
BearWorks BearWorks

MSU Graduate Theses

Fall 2023

Evaluation of Different Machine Learning, Deep Learning and Text Evaluation of Different Machine Learning, Deep Learning and Text

Processing Techniques for Hate Speech Detection Processing Techniques for Hate Speech Detection

Nabil Shawkat
Missouri State University, ns92s@MissouriState.edu

As with any intellectual project, the content and views expressed in this thesis may be

considered objectionable by some readers. However, this student-scholar’s work has been

judged to have academic value by the student’s thesis committee members trained in the

discipline. The content and views expressed in this thesis are those of the student-scholar and

are not endorsed by Missouri State University, its Graduate College, or its employees.

Follow this and additional works at: https://bearworks.missouristate.edu/theses

 Part of the Computational Linguistics Commons, Computer and Systems Architecture

Commons, Data Storage Systems Commons, and the Science and Technology Studies

Commons

Recommended Citation Recommended Citation
Shawkat, Nabil, "Evaluation of Different Machine Learning, Deep Learning and Text Processing
Techniques for Hate Speech Detection" (2023). MSU Graduate Theses. 3913.
https://bearworks.missouristate.edu/theses/3913

This article or document was made available through BearWorks, the institutional repository of Missouri State
University. The work contained in it may be protected by copyright and require permission of the copyright holder
for reuse or redistribution.
For more information, please contact bearworks@missouristate.edu.

https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/theses
https://bearworks.missouristate.edu/theses?utm_source=bearworks.missouristate.edu%2Ftheses%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/375?utm_source=bearworks.missouristate.edu%2Ftheses%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=bearworks.missouristate.edu%2Ftheses%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=bearworks.missouristate.edu%2Ftheses%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=bearworks.missouristate.edu%2Ftheses%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/435?utm_source=bearworks.missouristate.edu%2Ftheses%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/435?utm_source=bearworks.missouristate.edu%2Ftheses%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bearworks.missouristate.edu/theses/3913?utm_source=bearworks.missouristate.edu%2Ftheses%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu

 EVALUATION OF DIFFERENT MACHINE LEARNING, DEEP LEARNING AND

TEXT PROCESSING TECHNIQUES FOR HATE SPEECH DETECTION

A Master’s Thesis

Presented to

The Graduate College of

Missouri State University

TEMPLATE

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science, Computer Science

By

Nabil Shawkat

December 2023

ii

Copyright 2023 by Nabil Shawkat

iii

EVALUATION OF DIFFERENT MACHINE LEARNING, DEEP LEARNING AND

TEXT PROCESSING TECHNIQUES FOR HATE SPEECH DETECTION

Computer Science

Missouri State University, December 2023

Master of Science

Nabil Shawkat

ABSTRACT

Social media has become a domain that involves a lot of hate speech. Some users feel entitled to

engage in abusive conversations by sending abusive messages, tweets, or photos to other users. It

is critical to detect hate speech and prevent innocent users from becoming victims. In this study, I

explore the effectiveness and performance of various machine learning methods employing text

processing techniques to create a robust system for hate speech identification. I assess the

performance of Naïve Bayes, Support Vector Machines, Decision Trees, Random Forests, Logistic

Regression, and K Nearest Neighbors using three distinct datasets sourced from social media posts.

To gauge the optimal approach, I employ Term Frequency-Inverse Document Frequency (TF-

IDF), unigrams, bigrams, trigrams, a combination of unigrams and bigrams, and a combination of

unigrams, bigrams, and trigrams for the machine learning models to analyze the text corpus. Given

the imbalanced nature of the datasets, I implement both under-sampling and over-sampling

techniques to investigate their impact on the results. I also investigated the performance of different

deep learning algorithms on the three datasets. The results show that the Biderctional Encoders

Representations from Transformers (BERT) model gives the best performance among all the

models on imbalanced datasets by achieving an F1-score of 90.6% on one of the datasets, and F1-

scores of 89.7% and 88.2% on the other two datasets. Comparative analysis reveals that BERT

and Robustly Optimized BERT Pretraining Approach (RoBERTa) outperform traditional Machine

Learning (ML) algorithms, with F1-scores approximately 20% higher. The investigation indicates

that RoBERTa, with its enhanced training strategies, comes remarkably close to the performance

of BERT. The outcomes show the transformative impact of deep learning and pretrained models

on hate speech detection, with larger, more diverse datasets further enhancing model performance.

KEYWORDS: hate speech, machine learning, social media, BERT, deep learning, RoBERTa,

pretrained models, text classification

iv

EVALUATION OF DIFFERENT MACHINE LEARNING, DEEP LEARNING AND

TEXT PROCESSING TECHNIQUES FOR HATE SPEECH DETECTION

By

Nabil Shawkat

A Master’s Thesis

Submitted to the Graduate College

Of Missouri State University

In Partial Fulfillment of the Requirements

For the Degree of Master of Science, Computer Science

December 2023

Approved:

Jamil M. Saquer, Ph.D., Thesis Committee Chair

Mohammed Y. Belkhouche, Ph.D., Thesis Committee Member

Siming Liu, Ph.D., Thesis Committee Member

Julie Masterson, Ph.D., Dean of the Graduate College

In the interest of academic freedom and the principle of free speech, approval of this thesis

indicates the format is acceptable and meets the academic criteria for the discipline as

determined by the faculty that constitute the thesis committee. The content and views expressed

in this thesis are those of the student-scholar and are not endorsed by Missouri State University,

its Graduate College, or its employees.

v

ACKNOWLEDGEMENTS

I extend my heartfelt gratitude to the individuals who have been instrumental in the

successful completion of my master's thesis. Foremost, I would like to thank my dedicated

supervisor, Dr. Jamil Saquer. His guidance, profound knowledge, and mentorship have been

invaluable in shaping the academic excellence of this thesis. Dr. Saquer's unwavering support

from the first semester has played a pivotal role in my academic growth. I would like to thank

the following people for their support during the course of my graduate studies.

I am equally grateful to the esteemed members of my thesis committee, Dr. Mohammed

Y. Belkhouche and Dr. Siming Liu. Their expertise, insightful feedback, and commitment to the

quality of this research have been crucial in shaping this research.

I also wish to express my deepest appreciation to my father and brother, who have been

constant sources of support throughout my academic journey. Their belief in me and endless

encouragement made this endeavor possible. Their support and love have been the driving force

behind my determination to succeed.

Finally, to my friends and colleagues who provided their support and encouragement,

your presence has been a source of strength. This thesis has come to fruition with the collective

efforts of these individuals. I am profoundly grateful for each one of you.

vi

TABLE OF CONTENTS

Introduction Page 1

Literature Survey Page 5

Background Page 14

Hate Speech Page 14

 The Significance of Hate Speech Detection Page 15

Traditional Approaches to Text Classification Page 16

 Data Preprocessing and Feature Engineering Page 16

Machine Learning Approaches Page 18

Machine Learning Models Page 18

The Rise of Deep Learning in Text Classification Page 20

 Unraveling Deep Learning Page 21

Deep Learning Approaches in Text Classification Page 21

 LSTM Page 22

CNN Page 24

BERT: Revolutionizing Natural Language Understanding Page 26

Methodology Page 30

Experimental Setup And Results Page 40

Stage-1 of the proposed framework Page 40

Stage-2 of the proposed framework Page 41

Stage-3 of the proposed framework Page 45

Stage-4 of the proposed framework Page 47

Comparison Of The Models Page 51

vii

SVM Comparison Page 51

RoBERTa Comparison Page 53

Conclusion Page 55

References Page 57

viii

LIST OF TABLES

Table 1. Best Results of ML Algorithms on the Original Datasets Page 42

Table 2. Best Results of ML Algorithms on the Undersampled Datasets Page 43

Table 3. Results of ML Algorithms on the Oversampled Datasets Page 44

Table 4. Experiment Results of All Models Page 46

Table 5. F1-score of BERT and RoBERTa Models using the Datasets Page 54

ix

LIST OF FIGURES

Figure 1. Overview of the System Page 32

Figure 2. Architecture of LSTM Page 34

Figure 3. Architecture of CNN Page 36

Figure 4. Architecture of BERT Page 39

Figure 5. Token IDs of a Sample Page 48

Figure 6. Tokens and Attention Masks of a Sample Page 49

Figure 7. Predicting Hate Speech from Dataset I Page 50

Figure 8. Predicting Hate Speech from Dataset II Page 50

Figure 9. Predicting Hate Speech from Dataset III Page 50

Figure 10. Sample of Dataset I Used in BERT Model to Predict the Class

which SVM couldn’t Predict Correctly Page 52

Figure 11. Sample of Dataset II Used in BERT Model to Predict the Class

which SVM couldn’t Predict Correctly Page 52

Figure 12. Sample of Dataset III Used in BERT Model to Predict the Class

which SVM couldn’t Predict Correctly Page 52

1

INTRODUCTION

Social media has revolutionized our ability to engage with a vast audience, eliminating

barriers of location, gender, and race. While platforms like Facebook and Twitter offer numerous

benefits, they are not without their drawbacks, with one significant concern being the proliferation

of hate speech [9]. Studies indicate that a considerable portion, ranging from 10% to 40%, of social

media and internet users face exposure to hate speech [15]. The consequences of such exposure

are wide-ranging, leading to issues like momentary anxiety or, in extreme cases, even suicides

among the victims [13]. The escalating crime of hate speech demands urgent attention and

intervention. Several high-profile incidents have underscored the prevalence of hate speech on

social media. This study zeroes in on the critical task of detecting hate speech online.

