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ABSTRACT 

 

Deep Convolutional Neural Networks (CNNs) have become the go-to method for medical imaging 

classification on various imaging modalities for binary and multiclass problems. Deep CNNs ex-

tract spatial features from image data hierarchically, with deeper layers learning more relevant 

features for the classification application. The effectiveness of deep learning models are hampered 

by limited data sets, skewed class distributions, and the undesirable "black box" of neural net-

works, which decreases their understandability and usability in precision medicine applications. 

This thesis addresses the challenge of building an explainable deep learning model for a clinical 

application: predicting the severity of Alzheimer's disease (AD). AD is a progressive neurodegen-

erative disorder that affects the brain and could result in dementia. Early detection of AD is crucial 

for more precise treatment and enhanced patient outcomes. The diagnosis and prognosis of AD 

rely heavily on neuroimaging information, particularly Magnetic Resonance Imaging (MRI). The 

research developed a deep learning model framework that integrates a local data-driven interpre-

tation method (SHapley Additive exPlanation values) to explain the relationship between the pre-

dicted AD severity from the neural network and the input MR brain image.  This thesis addresses 

the skewed class distribution using the synthetic minority oversampling technique. To evaluate the 

performance of the proposed framework, the study performed a comparative analysis using three 

CNN models:  DenseNet121, DenseNet169, and Inception-ResNet-v2. The framework shows high 

sensitivity and specificity in the test sample of subjects with varying levels of AD severity.  To 

facilitate a better understanding of model performance, five key AD neurocognitive assessment 

outcome measures and the APOE genotype biomarker were correlated with model misclassifica-

tions. 

 

 

KEYWORDS:  deep learning, convolutional neural network, Alzheimer's disease, magnetic res-

onance imaging, transfer learning, data augmentation, explainability, classification, medical im-

aging.  
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INTRODUCTION 

 

Deep learning is a subfield of machine learning which involves building computational 

models to train artificial intelligence systems. Unlike most traditional machine learning models, 

deep learning models can automatically extract relevant input features without expert knowledge. 

Automated feature engineering makes deep learning advantageous in fields like bioinformatics 

and medical imaging, where determining relevant features is difficult. Advancement in the use of 

technology and electronic health records in the medical field over the past few decades has led to 

a tremendous increase in data availability to mine for knowledge discovery and prediction models. 

The data available spans a wide range from clinical to biospecimen and various imaging data. The 

use of diverse imaging modalities, such as magnetic resonance imaging (MRI), positron emission 

tomography (PET), cerebrospinal fluid (CSF), and computerized tomography (CT) scans, has re-

sulted in major strides in the diagnosis and treatment of many diseases including neurological 

disorders [1]. Deep learning models are used to diagnose various neurological disorders, such as 

Alzheimer's disease and traumatic brain injury [2] [3] [4, 3], through extensive analysis of these 

imaging modalities. 

This thesis investigates the use of deep learning models (specifically convolutional neural 

networks) for medical imaging translational research in predicting Alzheimer's disease (AD) se-

verity. AD is a neurological disorder caused by brain nerve cell damage, resulting in language, 

memory, and thinking problems and eventually leading to dementia [1]. Although these problems 

may seem new to the person experiencing them, the changes in their brain that led to these symp-

toms start occurring around 20 years before any noticeable symptoms [1].  AD accounts for 60-

80% of dementia cases, and age is the most significant known risk factor for developing 

Alzheimer's, with most cases occurring in individuals over 65 [5]. As shown in Figure 1, 
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Alzheimer's disease develops gradually, starting with minor changes in the brain and progressing 

to more severe symptoms that affect memory and physical abilities. This progression have three 

broad stages: preclinical Alzheimer's disease or clinically normal (CN) stage, mild cognitive 

impairment (MCI) due to Alzheimer's disease, and dementia (AD) due to Alzheimer's. The latter 

stage is characterized by significant symptoms that impede daily functioning and accompanied by 

evidence of Alzheimer's-related brain changes on laboratory tests [5]. 

 

 

Figure 1. Alzheimer's disease progression stages. 

 

In 2014, there were about 5.0 million Americans aged 65 and older who had dementia, 

this number is expected to increase to 13.9 million by 2060. The cost of caring for elderly 

individuals with AD and other types of dementia is significantly greater than for those without 

these conditions. AD-related diseases incured a cost of $355 billion in the United States in 2021 

[1]. Consequently, it is crucial to develop computer-based tools that can assist physicians in 

accurately diagnosing and predicting the survival prospects of AD patients. 

In the past decade, multiple deep learning models have been proposed for the prediction 

of AD severity and progression of disease [2] [3] [6] [7]. Though strides have been made, some 

limitations need to be addressed as follows: 

 

i) Insufficient training data/unbalanced distribution of classes: Training a DL model effec-

tively requires a large amount of annotated learning data, which can be challenging in the 
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medical imaging. Due to ethical considerations, physician-annotated data is costly, unbal-

anced in class ratio, time-consuming to collect, and often not permitted for cross-institu-

tional use. When insufficient data is available, or the class ratio in the dataset is unbalanced, 

deep learning models tend to be overfitted and less accurate [3].  

 

ii) Choosing the right deep learning model and fine-tuning its hyperparameters: There is no 

standardized method for selecting a deep learning algorithm that is suitable for your data 

[8]. Moreover, deep learning tools are not universally applicable since they rely on hy-

perparameters (such as weight, number of neurons, activation function, optimizer, learning 

rate, batch size, and epochs) that must be optimized for each dataset to achieve optimal 

performance. These hyperparameters require careful adjustment to maximize the predictive 

accuracy of the model [8] [9]. 

 

 

iii) Lack of interpretability: Interpretability is a critical issue in bioinformatics since it affects 

the adoption of deep learning methods in medicine and the safety of patients. Deep learning 

models are often regarded as 'black box' algorithms that offer little insight into how they 

arrive at their results, which can leave users and even developers with little understanding 

of the underlying process [10]. As a result, there is growing skepticism about the potential 

of AI, even though interest in it is increasing, and sometimes, over-optimism prevails. 

 

This study seeks to overcome current limitations by developing an interpretable deep 

learning model capable of accurately predicting AD severity using brain MRI scans. We perform 

a comparative analysis of three models) to determine the best-performing model for AD predic-

tion while also addressing the challenges posed by limited and unbalanced class ratios associated 

with the available data. The learning framework will integrate transfer learning, a technique that 

improves learning in a new task through the transfer of knowledge from a related task that has 

already been learned [11]. This method is commonly used to enhance the performance of deep 

neural networks models in the absence of abundant training data and can also aid in optimizing 

hyperparameters such as learning rate and batch size to improve the model's performance on the 

target task [9]. In summary, the contributions of this thesis are: 

  

i) Formalize a pipeline to process raw or semi-processed brain MR images for use in a DL 

model. 
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ii) Construct a deep learning framework based on CNN models that integrates synthetic mi-

nority oversampling technique (SMOTE) to learn and predict the severity of AD from an 

input brain MR image.  We conduct a comparative analysis of three CNN models to eval-

uate the effectiveness of the proposed framework. 

 

iii) Integrate a local model interpretation method that uses SHapley Additive exPlanation 

(SHAP) [12] values to explain the relationship between the predicted AD severity and in-

put brain image. In addition, we correlate the prediction performance on the images with 

five AD neurocognitive assessment measures and the APOE genotype biomarker to fur-

ther explain and interpret the model's outcome for increased understandability. 

 

This thesis is structured as follows. In the background section, we provide a brief over-

view of the field of deep learning, its application in neuroimaging as well as a description of the 

CNN models and key theoretical concepts needed to understand this research work. The litera-

ture review section summarizes current techniques for classifying AD severity through deep neu-

ral networks. Subsequently, we present our proposed framework for AD severity prediction 

based on brain MRI scans in the methodology section. The experiments and results section pro-

vides a comprehensive analysis of our study's findings, including the performance of our model. 

