the inputs of subsequent layers within the group. My 



33 

network architecture consists of two such groups, each comprising five dense layers with 128 

neurons. Additionally, an extra dense layer with 256 neurons is included in the DenseNet 

architecture, positioned before the first group of DenseNet-style layers, immediately following 

the input layer [75]. 

 

 
Figure 15. DenseNet-style Grouping of 𝑛 128-neuron Layers [14] 

 

Semi-centralized Multi-Agent Influence Map  

The A2C algorithm was incorporated to investigate the effective utilization of global 

information for decision-making in multi-agent environments across different state scenarios. 

The first scenario explores a centralized approach, where agents utilize both local and global 

observations to train the actor and critic networks. The second scenario introduces the global 

critic with a local actor (GCLA), where the critic receives global information while each actor 

only receives local observations. This unique approach decentralizes the actors while 

maintaining a centralized critic. In the third scenario, a total critic and local actor (TCLA) 

approach is explored, wherein the critic is centralized while the actors remain decentralized. This 

method draws inspiration from the centralized training and decentralized execution concept 

introduced in MADDPG. By examining these different scenarios, I aim to gain insights into the 



34 

optimal utilization of global information for effective decision-making in multi-agent 

environments. 

In this study, I abstract global features in a manner that aligns with human interpretation. 

The proposed method involves the utilization of AIMs which rely on three key parameters: 

source influence (𝐼0), influence decay rate (𝜆𝐼), and range of influence (𝑑𝐼) for individual units. 

A notable advantage of this approach is its inherent capability to dynamically represent 

information by adjusting the values. Specifically, for the conducted experiments, the range of 

influence (𝑑𝐼) is set to the predefined agent range in SC2, while 𝐼0 corresponds to the relative 

health value extracted from SMAC. Furthermore, 𝜆𝐼 is determined as the inverse of the distance 

from the agent, with a value of 𝐼0 assigned when the distance is zero. To differentiate between 

allied and enemy units, 𝐼0 of the allied units is negated relative to their health information 

obtained from SMAC. The individual AIMs are combined to create a MAIM by summing the 

AIM values based on the agents' positions in the environment. The AIM is aligned with the 

agent's position on the MAIM, and overlapping cells are added together. Any portion of the AIM 

that does not overlap with the MAIM is disregarded. The MAIM serves as a scaled 

representation of the units in the SMAC scenario map. While the SMAC scenario map has a size 

of 32x32 units, the dimensions of the MAIM can be customized with positive integers. The 

implementation automatically adjusts the AIM to fit the MAIM dimensions while preserving the 

scale of the agent's influence in the 8𝑚 scenario. MAIMs of sizes 16x16, 32x32, and 64x64 were 

investigated, utilizing the same AIM parameters. 

 



35 

Multi-Agent Influence Dense-CNN Reinforcement Learning (MAIDCRL) 

In this research, I aim to investigate the effects of incorporating CNN layers on the 

performance of MAIM inputs in the context of MARL. To achieve this, the existing MAIDRL 

model architecture was enhanced by integrating multiple CNN layers that directly accept the 

MAIM as input. Based on the performance of MAIDRL, three dense blocks were modeled to 

take the input of local observation [14]. The performance of the resulting CNN-enabled model, 

called MAIDCRL, was then compared to the previous MAIDRL algorithm using the same set of 

scenarios from the SMAC environment. In the MAIDCRL architecture, each group within the 

dense blocks of the model incorporated the MAIM input by concatenating it with the default 

CNN layer provided by DenseNet architecture. Based on the parameter tuning, four blocks of 

Conv2D were incorporated within the dense block when the global IM passed as input parameter 

to the network. Additionally, two separate CNN layers were configured with 32 filters, a stride 

rate of 1, and a kernel size of 3. This design choice was aimed at extracting spatial features from 

the MAIM, allowing the model to effectively capture and utilize the relevant information 

contained within the influence map. 

To handle negative values and promote the learning process, ELU activation function 

was employed in the DRL architecture of MAIDCRL. Additionally, MaxPooling with a 2x2 

kernel was applied after each convolutional layer to reduce the dimensionality of the feature 

maps and further enhance computational efficiency. In order to improve generalization and 

robustness, a dropout layer was incorporated into the MAIDCRL model. Dropout rates ranging 

from 0.1 to 0.5 were explored to assess their impact on the overall performance of the model. To 

evaluate the effectiveness of the proposed MAIDCRL representation, it was compared against 

the previous MAIDRL version in a series of experiments. Various combinations of scenarios and 



36 

parameters were tested, and statistics were collected to assess and compare the performance of 

the two models. For a more detailed visual representation of the MAIDCRL architecture, refer to 

Figure 16, which provides a comprehensive overview of the model's structure and the flow of 

information within its components. 

 

 
Figure 16. Outline of MAIDCRL Architecture 

 

Multi-Agent Transfer Reinforcement Learning (MATRL) 

Leveraging existing knowledge has proven to be a valuable approach in expediting the 

learning process of MARL and enhancing the capabilities of agents in multi-agent systems to 

handle complex tasks. This involves creating a mapping between a knowledge space, which 

encompasses samples from current and previous tasks, as well as insights gained from other 

agents, to a policy that guides agent behavior. However, model-free MARL techniques often 

necessitate a substantial number of samples to train an optimal policy, which becomes 

particularly challenging in scenarios with vast state and action spaces, such as those encountered 

in SMAC, which features diverse unit and terrain conditions. Developing effective strategies for 

each scenario from scratch can be time-consuming and resource-intensive. 



37 

In SMAC, the default state representation provided by the environment is tailored to 

reflect the number of units present in each scenario. For example, in scenarios 3𝑚, 8𝑚, and 

25𝑚, the local state is represented by 30, 80, and 250 one-dimensional vectors, respectively, as 

illustrated in Figure 17. Although this default representation is compact and captures precise 

agent information necessary for MARL training, it poses challenges in terms of knowledge 

transfer across multiple scenarios due to its dependency on scenario-specific state sizes. 

 

 
Figure 17. Scenario-dependent Local Observation Across Different SMAC Scenarios 

 

To mitigate this limitation, my research focuses on constructing a fixed-size state 

representation that remains consistent irrespective of the number of agents in the scenario. This 

unified representation aims to overcome the hurdles associated with scenario-dependent state 

sizes, thereby facilitating knowledge transfer across diverse scenarios. By establishing a constant 

state size, I alleviate the restrictions imposed by the default representation and enable more 

effective utilization of existing knowledge in a generalized manner. This approach offers 



38 

potential improvements in the performance and adaptability of MARL algorithms in SMAC and 

similar environments. 

Scenario Independent State Representation. Various approaches have been explored 

by researchers to address the challenge of unifying state representations in order to facilitate 

knowledge transfer in MARL. However, a universally accepted scenario-independent state 

representation has yet to be established. In this research, I propose a novel approach that 

leverages two types of state information, namely local observations and abstracted global 

information, to feed reusable neural networks across multiple scenarios in SMAC. 

To extract and filter aggregated spatial representations from global information, a spatial 

information technique called AIM was introduced. This technique proved effective in identifying 

common objectives and promoting the learning of collaborative behaviors among agents. 

