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1. INTRODUCTION

Through its long history, geometry has been instrumental in several areas of sig-

nificance, among which are architecture, construction, and navigation. The compass and

straightedge constructions and proofs found thousands of years ago still form the basis of

geometry education today. While such constructions and proofs are often a frustration to

modern students, geometry puzzles have been and remain a more entertaining introduc-

tion to geometric concepts. One common class of geometry puzzle is the dissection puzzle

where the aim is to take one geometric figure, decompose it into smaller figures, and ar-

range them to obtain another geometric figure. Students attempting to solve a dissection

puzzle, such as a tangram puzzle, will learn and utilize the isometries of Euclidean geome-

try, even if the students cannot express them as such at first.

As shall be shown, dissection puzzles are an ancient creation that persist along with

compass and straightedge proofs. First, we discuss the oldest known dissection puzzle, the

stomachion. After that will come a history and exploration of the tangram. The last of

the dissection puzzles examined is a curiosity discovered by British puzzle master, Henry

Dudeney.

Despite the ancient nature of geometric dissection puzzles, the proof of the con-

cept underlying dissection puzzles is relatively modern. That concept, the Wallace-Bolyai-

Gerwien theorem, was proved in the early nineteenth century. As we shall see, the progres-

sion from two dimensions to three dimensions culminated in the work of Max Dehn and

the polyhedral measure that bears his name: the Dehn invariant.

Following the historical progression, we will see what happens when regular geo-

metric figures are replaced by sets and points. Particularly, several paradoxes arise in this

examination. The culmination of these paradoxes, and this work, is the infamous Banach-

Tarski paradox.

A recurrent theme throughout is that of paradox. We shall see two forms of para-
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dox: illusory and actual. An illusory paradox, as the name implies, is a mere illusion. Such

a paradox is really some visual deception that, though convincing, is merely a trick. An

actual paradox, by contrast, yields a result that seems contradictory or impossible, and yet

is demonstrably true.
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2. STOMACHION

The oldest known dissection puzzle dates back over 2000 years to ancient Greece

and was first discussed by Archimedes. Known as the stomachion, the puzzle has precious

little historical attestation: the two main sources are the Roman historian Ausonius and a

badly damaged manuscript known as the Archimedes palimpsest. As noted in [3], The two

sources disagree on several details of the puzzle.

Ausonius refers to the puzzle as being a dissection of a square, the pieces of which

could be arranged into a variety of shapes such as a warrior or an elephant. Noted in [6],

Ausonius also refers to the puzzle by a different name: the ostomachion. Roughly translat-

ing as “bone fight”, some scholars insist this is the puzzle’s actual name.

The Archimedes palimpsest, by contrast, refers to the puzzle in a diagram as a

dissection of a double-square rectangle. One of the objectives of play, according to the

palimpsest, was to fit the pieces back into the box in which they came. Whether the box

was also a rectangle or a square is unclear: both are referred to and both are possible with

the pieces of the double-square dissection.

For this work, we will refer to the puzzle as the stomachion. Although [3] leans to-

ward the puzzle being a double-square rectangle, the square version of the dissection will

be considered as more modern work has been done with it. However it was played and

whether it was originally a rectangle or a square, the compass and straightedge construc-

tion is identical for each, differing only by the relative dimensions of the resulting pieces.

Let ABCD be a square. As in Figure 1, The stomachion pieces can be constructed thus:

1. Draw the segment AC.

2. Find the midpoints of AB and CD. Label them E and F respectively.

3. Draw the segments CE and DE.

4. Draw the segment EF .
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5. Find the midpoint of CE. Label it G.

6. Draw the segment FG.

7. Along the ray
−−→
DG, draw the segment from G through BC. Call the point of inter-

section H.

8. Label the intersection of AC and DE as I.

9. Find the midpoint of AI. Label it J .

10. Draw the segment DJ .

11. Find the midpoint of DF . Label it K.

12. Find the line perpendicular to DF passing through K and draw the segment from K

to the intersection of DE. Label it L.

13. Along the ray
−−→
AK, draw the segment from the intersection of DE to K. Label the

intersection M .

The resulting dissection forms the pieces of the stomachion. If the original aim of

play was to fit the pieces back together as a square, a puzzler would have a variety of ways

to accomplish this: as discovered by Bill Cutler per [6], there are 536 distinct ways to re-

arrange the pieces into the original square, counting arrangements equivalent by reflection

and rotation as being the same.
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3. TANGRAM

Perhaps the most well-known dissection puzzle, the tangram has fascinated puzzlers

the world over for the last two centuries. According to [3], one puzzle was even among

Napoleon’s collection of amusements. The tangram was and remains a popular introduc-

tion to geometry for students. Before it was used primarily for educating children, the

tangram was famously popular in Europe and China for the early part of the nineteenth

century. Though it was introduced in America around the same time, the puzzle was not

nearly as popular in the United States until the 1860s.

The Chinese mathematicians of antiquity were as familiar with geometric dissec-

tions as their Greek counterparts. Particularly, the Pythagorean theorem was demon-

strated in the third century by Liu Hui as a dissection and rearrangement of two squares

into a single, larger square. Hui’s original dissection has, unfortunately, been lost to time.

Many guesses have been made as to the exact dissection used, but none are confirmed. As

found in [5], Figures 2 and 3 are two proposed interpretations of Liu Hui’s original instruc-

tions.

Such dissections found expression beyond mathematical or puzzling curiosity in

China. Discussed at length in [3], Butterfly Wing Tables were set of tables of various shapes

that could be arranged as a wide assortment of shapes. While other designs predate the

Butterfly Wing Tables, this particular design is of interest due to its similarity with the

tangram. Invented by Ko Shan early in the seventeenth century, the tables were a collec-

tion of tables sold as a set. Each set had a total of thirteen tables in a variety of shapes

and sizes. The tables included a book authored by Shan himself detailing possible arrange-

ments of the tables. The book detailed configurations ranging from basic geometric shapes

such as squares and triangles to larger, more ornate patterns such as a cave or a pavilion.

Of particular interest is the possible relation between these tables and the tangram. Note

in Figures 5a and 5b to see the similarity of the tangram with half of the Butterfly Wing
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Tables.

The tangram is fairly modern: the puzzle was first created during the reign of Chia-

ch’ing, placing the puzzle’s creation close to 1800. The objective of play is the same as

Ausonius’s description of the stomachion: arrange the pieces to obtain a given problem

silhouette with all of the pieces used and no pieces overlapping. These dissections and ar-

rangements could and still can be found in a variety of books and range from simple geo-

metric shapes to far more creative silhouettes, such as a crane or a man. We exhibit a few

of the people puzzle silhouettes in Figure 4.

The construction is simpler than that of the stomachion as seen in Figure 6. Begin

with a square ABCD. The tangram can be constructed through the following steps:

1. Draw the segment AC

2. Find the midpoint of AD, label it E

3. Find the midpoint of CD, label it F

4. Draw the segment EF

5. Find the midpoint of AC, label it G

6. Find the midpoint of CG, label it H

7. Find the midpoint of EF , label it I

8. Draw the segment IB. Note that G will be colinear.

9. Find the midpoint of AG, label it J .

10. Draw the segment FJ

11. Draw the segment IH

A particularly interesting subset of tangram silhouettes are the “paradoxical pairs.”

For these silhouettes, one of the pair appears to be identical to the other but with some

addition (or subtraction). The seeming paradox arises from the fact that the two figures
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can be made with the same seven pieces, despite one appearing to have a larger area than

the other. This apparent paradox is, as noted in [3], merely an illusion: though the figures

seem to be such that one is a proper subset of the other, the figures actually retain the

same area.