Hate speech can have devastating implications for victims and can result in social anxiety,

despair, and suicidal thoughts [10, 11, 12]. Hate speech or using abusive words used to be limited

to physical interactions between the harasser and the victim until the advent of social media. It is

easier to identify and handle hate speech or attacking an individual situation when they occur in-

person such as on a school premises with the existence of others who can intervene [17]. However,

the emergence of the Internet and digital media has resulted in hate speech becoming a more

pervasive problem, as it can happen at any time and any place. Additionally, with the online

medium, the chances of such incidents going unnoticed and unaddressed are significantly higher.

So, it is crucial to identify and recognize hate speech in combatting this significant issue.

Nonetheless, detecting hate speech online is still a challenging task. The task of recognizing and

pinpointing hate speech online is a complex challenge, characterized by its subjectivity and the

2

absence of a universally agreed-upon definition. The understanding of hate speech varies

significantly among different groups, adding to the intricacy of its identification.

Abusive users target victims on a variety of topics, including race, religion, and gender,

across multiple social media platforms. The lexicon and perceived meaning of terms change

substantially across social media platforms depending on the issue of hate speech. Recognizing

hate speech necessitates a comprehensive grasp of the contextual nuances and semantic intricacies

embedded in the text. However, deploying straightforward algorithms reliant on lists of offensive

words poses a formidable challenge, primarily attributable to the swift evolution of terms and

hashtags across various social media platforms.

Advances in Machine Learning (ML), Deep Learning (DL), Natural Language Processing

(NLP), and Graphics Processing Units (GPU) technology provide promising solutions to the

challenges of automatic detection of hate speech. The aim of this study is to assess the efficacy of

various machine learning and deep learning algorithms in identifying abusive text, employing

diverse text processing methods such as TFIDF and n-grams. The initial phase of the investigation

involves appraising the performance of traditional ML techniques to discern hate speech. I chose

to test the effectiveness of the following six well-known ML algorithms: Naïve Bayes, Support

Vector Machine (SVM), Decision Tree, Random Forests, Logistic Regression, and K Nearest

Neighbors. The datasets I used in the research are imbalanced because there are significant

differences in the distribution of the objects among the datasets and it indicates that the datasets

are biased toward a particular class. An ML algorithm trained on such datasets will be biased

toward the same class if the dataset is biased toward that class. In my case, most text samples

belong to the non-abusive class and are biased toward that class. This is expected because in real-

life situations with any corpus of text one would expect most text not to contain hate speech [14].

3

The traditional ML algorithms gave bad results when using imbalanced datasets. To handle the

imbalanced class distribution, I either under-sample the majority class or over-sample the minority

class so that all classes have the same number of objects. Over-sampling the minority class has the

added advantage of increasing the size of a dataset, which helped achieve better results.

As we move further into the digital age, the sheer volume of data available for analysis

continues to grow at an astonishing pace. The complex and high-dimensional nature of this data

has led to the evolution of sophisticated machine learning algorithms. Traditional machine learning

has served us well over the years, but we have begun to reach a point where these techniques alone

are not enough to keep up with the complexity and volume of data we now face. This is where

deep learning comes into play.

Deep learning, a subset of machine learning, leverages neural networks with many layers

(hence "deep") to extract higher-level features from raw input data. Compared to traditional

machine learning algorithms, deep learning algorithms can automatically learn feature

representations from raw data, eliminating the need for manual feature extraction. This ability to

handle raw, high-dimensional data and learn abstract features has made deep learning particularly

effective in areas like image and speech recognition, natural language processing, and other data-

intensive applications.

One such deep learning model that has been widely applied to image analysis is

Convolutional Neural Networks (CNNs). CNNs apply a series of filters to the raw pixel data of an

image to extract and learn higher-level features, which can then be used for classification. CNNs

have been shown to be highly effective in tasks such as object detection and facial recognition.

Long Short-Term Memory (LSTM) units, on the other hand, have changed the game in

processing sequential data for tasks such as language modeling and time series prediction. Unlike

4

traditional recurrent networks, LSTMs have an added ability to forget unnecessary information in

a sequence, thus making them effective in capturing long-term dependencies.

In recent years, a new model architecture known as Transformers has emerged, designed

specifically for tasks involving sequential data. Transformers address the problem of long

sequences by using a mechanism called self-attention, allowing them to consider other words in

the sentence simultaneously when processing each word. This has made Transformers

exceptionally good at understanding context in natural language processing tasks.

A prominent example of a transformer-based model is BERT. BERT's bidirectional

training approach allows it to understand the context of a word based on all of its surroundings

(left and right of the word). This has led to groundbreaking results on a range of tasks in the natural

language processing field, from sentiment analysis to question answering.

For the second part of the research, we used several deep learning techniques such as

LSTM, CNN, and BERT over the datasets without over-sampling or under-sampling the datasets.

BERT is designed to pre-train deep bidirectional representations from unlabeled text to help

computers understand the meaning of ambiguous language in text by using surrounding text to

establish context. Consequently, by fine-tuning the pre-existing BERT model with an appended

output layer, it becomes possible to develop cutting-edge models for various tasks, including but

not limited to question answering and language inference. This achievement is attained without

requiring significant task-specific architectural alterations [25]. In my experiments, BERT shows

its capability in classifying text and understanding context, resulting in F1-scores of 89.7%, 88.2%,

and 90.6% on three different datasets.

5

LITERATURE SURVEY

Hate speech is an act of crime that unfortunately has been occurring more often nowadays

online. Use of social networks, social media and online gaming has led to people communicating

all over the world but with the price of being targeted or bullied. Detecting hate speech to avoid

hate crimes from happening online is a crucial matter but the task is extremely challenging. In this

section, we briefly review existing literature and work on detecting hate speech.

The study of online hate speech detection is comparatively recent. In [1], researchers

collected data from the field of automatic hate speech detection, which led them to categorize the

field as “Law and Social Sciences” and “Computer Science.” Most of the papers are from “Law

and Social Sciences” but there is still significant amount of work done in the “Computer Science”

field that helps one understand the topic and its challenges. “Cyberbullying” and “Online

Harassment” are other terms that are sometimes used to mean hate speech [2].

Social media platforms have become breeding grounds for hate speech, making the

detection of such content essential for maintaining a safe online environment. Detecting hate

speech in social media networks presents unique challenges due to the informal nature of the

language used and the prevalence of user-generated content. Researchers have developed specific

techniques tailored to social media platforms by leveraging platform-specific features. User

interactions, including replies, likes, and retweets, provide valuable contextual information that

can aid in hate speech detection. Hashtags and mentions are often indicative of hate speech content

and can be used as additional signals. Moreover, understanding the distinct characteristics and

dynamics of social media data is crucial for effective hate speech detection in these environments

[42, 43]. Detecting hate speech across different domains is essential for comprehensive monitoring

6

and mitigation efforts. Hate speech can manifest differently depending on the context, such as

news articles, online forums, or comment sections. Researchers have focused on developing

techniques that can generalize across different domains, allowing hate speech detection models to

adapt and perform well in various settings. Transfer learning approaches have been explored to

leverage knowledge learned from one domain and apply it to another. Domain adaptation methods

aim to minimize the domain shift between labeled training data and the target domain where hate

speech detection is needed. Cross-domain hate speech detection enables the identification of

hateful content in diverse sources and promotes a more comprehensive understanding of the

prevalence and nature of hate speech [44, 45].

In automatic hate speech detection, it is important to understand the definition of hate

speech, specifically online hate speech. To identify hate speech, organizations and companies have

made definitions. It helps the users to understand that some words and sentences are prohibited if

they match the policy and definition of hate speech. Encyclopedia of the American Constitution,

European Union Commission, international minorities associations, and the policies of Facebook,

YouTube, and Twitter have their own definitions of hate speech [6]. All of these definitions have

different goals in mind when defining hate speech; some discussed how an attack on a particular

group (such as people with specific race, ethnicity, religion, gender, or disability) qualifies as hate

speech, while others discussed how an attack on an individual (based on any characteristic)

qualifies as hate speech. In [5], online harassment is defined restrictively as a kind of action in

which a user intentionally annoys one or more other users in a web community. However, a

definition that gives a broader domain to understand hate speech is given by the authors in [1],

”Hate speech is language that attacks or diminishes, that incites violence or hate against groups,

based on specific characteristics such as physical appearance, religion, descent, national or ethnic

7

origin, sexual orientation, gender identity or other, and it can occur with different linguistic styles,

even in subtle forms or when humor is used.” Most definitions lead to the idea that hate speech is

defined by characteristics that incite violence or hate, attacks, or diminishes, has specific targets,

and whether humor is hurtful or not.