Building upon this foundation, I extend the application of AIM in this study to construct a 

scenario-independent local state representation. The aim is to enable effective knowledge 

transfer across all scenarios provided in SMAC. By integrating both local observations and 

abstracted global information using AIM, I aim to create a comprehensive state representation 

that captures both local and global aspects of the environment. This approach facilitates the 

transfer of learned knowledge and collaborative behaviors across diverse scenarios in SMAC, 

thereby promoting enhanced performance and adaptability in MARL. 

My research contributes to addressing the ongoing challenge of scenario-independent 

state representation in MARL and offers a promising avenue for achieving effective knowledge 

transfer and collaboration among agents in complex multi-agent environments. For the state 

representation of local observation, I considered the local observations of the prior step, the 

actions performed in that step, along with the current step information. The local observations 



39 

include distance, relative position, health, shield, and unit type for allied and enemy units within 

the sight range as demonstrated in Figure 9. The default states received from SMAC depend on 

the number of active agents in the game environment. In order to remove the dependency on the 

number of agents across SMAC scenarios, I extended the use of IM from global information 

abstraction to local observation aggregation.  

The local IM transformation yields a fixed dimension of sight range with different 

resolutions such as 19 × 19, 37 × 37, and 55 × 55, each with the same local state parameters. 

Figure 18 shows a sample heatmap with cell values transformed from a local state observation in 

a two-dimensional 19 × 19 matrix on 8𝑚 scenario. This matrix is derived from the perspective of 

the highlighted agent where 1 denotes the allies, and −1 indicates the enemy units. The input 

dimension is determined by the agent’s sight range in all four directions, resulting in a unified 

two-dimensional scaled matrix transformed from a local observation. In SMAC, the agents’ sight 

range is a fixed value of 9, which means the agent can see an enemy within a distance of 9 cells. 

The unified subset of global and local information as shown in the green-colored rectangle in 

Figure 19b is then flattened and propagate through the neural network, which applies to all 

SMAC scenarios. To unify the local observation using IMs without losing essential information, 

I evaluate different resolutions to construct local IMs for various levels of granularity on unit 

manipulations during combats in SMAC. The generated IMs will then serve as scenario-

independent input parameters for the neural network displayed in Figure 19c, which carries the 

shared knowledge across all SMAC scenarios. This unified representation of the local states 

resolves the dependency of a different number of agents in the environment, and the input of 

fixed dimensional local state, along with the abstracted global information from MAIM, is 



40 

trained via neural networks to execute the probable attacks or actions for winning strategies in 

SMAC.  

 

 
Figure 18. A Sample 19 × 19 Heatmap Generated from Local Observation on 8𝑚 

 

Scenario Independent Action Representation. In the context of SMAC, agents are 

faced with the task of selecting actions from a finite action space based on the state information 

described in the preceding subsection. While move actions offer four directional choices (north, 

south, east, and west), the decision-making process becomes more complex for attack actions. In 



41 

the default action space provided by SMAC, agents must consider the number of enemies within 

their sight range in their local observation when making attacking decisions. However, the 

varying number of enemies across different scenarios poses a challenge. To address this 

challenge, I propose a generalized approach that focuses on the closest enemy position for the 

attacking action, eliminating the dependence on the specific number of agents within the sight 

range. This approach is depicted in Figure 19d, where my custom-generated policy replaces the 

scenario-dependent output, enabling the agent to execute attack actions without specific 

knowledge of enemy agents. 

By training the neural networks (NNs) with detailed policies based on the spatial 

information of the agent's current position, targeting the closest enemy instead of relying on the 

default scenario-dependent action does not result in any loss of valuable information necessary 

for decision-making. This generalized approach facilitates the sharing of attacking policies 

among agents, thereby promoting knowledge transfer across a diverse range of SMAC 

environments. Through the formulation of a unified solution, I have achieved both improved 

performance in large-scale scenarios and enhanced efficiency in the simulation environment. 

 

 
Figure 19. Transfer Learning Model Representation for Single Unit 

 



42 

Curriculum Transfer Learning (CTL) 

Curriculum learning (CL) is a learning methodology that follows a predefined sequence 

of tasks based on their increasing complexity [76]. It involves training agents in a game-like 

environment against simulated opponents that gradually become more proficient. This approach 

allows the agents to develop effective strategies and acquire knowledge that can be transferred to 

real-world challenges [77]. In this study, I explored the effectiveness of CTL, a technique that 

combines curriculum learning with transfer learning to enhance the learning process and achieve 

improved outcomes within a fixed timeframe. My focus was on examining how transferring 

winning strategies, learned by Marines in scenarios 3𝑚 and 8𝑚, could positively impact the 

behavior of Stalkers and Zealots in a more complex and heterogeneous environment known as 

2𝑠3𝑧. The curriculum transfer learning process, as depicted in Figure 20, follows a sequential 

training approach. 

 

 
Figure 20. Curriculum Transfer Learning Architecture 

 



43 

I initially trained the policy using the simplest scenario, 3𝑚, allowing the agents to grasp 

fundamental concepts and develop a foundation of skills. Subsequently, I retrained the learned 

model in a medium-level scenario, 8𝑚, to further refine the acquired strategies and adapt them to 

more challenging situations. Finally, I leveraged the knowledge obtained from both scenarios to 

tackle the significantly more intricate scenario, 2𝑠3𝑧, characterized by diverse unit types and the 

presence of heterogeneous team units that were not encountered in the previous training 

scenarios. By employing curriculum transfer learning, I aimed to expedite the learning process 

and enable the agents to effectively navigate the complexities of the 2𝑠3𝑧 environment. This 

approach offers a practical way to transfer learned strategies across different scenarios, 

facilitating the application of acquired knowledge to novel and demanding situations.  

  



44 

RESULTS AND DISCUSSION 

 

The performance of MARL methods is evaluated using three key metrics: the average of 

the running average episode reward, the standard deviation of the running average episode 

reward, and the percentage of seeds that achieve a maximum running average reward across the 

entire set of 31 seeds. These metrics are referred to as overall performance, overall stability, and 

peak performance, respectively. Additionally, a detailed analysis of the peak performance is 

conducted for each method, considering the minimum, maximum, average, and standard 

deviation across all seeds. For each scenario and method, I determine the best performance 

achieved by each seed and calculate the minimum, maximum, average, and standard deviation 

based on these peak performances. The corresponding tables highlight the highest minimum, 

maximum, and average values per scenario in bold font, along with the lowest standard 

deviation. Furthermore, I examine the learned behaviors exhibited by each MARL method when 

deploying the trained actor of the best-performing seed in each scenario. These evaluations are 

conducted in a headed environment without any additional training. By analyzing these metrics 

and behaviors, I gain insights into the effectiveness and robustness of the MARL methods 

assessed in this study. 

 

MAIDCRL Learning Performance 

For the evaluation, I compared the performance of my CNN-enabled MAIDCRL model 

with the previously developed MAIDRL model, rather than considering other baseline 

architectures. This choice was motivated by the demonstrated superiority of MAIDRL over other 

baseline models in terms of both performance and efficiency [14]. 



45 

𝟑𝒎. The 3𝑚 scenario is a variant of the 8𝑚 scenario, characterized by a reduction in the 

number of units to three per team. This scenario was selected to assess the suitability of 

MAIDCRL in combat scenarios with varying levels of complexity. While it was expected that 

3𝑚 would be easier to learn compared to 8𝑚, the results presented in Table 1 and Figure 21 

indicate that the performance was poorer than anticipated. This discrepancy can be attributed to 

the disproportionate reward structure associated with winning the scenario in relation to the 

limited availability of incremental rewards. It is hypothesized that the distinct score distribution 

in 3𝑚, stemming from the lower number of units on the field, coupled with the reward 

calculation method that emphasizes aggregate damage dealt to enemies with a substantial bonus 

for achieving victory, contributes to the observed performance. 