Figure 7 is an example of a paradoxic pair. Even seeing the arrangement of the

pieces, it appears as if the two squares are the same size despite the one having an hour-

glass cutout. The illusion is that the second figure is not a square at all, but rather a near-

square rectangle. By taking the area of the tangram square to be 1 and the resulting di-

mensions of the constituent pieces, it becomes clear that the dimensions of the second fig-

ure are 1× 3
√
2/4. Similarly, Figure 8 appears to show a missing triangle. However, exam-

ining the central isosceles triangle of the complete figure shows that it has legs of length 1

and base
√
2. By contrast, the incomplete triangle has legs length 3

√
2/4 and base length

3/2.
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4. HABERDASHER’S PUZZLE

Physical puzzle sets, such as the tangram and the stomachion, have enjoyed much

popularity but they are far from the only source of puzzles. Puzzle books have been pop-

ular through the years as well. One such by Britain’s “first and greatest puzzle master”

Henry E. Dudeney is the source of our next geometric curiosity. In [1], Dudeney introduces

a plethora of characters, among whom is the haberdasher. In the setup for his eponymous

puzzle depicted in Figure 9, the haberdasher produced a piece of cloth in the shape of a

perfect equilateral triangle and said, “Show me, then, if ye can, in what manner this piece

of cloth may be cut into four several pieces that may be put together to make a perfect

square.” The story went on to relate that the haberdasher admitted to having no answer

after several attempts found a dissection with five pieces but not four. Dudeney, however,

had not only found a solution, but one with a rather unique property. As he describes in

[1], “... I have found that the feat may really be performed in so few as four pieces, and

without turning over any piece when placing them together. The method of doing this is

subtle.” Below are the steps to the dissection of the haberdasher’s puzzle.

As shown in Figure 10, given an equilateral triangle △ABC The steps to Dudeney’s

dissection are as follows:

1. Find the midpoint of AB, call it D.

2. Find the midpoint of BC, call it E.

3. Take the arc from EB and the ray
−→
AE, label their intersection F .

4. Find the midpoint of AF , label it G.

5. Along the ray
−−→
EB, find the intersection with the arc from GE, label the intersection

H.

6. Take the arc from EH and label its intersection with AC as J .

7. Copy the length of BE and find point K on AC such that ℓ(BE) = ℓ(JK).

8



8. Draw the perpendicular to JE through D, label the point on JE as L.

9. Draw the perpendicular to JE through K, label the point on JE as M .

Not only is this dissection a rather clever one, but it also has a fascinating prop-

erty as described by Dudeney. In the solution to the puzzle, Dudeney notes of the dissec-

tion that, “... the four pieces form a sort of chain, and that when they are closed up in

one direction they form the triangle, and when closed in the other direction they form the

square.” That is to say, the dissection is hinged (see Figure 11). By hinged, what is meant

is that the subregions of the dissection can remain attached to certain neighboring pieces

by one vertex per neighbor during the process of translation and rotation.
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5. WALLACE-BOLYAI-GERWIEN THEOREM

The preceding puzzles are all rearrangement puzzles, relying on the isometries of

translation, rotation, and reflection for their particular dissections. For each puzzle, it

follows necessarily that the solution arrangements all share the same area as the origi-

nal, undissected polygon: the stomachion’s square or double-square rectangle, the tan-

gram’s square, and the haberdasher’s triangle. Each dissection requires several, often sub-

tle, steps. From this, a question arises: is it possible to take any two polygons of the same

area and dissect the first of them in such a way that the resulting pieces can be rearranged

to cover the second? Could such a dissection be arbitrarily described? The answer to both

questions turns out be yes.

As is often the case in mathematics, the discovery of these answers and the result-

ing theorem and proof was made independently by a few different mathematicians around

the same time: William Wallace in 1807, Farkas Bolyai in 1833, and Paul Gerwien in 1835.

Their collective discovery is the Wallace-Bolyai-Gerwien (WBG) theorem which states that

two polygons are congruent by dissection if and only if they have the same area.

Definition 5.1 (Scissors Dissection): For an arbitrary polygon P , a finite union of smaller

polygons (P = P1 ∪ ... ∪ Pn) such that the smaller polygons have pairwise disjoint interiors

is called a scissors dissection.

Definition 5.2 (Scissors Congruence): Two polygons P , Q are scissors congruent if there

are dissections (P = P1 ∪ ... ∪ Pn, Q = Q1 ∪ ... ∪ Qn) such that Pk
∼= Qk. The term is also

interchangeable with congruent by dissection.

The process to prove the WBG theorem is straightforward: since the isometries in

two-dimensions are transitive, it suffices to show that any simple polygon is congruent by

dissection with an intermediate polygon. The two common choices for this intermediate

are a square of equivalent area or a rectangle with side lengths 1 and A where A is the

area of the original polygon. We opt for the latter in this work.
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Definition 5.3 (Simple polygon): A polygon P with no two non-consecutive intersecting

edges is called a simple polygon. There is a well-defined bounded interior and unbounded

exterior for a simple polygon, where the interior is surrounded by edges. When referring to

P , the convention is to include the interior of P .

Definition 5.4 (Convex vertex): A vertex is said to be a convex vertex if the measure of

the internal angle formed by it and its two adjacent vertices is contained in the open set

(0, 180).

Definition 5.5 (Reflex vertex): A vertex is said to be a reflex vertex if the measure of

the internal angle formed by it and its two adjacent vertices is contained in the open set

(180, 360).

Lemma 5.1: Every simple polygon has at least one convex vertex.

Proof. Let P be an arbitrary simple polygon. Choose a right-most vertex of P . Suppose

this vertex is reflex. This immediately contradicts our choice of a right-most vertex: were

the vertex reflex, it could not be right-most. Thus the vertex is convex.

The preceding proof is a simple way to demonstrate an apparently obvious truth.

As we shall see, not all such “obvious truths” are as simple to demonstrate.

Definition 5.6 (Triangulation): For a given simple polygon P , a triangulation of P is a

scissors dissection of P where every polygonal subregion is a triangle. If such a dissection

exists for P , it is said that P can be triangulated.

Lemma 5.2: Any simple polygon can be triangulated.

Proof. Let n be the number of vertices (and sides) of a given simple polygon P . For n =

3, the given polygon is a triangle and the statement holds trivially. Proceeding inductively,

for a given polygon P with n > 3 vertices, suppose that every polygon with k < n vertices

can be triangulated. Label the vertices of P v1, v2, ..., vn such that vj is adjacent to vj+1

and vn is adjacent to v1.
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Choose a convex vertex vi and consider its neighbors, vi−1 and vi+1. Draw the seg-

ment vi−1vi+1. One of two cases will be true.

1. The open segment vi−1vi+1 will pass entirely through the interior of P .

2. The open segment vi−1vi+1 will intersect the boundary of P in at least one point.

For case 1, the open segment vi−1vi+1 divides P into two regions: △vivi−1vi+1 and

P ′ = P - △vivi−1vi+1. By construction, P ′ has n−1 vertices and, by the induction hypoth-

esis, can also be triangulated. Hence then entire polygon P can be triangulated by adding

△vivi−1vi+1 to the triangulation of P ′.

For case 2, △vivi−1vi+1 contains at least one vertex of P in its interior. Let L be

the collection of lines parallel to vi−1vi+1 passing through △vivi−1vi+1. Starting from v and

moving towards vi−1vi+1, let l be the first line in L that intersects a vertex of P . Call this

vertex vj. Draw the segment vivj. Since vivj passes entirely through the interior or P , it

separates P into two polygonal regions, both with fewer than n vertices and the result fol-

lows by induction.

Knowing that any polygon can be triangulated greatly simplifies the proof as it re-

duces the scope of polygons to one of the easiest to work with. While any such triangula-

tions would immediately be a rearrangement for a number of other polygons, as demon-

strated by both the tangram and the stomachion, it is not sufficient for the statement of

the WBG theorem. For that, more must be known about the individual triangles.

Lemma 5.3: Any triangle is scissors congruent with a rectangle of the same area

Proof. See Figure 12 for an image of the following dissection. Let △ABC be an arbitrary

triangle. Without loss of generality, assume angles ∠ABC and ∠ACB are acute. Let D

and E be the midpoints of AB and AC respectively. Segment DE is parallel to BC. To

prove this, consider the following:

1. ℓ(AD) = 1
2
ℓ(AB)
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2. ℓ(AE) = 1
2
ℓ(AC)

3. △ABC ∼ △ADE, by SAS similarity

4. ∡ABC = ∡ADE, since the triangles are similar

5. AB is a transversal cutting BC and DE with ∠ABC and ∠ADE corresponding an-

gles

6. Since the corresponding angles are of equal measure, BC ∥ DE

Let point F on DE be such that AF ⊥ DE. Extend DE from D to point G, where G

is such that BG ⊥ DE and BG ⊥ BC. Similarly, extend DE from E to point H such

that CH ⊥ DE and CH ⊥ BC. Now we claim that △BGD is congruent to △DAF and

△CHE is congruent to △AFE. First, we show that △BCD ∼= △AFD.