NLP techniques and models are used in existing research to identify and categorize abusive

language that targets a person based on their race, religion, ethnicity, national origin, disability,

sex, sexual orientation, or gender identity [22, 23, 24]. Supervised learning models like Logistic

Regression, SVM, Random Forests, and DL, as well as semi-supervised techniques like

bootstrapping, are primarily used in research on the classification of hate speech [19, 24].

As hate speech detection models are increasingly deployed in real-world settings, there is

a growing demand for transparency and interpretability. Users and stakeholders want to understand

the reasoning behind the model's decisions and identify the specific features or words that

contribute to the classification of hate speech. Researchers have explored various methods to

provide explanations for hate speech detection models [40, 41]. Attention mechanisms have been

employed to highlight the most influential words or phrases in the input text.

While the development of hate speech detection systems is crucial for addressing online

abuse, it is essential to address ethical considerations and potential biases associated with these

systems. Bias can arise from the training data used to develop hate speech detection models,

leading to disproportionate false positives or false negatives for specific demographic groups. For

example, if the training data is imbalanced and predominantly represents one particular group, the

model may exhibit biased behavior in its predictions. To mitigate these biases, researchers have

emphasized the importance of developing fair and unbiased hate speech detection models.

8

To achieve fairness and mitigate biases, several strategies have been proposed. Careful

selection of training data is crucial to ensure that the dataset is representative of different

demographic groups and social contexts. It is essential to include diverse voices and perspectives

in the training data to avoid perpetuating biases. Moreover, considering the impact on marginalized

communities is crucial throughout the development process. Regular evaluation and auditing of

hate speech detection models can help identify and address biases as they arise. Additionally,

active engagement with stakeholders, including community representatives and advocacy groups,

can provide valuable insights and perspectives in addressing biases effectively [38, 39]. By

addressing ethical considerations and biases, researchers can develop hate speech detection models

that are fair, robust, and sensitive to the needs and experiences of diverse user groups. These efforts

contribute to the development of more inclusive and equitable online environments.

With the global nature of online communication, the detection of hate speech in

multilingual settings has become a pressing challenge. Hate speech is not limited to a specific

language, and it is essential to develop detection models that can handle diverse linguistic contexts.

However, obtaining labeled data for every language is often expensive and time-consuming. To

address this issue, researchers have explored transfer learning techniques for hate speech detection

in multiple languages. Cross-lingual embeddings, which map words from different languages into

a shared vector space, enable the transfer of knowledge from a resource-rich language to low-

resource languages. Multi-task learning, on the other hand, leverages shared representations and

jointly trains models on multiple related tasks to improve performance in low-resource languages.

These approaches facilitate the development of more inclusive hate speech detection systems that

can effectively handle diverse linguistic contexts and mitigate language barriers [30, 31]. However,

in the thesis, I am focusing on using datasets that are based on English language.

9

In addition to the detection of hate speech, research efforts have also focused on developing

effective mitigation strategies [7, 33, 34]. Hate speech can have significant negative impacts on

individuals and communities, and it is crucial to address and counteract its influence. Counter-

speech has emerged as a potential strategy to reduce the impact of hate speech by promoting

positive and informative messages. Counter-speech involves responding to hate speech with non-

hostile and constructive dialogue, aiming to challenge and educate individuals who engage in or

are exposed to hate speech. User reputation systems, which assign reputation scores to users based

on their past behavior, can help identify and mitigate the dissemination of hate speech by giving

more weight to trusted and reputable users. Community moderation, where users report and flag

offensive content, combined with algorithmic interventions, can further aid in detecting and

reducing the visibility of hate speech content. These strategies collectively contribute to fostering

a safer and more inclusive online environment.

Automating detecting hate speech is complicated when dealing with the data itself and

gathering it. Social networks are the common grounds for the datasets that have been used in

related works. Most related works are done using Twitter datasets [1]. However, some works are

done using more than one dataset from different social media like Q&A forums, Wikipedia talk

pages and Twitter datasets [4]. The datasets mainly focus on two types of communities: discussion-

style and chat-style [5]. Discussion-style environments consist of long posts on one predefined

topic. On the contrary, chat-style environments consist of short sentences or a bunch of words.

Twitter datasets are more like chat-style environments where the conversations are mostly short.

An example of such a dataset is the Twitter dataset created by Waseem and Hovy [7], which I use

as one of the datasets in my research.

10

To assess the performance of hate speech detection models, appropriate evaluation metrics

and benchmark datasets are essential. Various evaluation metrics have been employed to measure

the effectiveness of hate speech detection algorithms. Precision represents the proportion of

correctly classified hate speech instances out of all instances predicted as hate speech. Recall

measures the proportion of correctly classified hate speech instances out of all actual hate speech

instances. F1-score is the harmonic mean of precision and recall, providing a balanced measure of

a model's performance. These evaluation metrics enable researchers to quantitatively compare

different models and algorithms based on their performance on hate speech detection tasks [35].

In addition to evaluation metrics, the availability of benchmark datasets plays a crucial role

in advancing hate speech detection research. Researchers have developed benchmark datasets that

contain labeled examples of hate speech and non-hate speech instances [36, 37]. These datasets

serve as standardized resources for evaluating hate speech detection models and facilitate

comparative studies. Examples of such benchmark datasets include the HateEval dataset, which

focuses on hate speech against immigrants and women in Twitter, and the OffensEval dataset,

which addresses offensive language identification in social media. By using these benchmark

datasets, researchers can compare the performance of different models, identify areas for

improvement, and encourage the development of more robust hate speech detection systems.

In [21], the authors analyze directed hate speech and generalized hate speech on Twitter

using linguistic and psycholinguistic methods. To extract features from the tweets, they employ a

variety of NLP techniques, including part-of-speech tagging, and entity recognition. Additionally,

for psycholinguistic methods, they use the Linguistic Inquiry and Word Count (LIWC) software,

which is a text analysis tool that identifies psychological and emotional correlates of language use

[26, 32]. The authors in [20, 23] investigate Islamophobia on Twitter. In [20], the authors carry

11

out a longitudinal analysis to investigate the connection between the trend on Twitter and the

offline occurrences that took place during the COVID-19 pandemic months. This type of analysis

involves monitoring changes or patterns in variables of interest over time and understanding the

relationships among them as they evolve. The study emphasizes the importance of social media

platforms taking action to prevent the spread of hate speech. In [23], they develop ML classifiers

to identify Islamophobic tweets. In [19], Chandra et al. present a multimodal DL system that uses

text and images from Twitter and Gab posts to identify antisemitic content and the specific

antisemitism category it belongs to.

Automatic approaches and implementations to detect hate speech are done by machine

learning algorithms and different feature selection methods. Machine learning algorithms that are

usually used in different papers are Logistic Regression, Random Forests, SVM, DT, and Naïve

Bayes. To use a dataset, the text must be weighted or processed properly to be used in the machine

learning algorithm or it will not give good results. This leads to two major problems: language

issue and annotation issue [7]. Language issue means not being able to understand the context of

a sentence. Annotation is always a huge issue while extracting the text and labeling it. Feature

selection methods help with the annotation problem when you know the context and semantics [5].

In a paper about cyberbullying [3], the authors proposed a method called the participant-

vocabulary consistency (PVC) model which looks for parameter setting for all the users and key

phrases that characterize the tendency of hate speech or not. In my research, I use datasets that

have already been labeled, where the class for each sentence is known, whether it is hateful speech

or not.

Deep learning approaches have gained significant attention in the field of hate speech

detection due to their ability to capture complex linguistic patterns and semantic relationships in

12

text data. Hate speech is often characterized by subtle nuances and contextual cues that require

sophisticated modeling techniques. Deep learning models, such as CNNs and recurrent neural

networks (RNN), have shown promise in capturing the sequential and hierarchical nature of text.

CNNs leverage filters to extract local features from different parts of the input text, while RNNs,

particularly LSTM networks, can effectively model the temporal dependencies in a sequence of

words. These models have demonstrated improved accuracy and generalization capabilities

compared to traditional machine learning algorithms in hate speech detection tasks [46, 27].

The incorporation of contextual embeddings has emerged as a powerful technique in hate

speech detection. Contextual embeddings refer to word representations that capture the meaning

and semantic context of a word based on its surrounding words in a sentence. Pre-trained

transformer models, such as BERT, have shown remarkable performance in a wide range of natural

language processing tasks. BERT generates contextualized word embeddings by considering the

entire sentence and capturing the relationships between words. These embeddings provide a rich

representation of text that considers the context and context-dependent meanings of words [28,

29]. By leveraging contextual embeddings, hate speech detection models can better capture the

nuances and subtleties of hate speech, resulting in improved accuracy and robustness.