 

 
Figure 21. Average of the Running Average Episode Reward on 3𝑚 Scenario 

 

𝟖𝒎. Figure 22 illustrates the performance of MAIDRL and MAIDCRL models on the 

8𝑚 homogeneous scenario. This scenario is considered moderately challenging due to the 



46 

presence of a significant number of agents in the environment. Additionally, it is regarded as an 

ideal scenario since it exhibits overall stability in terms of performance. In the 8𝑚 scenario, 

MAIDCRL achieves a highest running average episode reward of 18.79, which is 10.98% higher 

than MAIDRL without CNN layers. Additionally, the running average improves by 5.96% in 

the, showcasing the efficacy of MAIDCRL. The learning speed of MAIDCRL is also faster than 

MAIDRL, providing further evidence of the enhanced learning process facilitated by the CNN 

layers. 

 

 
Figure 22. Average of the Running Average Episode Reward on 8𝑚 Scenario 

 

𝟐𝟓𝒎. In Figure 23, the performance of MAIDCRL and MAIDRL in the 25𝑚 

homogeneous scenario, which involves a larger number of agents, is examined. The initial 

learning phase reveals that MAIDRL has a slightly faster learning rate compared to MAIDCRL 

until approximately 600 episodes. However, beyond this point, MAIDCRL surpasses MAIDRL 

in terms of performance. This improvement in performance can be attributed to the learning 



47 

capabilities of MAIDCRL, as it continues to learn from the environment and adapt its strategies 

over time. The significant episode reward of 12.95 achieved by MAIDCRL after 1013 episodes 

demonstrates its ability to continuously enhance its performance in the 25𝑚 scenario. This 

suggests that MAIDCRL is capable of effectively adapting and making more informed decisions 

as it gains more experience in dealing with a larger number of agents in the complex 

homogeneous 25𝑚 scenario. 

 

 
Figure 23. Average of the Running Average Episode Reward on 25𝑚 Scenario 

 

𝟐𝒔𝟑𝒛. Figure 24 reflects the performance for complex heterogeneous scenario, 2𝑠3𝑧, 

which involves two different types of agents working together to attack opponents: two stalkers 

and three zealots. Initially, the MAIDRL model exhibits better performance compared to 

MAIDCRL in the early episodes. However, a closer examination reveals that MAIDRL fails to 

effectively learn from the environment, leading to a stagnant and steady performance over time. 

In contrast, MAIDCRL demonstrates a different learning pattern. It gradually learns from the 



48 

environment, acquiring knowledge and adapting its strategies to improve performance. After 

approximately 800 episodes on average, MAIDCRL shows a noticeable improvement in 

performance, consistently achieving victories in most instances. This suggests that MAIDCRL 

has the ability to effectively utilize the learned knowledge and apply it to overcome challenges in 

the complex heterogeneous 2𝑠3𝑧 scenario. The maximum average episodic reward has been 

improved from 13.7 to 18.88, which is 37.81% higher than MAIDRL without the CNN-enabled 

architecture. The average episodic reward is also enhanced by 17.5% with an overall stability in 

the performance. The lower STD value also demonstrates that the scores are clustered closely 

towards the average score ensuring the robustness of the proposed model.  

 

 
Figure 24. Average of the Running Average Episode Reward on 2𝑠3𝑧 Scenario 

 

𝟏𝒄𝟑𝒔𝟓𝒛. The 1𝑐3𝑠5𝑧 SMAC scenario refers to a specific setup within the SMAC 

environment. In this scenario, there are two teams, one composed of a single commanding agent 

(1c) and the other consisting of three stalkers (3s) and five zealots (5z). The objective of the 



49 

scenario is for the commanding agent and its team of units to engage in combat against the 

opposing team, which also consists of three stalkers and five zealots. This scenario is designed to 

test the performance and coordination of agents in a complex and dynamic combat situation. The 

commanding agent must make strategic decisions to control and guide its team of units 

effectively, while the stalkers and zealots must work together to attack and defeat the enemy 

units. It is important to note that this scenario is highly complex and does not provide a clear 

winning condition. Despite the initial challenges, I observed a significant improvement in the 

model's learning capability after this point, as indicated by the increased average score of 10.61 

from 6.73, shown in Figure 25. While the lack of winning instances in this scenario might be 

seen as a limitation, I remain optimistic about the insights that can be gained by running the 

model for a larger number of episodes. Unfortunately, due to time constraints at this stage of my 

research, I was unable to explore the full potential of the model in this complex environment. 

 

 
Figure 25. Average of the Running Average Episode Reward on 1𝑐3𝑠5𝑧 Scenario 

 



50 

Table 1 provides a detailed comparison of MAIDCRL and MAIDRL across all scenarios, 

including 3𝑚, 8𝑚, 25𝑚, 2𝑠3𝑧 and 1𝑐3𝑠5𝑧. Boldly marked values indicate the best performance 

in each scenario. The results show that MAIDRL achieves a higher maximum running average 

reward in the 3𝑚 scenario. However, MAIDCRL outperforms MAIDRL in the more complex 

scenarios of 8𝑚, 25𝑚, and 2𝑠3𝑧. Moreover, MAIDCRL achieves higher minimum running 

average scores in all homogeneous scenarios. Specifically, MAIDCRL surpasses MAIDRL by 

15.65, 12.95, 12.14 and 10.61 in the 8𝑚, 25𝑚, 2𝑠3𝑧 and 1𝑐3𝑠5𝑧 scenarios, respectively. 

Overall, the addition of CNN layers significantly enhances the performance of MAIDCRL in 

both complex homogeneous and heterogeneous scenarios. The minimum running average score 

without using CNN is 6.45, whereas MAIDCRL achieves a value of 9.22 in the 25𝑚 scenario. 

 

Table 1. Performance Comparison between MAIDRL and MAIDCRL on Extended Scenarios 

Scenario Method Min Max Avg Std 

3𝑚 MAIDRL 4.29 17.14 11.01 4.19 

 MAIDCRL 5.01 16.98 14.84 3.12 

8𝑚 MAIDRL 5.01 16.93 14.77 3.77 

 MAIDCRL 6.82 18.79 15.65 3.81 

25𝑚 MAIDRL 6.45 13.59 11.82 0.94 

 MAIDCRL 9.22 16.09 12.95 1.25 

2𝑠3𝑧 MAIDRL 5.32 13.70 10.33 3.43 

 MAIDCRL 5.12 18.88 12.14 2.25 

1𝑐3𝑠5𝑧 MAIDRL 6.71 12.16 6.73 1.72 

 MAIDCRL 8.27 14.27 10.61 1.35 

MAIDRL and MAIDCRL with 64 × 64 MAIM dimension. 