1. ∠DBG ∼= ∠DAF by alternate interior angles

2. ∠BDG ∼= ∠ADF by alternate interior angles

3. BD ∼= DA since D is the midpoint of AB

4. △BCD ∼= △AFD by ASA

Next, we show that △CHE ∼= △AFE.

1. ∠CEH ∼= ∠AEF by alternate interior angles

2. ∠ECH ∼= ∠EAF by alternate interior angles

3. CE ∼= EA since E is the midpoint of AC

4. △CHE ∼= △AFE by ASA

Since BGHC forms a rectangle with regions BCD, CHE, and BDEC congruent to the

regions AFD, AFE, and BDEC of △ABC, the rectangle BGHC is congruent by dissec-

tion with △ABC. Since the triangle was arbitrarily chosen, any triangle can be dissected

and rearranged into a rectangle of the same area.
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It is at this point where the two previously mentioned approaches diverge. The

steps involved for the dissection into a square are similar ending with an appeal to the

Pythagorean theorem. We proceed with dissecting into a 1× A rectangle.

Lemma 5.4: A rectangle of side lengths a and b can be dissected into a rectangle of side

lengths c and d if ab = cd.

Proof. Let ABCD and DEFG be rectangles arranged as in Figure 13 or Figure 14. In ei-

ther case, let ℓ(AB) = b, ℓ(EF ) = d, ℓ(AD) = a, and ℓ(ED) = c. Draw the line segment

AG. This segment with either pass entirely through the interior of both rectangles or part

of the segment will be outside both rectangles. We first consider the case where the seg-

ment passes entirely through the interior.

Case 1: Line segment stays in the interior of at least one rectangle from endpoint to

endpoint.

As in Figure 13, AG passes through the edge of rectangle ABCD at point H and

through the edge of rectangle DEFG at point I. We seek to describe the coordinates of

H and I. By considering the points as being on a Cartesian grid with point D being the

origin, the equation describing the line segment AG is

x

d
+

y

a
= 1

For point H, y = c since point H is on the edge of DEFG. Hence,

x

d
+

c

a
= 1

x = d− cd

a

x = d− ab

a

x = d− b

Thus, point H is at (d − b, c). Similarly, point I is on the edge of ABCD and thus x = b

14



for point I. So,

b

d
+

y

a
= 1

y = a− ab

d

y = a− cd

d

y = a− c

Thus, point I is at (b, a− c).

Having established where AG intersects ABCD and DEFG, we need to show that

the resulting regions are congruent. We first show that △AEH ∼= △ICG. Considering the

diagram in Figure 13, note that the following relations hold.

ℓ(AE) = a− c = ℓ(IC)

∠AEH = 90◦ = ∠ICG

ℓ(EH) = d− b = ℓ(CG)

Thus, by SAS, △AEH ∼= △ICG. The other pair of triangles, △ABI and △HFG, are

similarly shown to be congruent.

ℓ(AB) = d− (d− b) = b = ℓ(HF )

∠ABI = 90◦ = ∠HFG

ℓ(BI) = a− (a− c) = c = ℓ(FG)

Thus by SAS, △ABI ∼= △HFG. The remaining region, DEHIC, is clearly congruent

to itself. Thus, for the first dissection case, the rectangles ABCD and DEFG are scissors

congruent.

Case 2: Part of the line segment is external to both rectangles.
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While this case can be handled directly, it is simpler to reduce it to Case 1 through

intermediate steps. To best describe this process of intermediate steps, it is useful to know

when this situation arises. The result is the following statement:

For two rectangles with side lengths a, b, and c, d, if max{a, b} < 1
2
max{c, d}, then

the dissecting segment used in Figures 13 and 14 will be partially external to both rectan-

gles.

Proof : Without loss of generality, let b = max{a, b} and d = max{c, d}. Align the

rectangles as in Figure 14. The dissecting segment AG will exit rectangle ABCD at point

H, which, as before, exists as point (b, a − c). For AG to be external to both ABCD and

DEFG, the inequality a− c > c must be true. And so,

a− c = a− ab

d
> a−

a1
2
d

d
=

1

2
a

=⇒ 1

2
a > c

And the desired inequality follows. Thus, if max{a, b} < 1
2
max{c, d}, AG is partially ex-

ternal to both ABCD and DEFG.

Knowing when case 2 occurs, we reduce it to case 1 by dissecting ABCD into a

rectangle with side lengths a/2 and 2b. While it may be necessary to repeat this process

more than once, each step will halve the height and double the width. Since Euclidean

geometry is Archimedean, there exists some number k ∈ N such that 2kb > d/2. And so,

for case 2, rectangle ABCD will need to be halved k times before the result rectangle can

be dissected into DEFG via case 1.

Theorem 5.5 (Wallace-Bolyai-Gerwein): Two polygons are scissors congruent if and only

if they have the same area.

Proof. For any two polygons P,Q of equal area A, both can be dissected first into separate

collections of triangles by Lemma 5.2, then the collections of triangles into collections of

rectangles by Lemma 5.3. Next, by Lemma 5.4 the collections of rectangles can be trans-
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formed into collections of 1 × Ak rectangles where Ak is the area of the k-th rectangle in

the given collection. Finally, these collections can each be transformed into singular 1 × A

rectangles by stitching rectangles of each collection together on their edges. The result-

ing 1 × A rectangles are clearly scissors congruent with each other, and P and Q are each

scissors congruent with the 1 × A rectangle. And thus, by the transitivity of congruence,

P ∼= Q and both directions of the proof are satisfied.

The resulting dissection is useful only in demonstrating the possibility of such a dis-

section and relation between any two polygons of equal area. Attempting to actually per-

form the dissection would result in pieces too small to really use and far more pieces than

necessary. Indeed, simpler dissections for a pair of specific polygons is usually the point of

a dissection puzzle. Rather, the beauty of the WBG dissection lies in its arbitrary nature:

all that needs to be known is that the polygons are simple and have the same area.

It follows readily that scissors congruence is an equivalence relation for the poly-

gons of Euclidean two-space with the area of the polygon being its equivalence class. As

proven above in the WBG theorem, all one needs to know to determine whether or not

two polygons are scissors congruent is the area of the two polygons being compared. The

natural question about whether or not volume is likewise the sole determinant of equiva-

lence class for Euclidean three-space is the topic of the next section.
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6. DEHN INVARIANT

After the proof of the Wallace-Bolyai-Gerwein theorem, the question of whether an

equivalent result holds in three dimensions followed naturally. This question about scis-

sors congruence in three Euclidean dimensions became the third of Hilbert’s unanswered

questions for the International Congress of Mathematics. Prior to the convening of the

Congress, Max Dehn, a protégé of Hilbert’s, successfully demonstrated the conclusion was

negative. That is, equal volume alone is not sufficient for two polyhedra to be scissors con-

gruent.

We will see how Dehn reached his conclusion by tracing similar argumentation and

proofs as found in [2]. First, we expand a few of our earlier definitions into their three-

dimensional equivalents. We will also define a critical term for understanding Dehn’s work:

the dihedral angle.

Definition 6.1 (Scissors Dissection (Polyhedra)): For an arbitrary polyhedron P , a finite

union of smaller polyhedra (P = P1∪...∪Pn) such that the smaller polyhedra have pairwise

disjoint interiors is called a scissors dissection of a polyhedron.

Definition 6.2 (Scissors Congruence (Polyhedra)): Two polyhedra P , Q are scissors

congruent if there are dissections (P = P1 ∪ ... ∪ Pn, Q = Q1 ∪ ... ∪Qn) such that Pk
∼= Qk.

Definition 6.3 (Dihedral Angle): The angle between two faces of a polyhedron from a

shared edge is called the dihedral angle.

Suspecting that equal volume was insufficient for two polyhedra to be scissors con-

gruent, Dehn set out to find another invariant property of scissors congruent polyhedra.