Prepossessing the text is an important task to detect hate speech with the help of ML. In

previous works [1, 5, 8, 18, 20], researchers used different techniques for preprocessing, but all

were infused with TF-IDF and n-grams. In most cases, TF-IDF helped get better results than n-

grams. The work in [5] used both TF-IDF and n-grams. For my experiment, I used both TF-IDF

and n-grams, which gave better performance than previous works [1, 5, 8]. Another problem with

detecting hate speech is the imbalanced datasets. Inspired by [14], we over-sampled and under-

sampled the datasets to get balanced datasets for the machine learning algorithm. ML algorithms

13

and various feature selection techniques are used to detect hate speech. The ML algorithms

Logistic Regression, Random Forests, SVM, DT, and Naive Bayes are frequently used in various

papers. Data preprocessing is a critical step in preparing a dataset for machine learning algorithms.

Without proper weighting and processing of text data, the algorithm's performance may suffer.

Researchers used a variety of preprocessing methods in earlier works [1, 6, 7, 16, 18] but each one

included TF-IDF and n-grams. TF-IDF typically assisted in obtaining better results than n-grams.

Both TF-IDF and n-grams were used in the research in [4]. Both TF-IDF and n-grams were used

in my experiment, and both performed adequately but the transformers-based DL model gave the

best result.

14

BACKGROUND

In this section, I briefly describe key concepts, hate speech, machine learning algorithms,

deep learning algorithms, BERT, and class balancing utilized in this work to provide some context.

Hate Speech

In the age of the Internet, social media, and online communities, the power of

communication has transcended physical boundaries, providing a global platform for discourse,

expression, and connectivity. However, this newfound freedom of expression has not come

without its challenges. One such challenge is the proliferation of hate speech, a phenomenon that

threatens the very essence of open dialogue and inclusivity in the digital realm. Hate speech,

characterized by its harmful and discriminatory language targeted at individuals or groups based

on their race, ethnicity, religion, gender, or other protected attributes, poses serious societal and

ethical concerns.

The alarming rise in hate speech across online platforms has sparked considerable debate

and led to calls for its swift identification and mitigation. Hate speech, when left unchecked, can

perpetuate stereotypes, fuel hostility, and incite violence against marginalized communities. It

erodes the principles of diversity, equality, and respect that are essential for the healthy functioning

of democratic societies. Therefore, addressing hate speech in the digital landscape has become an

urgent imperative for individuals, online platforms, and governments alike.

In this context, the field of hate speech detection has emerged as a pivotal area of research

and technological development. Hate speech detection seeks to harness the power of computational

15

linguistics and machine learning to automatically identify and categorize hate speech content

within vast volumes of online text data. By doing so, it not only assists in enforcing community

guidelines on online platforms but also plays a crucial role in promoting positive online

interactions, fostering tolerance, and protecting the vulnerable from harm.

The Significance of Hate Speech Detection

Hate speech detection systems are not merely tools of convenience; they are a defense

against the potential harm inflicted by online hate speech. These systems serve several significant

purposes:

Early Intervention: By swiftly identifying hate speech, these systems enable timely intervention

and moderation, preventing the spread of toxic content before it causes significant harm.

Enhanced User Experience: Hate speech detection helps create safer online spaces by allowing

platforms to enforce community guidelines, ensuring that users can engage in meaningful and

respectful discourse.

Fostering Inclusivity: By mitigating hate speech, these systems foster inclusivity and make online

spaces more welcoming for individuals from diverse backgrounds.

Legal Compliance: In many regions, hate speech is subject to legal consequences. Detection

systems assist platforms in adhering to local and international laws by identifying and reporting

illegal content.

Research and Analysis: Hate speech detection aids researchers, policymakers, and analysts in

studying and understanding the prevalence and dynamics of hate speech, helping to shape effective

policies and countermeasures.

16

Social Responsibility: Platforms that actively combat hate speech demonstrate a commitment to

their users' well-being and contribute to building a more inclusive and empathetic digital society.

As the demand for more sophisticated hate speech detection systems grows, so does the

need for advanced methods and technologies. This thesis explores the state-of-the-art techniques

employed in hate speech detection, focusing on machine learning approaches, and contextual

embeddings. By delving into these areas, we aim to contribute to the ongoing efforts to create a

safer and more inclusive digital environment for all.

Traditional Approaches to Text Classification

Text classification, a fundamental task in natural language processing (NLP), involves

categorizing text documents into predefined classes or categories based on their content. Over the

years, several traditional approaches to text classification have been devised that made it possible

to apply machine learning models to text datasets. In this section, we explore some of the classical

methods employed for text classification.

Data Preprocessing and Feature Engineering

One of the initial steps in hate speech detection involves the preprocessing of textual data

in a format suitable for machine learning models. Before subjecting textual data to any hate speech

detection model, it is imperative to preprocess the data comprehensively. Data preprocessing

encompasses a series of steps aimed at cleaning, organizing, and enhancing the quality of the text.

This typically involves tasks such as text normalization, which includes removing punctuation,

and stemming or lemmatizing words to their base forms. Furthermore, stop words, which are

common words with little semantic value, are often eliminated to reduce noise in the data. Data

17

preprocessing also involves handling missing values and dealing with imbalanced datasets. The

success of any hate speech detection model hinges on the effectiveness of these preprocessing

steps, as they lay the foundation for subsequent analysis and model training. Traditional techniques

like Term Frequency (TF), and Term Frequency-Inverse Document Frequency (TF-IDF) are

commonly used to convert text documents into numerical vectors. TF measures how frequently a

term (word) appears in a document. It is a simple count of how many times a word occurs. TF is

used to identify the importance of a word within a document, assuming that words occurring more

frequently are more significant. Then TF-IDF is a numerical statistic used to evaluate the

importance of a word in a document relative to a collection of documents (corpus). It combines

TF (Term Frequency) and IDF (Inverse Document Frequency), where TF measures a word's

importance in a single document, and IDF measures how unique or rare a word is across the entire

corpus. TF-IDF is widely used in information retrieval and text mining. These methods allow

machine learning models to work with structured input data, where each word or term is assigned

a unique dimension in the feature space.

Feature engineering techniques, such as n-grams and word embeddings like Word2Vec or

Global Vectors for Word Representation (GloVe), further enhance the representation of text by

capturing contextual and semantic information. N-grams are contiguous sequences of N items or

words in a text. They are used in natural language processing to capture contextual information

and relationships between words. For example, in the sentence "I love deep learning," the 2-grams

(bigrams) would be "I love", "love deep", and "deep learning", while the 3-grams (trigrams) would

be "I love deep" and "love deep learning". Word2Vec is a neural network-based model for word

embeddings. It maps words to high-dimensional vector spaces where words with similar meanings

are located closer together. Word2Vec captures semantic relationships between words and is useful

18

for various NLP tasks like word similarity, document classification, and sentiment analysis. GloVe

is another word embedding model that, like Word2Vec, generates vector representations for words.

However, GloVe focuses on the global co-occurrence statistics of words within a corpus. It creates

word vectors by considering how frequently words appear together across the entire dataset. GloVe

is known for its ability to capture semantic relationships and analogies between words. These

engineered features serve as the foundation for training machine learning models.

Machine Learning Approaches

Machine learning forms the core of hate speech detection, where models are trained on

labeled datasets comprising both hateful and non-hateful content. Various algorithms, ranging

from traditional classifiers like Support Vector Machines (SVM) and Decision Trees to more

advanced ensemble methods like Random Forests, are employed in this context. These algorithms

learn to distinguish hate speech from benign content by identifying patterns, relationships, and

discriminative features within the data.

Machine Learning Models

The emergence of hate speech as a pervasive issue in the digital landscape has led to the

development of various machine learning techniques aimed at its detection and mitigation. Hate

speech, characterized by discriminatory, offensive, or harmful language targeted at individuals or

groups based on attributes such as race, religion, gender, or ethnicity, poses a significant challenge

for online platforms, social media networks, and society at large. Addressing this issue requires

the utilization of cutting-edge machine learning models and techniques. In this section, we explore

models of machine learning that are used in this thesis.

19

Naïve Bayes Classification: Naïve Bayes is based on Bayes' theorem, which calculates the

probability of a document belonging to a particular class based on the probabilities of words

occurring in that class. The "naïve" assumption is that words are conditionally independent of each

other within a class, which simplifies calculations. Despite this simplification, Naïve Bayes often

works well for text classification. It is commonly used in spam email detection and sentiment

analysis due to its simplicity and good performance [48].

Support Vector Machines (SVM): SVM aims to find a hyperplane that best separates data points

from different classes. In text classification, documents are transformed into high-dimensional

feature vectors, with each dimension corresponding to the presence or absence of a word. SVM

finds the hyperplane that maximizes the margin between classes. It is effective for text

classification tasks due to its ability to handle high-dimensional data and its robustness to

overfitting [47].

Decision Trees: Decision trees are hierarchical structures that recursively split data into subsets

based on attribute values (words in text classification). At each node, the tree selects the attribute

that best separates the data. The result is a tree structure that can be used for classification. Decision

trees are interpretable and allow understanding of feature importance in text classification. They

work well for tasks where interpretability is crucial.