 

 



51 

Pre-trained Policy Selection for Transfer Learning 

In the initial phase of transfer learning, I conducted training on selected homogeneous 

scenarios for a total of 2000 epochs, using 31 independent instances running in parallel. During 

this training process, the agents leveraged the information gathered from the ongoing simulations 

to update their respective neural networks. In order to compare the performance of these models, 

I conducted evaluations with different input state resolutions. Table 2 presents the results 

obtained from the evaluations of the 3𝑚, 8𝑚, and 25𝑚 scenarios, using various local state 

dimensions ranging from 19 × 19 to 55 × 55 resolutions. The results indicated that the agents in 

the 3𝑚 and 8𝑚 scenarios achieved a score of 20, which indicates their successful defeat of the 

opposing team in the respective scenarios. However, in the 25𝑚 scenario, the highest score 

attained by one of the well-trained models was 15.97, using a local state representation 

dimension of 37 × 37. Considering the overall stability of the performance, I made a decision to 

choose the 37 × 37 dimension for the local state reformulation in a unified manner. This 

dimension exhibited a desirable balance between performance and stability across the evaluated 

scenarios. 

The best-performing RL model from each of the 3𝑚, 8𝑚, and 25𝑚 scenarios was 

selected as a seed for the subsequent training of shared neural networks on other scenarios, 

utilizing the powerful technique of transfer learning. By leveraging the knowledge gained from 

the initial training on the selected scenarios, the transfer learning approach enables the shared 

neural networks to benefit from the learned strategies and insights. This process allows for more 

efficient and effective training of the agents on additional scenarios, enhancing their overall 

performance and adaptability in a range of heterogeneous environments. 

 



52 

Table 2. Best Performing RL Models Learning from Scratch 

Scenario Dimension1 Min Max Avg Std 

3𝑚 19 × 19 2.32 16.57 8.34 3.24 

 37 × 37 4.29 20 12.39 5.21 

 55 × 55 1.29 15.21 12.37 3.26 

8𝑚 19 × 19 4.61 19.57 9.29 4.93 

 37 × 37 8.19 20 11.74 3.34 

 55 × 55 6.45 18.3 8.74 5.22 

25𝑚 19 × 19 3.36 14.51 6.42 2.67 

 37 × 37 4.93 15.97 7.45 1.28 

 55 × 55 5.16 11.90 8.32 1.96 

1 the dimension of unified local observation. 

 

Robustness of MAIDCRL Architecture 

To assess the effectiveness and reliability of the approach presented in this study, I 

conducted a comprehensive analysis of the number of successful instances across multiple seeds 

for both the CNN-enabled MAIDCRL and the previously developed MAIDRL models. 

Specifically, I focused on three types of homogeneous scenarios: 3𝑚, 8𝑚, 25𝑚 and two types of 

heterogeneous scenarios 2𝑠3𝑧 and 1𝑐3𝑠5𝑧. The results, as depicted in Figure 26, clearly 

demonstrate the superior performance of MAIDCRL. In scenario 3𝑚, MAIDCRL achieved 

victory in all runs, while on 8𝑚 it secured victory in 28 out of 31 runs. Additionally, in the more 

complex scenario 2𝑠3𝑧, MAIDCRL emerged winning in 18 out of 31 runs. In contrast, MAIDRL 

was unable to surpass my proposed model's performance in any of these challenging scenarios. 

Furthermore, I conducted a detailed analysis of the learning speed exhibited by the 

proposed solution. Figure 27 provides insights into the number of episodes required for both 

MAIDCRL and MAIDRL to discover their first winning strategy in each scenario. On average, 



53 

CNN-enabled MAIDCRL achieved its initial victory after approximately 770 episodes in 

scenario 3𝑚, 950 episodes in scenario 8𝑚, and 1053 episodes in scenario 2𝑠3𝑧. In comparison, 

MAIDRL required 800 episodes to secure victory in scenario 3𝑚, 1200 episodes in scenario 8𝑚, 

and 1240 episodes in scenario 25𝑚. It is worth noting that neither model achieved a winning 

strategy in scenario 25𝑚 and 1𝑐3𝑠5𝑧, and thus these particular scenarios were excluded from the 

evaluation. 

 

 
Figure 26. Total Number of Winning Across All Seeds 

 

 
Figure 27. Average Number of Episodes for First Winning 



54 

These findings provide compelling evidence of the superior performance and faster 

learning capabilities of the CNN-enabled MAIDCRL model compared to MAIDRL across 

various homogeneous and heterogeneous scenarios. The CNN integration in MAIDCRL allows 

for more efficient and effective decision-making, leading to a higher number of successful 

outcomes. These results underscore the significance of incorporating convolutional neural 

networks in multi-agent influence map inputs in the field of multi-agent reinforcement learning. 

The robustness and accelerated learning exhibited by the CNN-enabled MAIDCRL model offer 

promising prospects for its application in real-world scenarios, where the ability to quickly adapt 

and make optimal decisions is of utmost importance. 

 

Transfer Learning Performance 

The performance of transfer learning was assessed by leveraging seeds from diverse 

homogeneous scenarios to train additional scenarios based on the level of difficulty in the SMAC 

environment. This evaluation aimed to determine the effectiveness of transferring knowledge 

across the selected environments. The following subsection provides detailed evaluation about 

the observed TL performance improvements in the 3𝑚, 8𝑚, and 25𝑚 homogeneous scenarios 

with varying seed policies. 

SMAC-𝟑𝒎. Figure 28 highlights the notable enhancement in performance observed in 

the 3𝑚 scenario when transferring knowledge from the 8𝑚 and 25𝑚 scenarios, as opposed to 

starting from scratch without shared information. Utilizing the pre-trained policies of 8𝑚 and 

25𝑚 results in an average running episode reward improvement of 9.7% and 19.97% in 3𝑚, 

respectively. The presence of a larger number of actively learning Marines in 8𝑚 and 25𝑚 



55 

contributes to improved decision making compared to the 3𝑚 scenario, where only three 

Marines are engaged in combat against enemy units. 

 

 
Figure 28. Average of the Running Average Episode Reward on 3𝑚 TL 

 

SMAC-𝟖𝒎. Figure 29 illustrates the impact of the 3𝑚 and 25𝑚 seed policy on 8𝑚 

scenario. The TL-3𝑚 curve demonstrates an overall average score improvement of 45.3% 

compared to the learn from scratch method. Initially, the pre-trained models exhibit lower 

performance due to the transition to an unseen new scenario, but after 1000 iterations, it 

surpasses other models and progresses towards a winning strategy in each episode. Additionally, 

reusing the pre-trained 25𝑚 model enhances the average performance by 8.01%, surpassing the 

performance of the base units. 

 



56 

 
Figure 29. Average of the Running Average Episode Reward on 8𝑚 TL 

 

SMAC-𝟐𝟓𝒎. In Figure 30, we can observe the significant impact of utilizing the seeds 

from the 3m and 8m scenarios on the performance of the 25m scenario. The introduction of these 

pre-trained seeds leads to notable improvements in the average running episode reward, with a 

remarkable 36.4% enhancement when employing the 3m seed and an even more substantial 

41.3% improvement with the 8m seed, both compared to the learning from scratch approach. 

Achieving stable winning outcomes in the 25m scenario can be challenging due to the presence 

of a large number of active agents, making it a complex and dynamic environment. However, the 

model demonstrates its adaptability and ability to learn from the provided seeds. By 

incorporating a better representation of the state space, the model becomes more proficient in 

handling enemy units, which results in a performance that slightly surpasses that of the base 

units. 