We interpret the results using a deep explainer and analysis of cognitive assessment data, and fi-

nally we conclude by stating the limitations of our approach and future research directions.  
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BACKGROUND 

 

In this section, we briefly described key concepts, including convolutional neural networks, 

deep-dense and inception-residual neural networks, transfer learning, and class balancing utilized 

in this work to provide some context. 

 

Deep Learning in a Nutshell  

Deep learning (DL) is a subfield of artificial intelligence (AI) that originated from machine 

learning (ML). AI aims to teach machines to learn and automate intellectual tasks that are usually 

performed by humans without explicit programming [13]. In AI systems, machines are considered 

rational actors that aim to achieve the best possible outcome or one they believe will achieve it [3]. 

ML focuses on developing methods for training intelligent systems by exposing them to input and 

output data relevant to a task. Feature extraction is a crucial aspect of ML models that identifies 

parameters with predictive power and reduces input data dimensionality. However, feature 

extraction can be time-consuming and may not produce accurate results. DL approaches have been 

developed to overcome this limitation by allowing for the automatic detection and interpretation 

of high-level features from input data [3]. DL eliminates the feature extraction step from the 

training process, which saves time and effort for both machine learning experts and domain 

experts. 

Deep neural network architectures, commonly known as DL models, can be achieved by 

increasing the size of the hidden layers in a neural network. DL models consist of multiple layers 

that progressively learn more meaningful representations of data. The term "deep" refers to the 

incorporation of numerous layers, leading to a greater depth of the model [13]. In contrast, 

traditional ML approaches typically rely on learning only one or two layers of representation, 
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hence the term "shallow learning." DL methods automatically learn various layers of 

representations from training data, using neural network (NN) models to build complex, layered 

representations. According to Kohonen [1], NNs are interconnected networks of simple elements 

that emulate the functioning of a biological nervous system, and their hierarchical organization 

enables them to understand and respond to real-world objects. 

The perceptron algorithm is a type of single-layer neural network used for binary 

classification, and it was one of the earliest NN models inspired by biological neurons [2]. The 

human brain processes information through millions of interconnected neurons that transmit 

signals via excitation and inhibition. The perceptron emulates this behavior using an activation 

function to determine the neuron's active or inactive state and a few weights that learn to classify 

patterns by adjusting themselves. However, the perceptron's limited ability to recognize complex 

patterns led researchers to develop NNs with multiple layers of the perceptron to solve more 

intricate nonlinear problems. A multilayer perceptron (MLP), depicted in Figure 2, contains an 

input layer, at least one hidden layer, and an output layer, with multiple neurons in each layer. 

Neurons in adjacent layers are interconnected, while those in the same layer are independent [3]. 

The MLP training process consists of two stages: forward propagation and 

backpropagation. In forward propagation (also known as the forward pass), the input is passed 

through the network in a forward direction to produce an output. Each hidden layer receives the 

input neuron, a corresponding weight, and threshold and then applies the activation function to 

determine if the neuron is active or inactive. The backpropagation algorithm updates the weights 

of the MLP based on its performance relative to the predicted values, evaluated by comparing the 

difference between the MLP's output and actual labels using an appropriate loss function and 

optimizer.  
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There exist various categories of DL architectures, such as convolutional neural networks 

(CNN) [14], recurrent neural networks [14], Restricted Boltzmann Machines [14], autoencoders 

[15], and generative adversarial networks [16]. We utilize CNN models in this work, hence we 

present a brief overview of CNNs in particular. 

 

 

Figure 2. Structure of multilayer perceptron with one hidden layer. Adapted from Figure 1 in [3, 

7]. 

 

Convolutional Neural Network  

Convolutional neural networks were designed to handle inputs that are structured in a 

grid format and exhibit significant spatial dependencies within local regions of the grid [14]. An 

example of such grid-structured data is a 2D image. One of the key attributes that distinguish a 

CNN from other deep learning models is their utilization of a mathematical operation known as 

convolution. Convolution involves the computation of a dot product between a set of weights 

arranged in a grid-like pattern and input data that is also structured in a grid format, with data 

drawn from various spatial locations within the input volume. As a result, convolutional neural 

networks are characterized as networks that employ the convolution operation at least once, with 

most CNNs utilizing this operation across multiple layers [14]. 
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Basic Structure of a Convolutional Network 

In a CNN architecture (illustrated in Figure 3), it is typical to find four primary types of 

layers, namely convolution, pooling, activation, and fully connected (FC) layers. These layers 

are all structured as 3-dimensional grids characterized by their height, width, and depth. 

Furthermore, each layer is linked to a specific parameter called a filter or kernel (usually 3-

dimensional but smaller than the layer) and produces output referred to as feature maps or 

activation maps.  

 

 

Figure 3. Illustration of the architecture of a CNN showing convolution, pooling, and fully con-

nected (dense) layers. Adapted from [17] 

 

Convolutional Layer. The convolutional layer performs the convolution operation. 

Suppose that the input for the qth layer has dimensions of  Lq × Bq × dq, where Lq represents the 

height or length, Bq represents the width or breadth, and dq represents the depth. Also, assume 

that Fq × Fq × dq  is the filer of the qth Layer. During the convolution process, the filter is 

positioned at each possible location within the image or hidden layer to ensure that it completely 

covers the image, and a dot product is then computed between the Fq × Fq × dq  parameters 

within the filter and the corresponding grid of data in the input volume. To carry out this dot 

product, the relevant entries within the 3-dimensional area of the filter and input volume are 
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viewed as vectors of equal size [14]. As shown in Figure 4, in the forward pass, each filter will 

move from left to right first, then up to down. The distance between each move is called stride.  

 

 

Figure 4. Graphical depiction of convolution operation with a 2x2 filter. 

 

 

Activation Layer. The activation layer applies the activation function to the feature 

maps. Rectified linear unit (ReLU) activation function is a commonly used activation function 

for CNN. It is applied at the end of a hidden unit or convolution to introduce nonlinear 

complexities and create Lq × Bq × dq thresholded values [14]. The resulting values are 

transmitted to the subsequent layer. Since ReLU only involves a straightforward one-to-one 

relationship between activation values, the dimensions of a layer remain unaltered as a result of 

this operation. 

Pooling Layer. Pooling is an operation that operates on small regions of a layer, typically 

in the form of a square grid with dimensions of Pq × Pq. The resulting layer generated from 

pooling operations will maintain the same depth as the original layer, in contrast to filters. 

During the pooling process, the average or highest value among the values present in each square 

region of Pq × Pq within the dq activation maps is selected. If a stride of 1 is utilized, the 

resulting layer's dimensions will be (Lq - Pq + 1) × (Bq - Pq + 1) × dq [14]. Pooling operation 

substantially decreases the spatial dimensions of every activation map. 
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Fully Connected Layer. The final layer in a CNN is the FC or dense layer.  Every 

feature map in the final spatial layer is connected to each neuron in the first FC layer in a dense 

fashion.  It is common to use multiple FC layers to enhance the computational capacity toward 

the end of a CNN. FC layers are designed to suit the problem at hand. The FC layer for a 

classification problem is different from that of a regression or segmentation problem [14]. In a 

classification task, the output layer (last FC layer)  is connected to every neuron in the second to 

last layer and has a weight assigned to it. The type of activation function used on this layer, 

whether logistic, softmax, or linear, depends on the specific application, such as classification or 

regression [14]. 

 

Examples of CNN Architectures 

Several CNN models have been developed over the years that have won the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) [18], which evaluates algorithms for object 

detection and image classification at a large scale. Examples of these models include VGGNet 

[19], ResNet [20],  Inception v3 [21], Inception-ResNet-v2 [22], DenseNet [23],  AlexNet [24], 

and others. This study utilizes two different architectures of DenseNet (121 and 169) and 

Inception-ResNet-v2. To provide a better understanding of these architectures and their 

relevance to our study, we present a brief overview of each network. 