Random Forests: Random Forests are an ensemble learning method that combines multiple

decision trees to improve classification accuracy. Each tree is built using a subset of the data and

a random subset of features. The final prediction is based on a majority vote from individual trees.

Random Forests enhance the performance of decision trees by reducing overfitting and increasing

accuracy.

20

Logistic Regression: Logistic Regression is a linear model used for binary or multiclass

classification. In text classification, it assigns weights to each word, and the weighted sum of word

occurrences is transformed using the logistic function to produce class probabilities. Logistic

Regression is a simple yet powerful model for text classification. It's especially useful when the

relationship between words and classes is approximately linear [49].

K-Nearest Neighbors (KNN): KNN is an instance-based classification method where each

document is represented as a point in a high-dimensional space. Classification is determined by

the majority class among the k-nearest neighboring data points. KNN is simple and intuitive but

requires selecting an appropriate distance metric and the number of neighbors (K). It can be useful

in text classification and detecting hate speech.

The utilization of machine learning in hate speech detection marks a significant step toward

creating safer and more inclusive digital spaces. As this field continues to evolve, it is imperative

to remain at the forefront of cutting-edge research, continuously adapting and developing models

and techniques that combat the ever-evolving landscape of hate speech on the Internet.

The Rise of Deep Learning in Text Classification

In recent years, deep learning has emerged as a transformative force in the field of text

classification, revolutionizing the way to analyze and understand textual data. In this section, I

explore the essence of deep learning and shed light on why it has become the cornerstone of

modern text classification.

21

Unraveling Deep Learning

Deep learning, a subset of machine learning, is a neural network-based approach that has

proven to be exceptionally adept at modeling and solving complex textual tasks [50]. At its core,

a neural network consists of artificial neurons organized into layers, mimicking the structure of

the human brain. Deep neural networks, also known as deep learning models, differentiate

themselves by featuring multiple hidden layers, providing the depth required to capture intricate

textual patterns. Deep learning models have an unparalleled ability to comprehend the contextual

meaning of words and phrases within text. They can capture nuances, idiomatic expressions, and

sentiment, making them invaluable for tasks like sentiment analysis, and hate speech detection.

Deep learning models are remarkably versatile, proving effective across a multitude of text

classification domains. Whether it is classifying texts or understanding sentiments, deep learning

models adapt well to diverse textual challenges. This paradigm shift has not only enhanced the

accuracy of text classification but has also expanded the possibilities for understanding and

utilizing textual data in the digital environment.

Deep Learning Approaches in Text Classification

Deep learning approaches have garnered considerable attention in the field of text

classification, primarily owing to their exceptional capacity to extract intricate patterns and

semantic relationships within textual data. In this section, we explore the deep learning techniques

that I used to detect hate speech.

22

LSTM

In recent years, deep learning has revolutionized the field of artificial intelligence, and one

of its most prominent achievements is in natural language processing (NLP). LSTM is a

specialized type of recurrent neural network (RNN) that has garnered significant attention and

success in sequence modeling tasks. In this section, I will delve into the foundational concepts of

LSTM, its architecture, working mechanisms, and its diverse applications across various domains.

By the end of this section, you will have a proper understanding of LSTM's capabilities and why

it has emerged as a powerful tool.

The Challenge of Sequential Data

Many real-world datasets, such as time series data, speech signals, and natural language

text, exhibit a sequential nature where the order of elements matters. Traditional neural networks,

designed for independent and identically distributed data (i.i.d), are ill-equipped to handle

sequential information. This limitation inspired the development of RNNs, which can process

sequences by maintaining a hidden state that evolves with each new element in the sequence.

Introducing LSTM

To address the shortcomings of standard RNNs, Hochreiter and Schmidhuber introduced

LSTM in 1997 [51]. LSTM is designed to capture long-range dependencies effectively, making it

well-suited for tasks involving sequential data. The key innovation in LSTM lies in its memory

cell, which allows it to store and retrieve information over extended periods. This capability

enables LSTM to maintain essential information even after processing a vast amount of sequential

data.

23

Parameters and Hyperparameters in LSTM

LSTM models have several key parameters and hyperparameters that impact their

performance and generalization capability.

1. Number of LSTM Units: The number of LSTM units or cells determines the capacity of the

LSTM layer to capture information. A higher number of units may allow the model to capture

more complex patterns but may also increase computational complexity.

2. Sequence Length: The sequence length is an important consideration in LSTM. Longer

sequences require more memory and may increase training time. It's essential to strike a balance

between the sequence length and the LSTM's memory capacity.

3. Activation Functions: Activation functions introduce non-linearity to the model, enabling it to

capture complex relationships. Common activation functions used in LSTM include the sigmoid

function for gating mechanisms and the hyperbolic tangent (tanh) function for the output.

4. Dropout: Dropout is a regularization technique commonly applied in LSTM models to prevent

overfitting. It randomly sets a fraction of the LSTM units to zero during training, forcing the

network to learn more robust representations.

5. Learning Rate: The learning rate controls the step size during gradient descent optimization. It

is a crucial hyperparameter that affects the training process, and an appropriate learning rate can

significantly impact the convergence and performance of the LSTM.

LSTM has demonstrated exceptional performance across various applications, making it a

versatile and powerful tool for sequence modeling tasks. LSTM is widely used in NLP for tasks

such as sentiment analysis, name entity recognition, machine translation, and text generation [52].

24

Its ability to understand the sequential nature of language and capture contextual dependencies

makes it well-suited for these tasks.

LSTM has emerged as a powerful architecture for sequence modeling tasks, particularly in

the domain of natural language processing. Its ability to capture long-range dependencies, handle

variable-length sequences, and discern contextual nuances has made it a prominent choice for a

wide range of NLP applications.

CNN

CNN has been a revolutionary development in the field of deep learning and has shown

remarkable success in computer vision tasks. However, their applications are not limited to visual

data alone; they have also proven to be highly effective in text classification tasks. In this section,

we will delve into the fundamental concepts of CNN, its architectural components, and how it is

adapted and utilized for text classification, with a particular focus on its relevance in detecting hate

speech.

 Understanding CNN

At its core, a CNN is designed to learn spatial hierarchies of features automatically and

adaptively from input data. It was originally inspired by the visual processing system of living

organisms, particularly the hierarchical organization of visual cortex in the brain [53]. CNNs are

well-known for their ability to detect patterns in images, such as edges and textures, through the

application of convolutional filters.

The basic building blocks of a CNN include convolutional layers, activation functions,

pooling layers, and fully connected layers. The convolutional layers are the heart of the network

25

and consist of filters, also known as kernels, that slide over the input data to perform element-wise

multiplications and obtain feature maps. These feature maps capture local patterns and represent

them as spatially organized representations.

Layers in CNN for Text Classification

Adapting CNN for text classification tasks requires addressing the one-dimensional nature

of textual data. In traditional CNNs used for images, the convolutional filters operate on two-

dimensional grids. However, text data is one-dimensional, typically represented as sequences of

words or characters. To accommodate this, a technique called word embedding is employed to

transform each word into a dense vector representation, creating an embedding matrix as the input

to the CNN.

CNN for Text Classification

CNNs are particularly advantageous in text classification due to their ability to identify

local features and capture hierarchical relationships in sequences. In text classification, CNN is

trained to learn meaningful patterns from word embeddings, such as specific phrases or linguistic

structures that indicate the class of the input text.

Moreover, CNN's robustness to text variability is highly advantageous in hate speech

detection. Online hate speech frequently includes variations in language use, including slang,

abbreviations, and creative spellings. CNN's ability to detect local features rather than relying on

exact matches makes it well-equipped to handle these variations, ensuring accurate identification

of hate speech across diverse textual inputs.

26

BERT: Revolutionizing Natural Language Understanding

BERT (Bidirectional Encoder Representations from Transformers) is a groundbreaking

NLP model that has reshaped the landscape of deep learning-based language understanding.

Introduced by Google AI researchers in 2018, BERT brought unprecedented advancements in

contextual word representation, enabling the model to capture bidirectional context and

outperform previous NLP models on various tasks. In this section, we will delve into the key

components, architecture, training process, and applications of BERT, highlighting why it has

become a pivotal milestone in NLP [25, 28].

The Challenge of Contextual Word Representation

Language understanding heavily relies on capturing the context in which words appear.

Traditional NLP models, such as word embeddings and context-free models like Word2Vec and

GloVe, treat each word as an isolated entity, neglecting the contextual information. This limitation

led to suboptimal performance in downstream NLP tasks that require a deeper understanding of

the context.

Introducing BERT: A Bidirectional Approach

BERT addresses the context problem by introducing a novel bidirectional approach. Unlike

previous models that processed text in a unidirectional manner (either left-to-right or right-to-left),

BERT utilizes a transformer-based architecture to analyze words in both directions

simultaneously. This bidirectional approach allows BERT to understand the context and

dependencies of each word in a sentence more comprehensively.