 



57 

 
Figure 30. Average of the Running Average Episode Reward on 25𝑚 TL 

 

Table 3 presents the statistical analysis of the transfer learning model in the extended 

homogeneous SMAC environment. The evaluation considered four primary metrics: maximum, 

minimum, average, and standard deviation (STD) of the running average episode reward across 

31 seeds. Incorporating pre-trained seed policies 8𝑚, 3𝑚, and 25𝑚 during the training phase, 

instead of starting from scratch, yielded the highest minimum average running episode reward 

scores of 5.21, 11.5, and 6.54 for the 3𝑚, 8𝑚, and 25𝑚 scenarios, respectively. The maximum 

and average episode rewards outperformed the base scenarios, highlighting the effectiveness of 

transfer learning and the utilization of knowledge from other scenarios. The reduced STD value 

indicates a decrease in score fluctuation, indicating a more stable model in terms of performance. 

The highest values are distinctly marked and highlighted across the various SMAC scenarios. 

 

 



58 

Table 3. Performance Evaluation of TL in SMAC scenarios 

Scenario Pretrained Policy Min Max Avg Std 

3𝑚 − 4.29 18.34 12.37 3.74 

 8𝑚 5.21 20 13.57 0.28 

 25𝑚 3.31 17.78 14.84 3.12 

8𝑚 3𝑚 11.5 20 17.06 0.1 

 − 8.19 18.41 11.74 3.34 

 25𝑚 10.95 17.8 12.68 1.89 

25𝑚 3𝑚 4.31 13.59 11.35 1.69 

 8𝑚 6.54 14.39 11.76 1.28 

 − 5.16 11.9 8.32 1.96 

− indicates learning from scratch. 

 

Curriculum Transfer Learning Performance 

This study focuses on investigating the impact of TL on homogeneous scenarios to 

evaluate the transfer of knowledge among agents. The experimental results highlight a 

significant improvement in MARL performance. In addition, I aim to extend the evaluation to 

complex heterogeneous scenarios, examining not only the transfer of knowledge within the same 

unit type but also the transfer of knowledge between different types of units. To achieve this, I 

selected the 2𝑠3𝑧 as a testing bed and compared the performance using seeds obtained from 

previous experiments. Specifically, I examined the outcome of CTL where the 3𝑚 model, 

representing one of the simplest maps in the SMAC environment, was trained initially. After 

training each 3𝑚 instance for 2000 episodes, I saved the best-performing model and employed it 

for training in the more challenging 8𝑚 scenario. The knowledge acquired in controlling 

Marines from the 3𝑚 and 8𝑚 scenarios was then applied to the most difficult scenario in my test 

environment, 2𝑠3𝑧, which consists of Stalkers and Zealots that the model had not encountered in 



59 

the previous training scenarios. Figure 31 illustrates the results for 2𝑠3𝑧 model across different 

TL and CTL scenarios. The graph demonstrates an upward trend in the performance of my 

curriculum model as knowledge is transferred from 3𝑚 to 8𝑚, then 8𝑚 to 2𝑠3𝑧. The TL model, 

utilizing pre-trained seeds from 3𝑚 and 8𝑚, improved the average reward of the 2𝑠3𝑧 scenario 

by 38.6% and 38.2% respectively compared to learning from scratch on 2𝑠3𝑧. However, the 

performance of all these simulations was surpassed by the CTL approach with an overall 

improvement of 72.2%. 

 

 
Figure 31. Result of Curriculum Transfer Learning on 2𝑠3𝑧 Scenario 

 

Table 4 presents a comprehensive statistical analysis of the performance metrics in this 

study. Specifically, it highlights the effectiveness of the curriculum transfer approach, denoted as 

3𝑚 →  8𝑚 →  2𝑠3𝑧, in achieving remarkable results in my simulation environment. This 

approach yielded the highest maximum average reward recorded as 17.2, indicating the 

exceptional performance achieved by the curriculum architectures. Moreover, it also attained the 



60 

highest average reward of 13.83, further solidifying the success of this proposed methodology. 

These impressive outcomes provide clear evidence of the robustness of the curriculum 

architectures in facilitating the transfer of knowledge within and between agents. This study 

showcases the significant advancements in both intra-agent knowledge transfer, within the same 

unit type, and inter-agent knowledge transfer, among different types of units. This demonstrates 

the effectiveness and adaptability of my approach in promoting the exchange of knowledge 

among agents, ultimately enhancing their overall performance in complex scenarios. 

 

Table 4. Performance Evaluation of CTL on 2𝑠3𝑧 Scenario 

Scenario Pretrained Policy Min Max Avg Std 

2𝑠3𝑧 3𝑚 5.85 18.34 12.37 3.74 

 8𝑚 8.91 16.19 11.1 3.24 

 − 5.68 13.61 8.03 3.66 

 CTLa 4.93 17.2 13.83 4.98 

− indicates learning from scratch. 

a CTL: 3𝑚 → 8𝑚 → 2𝑠3𝑧 

 

Learned Behavior Analysis of StarCraft Agents 

The focus of my analysis thus far has primarily been on the statistical evaluation of 

performance and robustness. However, it is equally important to provide a qualitative 

comparison of the learned behaviors exhibited in both cooperative and competitive 

environments. Therefore, I have conducted an in-depth exploration of these behaviors to gain 

further insights into their characteristics and impact. 

In order to assess the learned behaviors, I selected the best performing RL models for 

each scenario to serve as the trained controllers in the test runs. During the observation of 



61 

episodes played by the MAIDCRL controller, I identified two key strategies consistently 

employed by the agents to achieve victory in skirmishes. The first strategy involves a 

collaborative approach to enemy targeting, where agents prioritize attacking enemy units 

together. This collaborative focus on fire power significantly increases the likelihood of success 

compared to individualistic targeting strategies. Furthermore, my analysis revealed the 

importance of effective unit positioning. Agents that are able to reposition themselves 

strategically after sustaining damage, with minimal movement, demonstrate higher levels of 

success in the game. This finding emphasizes the significance of agility and adaptability in 

combat situations, where the ability to quickly adjust positioning to optimize defensive and 

offensive maneuvers can greatly influence the outcome of engagements. 

The specific characteristics of these observed behaviors and their impact on overall 

performance are thoroughly illustrated in the subsequent subsections. By delving into the 

underlying strategies and tactics employed by the trained models, I gain valuable insights into 

the dynamics of multi-agent interactions and the factors that contribute to successful outcomes. 

This qualitative analysis provides a deeper understanding of the behaviors exhibited by the RL 

models and their implications within the context of the game environment. By elucidating these 

behavior-specific characteristics and their impact, I contribute to the broader knowledge and 

understanding of multi-agent reinforcement learning, shedding light on the intricate dynamics of 

collaborative and competitive decision-making. 

SMAC-𝟑𝒎. This particular scenario examined in this study is characterized by high 

instability compared to the other evaluated environments. The limited number of agents in this 

scenario poses a challenge in identifying optimal unit positions for coordinated enemy attacks. 

My observations indicate that when the ally agents successfully determine the appropriate 



62 

position, they are able to easily overcome the SC2 AI agents. However, in instances where they 

fail to identify the optimal position, the outcome of the game is determined by the inherent 

randomness embedded within the game engine. As a result of this uncertainty, even after training 

the model for a significant number of episodes, the results continue to fluctuate. To provide 

visual representation of the random states observed in this scenario, Figure 32 illustrates the 

scattered nature of 3𝑚 agents in which both controlled agents and SC2 AI agents randomly 

attempting to determine the attacking position. 