DenseNet: As CNNs become deeper, input or gradient information passing through many 

layers can diminish and "wash out" before reaching the network's end [23]. To address this issue, 

the dense convolutional network (DenseNet) was created with dense connections linking all 

layers directly to each other and enabling the flow of information across layers and preventing 

gradients from vanishing. Each layer receives additional input from all preceding layers and 



 

 11 

passes its own feature maps to all subsequent layers, as shown in Figure . Concatenation is used 

to combine features, so the ℓth layer has ℓ inputs consisting of feature maps from all preceding 

convolutional blocks, and its feature maps are passed to all L-ℓ subsequent layers. This creates 

L(L+1)/2 connections in an L-layer network, unlike traditional CNN architectures that only have 

L connections. The essential components of ImageNet DenseNet include the dense block, 

transition layers, and growth rate parameters. The dense block contains multiple layers of 

densely connected 1x1 and 1x3 convolution operations, with each operation preceded by batch 

normalization and a ReLU unit. Transition layers, located between dense blocks, downsample 

feature maps, reduce the number of channels, and control parameter growth using 1x1 

convolution and 2x2 average pooling. The growth rate parameter regulates the number of feature 

maps a layer receives from its preceding layers.  

The DenseNet model has several variations, and this study focuses on DenseNet121 and 

DenseNet169, offering additional context on these models. Figure 6 illustrates the structural 

difference between these two models. 

 

 

Figure 5. The DenseNet framework features links connecting every layer to all the following lay-

ers. Variants like DenseNet121 and DenseNet169 differ in the number of dense layers within the 

blocks. "Conv." implies "Convolution," while "Trans." denotes "Transition. 

 

DenseNet121. The DenseNet-121 architecture (depicted in Figure 6a) is composed of 

four dense blocks, each consisting of multiple convolutional layers, batch normalization, and a 
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rectified linear unit (ReLU) activation function. Each dense block is followed by a transition 

layer that performs a down-sampling of the feature maps and reduces the number of channels. 

The first layer of the DenseNet-121 model is a convolutional layer with 64 filters and a 

kernel size of 7x7, followed by a max pooling layer with a stride of 2. This is followed by the 

four dense blocks, each containing several convolutional layers, batch normalization, and ReLU 

activation. The last dense block is followed by a global average pooling layer, which aggregates 

the feature maps into a single vector. Finally, there is a fully connected layer with 

Softmaxactivation that outputs the predicted class probabilities. DenseNet-121 has 

approximately 7 million parameters, and to its relatively small size, it is also a popular choice for 

real-time applications where computational resources are limited. 

Densenet169.  DenseNet-169 (depicted in Figure 6b)  consists of 4 dense blocks, each 

containing several convolutional layers with small 3x3 filters. The number of filters in each 

dense block is 256, 512, 1280, and 1664, respectively. Each dense block is followed by a 

transition layer, which consists of a batch normalization layer and a 1x1 convolutional layer that 

reduces the number of channels and downsamples the spatial resolution of the feature maps. The 

 

  

(a) DenseNet 121 (b) DenseNet 169 

Figure 6. CNN model architecture for DenseNet 121 and DenseNet 169. The main differences lie 

in the size of the dense blocks. 
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down-sampling factor is set to 2 in the first three transition layers, while the last transition layer 

does not perform downsampling. 

The first layer of the DenseNet-169 model is a convolutional layer with 64 filters and a 

kernel size of 7x7, followed by a max pooling layer with a stride of 2. The final output of the 

network is produced by a global average pooling layer that aggregates the feature maps into a 

single vector, followed by a fully connected layer with Softmaxactivation that outputs the 

predicted class probabilities. DenseNet-169 has approximately 14 million parameters, which is 

larger than the number of parameters in DenseNet-121. This allows DenseNet-169 to achieve 

higher accuracy on image classification benchmarks but also requires more computational 

resources and longer training times. 

Inception-ResNet. The inception residual network (Inception-ResNet) neural network 

architecture is an extension of two other neural network architectures: the Inception network and 

the Residual network (ResNet). The Inception network uses parallel convolutional layers of 

varying sizes to handle the trade-off between the width and depth of the network. Meanwhile, 

ResNet introduced residual connections to improve the training convergence by addressing the 

vanishing gradient problem. 

Inception-ResNet combines these two architectures by using the Inception module for 

feature extraction and ResNet's residual connections to improve the gradient flow during 

training. The Inception module comprises parallel branches of different convolutional layers, and 

the outputs are concatenated and fed to the next layer. This module enables the network to 

capture features at different resolutions and scales, making it ideal for image classification tasks. 

In addition, Inception-ResNet uses residual connections to allow gradients to propagate directly 



 

 14 

to earlier layers, bypassing intermediate layers that could weaken them, which further improves 

the training convergence of the network. 

Inception-ResNet has two variations, including Inception-ResNet-v1 and Inception-

ResNet-v2. Although the working principles of Inception-ResNet v1 and Inception-ResNet v2 

are similar, Inception-ResNet-v2 has higher accuracy but also comes with a higher 

computational cost compared to the Inception-ResNet-v1 network. The work utilizes the 

Inception-ResNet-v2 shown in figure 7. The Inception-residual network is composed of 3 main 

blocks, including:  

 

 

Figure 7. CNN model architecture for Inception-ResNet-v2. 

 

Stem Block. The stem block of Inception-ResNet-V2 is the initial part of the network that 

processes the input image. It consists of a series of convolutional layers, followed by pooling 

layers, which downsample the spatial dimensions of the input. The stem block is designed to 

extract low-level features such as edges and corners from the input image. 

Inception-ResNet Block. The Inception-ResNet block is a key building block of the 

Inception-ResNet-V2 architecture. It consists of multiple branches, each with its own set of 

convolutional and pooling layers. These branches are concatenated together to form a composite 

feature map that captures information at multiple scales. The Inception-ResNet block is designed 

to allow the network to learn rich representations of the input that are robust to variations in the 

image. It contains several types of Inception-ResNet blocks, which are illustrated in Figure 8: 
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i. Inception-ResNet-A block: This block is composed of seven convolution operations and 

three parallel branches. Each of the convolutions applies a different kernel size (1x1, 3x3, 

1x3, and 3x1) to the input. The outputs of these branches are concatenated and passed 

through a bottleneck layer before being added to the input using a residual connection. 

 

ii. Inception-ResNet-B block: This block is similar to the Inception-ResNet-A block with 

three parallel branches but with five convolutions with different kernel sizes (1x1, 1x7, 

and 7x1).  

 

iii. Inception-ResNet-C block: This block is similar to the Inception-ResNet-B block, but it 

replaces the 1x7 and 7x1 convolutions with 1x3 and 3x1 convolutional layers. 

 

(a) 

 

 

(b) 

 

Figure 8. Schema Illustrations for Inception-ResNet blocks (a) Inception-ResNet-A, (b) Incep-

tion-ResNet-B. 
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(c) 

 

Figure 8 continued. Schema Illustrations for Inception-ResNet blocks (c) Inception-ResNet-C 

modules 

 

Reduction Block. The reduction blocks in Inception-ResNet-V2 are used to reduce the 

spatial dimensions of the feature maps produced by the Inception-ResNet blocks. This is done to 

decrease the computational cost of the network and improve its efficiency. The reduction blocks 

typically involve a combination of pooling and convolutional layers and are designed to preserve 

the information in the feature maps while reducing their size. There are two sets of reduction 

blocks in the Inception-ResNet-v2: 

 

i. Reduction-A block: This block is used to reduce the spatial dimensionality of the input. It 

consists of a 3x3 convolutional layer with stride two followed by a 3x3 max pooling 

layer. 

 

ii. Reduction-B block: This block is also used to reduce the spatial dimensionality of the 

input. It consists of a 1x1 convolutional layer, a 3x3 convolutional layer with stride 2, and 

a 3x3 max pooling layer. 

 

Transfer Learning  

Transfer learning is a technique used to transfer knowledge learned in one or more source 

tasks and use it to improve learning in a related target task [25]. Transfer learning aims to 
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enhance learning in the target task by utilizing knowledge from the source task. Transfer can im-

prove learning through three main measures. The first measure is the initial performance that can 

be achieved in the target task by using only the transferred knowledge, without any further learn-

ing, in comparison to the initial performance of an untrained agent. The second measure is the 

time it takes to completely learn the target task with the transferred knowledge compared to the 

time it takes to learn it from scratch. The third measure is the final level of performance that can 

be achieved in the target task with transfer compared to the final level without transfer [11]. 