What he found was far from intuitive: a tensor group joining edge lengths with their re-

spective dihedral angles. As shall be shown, a given polyhedron has a value from this group

that does not change under scissors dissection. As is custom, this invariant bears the name

of its discoverer: the Dehn invariant. We first define the underlying group, which we call

the Dehn tensor group.
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Definition 6.4 (Dehn tensor group): Let G be R
N

ZR/2πZ. This group contains the set

of all expressions of the form

(a1 ⊗ ϕ1) + (a2 ⊗ ϕ2) + ...+ (an ⊗ ϕn)

where ai ∈ R and ϕi ∈ R/2πZ with the elements of G subject to the following relations:

1. a1 ⊗ b+ a2 ⊗ b = (a1 + a2)⊗ b

2. a⊗ b1 + a⊗ b2 = a⊗ (b1 + b2)

3. a ∗ z ⊗ b = a⊗ b ∗ z, where z ∈ Z

4. a⊗ b = a⊗ (b+ zπ), where z ∈ Z

Properties 1 and 2 of the group R
N

ZR/2πZ each parallels a property of three-

dimensional scissors dissections. Property 1 indicates that if a cut splits an edge into two

pieces, the individual pieces together yield the same value as the entire edge. Similarly,

Property 2 indicates that if a cut splits a dihedral angle into two sub-angles, the two sub-

angles put together are equivalent to the original dihedral angle. Property 3 is a conse-

quence of the definition of the tensor group, but it does have a geometric application:

for any integer multiple of identical polyhedral pieces, the overall value does not change

whether the edge lengths or dihedral angles are joined together. Property 4 is a conse-

quence of both Property 2 and the nature of modulo group R/2πZ that means, geomet-

rically speaking, the addition of any integer multiple of π does not change the value mea-

sured.

By definition, the operation of addition in G is both associative and commutative.

By establishing the existence of an identity of G and additive inverses, we will see that G

is an abelian group.
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Theorem 6.1 (Dehn tensor group is abelian): Proof. Note that for any a ∈ R,

a⊗ 0 = a⊗ 0 + 0⊗ 0 = a⊗ 0 + (a− a)⊗ 0

= a⊗ 0 + a⊗ 0 +−a⊗ 0 = a⊗ 0 +−a⊗ 0

= 0⊗ 0

by Properties 1 and 2. By similar argumentation, it can be shown that 0⊗ϕ = 0⊗0. Thus,

for any a ∈ R, ϕ ∈ R/2πZ,

0⊗ 0 + a⊗ ϕ = a⊗ 0 + a⊗ ϕ = a⊗ (0 + ϕ) = a⊗ ϕ

establishing that 0⊗ 0 is the additive identity of G. The existence of additive inverses also

follows readily: for any a ⊗ ϕ, both −a ⊗ ϕ and a ⊗ −ϕ yield 0 ⊗ 0. Therefore, since an

identity element and additive inverses exist, G is an abelian group.

Knowing the identity of the Dehn tensor group, there is a useful fact about what

values are not equivalent to 0⊗ 0.

FACT 6.1: If x /∈ Q, y ⊗ xπ ̸= 0.

With the underlying space defined, we may now define the Dehn invariant. There

are also a few useful theorems concerning the Dehn invariant in application. We prove

these as well.

Definition 6.5 (Dehn invariant): We define the Dehn invariant of P (denoted as δ(P ))

by taking each edge length of P , li, and the corresponding dihedral angle, ϕi, and consider

their sum: δ(P ) =
Pm

i=1 li ⊗ ϕi where m is the number of edges of P .

Theorem 6.2: If P , P ′ are polyhedra such that P ∼= P ′, then δ(P ) = δ(P ′).

Proof. This immediately follows from the fact that any congruent polyhedra necessarily

have congruent edges and dihedral angles and thus equal Dehn invariants.
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Theorem 6.3: If P1, P2 are polyhedra with nonoverlapping interiors, then δ(P1 ∪ P2) =

δ(P1) + δ(P2).

Proof. For P1 ∪ P2, the edges, dihedral angles, and faces that are unchanged by the union

of P1 and P2 clearly do not change with respect to their Dehn measures. For those por-

tions that are affected, there are three cases to consider for joining two polyhedra together:

1) an edge of P1 and P2 can be fused together to form P1 ∪ P2; 2) two edges of P1 and P2,

each having a common dihedral angle θ, can be fused at the end to produce a single edge

of P1 ∪ P2; or 3) two edges of P1 and P2 having the same edge lengths and supplemental

dihedral angles can be joined to make a new face of P1 ∪ P2.

Case 1: An edge from each P1 and P2 are fused into a single edge of P1 ∪ P2. This

new joined edge in P1 ∪ P2 will have a dihedral angle θ = θ1 + θ2 where θ1 and θ2 are the

corresponding dihedral angles from P1 and P2 respectively. Thus the Dehn invariant of the

edge in P1∪P2 is (a⊗θ) = (a⊗θ1+θ2) = (a⊗θ1)+(a⊗θ2) and thus the overall contribution

to δ(P1 ∪ P2) is unchanged.

Case 2: Two edges of P1 and P2 have the same dihedral angle θ and are joined at

the end to form one longer edge with dihedral angle θ. The edge in P1 ∪ P2 will have an

edge length of a = a1 + a2 where a1, a2 are the lengths of the corresponding edges from P1

and P2 respectively. For this edge in P1∪P2, the Dehn measure is thus (a⊗ θ) = (a1+a2⊗

θ) = (a1 ⊗ θ) + (a2 ⊗ θ) and, as before, the contribution to δ(P1 ∪ P2) does not change.

Case 3: Two edges of P1 and P2 with the same length and supplemental dihedral

angles are joined into a new face of P1 ∪ P2. In this case, there is neither edge nor dihedral

angle to work with in P1∪P2. Even so, considering the sum of the separate Dehn measures

of P1 and P2 yields (a ⊗ θ1) + (a ⊗ θ2) = (a ⊗ π) = 0. Thus, even without a corresponding

edge or dihedral angle to measure in P1 ∪ P2, the δ(P1 ∪ P2) does not change.

With the Dehn invariant defined, we are equipped to see why volume was insuf-

ficient for scissors congruence in three dimensions. Dehn himself worked with the cube

and the tetrahedron in his attempts to find an equivalent of the WBG theorem. When
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he could not find a suitable dissection, he found the tensor space and invariant above. We

shall here demonstrate Dehn’s result: the cube and tetrahedron have different Dehn invari-

ants, and are thus not scissors congruent.

Theorem 6.4: The Dehn invariant of a cube is 0.

Proof. Without loss of generality, let P be the unit cube. It is obvious that every dihedral

angle of P is π
2
. Thus,

δ(P ) =
nX

i=1

(ai ⊗ θi) =
12X
i=1

(1⊗ π

2
) = 12(1⊗ π

2
)

= 1⊗ 12
π

2
= 1⊗ 6π = 1⊗ 0 = 0

as claimed.

The various values of δ can be thought of as equivalence classes corresponding to

entire families of polyhedra that, volume being equal, are scissors congruent. To see that

the Dehn invariant of the tetrahedron is not 0, we first prove a useful theorem concerning

rational values of the cosine function.

Theorem 6.5: If cos θ = m
n
where m, n ∈ Z and θ = p

q
π where p

q
∈ Q, then cos θ =

0,±1
2
,±1.

Proof. By DeMoivre’s theorem, we have that

(cos θ + i sin θ)q = cos(qθ) + i sin(qθ)

= cos(pπ) + i sin(pπ)

= ±1
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Similarly,

(cos θ − i sin θ)q = cos(qθ)− i sin(qθ)

= cos(pπ)− i sin(pπ)

= ±1

The above indicates that both (cos θ + i sin θ)q and (cos θ − i sin θ)q are algebraic integers.

Since the algebraic integers form a ring, (cos θ + i sin θ)q + (cos θ − i sin θ)q = 2 cos θ is

an algebraic integer by closure. By hypothesis, 2 cos θ = 2m
n

and so 2m
n

is also an algebraic

integer. But every rational algebraic integer is an integer, so 2m
n

= k ∈ Z and that m
n
= k

2
.

Finally, since cos θ = k
2
, k = 0,±1,±2 and the desired outcome follows.

Theorem 6.6: The Dehn invariant of a regular tetrahedron is non-zero.