 

 
Figure 32. Random Agents Positioning on 3𝑚 Scenario 

 

SMAC-𝟖𝒎. In order to investigate the learning behavior, I conducted experiments by 

deploying my trained RL model on the 8𝑚 scenario, which revealed several noteworthy 

characteristics. During the games controlled by MAIDCRL models, I observed a tendency 

towards collective movement among the agents, despite each agent making its decisions in a 

fully decentralized manner. The agents demonstrated collaborative attacks, with three units 

targeting enemy units together. This coordinated approach resulted in faster elimination of 



63 

individual enemy units, leading to a higher rate of success in winning the game compared to 

randomly selecting target units. 

It is important to note that I utilized a 64 ×  64 influence map for the MAIDCRL 

controller, as it yielded the best performance on the 8𝑚 scenario compared to other influence 

map dimensions. Another interesting finding from the behavioral analysis is that the agents 

encountered difficulty in finding the appropriate shooting position when only a few enemies 

remained. However, after several time steps, the agents were able to successfully engage the 

remaining enemies and move closer to victory. One possible explanation for this behavior is that 

during the late stages of each training episode, the MAIDCRL model has limited exposure to 

scenarios with a small number of remaining enemies, thus hindering its ability to learn optimal 

actions effectively. To provide a visual representation of the dominance of the MAIDCRL model 

over the SC2 AI agents, Figure 33 illustrates a scenario where four controlled agents, organized 

into two groups, target a single enemy unit. This exemplifies the collaborative and effective 

strategy employed by MAIDCRL models in achieving success in the game. 

 

 
Figure 33. MAIDCRL Agents dominance over SC2 AI on 8𝑚 Scenario 

 



64 

 

SMAC-𝟐𝟓𝒎. Efficiently arranging all 25 marines to effectively combat the SC2 AI 

enemies proved to be a challenging task in the observations. I discovered that some of the 

marines positioned themselves strategically as frontliners, allowing them to readjust their 

formation with minimal movement in the event of sustaining damage and requiring healing. This 

adaptive positioning strategy showcased the agents' ability to optimize their defensive 

capabilities while minimizing disruption to their offensive formation.  

During the analysis of over ten models, I also observed an intriguing behavior exhibited 

by the agents. Before initiating a collective attack on the enemies, the agents positioned 

themselves in close proximity to the enemy units within their firing range. This tactical 

maneuver forced the enemies to assess the potential damage they might incur while attempting to 

engage the agents. This approach, as depicted in Figure 34, demonstrates the agents' cautiousness 

and emphasis on mitigating potential damage, thereby highlighting their active focus on 

countering opponents' attacks. Moreover, it is worth mentioning that the agents exhibited a 

higher level of deliberation in unit positioning compared to the SC2 AI counterparts. This 

deliberation further underscores their strategic awareness and their proactive approach in dealing 

with opponent attacks. 

 



65 

 

Figure 34. Travelling Units position on 25𝑚 Scenario 

 

SMAC-𝟐𝒔𝟑𝒛. During the evaluation of the heterogeneous scenario 2𝑠3𝑧, I made an 

intriguing observation regarding the importance of target prioritization when facing an enemy 

team consisting of multiple types of units. In this scenario, where both the enemy team and the 

ally agents possessed a mix of melee zealots and ranged stalkers, I noticed a distinct behavior 

exhibited by the zealot units. As depicted in Figure 35, the zealots demonstrated a strategic 

decision-making process by moving past the enemy zealots positioned in the front line. Instead 

of engaging in direct combat with the nearest enemy units, the zealots showcased an intelligent 

approach by prioritizing their target selection. They focused their fire on the enemy stalkers 

located in the rear lines before engaging the closer enemy zealots. 

This observed behavior highlights the agents' ability to assess the potential threats and 

opportunities presented by different unit types within the enemy team. By strategically 

prioritizing their targets, the zealot units effectively neutralized the enemy stalkers, which are 

typically more dangerous to the zealots due to their ranged attack capabilities. This tactical 

decision contributed to the overall success of the agents in the 2𝑠3𝑧 scenario. The observed 



66 

target prioritization behavior of the zealots illustrates the strategic sophistication and adaptability 

of my RL model. This capability enables the ally agents to make informed decisions based on the 

varying threat levels posed by different enemy units. Such intelligent target selection enhances 

the agents' overall combat effectiveness and demonstrates their ability to dynamically adjust their 

tactics based on the specific context of the scenario.  

 

 
Figure 35. Zealots Attacking Stalkers on 2𝑠3𝑧 Scenario  



67 

CONCLUSION AND FUTURE WORK 

 

In this study, I extended the semi-centralized RL model MAIDRL by introducing a novel 

CNN-enabled approach, MAIDCRL, to address various MARL systems [78]. This evaluation 

focused on assessing the performance of MAIDCRL in both homogeneous and heterogeneous 

SMAC scenarios of varying complexity, providing statistical results to support my findings. 

Notably, MAIDCRL exhibited significant improvements in overall performance, robustness, 

generalizability, and peak performance across selected scenarios. These findings offer valuable 

insights into the design of influence maps and feature discovery in Multi-Agent Reinforcement 

Learning algorithms. 

To enable transfer learning and curriculum transfer learning in different MARL systems, 

this study further introduced a novel approach for unifying various state sizes into fixed-size 

inputs. Limited data availability and the need for agents to quickly adapt to new environments 

pose challenges in designing effective MAS. Transfer learning enables agents to leverage 

knowledge acquired from previous experiences, accelerating learning in new domains and 

reducing the reliance on extensive data collection and training. Through evaluating the proposed 

TL and CTL approaches using uniformed state and action representations in both homogeneous 

and heterogeneous SMAC scenarios, I observed substantial improvements in overall learning 

performance, generalizability, and peak performance compared to the previous approach [79]. 

This highlights the potential for developing unified representations and discovering relevant 

features in MARL algorithms. 

While this study provides valuable insights, there are several areas that can be further 

explored. Firstly, my model's performance was tested on a limited number of scenarios, and 



68 

future research should investigate its effectiveness in a wider range of heterogeneous 

environments featuring more complex maps. Additionally, the use of multiple influence maps 

and other kernel functions can be explored to uncover correlations between spatial features at 

local, shared, and global levels. Another key aspect of the future scope lies in further developing 

and refining coevolutionary algorithms that will tailor the knowledge from both ally and enemy 

units. These algorithms might enable agents to coevolve their strategies by competing and 

collaborating with each other. By iteratively evolving and evaluating their strategies, agents can 

adapt to dynamic game environments, discover novel tactics, and respond to opponents' 

strategies more efficiently. This approach might instigate the potential to unlock new levels of 

strategic depth and evolve for pushing the boundaries of AI research and game development.  



69 

REFERENCES 

 

[1]  S. Grigorescu, B. Trasnea, T. Cocias and G. Macesanu, "A survey of deep learning 

techniques for autonomous driving," Journal of Field Robotics, vol. 37, p. 362–386, 2020.  

[2]  R. R. Murphy, Introduction to AI robotics, MIT press, 2019.  

[3]  J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. 

Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko and others, "Highly accurate protein 

structure prediction with AlphaFold," Nature, vol. 596, p. 583–589, 2021.  

[4]  F.-Y. Wang, J. J. Zhang, X. Zheng, X. Wang, Y. Yuan, X. Dai, J. Zhang and L. Yang, 

"Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond," 

IEEE/CAA Journal of Automatica Sinica, vol. 3, p. 113–120, 2016.  