Fine-tuning is a common technique in transfer learning, which involves the following steps [26]: 

 

i. Create a CNN model by copying the weights and parameters of a pre-trained 

source model. 

 

ii. Unfreeze some of the top layers in the pre-trained source model. In deep CNNs, 

the layers become more specialized as they go higher up. The initial layers learn 

basic and universal features that can be applied to various types of images, while 

the higher layers become more tailored to the specific dataset that the model was 

trained on. The purpose of fine-tuning is to adjust these specialized features to 

function with the new dataset instead of replacing the general learning. 

 

iii. Add new trainable layers and an output layer with the number of outputs that 

correspond to the number of categories in the target dataset. 

 

iv. Train the target model on the target dataset. The new trainable and the output 

layers are trained from scratch, while the parameters of all other layers are fine-

tuned based on the parameters of the source model. 

 

Overview of Magnetic Resonance Imaging 

MRI is a diagnostic technique that utilizes non-invasive imaging technology to detect 

various diseases and structural anomalies. It is extensively employed in the early detection and 

assessment of various brain-related illnesses, such as Alzheimer's disease, stroke, multiple 

sclerosis, and brain tumors [27]. MR images come in three different orientations: axial, sagittal, 
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and coronal. As illustrated in Figure 9, there are also several types of contrast images. T1- 

weighted MRI amplifies the signal of fatty tissue and diminishes the signal of water, while T2-

weighted MRI amplifies the signal of water. In this thesis, we utilize the T1-weighted MRI as it 

is best for best at showing the anatomy of the brain tissues that would be learned by the DL 

models. 

 

 

(a) 

 

(b) 

Figure 9. Illustration of MRI variations (a) TI-weighted MR image. (b) T2-weighted MR image 
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LITERATURE REVIEW 

 

CNN-Based Alzheimer's Disease Severity Prediction 

Alzheimer's disease classification using deep learning and MRI has been widely 

researched by scholars. Yousry et al. [27] proposed a 5-layer end-to-end deep learning 

framework that utilizes scanned MRI to predict whether a patient has AD and to what degree. 

The framework includes a CNN model composed of four convolutional layers, and max pooling 

is performed after each convolutional layer. The authors performed two different AD 

classification experiments, binary and multiclassification, and evaluated the effect of various 

learning parameters on disease classification, including sample size, batch size, activation 

functions, loss functions, dropout, and augmentation of input samples. The framework achieved 

high training accuracy, 99.8% for binary classification and 97.5% for multiclassification, with 

large image sizes and dropouts helping to improve classification accuracy. 

Murugan et al. [28] proposed a DEMentia NETwork (DEMNET) that uses MRI images 

for the early diagnosis of Alzheimer's disease and dementia. The authors of the paper used a 

dataset from the Kaggle open-source platform that comprises four stages of dementia: mild 

dementia, moderate dementia, non-demented, and very mild dementia. The novelty of their work 

is the use of a series of DEMNET blocks for the extraction of discriminative features. A 

DEMNET block consists of two 2D convolutions plus ReLU activation functions, followed by 

batch normalization and max pooling. The model used the SMOTE to balance class sizes and 

achieved a testing accuracy of 95.23%, AUC of 97%, and Cohen's Kappa value of 0.93. 

In [29], Jain et al. describe a  CNN based approach for AD classification from MR brain 

images. The authors used the VGG16 architecture as the base model for transfer learning and 

added a fully connected layer and a dropout layer, followed by a two-way classification layer for 



 

 20 

binary classification or a three-way classification layer for multiclass classification. They 

evaluated their approach on MRI data from the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) data repository and achieved a validation accuracy of 95.73% for three-way 

classification. The authors conclude that transfer learning can be used to build a classification 

model with comparable performance to a model trained from scratch.  

Lee et al. [30] proposed a deep CNN with a data permutation scheme for the 

classification of AD using structural MRI data. They employ a data augmentation strategy that 

involves randomly permuting the voxels of the sMRI data to generate more samples for training 

the CNN. They also use an outlier detection and removal technique to further improve the quality 

of the training data. Their CNN model consists of eight convolutional layers and three fully 

connected layers. They evaluate their model using a dataset from ADNI and report high 

classification accuracy for both binary and multiclass classification tasks. They conclude that 

their approach, which combines deep learning with data augmentation and outlier detection, can 

improve the accuracy of Alzheimer's disease classification using sMRI data. 

Basaia et al. [31] presented an automated method for the classification of AD and MCI 

using a single MRI scan and CNN. The authors used a large dataset of MRI scans from ADNI to 

develop a CNN model that can differentiate between AD, MCI, and healthy control (HC) 

participants. The CNN model was trained using a transfer learning approach on a pre-trained 

VGG16 network, which was then fine-tuned on the ADNI dataset. The study found that the 

proposed method achieved high accuracy in distinguishing between AD, MCI, and HC 

participants, with an overall accuracy of 87.15%, sensitivity of 91.96%, and specificity of 

82.52%. The authors suggested that this method has the potential to improve the accuracy of AD 

diagnosis and to aid in the early detection of the disease. 
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Helaly et al. [32] proposed a deep learning-based approach for the early detection of AD. 

The approach involves preprocessing of MRI images using various techniques, such as skull 

stripping and registration, to enhance the features of the brain. The proposed method also uses 

CNN with three convolutional layers and a fully connected layer to classify MRI scans as either 

normal or AD. The dataset used for training and testing the model consists of 576 MRI scans, 

with 288 scans from normal individuals and 288 from AD patients. The proposed model 

achieved an accuracy of 98.6%, sensitivity of 98.7%, and specificity of 98.5%, demonstrating the 

potential of the deep learning approach for early detection of AD. 

In [33] Kokkalla et al. proposed a DL model based on Inception-ResNet-v2 for the 

classification of brain tumors into three categories: meningioma, glioma, and pituitary tumor. 

The proposed model uses a combination of dense blocks and inception blocks, which are 

connected with residual connections to improve training and reduce overfitting. The authors also 

employ data augmentation techniques to improve the generalization of the model. The proposed 

model was trained and evaluated on a dataset of brain MRI scans, achieving an accuracy of 

98.3% on the test set. The results show that the proposed model outperforms other state-of-the-

art deep learning models for brain tumor classification. The authors suggest that their model 

could be used in clinical settings to assist radiologists in the accurate and efficient diagnosis of 

brain tumors. 

 

Explainable AI Methods for CNN-Based AD Severity Prediction 

Explianable AI pertains to methods and techniques for creating AD applications that end-

users can comprehend and interpret [34]. Lada et al. [35] proposed a comprehensive framework 

for interpreting ML models in neuroimaging based on three assessment levels: model level, 
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feature level, and biology level. Model-level assessment evaluates the model as a whole, the 

feature-level assessment identifies significant features for prediction, and the biology-level 

assessment aims to prove neuroscientific plausibility. These assessment levels can be classified 

into two main categories: ante-hoc, which focuses on understanding how the model generates its 

results, and post-hoc, which centers on elucidating why the model produces a particular outcome 

[10].  

Many explanation methods at the feature level focus on attributing a deep learning 

model's prediction to its input features. Visualization techniques are used to provide a clear 

explanation by highlighting important regions in input images or internal features that strongly 

influence the outputs [36]. These methods can be classified into two categories: propagation-

based and perturbation-based. Propagation-based methods involve backpropagating gradients 

through the network to identify the most significant features in the output. Some well-known 

methods in this category are Class Activation Map (CAM), Activation Maximization, 

DeconvNet, and Layer-wise Relevance Propagation (LRP). In contrast, perturbation-based 

methods modify the input and monitor the resulting output changes to identify effective features. 