Proof. Without loss of generality, let P be a regular tetrahedron of side lengths 1. To find

the dihedral angles of P , we place the vertices of P at four convenient points:

(0, 0, 0), (

√
2

2
,

√
2

2
, 0), (

√
2

2
, 0,

√
2

2
), (0,

√
2

2
,

√
2

2
)

Next, we take the midpoint of (0, 0, 0) and (
√
2
2
,
√
2
2
, 0): (

√
2
4
,
√
2
4
, 0). Taking this point and

the remaining two vertices of P forms an isosceles triangle with two legs of length
√
3
2

and

one leg of length 1. The dihedral angle θ is opposite the leg of length 1, and thus by the

law of cosines

1 = (

√
3

2
)2 + (

√
3

2
)2 − 2(

√
3

2
)2 cos θ

=
3

4
+

3

4
− 2

3

4
cos θ =

3

2
(1− cos θ),

cos θ =
1

3

By 6.5, θ = arccos(1
3
) /∈ Q and thus 1

2
⊗ θ ̸= 0 and δ(P ) ̸= 0 by Fact 6.1.
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Since the Dehn invariants of the cube and tetrahedron are different, it is thus im-

possible for them to be scissors congruent. With this result, we have Max Dehn’s counter-

example and answer to Hilbert’s Third Question. Max Dehn showed that it was neces-

sary for two polyhedra to have the same volume and Dehn invariant for them to be scis-

sors congruent. With the narrow focus of Dehn’s work being limited to a comparison of

the cube and tetrahedron, it remained an open question whether equal volume and Dehn

invariant were sufficient in all cases to establish scissors congruence. Jean-Pierre Sydler

showed in 1965 that the combination of volume and Dehn invariant was both necessary

and sufficient for scissors congruence in three dimensions. We omit the proof of the Dehn-

Sydler theorem here as its proof is sufficiently complicated to warrant its own work.

Theorem 6.7 (Dehn-Sydler): Two polyhedra are scissors congruent if and only if they

have the same volume and Dehn invariant.

While Dehn was able to answer one of Hilbert’s infamous questions, there was more

to come in the early twentieth century for our understanding of geometry. The Third Ques-

tion and Dehn’s work were concerned with straight planar cuts. It left open the question

of what would happen if the pieces were not so cleanly defined. As we shall see, that ques-

tion led to one of the most astonishing results in modern mathematics.
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7. BANACH-TARSKI PARADOX

With the discovery of the Dehn invariant, the next progression in dissections was

to consider arbitrary point sets of a given region instead of straight-edge cuts. The intu-

itive expectation is that by employing a more malleable class of sets in three dimensions,

volume alone is sufficient to determine dissection equivalence. The surprising truth is that

using arbitrary point sets out of a bounded region in R3 results in a true paradox. In this

section, we trace the structure of proofs and arguments laid out in [4]. The first step is to

give a precise definition of paradoxical.

Definition 7.1 (G-Paradoxical): Let X be a set and G a group acting on X. Suppose

E is a non-empty subset of X. E is said to be G-paradoxical if there exist A, B ⊂ E

each having finite pairwise disjoint partitions A1, ..., An and B1, ..., Bm and g1, ..., gn and

h1, ..., hm ∈ G such that E =
Sn

i=1 gi(Ai) and E =
Sm

j=1 hj(Bj).

Thus far, we have considered the equivalence (or non-equivalence) of particular re-

gions through scissors congruence. The consideration of the boundaries of these regions,

as previously mentioned, is ignored in this approach. If we wish to consider regions as sets

and not as geometric regions, a different approach is required.

Definition 7.2 (Equidecomposability): Let X be a set and G a group acting on X and

A, B ⊆ X. A and B are said to be equidecomposable with respect to G (or G-equidecomposable)

if A and B can be finitely partitioned such that

A =
n[

i=1

Ai, B =
n[

i=1

Bi

Ai ∩ Aj = ∅ = Bi ∩Bj, i < j ≤ n

and there are g1, ..., gn ∈ G such that gi(Ai) = Bi. We denote this relation by A ∼G B.

For simplicity, the subscript will be dropped if G is the complete isometry group for the

underlying space or is otherwise obvious.
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Theorem 7.1: Let X be a set and G a group acting on X. Further, let E, E ′ ⊆ X be

equidecomposable. If E is paradoxical with respect to G, so is E ′.

Proof. Let {Ei}ni=1, {gi}ni=1 respectively be the partition of E and the collection of ele-

ments of G such that X =
Sn

i=1 gi(Ei). Let {E ′
j}mj=1, {hj}mj=1 respectively be the parti-

tion of E ′ and the collection of elements of G such that E =
Sm

j=1 hj(E
′
j). To show that

E ′ is G-paradoxical, first, for each E ′
j and Ei, let {E ′

j,i}mj=1 be the partition of E ′
j such that

hj(E
′
j,i) ⊂ Ei. Then,

X =
n[

i=1

gi(Ei)

=
n[

i=1

gi(
m[
j=1

hj(E
′
j,i))

=
n[

i=1

m[
j=1

gihj(E
′
j,i)

Since G is a group, gihJ ∈ G for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Further, by construction,

Ej,i ∩ Ek,l = ∅ for any j ̸= k, i ̸= l. Thus, E ′ is G-paradoxical.

This approach to equivalence drops any reference to polygonal regions and is purely

focused on sets. The set-theoretic approach allows for a far broader set of regions to be

considered. We will establish more about the equidecomposable relation as it will be used

extensively throughout this section. First, we notate a relation between two sets, ⪯, by

A ⪯ B if and only if there exists B′ ⊂ B such that A ∼ B′.

Theorem 7.2 (Banach-Schröder-Bernstein Theorem): Let X be a set, G a group acting

on X, and A, B ⊆ X. If A ⪯ B and B ⪯ A, then A ∼G B. This establishes ⪯ as a partial

ordering on P(X) over the ∼G-classes.

Proof. The relation ∼ satisfies the following two conditions:

(a) If A ∼ B, then there exists a bijection g : A → B such that, for C ⊆ A, C ∼ g(C)

26



(b) If A1 ∩ A2 = ∅ = B1 ∩B2, A1 ∼ B1, and A2 ∼ B2, then A1 ∪ A2 ∼ B1 ∪B2.

The only other assumption for this proof is that ∼ satisfies (a) and (b) as an equivalence

relation on P . Let f and g be bijections as guaranteed by (a) defined as f : A → B1,

g : A1 → B. Let {C}n be a sequence of sets defined by C0 = A \ A1 and Cn+1 = g−1f(Cn).

Further define C such that C =
S∞

n=0 Cn. We verify that g(A \ C) = B \ f(C).

g(A \ C) = g(A) \ g(C) = B \ g(C)

= B \ [g(C0) ∪ gg−1f(C0) ∪ ...]

= B \ [∅ ∪ f(C0) ∪ f(C1) ∪ ...]

= B \ f(
∞[
n=0

Cn)

= B \ f(C)

Thus, the choice of g implies that A\C ∼ B\f(C). Our choice of f implies that C ∼ f(C)

and, by (b), (A \ C) ∪ C ∼ (B \ f(C)) ∪ f(C) and A ∼ B follows.

Though the applications of scissors congruence and equidecomposability are quite

different, the underlying operations are similar. Both argue that if the subregions described

in each are equivalent, then the overall regions are equivalent. A natural question arises: is

there any relation between scissors congruence and equidcomposability? Recall that scis-

sors congruence ignores particular subsets of the compared regions, namely the boundaries.

For there to be any relation between scissors congruence and equidcomposability, these

subsets must be accounted for. It turns out that there is such a way to relate the two.

Theorem 7.3: If A is a bounded set in the plane with non-empty interior and T is a set

of finitely many bounded line segments disjoint from A, then A ∼ A ∪ T .

Proof. Let D ⊆ A be a disc with radius r. For every t ∈ T , we may assume that t may be

subdivided so that each piece is of length less than r since each t ∈ T is bounded. Choose
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any rotation of D about its center with infinite order, call it θ. Choose R to be any radius

of D excluding its center and let R = R ∪ θ(R) ∪ θ2(R) ∪ .... Then, for t ∈ T , D ∪ t ⪯ D

because θ(R) is disjoint from R and D \ R. Thus, for any isometry τ mapping t into R,

D ∪ t = (D \ R) ∪ R ∪ t ∼ (D \ R) ∪ θ(R) ∪ τ(t) ⊆ D. Clearly D ⪯ D ∪ t, and so by

the Banach-Schröder-Bernstein theorem, D ∼ D ∪ t. Repeating the above process for each

element of T , it follows that D ∼ D ∪ T . But then, (A \ D) ∪ D ∼ (A \ D) ∪ D ∪ T , and

A ∼ A ∪ T as required.