27

The Transformer Architecture

The transformer architecture is the backbone of BERT and is based on the self-attention

mechanism. Self-attention enables the model to weigh the importance of each word in relation to

all other words in the sentence, enabling more informed word representations. The transformer

consists of an encoder and a decoder, but in BERT, only the encoder is used for unsupervised pre-

training.

BERT's Pre-training Process

The pre-training process is a crucial phase of BERT, where it learns unsupervised from

vast amounts of unannotated text data. BERT is pre-trained on a large corpus by predicting missing

words from the context in a masked language modeling (MLM) task. During MLM, a certain

percentage of words are masked, and the model is tasked with predicting the masked words based

on the surrounding context.

Additionally, BERT utilizes a next sentence prediction (NSP) task during pre-training to

foster a deeper understanding of sentence relationships. In NSP, two sentences are paired, and the

model must determine whether the second sentence follows the first in the original text. This task

encourages BERT to grasp contextual relationships between sentences.

BERT's Architecture: From Layers to Hidden States

BERT consists of several layers of encoders, each containing a fixed number of self-

attention heads and feed-forward neural networks. The self-attention heads enable BERT to

capture dependencies between words, while the feed-forward networks process each word's

representation. By stacking multiple layers, BERT gains a deeper understanding of the context and

can model complex linguistic patterns.

28

The output of each BERT layer is the hidden states of all words in the input sequence.

These hidden states contain rich contextual information for each word and can be extracted for

downstream tasks or fine-tuning.

Fine-Tuning BERT for Specific Tasks

While BERT's pre-training enables it to capture general language representations, its true

power comes from fine-tuning. After pre-training on a massive corpus, BERT is fine-tuned on

specific tasks using labeled data. Fine-tuning involves adjusting the model's parameters to the task

at hand, allowing it to adapt its representations to the specifics of the downstream task.

Applications of BERT

BERT's ability to generate powerful contextual word representations has led to its adoption

across various NLP tasks [25, 54]. Some of the notable applications of BERT include:

1. Text Classification: BERT is widely used for text classification tasks such as sentiment analysis,

topic classification, and spam detection. Its contextual understanding of text allows it to achieve

state-of-the-art performance in these tasks.

2. Named Entity Recognition (NER): BERT excels in NER, where it can identify and classify

entities such as names, locations, and organizations within a text.

3. Question Answering: BERT is employed in question-answering systems, enabling them to

comprehend complex queries and provide accurate responses.

4. Machine Translation: BERT's contextual embeddings have been leveraged to improve machine

translation systems by enhancing the quality of the encoded source and target language sentences.

29

5. Information Retrieval: BERT's contextual representations have been integrated into search

engines to improve the relevance and accuracy of search results.

BERT Variant

Since its inception, BERT has inspired numerous extensions and variants to cater to

different use cases and improve its performance further. One of the notable variants is RoBERTa,

short for "A Robustly Optimized BERT Pretraining Approach," is an extension of BERT that

optimizes the pre-training process by increasing the training data, using larger batch sizes, and

training for more iterations [55]. This results in improved performance and better generalization

capabilities. RoBERTa represents a pivotal milestone in the evolution of transformer-based

language models. Developed by Facebook AI, RoBERTa builds upon the success of BERT by

refining its pretraining process. Like BERT, RoBERTa uses a masked language modeling

objective during pretraining. It learns to predict masked words within a sentence, which

encourages the model to understand the contextual relationships between words. It introduces

dynamic masking, which means that during training, it randomly masks out and replaces different

spans of text in each batch. This technique encourages the model to focus on different parts of the

text in each training iteration, improving its robustness and generalization. On the other hand,

RoBERTa doesn’t use the next sentence pretraining objective. The choice between RoBERTa and

BERT often depends on the specific requirements and constraints of the NLP task.

30

METHODOLOGY

The Hate Speech detection framework is divided into four stages: Stage-1 preprocesses the

datasets that was used to detect hate speech. In Stage-2, I implement traditional machine learning

algorithms on the datasets and evaluate the results which helped detect hate speech. In Stage-3, I

implement CNN and LSTM on the datasets and compare the results with the traditional ML

algorithms. In Stage-4, I apply BERT to detect hate speech as it is a new approach. In this section,

I discuss the four stages of my research.

Stage-1: In the first stage the datasets were preprocessed to clean them and prepare the data to be

able to use the machine learning algorithms on them. For the preparation, TF-IDF, unigram,

bigram, trigram, combination of unigram and bigram, and combination of unigram, bigram, and

trigram were used for the text corpus to be read by the machine learning techniques to see which

approach gives better results.

This stage consists of preprocessing the datasets which are required for the ML algorithms.

In the experiment, I use three datasets which are already labeled. Dataset I is created by Z. Waseem

and D. Hovy [7]. It consists of tweets that were manually labeled for hate speech by human

annotators. The authors collected the dataset by searching Twitter for specific keywords related to

hate speech, such as racial slurs and derogatory terms. The dataset contains a total of 16,907 tweets

with 1,976 data labeled as racism, 3,430 labeled as sexism and, 11,501 labeled as neither racist nor

sexist content. The dataset is not necessarily representative of all instances of hate speech on

Twitter but is instead intended to evaluate ML models to detect hate speech. Dataset II is released

by Impermium on Kaggle [14]. It contains social media comments that are labeled as either

31

insulting or not insulting. The aim of this dataset is to develop ML models for automatically

detecting insults in online comments. The dataset includes 6,594 comments in English, collected

from various social media platforms such as Facebook, Twitter, and Reddit. Each comment was

also labeled by human annotators as either insulting or not insulting. The dataset also includes

additional information such as the date and time of the comment, however, I only focus on the

comments and labels from the dataset. The dataset contains 3,947 training data samples with 1,049

samples labeled as insulting and 2,898 labeled as non-insulting. It also contains 2,647 test samples

with 6,93 labeled as insulting and 1,954 labeled as non-insulting. Dataset III is created by T.

Davidson, D. Warmsley, M. Macy, and I. Weber [15]. It is made up of tweets that are manually

classified as hate speech. Like the previous datasets, this dataset covers tweets that are in English.

It contains 24,783 tweets with 1,430 labeled as hate speech, 19,190 labeled as offensive language,

and 4,163 labeled as neither.

In the experiments, I consider samples labeled “offensive language" as “hate speech”. My

next step after preprocessing includes under-sampling or over-sampling the datasets to make them

balanced, where the resulting datasets have the same number of objects in each class. An overview

of the steps I followed is shown in Figure 1. Then I apply the ML algorithms and DL models on

the datasets and compare the results. Additionally, for the experiment, I consider label 0 as not

hate speech and labels 1 and 2 (for example, in case of a class label such as “offensive language”)

as hate speech in all three datasets.

Stage-2: The second stage is to evaluate the machine learning algorithms. Under-sampling and

over-sampling were used to balance the datasets. Then compare the results with original

unbalanced datasets.

32

Figure 1: Overview of the System

First, I evaluated the conventional ML algorithms using just the preprocessed datasets. The

ML methods that were used are: Naïve Bayes, SVM, Decision Trees, Random Forests, Logistic

Regression, and K-Nearest Neighbors.

Stage-2 consists of under-sampling the datasets. I used the lowest labeled category as the

focal interest of the sampling and used the same number to cut down the other labeled categories.

Then used the previous ML algorithms on the under-sampled datasets and compare with previous

results.

Finally in Stage-2, I added more data to the category of the datasets with fewer objects to

make the number of objects equal to the highest labeled category of the datasets. After over-

sampling, I used the ML algorithms and compared the results.

Stage-3: The third stage is to use the popular deep learning algorithms LSTM and CNN to detect

hate speech. I used GloVe word embeddings with LSTM and CNN since GloVe uses a global

33

matrix factorization approach to directly optimize the word vectors based on their co-occurrence

counts, in contrast to other word embedding techniques like Word2Vec that depend on predicting

the context of a word.

LSTM for Hate Speech Detection

The detection of hate speech in online communication is a pressing challenge, as it involves

analyzing complex language patterns and identifying subtle nuances that convey harmful

intentions. LSTM's ability to capture long-range dependencies is especially critical in detecting

hate speech, where context plays a vital role in understanding the true meaning of the text. For

instance, LSTM can recognize that a word or phrase used early in the text may significantly impact

the classification decision later on.

Hate speech often involves veiled threats, sarcasm, and other subtle expressions that may

be challenging to detect without an understanding of the text's broader context. LSTM's memory

cell allows it to retain such information, making it adept at discerning hate speech from seemingly

innocuous statements. Moreover, online communication platforms often involve user-generated

content with variable lengths, including short tweets, comments, or longer posts. LSTM's dynamic

memory allocation enables it to process texts of different lengths efficiently, ensuring consistent

and accurate hate speech detection across diverse inputs.

The LSTM Architecture

At the heart of LSTM are the memory cell and three fundamental gates: the input gate, the

forget gate, and the output gate. Figure 2 shows the architecture of LSTM model [50].