The Occlusion Map is a popular method in this category. Some attribution-based methods exhibit 

both propagation and perturbation characteristics [36]. Examples of such methods are Grad-

CAM and Ablation-CAM [36]. Bae et al. [37] developed a 3D-CNN to predict conversion from 

MCI to AD from sMRI and identified structural brain regions that contributed to the conversion 

using Occlusion Map. Bron et al. [38] validated the generalizability of AD classification in the 

prediction of conversion from MCI to Alzheimer's using CNN (and Support Vector Machines). 

They further visualized the regions that contributed to the classifications using a guided 

backward propagation approach. Chakraborty et al. [39] performed multiclass classification of 
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Alzheimer's using 3D-CNN and showed that the model pays attention to the important regions 

using the CAM explanation technique. Sudar et al. [40] trained a VGG-16-based CNN for AD 

classification and identified stages of AD using Layer-wise Relevance Propagation. Shojaei et al. 

[41] performed binary classification of Alzheimer's using 3D-CNN from MRI and proposed a 

combination of Occlusion Map and Backpropagation-based AI explanation methods to extract 

the most important brain regions in Alzheimer's. 

Novelty of Proposed Approach. While these studies have shown high accuracy in 

classification, to the best of the scope of this research, no studies have performed any AD-related 

studies that provide an explanation at the neurocognitive and/or biological assessment level for 

their models. A neurobiological assessment can validate a model by evaluating its plausibility 

based on converging evidence from other types of neuroscientific data [35], such as biomarkers 

and neurocognitive assessment scores. To address this issue, we validate model predictions with 

APOE genotype data and standardized neurocognitive clinical assessment scores for AD 

diagnosis. Furthermore, previous studies that have explained the features of a model have mostly 

used perturbation or propagation algorithms. We utilize a unified model attribution framework 

that combines several explanations [36] methods (such as LIME, DeepLift, and LRP) to attribute 

an effect to each feature and sum the effects to produce SHAP values that explain the relation-

ship between predicted severity class and input brain MRI. 
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METHODOLOGY 

 

This section explains the overall learning framework applied to AD classification in this 

study. Figure 10 shows that it comprises six phases: data acquisition and preprocessing, class 

balancing with SMOTE, construction of CNN learning model framework, model validation, 

model explainability, and clinical relevance assessment. 

 

 
Figure 10. Proposed learning framework for AD detection and severity classification 

 

Data Acquisition and Preprocessing 

This thesis examined a sample of patients from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) data repository [42]. The database is a collection of data from a multicenter 

study that aims to develop biomarkers for the early detection and tracking of Alzheimer's dis-

ease. The database includes multiple cohorts of patients, each with different types of neuroimag-

ing data that have undergone various acquisition and preprocessing phases. A subset of T1-

weighted MR images from the ADNI-1 cohort that had the largest sample of 3D images pro-

cessed with the N3 correction standard in the same image acquisition plane were chosen. Figure 

11a shows a sample raw and unprocessed MRI image. The sample included 325 images from pa-

tients with Alzheimer's disease, 595 images from cognitively normal patients, and 1024 images 

from patients with mild cognitive impairment. This totaled 1944 images from 488 unique 

Data Acquisition 
and 
Preprocessing

•  Skull stripping

•Spatial normalization

•Data intensity 
normalization

Class Balancing 
with SMOTE

•Minority 
Oversampling

Construction of 
CNN Learning 
Framework

•Unfreeze some 
model layers

•Add dense layers

•Classify CN, MCI, and 
AD

Model 
Validation

•Accuracy

•Area under curve

•Specificity

•Sensitivity

Model 
Explainability

•Identify relevant 
learned features

•SHAP deep explainer

Clinical 
Relevance 
Assessment

•Neurocognitive 
assessments



 

 25 

patients, some of which were taken on different visit dates. All participants were between 50 and 

80 years old, and a brief demographic description of the images by class is presented in Table 1. 

 

Table 1. Demographic and overall neurocognitive assessment of study sample. 

(n) AD (325) MCI (1024) CN (595) 

Male/Female 149/176 588/436 276/316 

Age 72.5 ± 5.4  72.1 ± 5.5 74.7 ± 3.7 

Education (years) 14.2 ± 3.1 15.6 ± 3.0 15.9 ± 2.9 

MMSE 21.1 ± 5.4  25.7 ± 3.7 29.2 ± 1.0 

CDR Global 17.3 ± 7.8  7.2 ± 7 0.2 ± 1.0 

FAQ 1.0 ± 0.5  0.6 ± 0.3 0 ± 0.1.0 

MMSE: Mini-Mental State Examination; CDR: Clinical Dementia Rating. FAQ: Functional 

Assessment Questionnaire. 

 

Variations in MRI scans, such as magnetic field strength, image resolution, contrast, ori-

entation, and patient positioning, can impact model performance. Therefore, preprocessing to 

standardize all subjects and imaging modalities is a crucial step that affects prediction perfor-

mance. Skull stripping, spatial normalization, data intensity normalization, and image slicing are 

used to preprocess the images. 

Skull Stripping. Skull stripping is performed to eliminate non-brain tissue voxels such as 

skin, fat, muscle, neck, and eyeballs from the images. Several skull-stripping methods exist in 

literature [43]. We utilize the functional MRI software library (FSL) brain extraction tool (BET) 

in this work [44]. Figure 11b illustrates the output image after applying BET to the initial image 

obtained from ADNI. 
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Spatial Normalization. Spatial normalization normalizes for image orientation and voxel 

spacing, which may vary between images, even when acquired from the same scanner. The main 

objective of this preprocessing is to limit the variations in positioning, orientation, shape, and 

size of the images in our study. We used the FSL's linear image registration tool [45] to linearly 

register all scans to the T1 MNI 152 Template with 2mm Isotropy. The spatial normalization 

preprocessing process outputs 3D image files with a uniform size of 91x109x109. Figure 11c 

illustrates the output of spatial normalization of an MRI to a template. 

Image Slicing. To prepare the 3D image for a 2D convolutional neural network (CNN), 

each sample is sliced into sagittal, coronal, and axial orientations using the Nibabel [46] image 

slicer. Each sample produced three sets of 2D images, with the center slice of the axial 

orientation selected for further processing. Figure 11d displays the central slices of CN, MCI, 

and AD patients. 

 

  

(a) 

 

(b) 

 
 

 

(c) 

 

(d) 

Figure 11. MRI preprocessing pipeline: (a) Raw brain MRI. (b) Skull stripping. (c) Spatial nor-

malization. (d) Center axial slice images in severity order: CN, MCI, AD. 
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Data Intensity Normalization. This is also known as voxel-based normalization. It is 

used to standardize the pixel intensity values so that they fall within a specific range. It involves 

transforming the pixel values to the axial slices such that the mean of all values is 0 and the 

standard deviation is 1. This can improve the accuracy and reliability of subsequent image analy-

sis using the CNN models. 

 

Class Balancing 

When collecting medical data, a common problem is the imbalance between healthy 

controls and cases. Although the overall patient distribution in the ADNI-1 cohort is relatively 

even, the set of 1944 MR images collected was heavily skewed towards 52.6% MCI, 30.6% CN, 

and 16.7% AD. To prevent overfitting and biased learning models due to this imbalance, we used 

SMOTE [47] to balance the class samples. This approach generates synthetic examples in feature 

space by oversampling the minority class. It achieves this by introducing examples along the line 

segments that connect any or all of the k nearest neighbors from the minority class. The SMOTE 

process is described in Equation 1, where a feature vector 𝑋0 is selected from the minority class, 

and one of its k nearest neighbors 𝑋 is randomly chosen. The difference between 𝑋 and 𝑋0is 

computed, and a new synthetic data point is generated at a random point in the line segment by 

connecting the feature vector and the selected neighbo, using a uniform random variable 𝑤 in the 

range [0,1]. The neighbors from the k nearest neighbors are selected randomly depending on the 

desired level of oversampling. 

 

𝑍 = 𝑋0 + 𝑤(𝑋 − 𝑋0) (1) 
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Construction of CNN Learning Model 

The model for predicting AD severity from MR brain images is composed of a CNN 

learning model and an explainability extension, as shown in Figure 12. Three CNN architectures 

are evaluated, namely DenseNet121, DenseNet169, and Inception-ResNet-v2. To overcome the 

long training times of CNN models on images, transfer learning is utilized to enhance efficiency. 