The method used in Theorem 7.3 illustrates a particular feature of working with

sets and group actions: absorption. Troublesome sets can be handled by simply absorbing

them into another set. The notion of absorption to bring otherwise troublesome sets into

an equidecomposable relationship will be used extensively throughout this section. First,

we apply this approach to establish a relationship between scissors congruence and equide-

composability.

Theorem 7.4: If two polygons P1 and P2 are scissors congruent, they are equidecompos-

able.

Proof. For P1 and P2, let Q1 and Q2 be the union of the open sets in the respective poly-

gon given by the hypothesized dissection. It follows readily that Q1 ∼ Q2. What needs

to be shown is that P1 ∼ Q1 and P2 ∼ Q2; that is, that the boundaries of the polygonal

pieces can be accounted for. This follows readily from Theorem 7.3 by setting A = Qi and

T = Pi \Qi. Thus, P1 ∼ Q1 ∼ Q2 ∼ P2 and P1 ∼ P2 follows.

We shall see that the converse of Theorem 7.4 does not hold as a consequence of a

later theorem. That later result is a consequence of what sets are equidecomposable. The-

orem 7.3 gave a glimpse of what counter-intuitive sets are equidecomposable. As curious

as it is to be able to absorb a set into another, we shall see that the reverse is also possi-

ble: it is possible to remove subsets without affecting the overall set. Our focus turns to

exploring a famous result of this sort of set extraction: the Banach-Tarski paradox.
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Informally, the set E is said to be paradoxical with respect to G if there are two

disjoint subsets of E – A and B – such that A and B can each be made to cover E via

rearrangements through G. Further, A and B can be chosen such that A∪B = E and thus

A ∪ B, g(A), and h(B) are partitions of E. That A and B can be chosen in such a way is

a provable consequence of the Banach-Schröder-Bernstein theorem.

One such group which will be instrumental throughout the rest of this work is the

free group of rank 2. Recall that a group F is said to be free if there exists a set M such

that every element of F is a word consisting of letters of M . M is said to be the generat-

ing set of F . Letting M be of the form {σ, σ−1 : σ ∈ M}, the elements of F are said to

be equivalent if they differ only by finitely many pairs of letters of the form σσ−1. A word

is said to be reduced if it contains no such adjacent inverse letter pairs. For simplicity, all

subsequent references to free groups will be in terms of reduced words only. The identity

of F , e, is the empty word. F has concatenation as its group action. For any two words

a, b in F , ab will be the unique reduced word after any and all resulting inverse pairs are

resolved. The rank of the free group is the number of inverse pairs in the generating set.

Theorem 7.5: A free group F of rank 2 is F -paradoxical where F acts on itself by left

multiplication.

Proof. Let σ and τ be the free generators of F . If ρ is any reduced combination of σ, σ−1,

τ , and τ−1, then let W (ρ) be the set of all words, after reduction, begin on the left with ρ.

Consider then that,

F = {e} ∪W (σ) ∪W (σ−1) ∪W (τ) ∪
∞[
n=1

τ−n ∪
∞[
n=1

τ−n(W (σ) ∪W (σ−1))
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Separate F into A and B with

A = W (σ) ∪W (σ−1),

B = {e} ∪W (τ) ∪
∞[
n=1

τ−n ∪
∞[
n=1

τ−n(W (σ) ∪W (σ−1)).

Then it follows readily that

F = W (σ) ∪ σW (σ−1),

F = {e} ∪W (τ) ∪
∞[
n=1

τ−n ∪ τ(
∞[
n=1

τ−n(W (σ) ∪W (σ−1))

and thus F is paradoxical with respect to left-multiplication.

In addition to groups, semigroups are also of interest. Recall that a semigroup is

a set with an associative binary operation and an identity. Definition 7.1 cannot be read-

ily applied to semigroups as they lack inverses. Even so, there are useful results involving

semigroups. A free semigroup is similar to a free group: both are the set of all words gen-

erated from a generating set through concatenation. The primary difference is that the

generating set of the free semigroup consists only of unique letters and not inverse pairs.

The measure of rank is also the number of these letters instead of inverse pairs. Should a

free semigroup be embedded within a group, it is referred to as a semisubgroup.

Theorem 7.6: Any group having a free semigroup of rank 2 contains a paradoxical set.

Proof. Let G be a group with a free semisubgroup, call it S. Further, let σ and τ be the

free generators of S. Let A ⊂ S be such that every element of A has σ as its left-most

element; similarly for B ⊂ S with τ . It follows readily that A = σ(S) and B = τ(S).

Then it immediately follows that S is G-paradoxical as σ−1, τ−1 ∈ G and σ−1(A) = S =

τ−1(B).

This result is useful in that it allows for an easier examination of the paradoxicality
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of a given set. Specifically, it only needs to be shown for a particular set that it contains

two independent elements generating a free semigroup for the underlying set to be para-

doxical. Another useful result and its corollary will serve as the basis of our understanding

of the Banach-Tarski paradox.

Theorem 7.7: If G is paradoxical and acts on X without nontrivial fixed points, then X

is G-paradoxical.

Proof. Supposing that G is paradoxical, let {Ai}, {Bj}, {gi}, and {hj} be such that
S

giAi =

G =
S

bjHj. By the Axiom of Choice, we may select exactly one element from each G-

orbit of X – call this set M . It follows that {g(M) : g ∈ G} is a partition of X. Each

family of values in the partition is pairwise-disjoint as G has no nontrivial fixed points in

X. The partition thus serves as a way to transform any given subset of G into a subset of

X: for S ∈ G, S∗ = {g(M) : g ∈ S} ∈ X. When the paradoxical sets in G are transformed

in this manner, they result in paradoxical sets in X. Particularly,
S
giAi = G =

S
hjBj

implies
S

gi(A
∗
i ) = X =

S
hj(B

∗
j ). Disjointedness between the sets of {A∗

i } and {B∗
j } is

preserved through the transformation. Thus {A∗
i } and {B∗

j } form a paradoxical decompo-

sition of X.

Corollary 7.7.1: If F is a free group of rank 2 acting on X with no nontrivial fixed

points, X is F -paradoxical.

Proof. Follows immediately from Theorems 7.5 and 7.7.

Knowing that a set is paradoxical if it contains a free group of rank 2, we seek to

demonstrate the existence of such a group among the isometry group of Euclidean 3-space.

This is the first of the Euclidean isometry groups where such a group is possible; both the

one and two dimensional isometry groups are solvable and thus do not admit a free group

of rank 2. While there are many ways to find a generating set of independent rotations

of S2 – the unit sphere – we focus on one particular pair (and their inverses) found by K.

Satô.
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Definition 7.3 (Satô Rotation):

σ =
1

7

      
6 2 3

2 3 −6

−3 6 2

      τ =
1

7

      
2 −6 3

6 3 2

−3 2 6

      

σ−1 =
1

7

      
6 2 −3

2 3 6

3 −6 2

      τ−1 =
1

7

      
2 6 −3

−6 3 2

3 2 6

      
These rotations are not unique: there are many other independent rotations of S2

that could be used. It must be shown that these rotations are, in fact, independent. As we

work with rotation matrices, recall that SOn(R) is the special orthogonal group. We add

an additional piece of notation for our purposes: SOn(Q) is the subset of SOn(R) with

rational entries.

Theorem 7.8: The two Satô rotations are independent. Thus, if n ≥ 3, SOn(Q) has a

free group of rank 2

Proof. It must be demonstrated that there is no reduced, nontrivial word W comprised of

σ±1, τ±1 such that W = I. Suppose that W is such a word. By conjugating W by a suf-

ficiently high enough power of σ, we can assume that W has σ as its right-most term. For

simplicity, consider the Satô rotations without the scalar 1
7
and instead consider the val-

ues of W modulo 7. This suffices as the norm of each row of the Satô matrices is 7. Define

four vector sets:

Vσ = {(3, 1, 2), (5, 4, 1), (6, 2, 4)},

Vσ−1 = {(1, 5, 4), (2, 3, 1), (4, 6, 2)},

Vτ = {(3, 2, 6), (5, 1, 3), (6, 4, 5)},

Vτ−1 = {(3, 5, 1), (5, 6, 4), (6, 3, 2)}
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Observe that W = σknτ kn−1 ...τ k2σk1σ with ki ∈ Z and k1 ≥ 0 by construction. Starting

with the right-most σ term, note that its first column c is (6, 2,−3) ≡ (6, 2, 4) mod 7 ∈ Vσ.