34

Figure 2: Architecture of LSTM

1. Memory Cell: The memory cell is the crux of LSTM and functions as a conveyor belt, carrying

information over time steps. At each time step, the memory cell decides what information to keep

and what to discard. This dynamic memory allocation is the essence of LSTM's ability to capture

long-range dependencies.

2. Input Gate: The input gate controls the flow of new information into the memory cell. It takes

input from the current time step and the previous hidden state, and through a sigmoid activation

function, it decides which information should be added to the memory cell.

3. Forget Gate: The forget gate regulates what information to discard from the memory cell. It

takes input from the current time step and the previous hidden state and, through a sigmoid

activation function, decides which information to forget from the memory cell.

35

4. Output Gate: The output gate determines the output of the current time step. It takes input from

the current time step and the previous hidden state, along with information from the memory cell,

and through a sigmoid activation function, it decides what information to output as the hidden state

for the current time step.

The LSTM Working Mechanism

During the forward pass of LSTM, the input sequence is fed into the network one element

at a time. At each time step, the LSTM performs computations using the input gate, forget gate,

and output gate, updating the memory cell and hidden state accordingly. The hidden state carries

information that has been distilled from the entire input sequence, while the memory cell retains

important information for long periods.

CNN for Hate Speech Detection

Hate speech detection is a challenging task in natural language processing, primarily

because of the complex and context-dependent nature of hate speech. CNN's ability to capture

local contextual information is crucial in identifying the discriminatory language and harmful

intentions present in hate speech. The use of convolutional filters allows CNN to detect specific

n-grams that are indicative of hate speech, even if they are embedded within larger text segments.

This makes CNN well-suited for identifying hate speech in online communication platforms like

social media, where content is often brief and contextual cues are essential.

Another crucial aspect is the scalability and efficiency of CNN. Hate speech is pervasive

on social media platforms with millions of posts and comments generated every second. CNN's

parallel processing capabilities allow it to analyze large-scale datasets in real-time, making it an

36

ideal candidate for hate speech detection on such platforms. Figure 3 shows the architecture of

CNN.

Figure 3: Architecture of CNN

Parameters and Architectural Considerations

Word Embeddings: Word embeddings are the foundational input for CNN in text classification.

These dense vector representations are learned from large corpora using techniques like Word2Vec

or GloVe, and they encode semantic relationships between words. The embedding layer provides

a continuous representation of each word, allowing CNN to process textual information

effectively.

Convolutional Filters: In text-based CNN, the convolutional filters slide over the sequence of word

embeddings. These filters capture n-gram features, where n refers to the number of words

considered together. For example, a 1-gram filter represents single words, a 2-gram filter considers

pairs of adjacent words, and so on. By using different filter sizes, the network can learn features at

varying contextual levels.

37

Pooling Layers: After the convolutional layer, pooling layers are used to reduce the dimensionality

of the feature maps. Max pooling is commonly employed, where the maximum value within a

specific window is taken, effectively capturing the most salient features. This down-sampling

reduces computational complexity and retains essential information.

Activation Functions: Activation functions introduce non-linearity to the model, allowing it to

capture complex relationships between features. In text classification, common activation

functions include Rectified Linear Unit (ReLU) and Hyperbolic Tangent (tanh).

Fully Connected Layers: Following the convolutional and pooling layers, the fully connected

layers aggregate the information and make the final predictions. These layers are typically

combined with softmax activation in multi-class text classification to produce probability

distributions over possible classes.

Stage-4: The fourth stage of the proposed system framework uses BERT on the cleaned datasets

as well as under- and oversampling them before using the same BERT model again. I started the

research with the datasets, where I employed machine learning techniques on the actual data, i.e.,

without using over- or under-sampling. However, unlike standard ML algorithms, the model

produced better results because it is intended to address NLP-related tasks. Words are converted

into fixed-dimension vector representations via the token embeddings layer. Then compare the

BERT model by using original cleaned datasets with the best result using traditional machine

language. I also compare them with LSTM and CNN.

38

BERT for Hate Speech Detection

BERT's contextual understanding of language and ability to capture complex linguistic

patterns make it an excellent choice for hate speech detection. Hate speech often involves subtle

expressions and context-specific language that require a deep understanding of the context to be

effectively detected.

Traditional NLP models struggle with hate speech detection due to their inability to capture

such contextual nuances. BERT's ability to model bidirectional context allows it to grasp the

subtleties of language used in hate speech and distinguish between harmful and non-harmful

content. Moreover, hate speech often evolves over time and across different online communities.

BERT's fine-tuning capability enables it to adapt and learn from specific labeled datasets, making

it a powerful tool for handling the dynamic nature of hate speech in online environments.

BERT has revolutionized natural language understanding and significantly advanced the

field of NLP. Its ability to capture contextual word representations bidirectionally has led to state-

of-the-art performance on various NLP tasks. The success of BERT in hate speech detection

highlights its effectiveness in handling complex language data and addressing the challenges of

identifying harmful content in online platforms. With ongoing research and the development of

new BERT-based variants, the future holds exciting possibilities for further advancements in NLP.

I will use BERT without preprocessing the dataset. BERT is designed to pre-train deep

bidirectional representations from unlabeled text by jointly conditioning on both left and right

context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one

additional output layer to create state-of-the-art models for a wide range of tasks, such as question

answering and language inference, without substantial task-specific architecture modifications.

Figure 4 shows the architecture of BERT.

39

Figure 4. Architecture of BERT

40

EXPERIMENTAL SETUP AND RESULTS

In this section, I cover the research progress I have made to develop the proposed

framework and present the results I obtained to conclude the research. I use the scikit-learn Python

library for the experiments. The datasets are transformed into vectors by implementing bag-of-

words and tokenizing the text. Tokenized terms are weighted by different data processing

techniques (bag-of-words/unigram, bigram, trigram, combination of unigram and bigram, and

combination of unigram, bigram, and trigram) and applying TF-IDF. Each data processing

technique was tested separately to find out the technique that gives the best performance results. I

use the TensorFlow library for the deep-learning models.

Stage-1 of the proposed framework

Stage-1 of the proposed hate speech detection framework consists of preprocessing the

datasets which are required for the ML algorithms. The preprocessing phase involves preparing

three labeled datasets for ML algorithms. Dataset I, curated by Z. Waseem and D. Hovy, consists

of 16,907 tweets manually labeled for hate speech, with 1,976 racism, 3,430 sexism, and 11,501

neither racist or sexist. While not fully representative, it serves to evaluate ML models for hate

speech detection. Dataset II, from Impermium on Kaggle, includes 6,594 English comments

labeled as insulting or not insulting, with 1,049 insulting and 2,898 non-insulting training samples,

and 693 insulting and 1,954 non-insulting test samples. Dataset III, created by T. Davidson et al.,

contains 24,783 English tweets manually classified as hate speech, with 1,430 hate speech, 19,190

offensive language, and 4,163 neither. Offensive language samples are considered as hate speech

in the experiments.

41

All the datasets were full of a lot of Internet jargon and gibberish terms. So, I make sure

that the datasets are clean, and training and testing ready for the machine learning algorithms. The

first step of my preprocessing is to remove the unnecessary symbols (such as "~~", "\\\\\\", "-_-"

etc), links and emoticons. I also eliminate irrelevant data (such as "your WS/na fluke",

"@...PetrsMailbox @SidneyCatsby BOOM" etc) that would have a negative impact on the

accuracy of the model in order to maintain consistency and the highest accuracy possible for ML

models. I eliminate those posts because they lack context. Since I use scikit-learn python library

for my experiment, the datasets are transformed into vectors by implementing bag-of-words and

tokenizing the text. Tokenized terms are weighted by different data processing techniques (bag-

of-words/unigram, bigram, trigram, combination of unigram and bigram, and combination of

unigram, bigram, and trigram) and applying TF-IDF. Each data processing technique was tested

separately to find out the technique that would give the best performance results.

I experimented with different training and testing percentage ranges for dividing the data into

training and testing sets. Following a great deal of testing, I discovered that allocating 90% of the

data to the training set and 10% to the testing set yields the highest accuracy on average. I used

this allocation for the results. In my experiments, I used 10-fold cross validation. I used accuracy

and F1-score to evaluate the models because the datasets are imbalanced.

Stage-2 of the proposed framework

Stage-2 of the framework consists of applying ML algorithms on the preprocessed datasets

and also under-sampling and over-sampling the datasets and again applying ML algorithms on

them. I started the experiments with Dataset I, where I used the machine learning algorithms on

the original data, i.e., without applying over-sampling or under-sampling.

42

Since the dataset is not balanced with more text samples labeled as neither sexist nor racist

than samples labeled sexist or racist, the results on the original data show poor results. I concentrate

on F1 measure as it is the best performance measure to use for imbalanced datasets. The F1-score

when using TF-IDF on Naïve Bayes is 0.743. However, KNN has given the lowest F1-score while

using Unigrams, which is 0.456. I even used Grid Search to find the best parameters in the

algorithms but did not get a better result. The lowest F1-score on the original data is found using

bigrams on KNN, which is 0.344. However, The F1-score, using TF-IDF on SVM, is 0.756 which

is the highest. It also gives the highest Accuracy, 0.827. On Dataset II, the F1-score of Naïve Bayes

is 0.622 and is the highest with the help of TF-IDF. I also got the lowest F1-score on KNN using

trigrams. On Dataset III, the highest F1-score I obtained was from SVM as well, also using TF-

IDF. The lowest F1-score also comes by using KNN with trigrams as well. Table 1 shows the best

results I obtained from all the ML algorithms with the word embeddings techniques.