This is achieved by using pre-trained models developed from standard computer vision 

benchmark data as a starting point for training new models on a related problem. The base model 

is initialized with Imagenet training weights, and some higher layers are unfrozen to allow the 

CNN model to encode more subtle features from the brain MR images. The fine-tuning layers 

consist of a global average pooling layer, two dense layers with ReLU activation function 

(Equation 2), L1 regularization (Equaton 4), and a dropout layer, and a fully connected layer 

with the softmax activation function for the three classes. The RMSprop (Equations 6 -7) 

optimizer is employed to minimize the categorical cross-entropy loss function (Equation 3).  

Given an input value x, the ReLU activation function f defined by Equation 2, is the 

maximum of that element, and 0: 

 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2) 

 

Given a true label vector 𝑦𝑡𝑟𝑢𝑒 and a predicted probability distribution vector 𝑦𝑝𝑟𝑒𝑑, the 

categorical cross entropy loss function is defined by Equation 3: 

 

𝐻(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) = − ∑ 𝑦𝑡𝑟𝑢𝑒,𝑖

𝐶

𝑖=1

𝑙𝑜𝑔(𝑦𝑝𝑟𝑒𝑑,𝑖) (3) 
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Figure 12. Explainable learning framework for prediction of AD severity. FC: Fully connected 

layer. ReLU: Rectified linear unit activation function 

 

Where c is the number of classes, 𝑦𝑡𝑟𝑢𝑒,𝑖 is the true label for the i-th class (1 if the sample 

belongs to that class, 0 otherwise), and 𝑦𝑝𝑟𝑒𝑑,𝑖 is the predicted probability of the sample 

belonging to the i-th class, computed by the softmax activation function.  

L1 regularization (also known as Lasso regularization) is a technique used to prevent 

overfitting in machine learning models by adding a penalty term to the loss function that 

encourages the model to use fewer features. The effect of the L1 regularization penalty is to 

force many of the weights to become exactly zero, effectively removing them from the model. 

This leads to a simpler and more interpretable model with fewer features, which is less prone to 

overfitting. The L1 regularization penalty term is defined in Equation 4 as the sum of the 

absolute values of the model's weights multiplied by a regularization parameter λ: 
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 L1 regularization penalty = λ ∗ Σ|𝑤| (4) 

 

Here, w is the weight parameter of the model, Σ is the sum of all weights, and λ is a 

hyperparameter that controls the strength of the regularization. The L1 regularization penalty 

term is added to the model's prediction error. The complete loss function with  L1 activity 

regularization for our model is defined in Equation 5: 

 

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐻(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) + λ ∗ Σ|𝑤| (5) 

 

 

The RMSprop algorithm also aims at minimizing the loss function. It achieves this goal 

by computing an exponentially weighted moving average of the squared gradients and uses this 

to normalize the gradient update step. The update process for RMSprop can be described 

mathematically as follows: 

Initialize the exponentially weighted moving average of the squared gradients 𝑠 =  0. 

For each iteration of the optimization algorithm, compute the gradient of the loss function with 

respect to the model parameters as 𝑔𝑡 = ∇θ𝐽(θ𝑡). Update the gradient of the loss function with 

respect to the model parameters using Equation 6: 

 

𝑠𝑡 = 𝛽𝑠𝑡−1 + (1 − β)𝑔𝑡  
2 (6) 

 

Where β is a hyperparameter that controls the weighting of the past gradients in the 

moving average. Also, compute Δθ𝑡 The using Equation 7: 
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Δθ𝑡 = −
η

√𝑠𝑡 + ϵ
𝑔𝑡 (7) 

 

Where η the learning rate and ϵ is a small constant to prevent division by zero. Finally, 

the model parameters using Equation 8: 

θ𝑡+1 = θ𝑡 + Δθ𝑡 (8) 

 

Model Validation 

To assess the performance of the model, various metrics are utilized, including 

classification accuracy, sensitivity/recall, specificity, confusion matrix, and the area under the 

curve and receiver operating characteristic curve (AUC-ROC). Accuracy measures how 

effectively the model can predict true positives and negatives within the classes, and it can be 

calculated using Equation 9: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
) (9) 

 

Where TP means the true positive, TN means the true negative, FP means the false 

positive, and FN means the false negative. The sensitivity, also known as true positive rate 

(TPR), indicates the model's ability to locate all positive samples. The formula for calculating 

sensitivity is given by Equation 10: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) (10) 
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Specificity, also known as false positive rate (FPR), is the opposite of specificity. It is the 

ability of the model to locate all negative samples. Sensitivity is mathematically defined in 

Equation 11: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) (11) 

  

The ROC curve is a graphical representation of the relationship between sensitivity and 

specificity. AUC (average value of sensitivity for all possible values of specificity) is a measure 

of how well the model performs in predicting which image group it belongs to. As AUC values 

increase, this indicates better overall diagnostic performance for the model when it's applied to 

predicting each image group. 

 

Model Explainability 

Shapley additive explanations (SHAP) [12] is implemented as a  data-driven local 

interpretation method to unravel the black box deep learning model [48].  The core idea of SHAP 

is based on the Shapley value, which is an important concept in game theory. Through the 

transfer of concepts from game theory, the outcomes of 'games' can be considered analogous to 

the predictions generated by ML models, and the 'players' of games can be considered analogous 

to the features in ML models. By calculating the Shapley value, the contribution of each 'player' 

to the outcome of the 'game' can be quantified just as the contribution of each feature to the ML 

prediction can be calculated.  

The Deep explainer is used to compute SHAP values, which determine the contribution 

of each feature in an image to predict the severity of AD. The number of unique prediction 
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classes corresponds to the number of images that SHAP generates to explain a prediction. In the 

context of three-class AD severity, SHAP calculates the importance of each pixel's feature and 

generates three explainable images per class (CN, AD, and MCI). Pixel importance is denoted by 

color, with red indicating a positive correlation and blue indicating a negative correlation with 

the predicted value. The intensity of the color indicates the degree of impact a feature has on the 

prediction. Both red and blue are significant, with opposite effects on the output. The color 

intensity is critical because it highlights the features that contribute to the model's classification 

as "feature importance." Therefore, the SHAP plot offers valuable insights into how various 

features contribute to the neural network's output and identifies the key regions that influence the 

predictions. 

 

Clinical Relevance Assessment 

A set of outcome measures selected by domain experts can be used to evaluate whether 

identified groups have clinical significance. We selected six AD outcome measures and 

biomarkers, including Mini-Mental State Examination (MMSE), the Clinical Dementia Rating 

(CDR), the Functional Activities Questionnaire (FAQ), the Alzheimer Disease Assessment Scale 

Cognitive score (ADAS-Cog), the Digital Span Score, and the Apolipoprotein E (APOE) 

genotype. We briefly describe these measures to provide a context for interpretation. 

The MMSE is a pen-and-paper test that measures cognitive abilities such as attention, 

orientation, memory, and visuospatial skills. The maximum score is 30, with 28-30 considered 

normal, 26-27 indicating MCI, and below 25 suggesting AD. The CDR is a global rating scale 

that evaluates cognitive, behavioral, and functional aspects of dementia on a scale of 0-3. The 

FAQ measures instrumental activities of daily living and is rated on a 3-point ordinal scale. The 
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Alzheimer Disease Assessment Scale includes cognitive and noncognitive sections, with the 

cognitive section (ADAS-Cog) consisting of standard tests of language, comprehension, 

memory, orientation, and visual-spatial ability. Higher scores on the ADAS indicate poorer 

performance. The Digit Span score assesses forward and backward repetition of numbers. 