[5]  V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. 

Riedmiller, "Playing atari with deep reinforcement learning," arXiv preprint 

arXiv:1312.5602, 2013.  

[6]  V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, 

M. Riedmiller, A. K. Fidjeland, G. Ostrovski and others, "Human-level control through 

deep reinforcement learning," nature, vol. 518, p. 529–533, 2015.  

[7]  M. Johnson, K. Hofmann, T. Hutton and D. Bignell, "The Malmo Platform for Artificial 

Intelligence Experimentation.," in Ijcai, 2016.  

[8]  O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani, 

H. Küttler, J. Agapiou, J. Schrittwieser and others, "Starcraft ii: A new challenge for 

reinforcement learning," arXiv preprint arXiv:1708.04782, 2017.  

[9]  M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. 

Hung, P. H. S. Torr, J. Foerster and S. Whiteson, "The starcraft multi-agent challenge," 

arXiv preprint arXiv:1902.04043, 2019.  

[10]  J. Foerster, G. Farquhar, T. Afouras, N. Nardelli and S. Whiteson, "Counterfactual multi-

agent policy gradients," in Proceedings of the AAAI conference on artificial intelligence, 

2018.  

[11]  R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel and I. Mordatch, "Multi-agent 

actor-critic for mixed cooperative-competitive environments," Advances in neural 

information processing systems, vol. 30, 2017.  

[12]  D. Xie and X. Zhong, "Semicentralized deep deterministic policy gradient in cooperative 

StarCraft games," IEEE transactions on neural networks and learning systems, vol. 33, p. 



70 

1584–1593, 2020.  

[13]  X. Wang, J. Song, P. Qi, P. Peng, Z. Tang, W. Zhang, W. Li, X. Pi, J. He, C. Gao and 

others, "SCC: An efficient deep reinforcement learning agent mastering the game of 

StarCraft II," in International conference on machine learning, 2021.  

[14]  A. Harris and S. Liu, "Maidrl: Semi-centralized multi-agent reinforcement learning using 

agent influence," in 2021 IEEE Conference on Games (CoG), 2021.  

[15]  F. L. Da Silva and A. H. R. Costa, "A survey on transfer learning for multiagent 

reinforcement learning systems," Journal of Artificial Intelligence Research, vol. 64, p. 

645–703, 2019.  

[16]  G. Zhang, Y. Li, X. Xu and H. Dai, "Efficient training techniques for multi-agent 

reinforcement learning in combat tasks," IEEE Access, vol. 7, p. 109301–109310, 2019.  

[17]  A. Shantia, E. Begue and M. Wiering, "Connectionist reinforcement learning for intelligent 

unit micro management in starcraft," in The 2011 international joint conference on neural 

networks, 2011.  

[18]  A. Das, S. Roy, U. Bhattacharya and S. K. Parui, "Document image classification with intra-

domain transfer learning and stacked generalization of deep convolutional neural networks," 

in 2018 24th international conference on pattern recognition (ICPR), 2018.  

[19]  J. Tao and X. Fang, "Toward multi-label sentiment analysis: a transfer learning based 

approach," Journal of Big Data, vol. 7, p. 1–26, 2020.  

[20]  M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," 

Science, vol. 349, p. 255–260, 2015.  

[21]  M. Mohri, A. Rostamizadeh and A. Talwalkar, Foundations of machine learning, MIT press, 

2018.  

[22]  M. Bain and C. Sammut, "A Framework for Behavioural Cloning.," in Machine Intelligence 

15, 1995.  

[23]  P. J. Rousseeuw, "Silhouettes: a graphical aid to the interpretation and validation of cluster 

analysis," Journal of computational and applied mathematics, vol. 20, p. 53–65, 1987.  

[24]  R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.  

[25]  R. Bellman, "A Markovian decision process," Journal of mathematics and mechanics, p. 

679–684, 1957.  



71 

[26]  S. J. Russell, Artificial intelligence a modern approach, Pearson Education, Inc., 2010.  

[27]  R. Bellman, "Dynamic programming and Lagrange multipliers," Proceedings of the 

National Academy of Sciences, vol. 42, p. 767–769, 1956.  

[28]  R. M. French, "Catastrophic forgetting in connectionist networks," Trends in cognitive 

sciences, vol. 3, p. 128–135, 1999.  

[29]  C. J. C. H. Watkins and P. Dayan, "Q-learning," Machine learning, vol. 8, p. 279–292, 

1992.  

[30]  G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems, vol. 37, 

University of Cambridge, Department of Engineering Cambridge, UK, 1994.  

[31]  R. S. Sutton, D. McAllester, S. Singh and Y. Mansour, "Policy gradient methods for 

reinforcement learning with function approximation," Advances in neural information 

processing systems, vol. 12, 1999.  

[32]  D. Zhao, H. Wang, K. Shao and Y. Zhu, "Deep reinforcement learning with experience 

replay based on SARSA," in 2016 IEEE symposium series on computational intelligence 

(SSCI), 2016.  

[33]  E. Parisotto, J. L. Ba and R. Salakhutdinov, "Actor-mimic: Deep multitask and transfer 

reinforcement learning," arXiv preprint arXiv:1511.06342, 2015.  

[34]  R. Laroche and M. Barlier, "Transfer reinforcement learning with shared dynamics," in 

Proceedings of the AAAI Conference on Artificial Intelligence, 2017.  

[35]  T. Schaul, J. Quan, I. Antonoglou and D. Silver, "Prioritized experience replay," arXiv 

preprint arXiv:1511.05952, 2015.  

[36]  A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. 

Panneershelvam, M. Suleyman, C. Beattie, S. Petersen and others, "Massively parallel 

methods for deep reinforcement learning," arXiv preprint arXiv:1507.04296, 2015.  

[37]  H. Van Hasselt, A. Guez and D. Silver, "Deep reinforcement learning with double q-

learning," in Proceedings of the AAAI conference on artificial intelligence, 2016.  

[38]  Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot and N. Freitas, "Dueling network 

architectures for deep reinforcement learning," in International conference on machine 

learning, 2016.  

[39]  D. Li, D. Zhao, Q. Zhang and C. Luo, "Policy gradient methods with gaussian process 

modelling acceleration," in 2017 International Joint Conference on Neural Networks 



72 

(IJCNN), 2017.  

[40]  D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller, "Deterministic 

policy gradient algorithms," in International conference on machine learning, 2014.  

[41]  M. Lin, Q. Chen and S. Yan, "Network in network," arXiv preprint arXiv:1312.4400, 2013.  

[42]  A. Skrynnik, A. Staroverov, E. Aitygulov, K. Aksenov, V. Davydov and A. I. Panov, 

"Hierarchical deep q-network from imperfect demonstrations in minecraft," Cognitive 

Systems Research, vol. 65, p. 74–78, 2021.  

[43]  A. Y. Ng, D. Harada and S. Russell, "Policy invariance under reward transformations: 

Theory and application to reward shaping," in Icml, 1999.  

[44]  S. Huang and S. Ontañón, "Action guidance: Getting the best of sparse rewards and shaped 

rewards for real-time strategy games," arXiv preprint arXiv:2010.03956, 2020.  

[45]  V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. Reichert, 

T. Lillicrap, E. Lockhart and others, "Relational deep reinforcement learning," arXiv 

preprint arXiv:1806.01830, 2018.  