The elements of the V sets behave according to the following four properties:

1. For any v ∈ Vσ ∪ Vτ ∪ Vτ−1 , σv ∈ Vσ.

2. For any v ∈ Vσ−1 ∪ Vτ ∪ Vτ−1 , σ−1v ∈ Vσ−1 .

3. For any v ∈ Vτ ∪ Vσ ∪ Vσ−1 , τv ∈ Vτ .

4. For any v ∈ Vτ−1 ∪ Vσ ∪ Vσ−1 , τ−1v ∈ Vτ−1 .

Given that our first column c is in Vσ, we note that, by (1), c remains in Vσ through the

remaining k1 powers of σ that are right-most in W . The next right-most element of W is

either a power of τ or τ−1; either way, c lands in Vτ ∪ Vτ−1 by (3) and (4). The antepenul-

timate element of W is either a power σ or σ−1; either way, c lands in Vσ ∪ Vσ−1 by (1) and

(2). This alternation continues throughout the elements of W and so c is never (1, 0, 0),

contradicting our choice of W . Since the choice of W is arbitrary, there is no W such that

W = I.

Knowing that the Satô rotations are independent, we must show that they act on

some set with no nontrivial fixed points in order to invoke 7.7. The set in question is the

rational sphere (S2 ∩Q3); the Satô rotations act on the rational sphere in a closed manner,

taking rational points only to rational points. Since the Satô rotations do indeed act on

the rational sphere without nontrivial fixed points, the rational sphere admits a paradoxi-

cal decomposition.

Theorem 7.9: The Satô rotations act on the rational sphere with no nontrivial fixed

points.

Proof. Suppose that ω is a nontrivial word comprised of σ± and τ± is a minimal fixed

point. Computing the eigenvectors of the Satô matricies yields axes (2, 1, 0) and (0, 1, 2)

for σ and τ respectively. These axes intersect the unit sphere at either ( 2√
5
, 1√

5
, 0) or (0, 1√

5
, 2√

5
).
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As such, ω cannot be a pure power of a single atom and ω must be of the form ω = σ± . . . τ±

or ω = τ± . . . σ±. Since a fixed point remains fixed under conjugation, we may assume

that ω = τ± . . . σ±. It is useful at this point to consider the quaternion representations of

σ± and τ±. Note that any quaternion denotes a unique, up to a sign, quaternion of norm

1. As such, we may represent σ and τ uniquely with quaternions. A direct computation

yields the quaternions 1√
14
(3,±(2, 1, 0)) and 1√

14
(3,±(0, 1, 2)) for σ and τ respectively. The

quaternion representations of the Satô matricies are far easier to work with for the nec-

essary algebra. To further simplify the computations, we ignore the coefficient of
√
14

−k

where k is the length of a given word. For a given word w, let q(w) = (cw, (Xw, Yw, Zw));

that is, let q denote the integer portion of a given quaternion. Then for ω, the axis of rota-

tion intersects the unit sphere at the points

±(Xω, Yω, Zω)/
p
(X2

ω + Y 2
ω + Z2

ω), and X2
ω + Y 2

ω + Z2
ω would have to be a perfect square

for ω to be a fixed point as supposed. We will show that X2
ω + Y 2

ω + Z2
ω ∈ {3, 5, 6} mod

7 and hence the sum cannot be a perfect square. For an integer-valued quaternion q(w),

let q̄(w) denote the same quaternion reduced mod 7. Note that if, for any such q̄(w), we

multiply q̄ by a mod 7 integer, the quadratic character of X2
w + Y 2

w + Z2
w is unchanged.

This is due to the fact that, for any mod 7 integer m, X2 + Y 2 + Z2 is a mod 7 square

if and only if m2(X2 + Y 2 + Z2) is. Due to this property, we may assume that c = 1

when working with q̄(w). This allows us to demonstrate that, for any of the atoms, the

quadratic character of X2+Y 2+Z2 mod 7 is the same for the atom and any power of that

atom. We demonstrate the fixed nature of the quadratic character by showing that, for

any atom ρ, q̄(ρ) is equivalent to a certain fixed quaternion. For the context of this proof,

we use ≡ to denote the modulo 7 equivalence relation. For the four atoms and k a positive

integer, the following equivalence relations hold:

1. q̄(σk) ≡ (1, (3, 5, 0))

2. q̄(σ−k) ≡ (1, (4, 2, 0))

3. q̄(τ k) ≡ (1, (0, 5, 3))
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4. q̄(τ−k) ≡ (1, (0, 2, 4))

To demonstrate these equivalences, we first consider the base case where k = 1. Note that

the equivalence relation in question is, for a quaternion (c, (x, y, z)), to multiply by c−1

mod 7.

1. q̄(σ) = (3, (2, 1, 0) ≡ (1, (3, 5, 0))

2. q̄(σ−1) = (3, (−2,−1, 0)) ≡ (1, (4, 2, 0))

3. q̄(τ) = (3, (0, 1, 2)) ≡ (1, (0, 5, 3))

4. q̄(τ−1) = (3, (0,−1,−2)) ≡ (1, (0, 2, 4))

Thus, the assertion holds for k = 1. The next step is to show equivalence holds for k = 2

as then we may proceed inductively through any integer power k.

1. q̄(σ2) = (4, (5, 6, 0) ≡ (1, (3, 5, 0))

2. q̄(σ−2) = (4, (2, 1, 0)) ≡ (1, (4, 2, 0))

3. q̄(τ 2) = (4, (0, 6, 5)) ≡ (1, (0, 5, 3))

4. q̄(τ−2) = (4, (0, 1, 2)) ≡ (1, (0, 2, 4))

With these first two cases confirmed, it follows that, no matter the power, the equivalent

quaternion does not change. Thus, in evaluating the modulo 7 quadratic character of ω,

any power of a given atom may be replaced by the atom itself. This allows us to reduce

ω to the form ω = τ±σ± . . . τ±σ±. To demonstrate that the overall quadratic character

of ω does no change, let V = {(1, (1, 1, 5)), (1, (5, 1, 1)), (1, (4, 3, 4)), (1, (6, 5, 6))}. This

set is an invariant set for words of the form τ±σ± and can be easily verified. Thus, moving

leftward through ω, q̄(ω) ∈ V . For each v ∈ V , the sum of squares is equal to 6 mod 7;

the actual sum of squares for ω will be 3 or 5 or 6 mod 7 since we are using equivalence

classes. All that remains to be done is to show invariance among pairs of the component

words. Any such pair of words can be verified to yield a quaternion that exists in V . The
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16 calculations are omitted here, but are easily verifiable. Thus, the sum X2
ω + Y 2

ω + Z2
ω is

never a perfect square, contradicting our choice of ω. Since our choice of ω was arbitrary,

there are no nontrivial rational fixed points generated by σ± and τ±.

Corollary 7.9.1: The rational sphere is paradoxical

Proof. By 7.7 and 7.8.

The ultimate aim is to demonstrate that the entire unit sphere is paradoxical. Re-

call that 7.7 requires that the action act without nontrivial fixed points. Clearly the Satô

rotations act on the unit sphere with nontrivial fixed points: the collection of points where

the axes of rotation intersect the sphere. This collection can be excluded and the remain-

der of the sphere is immediately paradoxical.

Theorem 7.10 (Hausdorff Paradox): There is a countable subset D of S2 such that S2 \D

is SO3(R)-paradoxical.

Proof. Let θ, ϕ be a pair of independent rotations of S2 that are the generators of a free

group, F . For each non-identity rotation of θ or ϕ, there are exactly two fixed points: the

points where the axis of rotation intersects S2. Call the collection of all of these points D.

Since the free group F is countable, D is also countable. For any point P ∈ S2 \ D, and

any f ∈ F , f(P ) ∈ S2 \ D. This is due to the fact that, if g ∈ F fixed f(P ), P would be

a fixed point of f−1gf . Thus F acts on S2 \ D without nontrivial fixed points. Hence, by

corollary 7.7.1, S2 \D is SO3(R)-paradoxical.

There is still a countable set to contend with before we can declare the entire sphere

is paradoxical. Fortunately, a method for handling such as set has already been demon-

strated in 7.3: the process of absorption. We utilize a similar approach for the sphere.