APOE is a gene that provides instructions for making a protein called apolipoprotein E 

[49]. There are three types of the APOE gene, called alleles: ε2, ε3, and ε4. Everyone has two 

copies of the gene (one inherited from each parent), and the combination determines your APOE 

genotype—people can have one of six possible combinations: ε2/ ε2, ε2/ ε3, ε2/ ε4, ε3/ ε3, ε3/ 

ε4, or ε4/ ε4. Having two copies of the APOE ε4 allele is strongly linked to an increased risk of 

developing AD. Following that, individuals with the combination of one APOE ε3 allele and one 

APOE ε4 allele (ε3/ε4) also have an elevated risk compared to those with two copies of ε3. 

Conversely, individuals with the combination of two APOE ε2 alleles (ε2/ε2) tend to have a 

lower risk of developing AD. [50]. 

We examine the cognitive scores of correctly and incorrectly classified outcomes of AD 

and MCI predictions. The purpose is to identify factors that may have impeded the CNN model's 

performance on these tasks. A critical aspect is whether the image prediction aligns with other 

biological data. A subject matter expert evaluated the SHAP plot findings and the neurocognitive 

outcome measures to assess the clinical significance of the results. 
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EXPERIMENTAL RESULTS AND ANALYSIS 

 

Experimental Setup 

All experiments were implemented using Python and TensorFlow ML API [51] on an 

NVIDIA GEFORCE GTX 1050 GPU machine. We implemented all experiments using Python 

and TensorFlow's ML API [42] on a machine equipped with an NVIDIA GEFORCE GTX 1050 

GPU. The experiments utilized three models: DenseNet121, DenseNet169, and Inception-Res-

Net-v2, which were pre-trained on ImageNet and are available on TensorFlow. TensorFlow con-

siders each operation and module in a network as separate layers, including convolutional blocks 

and auxiliary layers like activation, batch normalization, pooling, and global average pooling. 

The DenseNet121, DenseNet169, and Inception-ResNet-v2 architectures have 433, 601, and 785 

layers, respectively. To fine-tune the models, we unfroze the later blocks, with DenseNet121 at 

the 313th layer, DenseNet169 at the 369th layer, and Inception-ResNet-v2 at the 616th layer. 

To balance the skewed distribution of 1944 images, we applied SMOTE, which generated 

a balanced dataset with 1024 images for each severity class, totaling 3072 images. We split the 

dataset into training (80%) and testing (20%) subsets. It is worth noting that the SMOTE-gener-

ated images were intentionally constrained to the training data, and the test set consisted only of 

real images. During training, we automatically applied data augmentation techniques, including 

horizontal flipping, height and width shifts within ranges of 0.05 and 0.1, rotation within 5 de-

grees, and zooming within a range of 0.15. This approach aimed to increase data variability and 

improve the model's robustness. We trained the model using stratified 5-fold cross-validation 

with a batch size of 32 and a learning rate of 0.00001. Finally, we employed the best-performing 

fold training model on the test set. We performed multiple experiments by varying the number of 

epochs (100,250,500,1000) to conduct a comparative analysis of the three CNN models. 
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Performance Comparison of the DenseNet121 vs DenseNet169 vs Inception-ResNet-v2  

Both DenseNet and Inception-ResNet networks aim to improve the flow of information 

across the network layers and reduce the vanishing gradient. The primary difference lies in the 

connectivity patterns of the layers within the same block and how information is moved from 

one layer to the other. The Inception-ResNet uses sparse and residual connections to add the 

output of one layer to another layer deeper in the network. In contrast, DenseNet uses dense 

connections to concatenate the output of each layer to the input of all subsequent layers. 

Figure 13 displays the training accuracies of three models and compares them to their 

testing accuracies. DenseNet121 has a relatively high training accuracy of 95.33% but performed 

poorly with unseen samples, obtaining a testing accuracy of only 77%. Based on the literature, 

DenseNet169 was expected to perform better than DenseNet121 because it has more dense 

layers. However, it only slightly outperformed DenseNet121 during training with an accuracy of 

95.93%, and even worse with unseen samples, with a testing accuracy of only 75%. The 

significant difference between the training and testing accuracies for both models indicates that 

they are overfitting and unable to generalize with unseen samples. This suggests that the dense 

connectivity pattern of DenseNet may not be suitable for AD severity prediction. Moreover, 

increasing the network size does not significantly improve the performance and may lead to 

further overfitting. 

Inception-ResNet-v2, compared to the DenseNet models, has a slightly lower training 

accuracy of 95.12% but a much higher testing accuracy of 94%. The training and testing 

accuracies for the Inception-ResNet-v2 are comparable, indicating that it is better at generalizing 

with unseen samples. The network also performed better at epoch 500, indicating that it requires 

fewer training iterations to produce good results. Inception-ResNet-v2 has a more complex 
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architecture than DenseNet121 and DenseNet169. A combination of Inception modules and 

ResNet blocks can help capture more intricate image features. This additional complexity may 

have helped Inception-ResNet-v2 learn more complex data representations and achieve better 

performance. 

 

  

(a) (b) 

  

(c) (d) 

Figure 13. Performance of CNN model on the validation set during training for varying epoch 

levels across the 5-fold cross-validation (a) DenseNet121 (b) DenseNet169 (c) Inception-Res-

Net-v2 (d) accuracy of models on validation vs. test data. 

 

When comparing the sensitivity and specificity results of the three models in Table 2, we 

can see that each model has different strengths and weaknesses for each diagnostic group. The 
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first model has high specificity for all three groups, indicating that it is effective at correctly 

identifying individuals without MCI or AD as negative (true negatives). However, the sensitivity 

for healthy controls is lower than that for MCI or AD, indicating that the test is less effective at 

correctly identifying healthy individuals who do not have MCI or AD as negative (true 

negatives). 

 

Table 2. Performance of the CNN models on the AD severity prediction based on the test dataset. 

  
AD 

 
MCI 

 
CN 

 
Epoch ACC 1 SEN 2 SPE 3 SEN SPE SEN SPE 

DenseNet121 

100 54.15 15.61 99.76 78.54 49.02 82.44 68.29 

250 67.48 30.24 100 92.68 62.2 89.02 79.51 

500 77.56 54.63 99.76 89.27 77.32 89.27 88.78 

1000 76.91 49.27 100 95.61 72.44 92.93 85.85 

 

DenseNet169 

100 52.36 19.02 99.76 98.05 30.49 98.29 40 

250 67.15 35.61 99.51 95.61 56.59 94.63 70.24 

500 75.93 58.54 99.51 95.12 68.29 96.1 74.15 

1000 75.12 55.12 98.54 97.56 64.88 99.27 72.68 

 

Inception-ResNet-v2 

100 84.07 78.05 96.83 95.12 80.98 98.29 79.02 

250 91.87 89.27 98.05 91.22 93.17 96.59 95.12 

500 93.66 92.2 98.78 96.1 92.93 98.78 92.68 

1000 92.03 89.76 98.05 96.1 91.22 98.78 90.24 

1 ACC: Accuracy. 2 SEN: Sensitivity.  3 SPE: Specificity. 
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 In contrast, the second model has high specificity for CN and AD but lower specificity 

for MCI. It also has a high sensitivity for MCI and AD, indicating that it is better at correctly 

identifying individuals with MCI or AD as positive (true positives). However, the sensitivity for 

CN is relatively low, indicating that the test may miss some healthy individuals who do not have 

MCI or AD. The third model has relatively balanced sensitivity and specificity for CN and MCI 

but lower sensitivity and higher specificity for AD. This suggests that the test may be more 

effective at ruling out AD in healthy and MCI individuals but may miss some true positive AD 

cases. 

Regarding the AUC values (see Figure 14), Inception-ResNet-v2 has the highest AUC 

scores across all three classes (AD: 0.95, MCI: 0.95, and AD 0.96). The AUC scores for 

DenseNet121 (AD: 0.75, MCI: 0.84, CN: 0.89) and DenseNet169 (AD: 0.77, MCI: 0.81, CN: 

0.86) are relatively close to each other, with DenseNe121 having slightly better performance.  

Overall, Inception-ResNet-v2 is the most effective model for classifying new data 

accurately, as it has the highest test prediction accuracy, sensitivity, and AUC and is least likely 

to overfit during training. 