[46]  S. Liu, S. J. Louis and M. Nicolescu, "Comparing heuristic search methods for finding 

effective group behaviors in RTS game," in 2013 IEEE Congress on Evolutionary 

Computation, 2013.  

[47]  S. Liu, S. J. Louis and M. Nicolescu, "Using CIGAR for finding effective group behaviors 

in RTS game," in 2013 IEEE Conference on Computational Inteligence in Games (CIG), 

2013.  

[48]  S. Gu, J. G. Kuba, M. Wen, R. Chen, Z. Wang, Z. Tian, J. Wang, A. Knoll and Y. Yang, 

"Multi-agent constrained policy optimisation," arXiv preprint arXiv:2110.02793, 2021.  

[49]  J. Schulman, S. Levine, P. Abbeel, M. Jordan and P. Moritz, "Trust region policy 

optimization," in International conference on machine learning, 2015.  

[50]  J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, "Proximal policy 

optimization algorithms," arXiv preprint arXiv:1707.06347, 2017.  

[51]  C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fischer, 

S. Hashme, C. Hesse and others, "Dota 2 with large scale deep reinforcement learning," 

arXiv preprint arXiv:1912.06680, 2019.  

[52]  C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen and Y. Wu, "The surprising 

effectiveness of ppo in cooperative multi-agent games," Advances in Neural Information 



73 

Processing Systems, vol. 35, p. 24611–24624, 2022.  

[53]  M. Stanescu, N. A. Barriga, A. Hess and M. Buro, "Evaluating real-time strategy game 

states using convolutional neural networks," in 2016 IEEE Conference on Computational 

Intelligence and Games (CIG), 2016.  

[54]  N. Kondo and K. Matsuzaki, "Playing game 2048 with deep convolutional neural networks 

trained by supervised learning," Journal of Information Processing, vol. 27, p. 340–347, 

2019.  

[55]  O. Samuel, N. Javaid, A. Khalid, W. Z. Khan, M. Y. Aalsalem, M. K. Afzal and B.-S. Kim, 

"Towards real-time energy management of multi-microgrid using a deep convolution neural 

network and cooperative game approach," IEEE Access, vol. 8, p. 161377–161395, 2020.  

[56]  I. Sutskever and V. Nair, "Mimicking go experts with convolutional neural networks," in 

Artificial Neural Networks-ICANN 2008: 18th International Conference, Prague, Czech 

Republic, September 3-6, 2008, Proceedings, Part II 18, 2008.  

[57]  M. L. Koga, V. Freire and A. H. R. Costa, "Stochastic abstract policies: Generalizing 

knowledge to improve reinforcement learning," IEEE Transactions on Cybernetics, vol. 45, 

p. 77–88, 2014.  

[58]  M. Mahmud and S. Ray, "Transfer learning using Kolmogorov complexity: Basic theory 

and empirical evaluations," Advances in neural information processing systems, vol. 20, 

2007.  

[59]  M. E. Taylor and P. Stone, "Transfer learning for reinforcement learning domains: A 

survey.," Journal of Machine Learning Research, vol. 10, 2009.  

[60]  J. Yosinski, J. Clune, Y. Bengio and H. Lipson, "How transferable are features in deep 

neural networks?," Advances in neural information processing systems, vol. 27, 2014.  

[61]  T. Chen, I. Goodfellow and J. Shlens, "Net2net: Accelerating learning via knowledge 

transfer," arXiv preprint arXiv:1511.05641, 2015.  

[62]  D. Xu, P. Qiao and Y. Dou, "Aggregation Transfer Learning for Multi-Agent 

Reinforcement learning," in 2021 2nd International Conference on Big Data & Artificial 

Intelligence & Software Engineering (ICBASE), 2021.  

[63]  M. J. Khan, S. Hassan and G. Sukthankar, "Leveraging Transformers for StarCraft 

Macromanagement Prediction," in 2021 20th IEEE International Conference on Machine 

Learning and Applications (ICMLA), 2021.  

[64]  B. Tan, Y. Song, E. Zhong and Q. Yang, "Transitive transfer learning," in Proceedings of 

the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data 



74 

Mining, 2015.  

[65]  R.-Z. Liu, H. Guo, X. Ji, Y. Yu, Z.-J. Pang, Z. Xiao, Y. Wu and T. Lu, "Efficient 

reinforcement learning for starcraft by abstract forward models and transfer learning," IEEE 

Transactions on Games, vol. 14, p. 294–307, 2021.  

[66]  K. Shao, Y. Zhu and D. Zhao, "Starcraft micromanagement with reinforcement learning and 

curriculum transfer learning," IEEE Transactions on Emerging Topics in Computational 

Intelligence, vol. 3, p. 73–84, 2018.  

[67]  P. Garćıa-Sánchez, A. Tonda, A. M. Mora, G. Squillero and J. J. Merelo, "Towards 

automatic StarCraft strategy generation using genetic programming," in 2015 IEEE 

Conference on Computational Intelligence and Games (CIG), 2015.  

[68]  A. A. Sánchez-Ruiz and M. Miranda, "A machine learning approach to predict the winner in 

StarCraft based on influence maps," Entertainment Computing, vol. 19, p. 29–41, 2017.  

[69]  P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long and J. Wang, "Multiagent 

bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play 

starcraft combat games," arXiv preprint arXiv:1703.10069, 2017.  

[70]  M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. 

Dean, M. Devin and others, "Tensorflow: Large-scale machine learning on heterogeneous 

distributed systems," arXiv preprint arXiv:1603.04467, 2016.  

[71]  I. Grondman, L. Busoniu, G. A. D. Lopes and R. Babuska, "A survey of actor-critic 

reinforcement learning: Standard and natural policy gradients," IEEE Transactions on 

Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, p. 1291–1307, 

2012.  

[72]  D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint 

arXiv:1412.6980, 2014.  

[73]  H. Wu and X. Gu, "Max-pooling dropout for regularization of convolutional neural 

networks," in Neural Information Processing: 22nd International Conference, ICONIP 

2015, Istanbul, Turkey, November 9-12, 2015, Proceedings, Part I 22, 2015.  

[74]  V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver and K. 

Kavukcuoglu, "Asynchronous methods for deep reinforcement learning," in International 

conference on machine learning, 2016.  

[75]  Y. Zhu and S. Newsam, "Densenet for dense flow," in 2017 IEEE international conference 

on image processing (ICIP), 2017.  



75 

[76]  Y. Bengio, J. Louradour, R. Collobert and J. Weston, "Curriculum learning," in Proceedings 

of the 26th annual international conference on machine learning, 2009.  

[77]  A. Gupta, Y.-S. Ong and L. Feng, "Insights on transfer optimization: Because experience is 

the best teacher," IEEE Transactions on Emerging Topics in Computational Intelligence, 

vol. 2, p. 51–64, 2017.  

[78]  A. S. Nipu, S. Liu and A. Harris, "MAIDCRL: Semi-centralized Multi-Agent Influence 

Dense-CNN Reinforcement Learning," in 2022 IEEE Conference on Games (CoG), 2022.  

[79]  A. S. Nipu, S. Liu and A. Harris, "Enabling Multi-Agent Transfer Reinforcement Learning 

via Scenario Independent Representation," in 2023 IEEE Conference on Games (CoG), 

2023.  

 

 


	SC-MATRL: Semi-Centralized Multi-Agent Transfer Reinforcement Learning
	Recommended Citation

	Missouri State University