Theorem 7.11: If D is a countable subset of S2, then S2 and S2\D are SO3(R)-equidecomposable.
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Proof. We must demonstrate the existence of a rotation ρ such that the resulting rota-

tional sets D, ρ(D), ρ2(D), ... are all pairwise disjoint. Finding such a rotation is sufficient

as it would then follow that, for D∗ = {ρn(D) : n = 0, 1, 2, ...}, S2 = D∗ ∪ (S2 \ D∗) ∼

ρ(D∗)∪(S2\D∗) = S2\D. To find such a rotation, let ℓ be a line passing through the origin

that misses the countable set D. Then let A be the set of all angles α such that, for some

n ∈ N and some P ∈ D, ρα(P ) ∈ D where ρα is the rotation about ℓ by nα radians. By

construction, A is countable, so we may choose an angle θ /∈ A. Let ρθ be the correspond-

ing rotation about ℓ. Thus, ρnθ (D) ∩D = ∅ if n > 0 and it follows that ρmθ (D) ∩ ρnθ (D) = ∅

for 0 ≤ m < n. Thus the rotations of ρθ are pairwise disjoint as required and the equide-

composability of S2 and S2 \D follows immediately.

It then immediately follows that the unit sphere is paradoxical.

Corollary 7.11.1 (The Banach-Tarski Paradox): The sphere S2 is SO3(R)-paradoxical,

as is any sphere centered at the origin. Moreover, any solid ball in R3 is paradoxical and

R3 is thus paradoxical.

Proof. By combining a few of the preceding results, we have the following:

1. For some countable set D, S2 \D is SO3(R)-paradoxical (thm. 7.10)

2. S2 ∼ S2 \D (thm. 7.11)

3. For A,B ⊂ X, if A ∼ B and A is paradoxical, so is B (thm. 7.1)

Combining the above immediately yields that S2 is SO3(R)-paradoxical. Since none of

the above is dependent on the radius of a given sphere, it also follows that any sphere is

SO3(R)-paradoxical. To explore the paradoxic decompositions of the sphere, it is suffi-

cient to consider spheres centered at the origin as G3 contains all translations. For clar-

ity, we here consider the unit sphere, but the same proof for spheres of any size. The first

decomposition demonstrates that a single point can be absorbed into the sphere: that is,

S2 ∼ S2 \{0}. Consider the radial correspondence P → {αP : 0 < α ≤ 1}. Let P = (0, 0, 1
2
)
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and ρ be a rotation of infinite order about the axis that is the horizontal line in the xz-

plane. Then the set D = {ρn(0) : n ≥ 0} can be used to absorb 0 as ρ(D) = D \ 0 and

thus S2 ∼ S2 \ {0}. The same notion of radial correspondence can be used on R3 \ {0} to

get a paradoxical decomposition of R3 \ {0} using rotations. In the exact same manner as

the sphere, then, R3 \ {0} ∼ R3.

Given that the proofs used to establish the equidecomposability of certain pieces

of the Banach-Tarski Paradox appeal to the Axiom of Choice, it might seem as though an

uncountable number of independent rotations is necessary for the actual decomposition. In

actuality, only two independent rotations are necessary – indeed, the Satô rotations can be

used to generate the decomposition of the Banach-Tarski paradox.

The consequences of the Banach-Tarski paradox are remarkable: from one ball,

we can dissect it into two, three, or thousands of balls all identical to the original. This

bizarre result led many mathematicians of the day to question – if not outright reject –

the Axiom of Choice. However, as we have have seen, paradoxical results do not require

the Axiom of Choice. Particularly, Corollary 7.9.1 demonstrates an equally strange result.

Hence, the Axiom of Choice need not be discarded merely because paradoxicality can re-

sult from it.

While duplication of spheres is an incredible result on its own, that was not all that

Banach and Tarski proved. Starting with duplicating balls, Banach and Tarski also showed

that a ball is equidecomposable with any solid ball of any size. They further abstracted

their work into the following result.

Theorem 7.12 (Banach-Tarski Paradox, Strong Form): If A and B are any two bounded

subsets of R3, each having nonempty interior, then A and B are equidecomposable.

Proof. It is sufficient to show that A ⪯ B as the argument for the reverse is identical.

Choose K and L to be solid balls such that A ⊆ K and L ⊆ B. Let n ∈ N be sufficiently

large such that K may be covered by n overlapping copies of L. Further, let S be a set
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of n non-overlapping copies of L. Then, using corollary 7.11.1 and translations, L can be

duplicated and the copies moved so that S ⪯ L. It immediately follows that A ⊆ K ⪯ S ⪯

L ⊆ B and therefore A ⪯ B as required.

The Banach-Tarski paradox bends our geometric sensibilities of what is possible

with a dissection. Less immediately obvious are the consequences on analysis and measure.

Several of the above theorems forcefully demonstrate that some measures do not exist. In-

deed, many of the above sets used are non-measurable. This is not to say that any and

every set-theoretic approach to dissection involves non-measurable sets. In [4], one of the

later results is the following corollary.

Corollary 7.12.1: In R3, any tetrahedron is equidecomposable with a cube using isome-

tries and Lebesgue-measurable pieces.

Despite the consequences of using sets in dissections, the approach remains useful.

There are a variety of results, including the above corollary, that would be otherwise unob-

tainable. As we have seen, using an arbitrary class of sets for dissections inevitably leads

to a paradox. Thus, to make use of sets in dissection, the paradoxical must be taken along

with the useful.
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8. CONCLUSION

As we have seen, geometric dissection puzzles are several thousand years old and

yet have changed remarkably little. While not as popular today, the stomachion remains

relevant to the study of geometry and geometric puzzles. By contrast, the tangram is still

a staple among introductory geometric puzzles, though it is not as popular as it once was.

Even so, both puzzles are suitable introductions to the concepts of isometries and dissec-

tions.

The discovery of the Wallace-Bolyai-Gerwien theorem greatly improved our under-

standing of geometry. While recreational mathematics is more concerned with finding par-

ticularly clever dissections, such as Dudeney’s haberdasher, the WBG theorem allows us to

confidently guarantee the existence of a dissection in the first place. The WBG has even

been abstracted into spherical and hyperbolic geometric equivalents. While not as elegant

as the WBG, Dehn’s advancements opened the way to understanding the behavior of geo-

metric figures in higher dimensions. H. Hadwiger ultimately abstracted the Dehn invariant

into higher dimensions where it is still used today. While J.P. Sydler demonstrated the

sufficiency of the Dehn invariant in Euclidean three-space, it remains an open question as

to whether or not the Dehn invariant is even necessary in spherical or hyperbolic three-

space.

The Banach-Tarski paradox remains one of the most astonishing results in mathe-

matics. Both seemingly absurd and divorced from physical reality, the B-T paradox caused

many to doubt and even reject the Axiom of Choice. Despite the absurdity, the B-T para-

dox is, as we have seen, a perfectly consistent result of set theory and isometry groups. We

have also seen that the Axiom of Choice is not necessary for an actual paradox to arise

among isometry groups. Even so, the Axiom of Choice remains one of the most questioned

axioms in all of mathematics.

We have seen the trajectory of work in Euclidean two-space and three-space. While
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there are several results in spherical and hyperbolic two-space, there remain open ques-

tions regarding dissections in the three-dimensional versions of each. Similarly, higher Eu-

clidean dimensions hold open questions of their own. With the paradoxes we have seen in

three dimensions, future work in dissections will doubtless yield puzzling conclusions.
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Figure 1: Stomachion Dissection
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Figure 2: First Possible Liu Hui Dissection

Figure 3: Second Possible Liu Hui Dissection
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Figure 4: Tangram People
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(a) Butterfly Wing Tables (b) Tangram Pieces

Figure 5: Butterfly Wing Tables and Tangram Pieces

Figure 6: Tangram Dissection
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Figure 7: Paradoxical Tangram Squares

Figure 8: Paradoxical Tangram Dissections
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Figure 9: The Haberdasher’s Puzzle
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Figure 10: Haberdasher Solution

Figure 11: Haberdasher Hinged Dissection
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Figure 12: Triangle to Rectangle Dissection

Figure 13: Rectangle Dissection Case 1
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Figure 14: Rectangle Dissection Case 2
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