 

Comparison of Results with other Existing Models Reported in Literature 

In Table 3, a comparison is presented between the proposed framework and state-of-the-

art models. The metrics used for comparison are accuracy, sensitivity, precision, and specificity, 

which are evaluated against models discussed in existing literature. These models have been 

trained for either a multiclass or binary class problem using the ADNI dataset. Although the ac-

curacy of the models in existing literature is better than that of the proposed model, our model is 

comparable in terms of sensitivity, specificity, and precision. Furthermore, while existing models 
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end their evaluation based on model evaluation metrics, our framework goes beyond perfor-

mance evaluation. In the next section, we provide a feature level interpretation and correlation of 

model predictions with APOE genotype biomarkers and neurocognitive assessment data. 

 

(a) 

 

 

(b) 

 

Figure 14. AUC ROC curve for (a) DenseNet121 (b) DenseNet169. 
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(c) 

 

Figure 14 continued. AUC ROC curve for (c) Inception-ResNet-v2. 

 

Table 3. Performance comparison of proposed model with prior models. 

Method Classification Type Accuracy Sensitivity Precision Specificity 

Yousry et al. [27] Multi classification 97.50 N/A 1 N/A N/A 

Murugan et al. [28] Multi classification 95.23 95.00 96.00 N/A 

Jain et al. [29] Multi classification 95.73 96.00 96.33 N/A 

Lee et al. [30] Multi classification 98.06 95.77 98.69 95.19 

Basaia et al. [31] Binary classification 99.20 98.90 N/A 99.50 

Helaly et al. [32] Multi classification 97.00 94.00 96.00 N/A 

Proposed Multi classification 93.66 95.70 95.00 94.80 

1 Not available  
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MODEL EXPLANATION AND CLINICAL RELEVANCE 

 

We will focus only on explaining the Inception-ResNet-v2 model using SHAP 

visualization plots, as the sensitivity and specificity analysis of the three models indicate that it 

performs better than the others. The progression of Alzheimer's disease is associated with 

changes in the brain, including widening of the interhemispheric fissure, enlargement of cortical 

sulci and ventricles, and thinning of the corpus callosum [52]. There may also be subtle changes 

in the white and grey matter of the brain parenchyma, with patients with more severe 

Alzheimer's disease expected to have larger ventricles and cortical sulci. The SHAP values (red 

pixels) surrounding the ventricles and cortical sulci suggest that the neural networks may rely on 

these areas to identify subject images with probable Alzheimer's disease. 

A neurology expert reviewed the SHAP plots (Figures 15 and 16). As expected, the 

SHAP intensity in the plots was highest for the class selected by the model. For example, when 

the model correctly classified an Alzheimer's disease image, the AD class SHAP plots had the 

highest values. This also held for correctly classified MCI images. The spatial distribution of 

SHAP values in the images provided insight into the areas of the brain that the neural network 

model used the most in making its classification. The domain expert evaluation showed that the 

model relied on examining the size of the ventricles and cortical sulci to identify probable 

Alzheimer's disease. Fewer SHAP intensities were observed over the white or grey matter within 

the brain parenchyma. 

Insights into the misclassified images can be obtained from Tables 4 and 5. Generally, 

AD cases that were mistakenly classified as MCI or controls showed milder disease 

characteristics, as indicated by higher MMSE scores and lower ADAS-cog scores. It is worth 

noting that even the AD case that was incorrectly labeled as a control had a relatively high 
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MMSE score of 26 and a low CDR of 0.5. The majority of accurately classified AD images were 

associated with high severity APOE genotype alleles. Interestingly, approximately half of the 

incorrectly classified AD images exhibited lower severity based on the presence of lower APOE 

alleles. This suggests that while the model may have misclassified a few correct samples, some 

of the misclassified samples could have been labeled incorrectly, as indicated by the lower 

severity of APOE. This trend is observed in both the correctly and incorrectly classified cases. 

 

Table 4. Clinical relevance of Inception-Resnet-V2 model outcomes for correctly predicted AD 

vs. AD predicted as MCI or CN 

 Correct AD Incorrect MCI Incorrect CN 

N 193 11 1 

Gender (Male/Female) 86/107 4/7 1 

Age 72.19 ± 5.75 72.05 ± 4.48 79.10 

FAQ Total 17.05 ± 7.58 19.2 ± 11.61 0 

MMSE 20.94 ± 5.54 22.9 ± 3.14 26.00 

Digit span total 22.5 ± 14.72 21.0 ± 14.49 0 

CDR Global 0.97 ± 0.49 1.0 ± 0.81 0.50 

ADAS-Cog 24.31 ± 11.64 21.42 ± 15.83 0 

APOE ε4 (Allele 1) % 30.61 0 0 

APOE ε4 (Allele 2) % 69.64 7.14 0 
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(a) 

 

(b) 

 

Figure 15. Visualization of prediction for MRIs labeled AD (a) correctly predicted as AD and (b) 

incorrectly predicted as MCI or CN. Each image is associated with three outputs per image. Red 

pixels indicate positive SHAP values, increasing the class probability, while blue pixels indicate 

negative SHAP values, decreasing it. 
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(a) 

 
 

(b) 

 
Figure 16. Visualization of prediction for MRIs labeled MCI (a) correctly predicted as MCI and 

(b) incorrectly predicted as AD or CN. Each image is associated with three outputs per image. 

Red pixels indicate positive SHAP values, increasing the class probability, while blue pixels in-

dicate negative SHAP values, decreasing it. 
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Table 5. Clinical relevance of Inception-Resnet-V2 model outcomes for correctly predicted MCI 

vs. MCI predicted as AD or CN 

 Correct MCI Incorrect AD Incorrect CN 

N 196 5 4 

Gender (Male/Female) 105/91 3/2 1/3 

Age 71.95 ± 5.39 76.34 ± 2.49 67.15 ± 4.69 

FAQ Total 7.21 ± 6.75 2 10 

MMSE 25.42 ± 4.11 25.67 ± 1.53 28.33 ± 0.58 

Digit span total 36.48 ± 13.93 56 33.00 

CDR Global 0.58 ± 0.26 0.5 ± 0 0.5 ± 0 

ADAS-Cog 14.55 ± 8.18 15 12.67 

APOE ε4 (Allele 1) % 21.62 0 0 

APOE ε4 (Allele 2) % 51.22 2.45 4.88 
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CONCLUSION AND FUTURE WORK 

 

This thesis presents a framework for preprocessing and analyzing MRI for predicting AD 

severity using three CNN models. Inception-ResNet-v2 sensitivity values were evaluated for CN, 

MCI, and AD, and it was found that the model has a good ability to identify individuals with 

MCI or AD as positive. Still, it is less effective at identifying healthy controls who do not have 

MCI or AD as negative. On the other hand, specificity values for CN, MCI, and AD are 

relatively high, indicating the model has a good ability to correctly identify healthy individuals 

who do not have MCI or AD as negative. Still, it is less effective at correctly identifying 

individuals with MCI as negative, potentially leading to a higher false positive rate. 

The high specificity and low sensitivity suggest that the MRI-based diagnostic model is 

better at ruling out MCI or AD in healthy individuals than detecting the presence of MCI or AD 

in those with the condition. This may be due to various factors, such as imaging technique choice 

or criteria for defining MCI or AD. As Alzheimer's disease progresses, the brain's surface 

becomes thinner, ventricles enlarge, and the corpus callosum thins. Patients with less severe AD 

are expected to have smaller ventricles and a larger brain surface, and the SHAP explanations 

show that the predicted CN sample has more red pixels on the surface. In contrast, the predicted 

AD sample has fewer red pixels, further supporting the model evaluation results. 

The study has some limitations, such as the image-slicing step only selecting the middle 

axial slice, which may not have the best discriminant information for a sample. A larger dataset 

could result in more accurate predictions and better discrimination between MRI artifacts and 

brain abnormalities. Nonetheless, deep CNNs show promise for predicting the severity and 

outcome of AD. Further investigation is needed to improve the Inception-ResNet-v2-based 

model's ability to identify the AD and CN groups. 
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