Table 1: Best Results of ML Algorithms on the Original Datasets

Model

Dataset I Dataset II Dataset III

ACC(%) F1(%) ACC(%) F1(%) ACC(%) F1(%)

Naïve Bayes-TFIDF 81.4 74.3 83.2 62.2 86.2 56.7

SVM- TFIDF 82.7 75.6 82.5 60.0 91.3 70.8

Decision Tree- TFIDF 79.9 71.4 77.8 59.3 88.2 67.9

Random Forests- Unigrams 81.8 72.1 82.4 54.8 86.4 65.8

Logistic Regression-TFIDF 82.1 75.1 80.8 57.7 90.1 68.3

KNN-Unigrams 71.9 45.6 74.8 51.4 81.4 54.5

To make the datasets more balanced on labels, I tested by under-sampling the data. This

didn’t give the best results but gave a better F1-score overall. But under-sampling didn’t improve

43

the result of Dataset I, as it resulted in F1-score of 0.745 for Naïve Bayes using TF-IDF. The F1-

score using trigram is the lowest on Naïve Bayes, 0.517. Trigrams gave the lowest F1-score using

any machine learning algorithms.

I attribute this to the lower frequency of trigram phrases in the dataset, which made it harder

for the ML algorithms to classify based on using three-word phrases as the data features. F1-score

using TF-IDF on Logistic Regression is 0.786. It is the highest I get from the under-sampled data.

I explain the low results with under-sampling to the fact that under-sampling reduces the size of

the dataset used for training and testing, which could make the performance of a ML algorithm not

as good as compared to when having more data. For Dataset II and Dataset III, the results were

mediocre, just about the same as Dataset I but did give a better F1-score than the original dataset

overall. Table 2 shows the best results over all the datasets that I obtained using all the ML

algorithms with the word embeddings techniques.

Table 2: Best Results of ML Algorithms on the Undersampled Datasets

Model

Dataset I Dataset II Dataset III

ACC(%) F1(%) ACC(%) F1(%) ACC(%) F1(%)

Naïve Bayes-Unigrams 75.5 74.5 79.3 81.3 74.9 75.0

SVM- TF 76.8 76.9 80.1 79.9 80.5 80.2

Decision Tree- Uni & Bigrams 70.2 70.4 74.2 75.1 76.3 75.9

Random Forests- Unigrams 77.0 76.9 79.4 79.3 78.4 78.0

Logistic Regression- TFIDF 78.4 78.6 74.7 73.2 79.4 78.9

KNN-Unigrams 50.3 48.4 68.7 70.8 56.5 56.0

44

To get more data and balanced class distributions, I over-sampled the data. Table 3 shows

the best results of the ML algorithms by over-sampling the datasets. Over-sampling resulted in the

best performance results for all algorithms. The F1-score on Naïve Bayes using the combination

of unigram, bigram, and trigram is 0.882. The best F1-score I found was using the combination of

unigram, bigram, and trigram on Random Forests, which is 0.970. My explanation for the best

performance with oversampling is that over-sampling the data and using the combination of n-

grams resulted in having more and balanced data with better features for the ML algorithms, which

in turn helped getting the best accuracy, and F1-score using most ML algorithms.

Table 3: Results of ML Algorithms on the Oversampled Datasets

Model

Dataset I Dataset II Dataset III

ACC(%) F1(%) ACC(%) F1(%) ACC(%) F1(%)

Naïve Bayes-Ngrams Combined 88.8 88.2 87.7 88.9 96.0 96.0

SVM -Ngrams Combined 95.9 95.9 94.0 94.2 97.4 97.4

Decision Tree- TF 92.9 92.8 88.7 89.3 96.6 96.5

Random Forests-Ngrams

Combined 97.0 97.0 96.0 96.0 98.3 98.2

Logistic Regression-Ngrams

Combined 95.7 95.7 93.6 93.9 97.3 97.2

KNN- Unigrams 87.8 87.7 84.3 84.2 92.5 92.4

Dataset II also gave the best results when I over-sampled the dataset. However, this dataset

came with separate training data and testing data. Over-sampling both data separately and then

applying the machine learning algorithms did not give promising results as the training data was

not of sufficient amount to help weight the terms more. So, I combined the training and testing

45

data and then over-sampled it and then used 20% of the data for testing. This helped get really

good results similar to what I obtained with Dataset I. Again, the best F1-score I get is using the

combination of unigram, bigram, and trigram on Random Forest, which is 0.960. I also

experimented with a third dataset that I refer to as Dataset III in the same way, and I got the best

results when the dataset is over-sampled. The best F1-score I get again is using the combination

of unigram, bigram, and trigram on Random Forest, which is 0.982.

The experimental results in this table show that over-sampling an unbalanced dataset and

using n-grams as word embeddings for the tested ML algorithm gives excellent results. Even for

KNN algorithms, better results can be obtained when the datasets are balanced with oversampling.

After Random Forest, SVM and Logistic Regression give very good results. The F1-score using

SVM on Dataset I is 0.959, Dataset II is 0.942, and Dataset III is 0.974. Then, the F1-score using

Logistic Regression on Dataset I is 0.957, Dataset II is 0.939, and Dataset III is 0.972.

Stage-3 of the proposed framework

The Stage-3 of the framework mostly focuses on the original imbalanced dataset since in

the real world most of the datasets are imbalanced and one needs to build a model based on that.

So, I use the original datasets and apply LSTM and CNN deep learning algorithms. I loaded

GloVe-100D embedding file for the experiment, which is a pre-trained word embedding model

that was developed by the Stanford NLP Group [56].

GloVe stands for Global Vectors, and the “100D” refers to the dimensionality of the word

vectors, and then loaded embedding vectors of words which comes in GloVe file and others (words

which are not found in the GloVe file) were equated to 0. It is because, with a pre-trained word

46

embedding model like GloVe, not all words in a given dataset or vocabulary may be present in the

pre-trained model. In this case, the embedding vectors for these words can be set to zero. This

approach ensures that all words in the dataset are represented by a vector, even if their vector

values are zero. Also, the embedding matrix was created that was used in the embedding of the

models for the dimension and weights.

The LSTM model reports the lowest F1-score for each dataset among the DL models,

having the highest F1-score of 82.9% on Dataset III as shown in Table-4. Nonetheless, the ML

models performed worse than the DL models, with SVM model having the best F1-score among

the ML models (75.6%). The CNN model performs adequately with the best F1-scores as shown

in Table 4 among all other algorithms and models that were used till now to detect hate speech.

Table 4: Experiment Results of All Models

Model

Dataset I Dataset II Dataset III

ACC(%) F1 (%) ACC(%) F1 (%) ACC(%) F1 (%)

BERT 93.4 89.7 89.8 88.2 89.6 90.6

CNN-GloVe 87.7 82.8 85.6 82.5 87.3 83.2

LSTM-GloVe 86.8 81.1 84.2 80.4 85.7 82.9

Naïve Bayes-TFIDF 81.4 74.3 83.2 62.2 86.2 56.7

SVM-TFIDF 82.7 75.6 82.5 60.0 91.3 70.8

Decision Tree-TFIDF 79.9 71.4 77.8 59.3 88.2 67.9

Random Forests-Uniwords 81.8 72.1 82.4 54.8 86.4 65.8

Logistic Regression-TFIDF 82.1 75.1 80.8 57.7 90.1 68.3

KNN-Uniwords 71.9 45.6 74.8 51.4 81.4 54.5

47

Stage-4 of the proposed framework

Stage-4 of the proposed framework consists of applying BERT on the cleaned datasets and

also under-sampling and over-sampling the datasets and again applying the same model of BERT

on them. I started my experiments with Dataset I, where I used the machine learning algorithms

on the original data, i.e., without applying over-sampling or under-sampling but unlike the

conventional ML algorithms, the model gave better results as it is designed for solving NLP-related

tasks. The Token Embeddings layer transforms words into vector representations of fixed

dimension.

In the case of BERT, each word is represented as a 768-dimensional vector and each token

is given an ID and the same words are given the same ID. A sample of the token IDs is shown in

Figure 5. The BERT model also needs the attention mask to understand the importance of the

words. In the experiment, I used the attention mask tensors, tokens and IDs to make BERT

understand the words. One sample is shown in Figure 6. Then I used a base BERT model that

consists of 12 encoders, whereas BERT large model has 24 encoders. However, the results were

simply close to the result on BERT large.

48

Figure 5: Token IDs of a Sample

In my experiment, BERT model performs the best overall on the original datasets, with F1-

score of 89.7% on Dataset I, 88.2% on Dataset II, and 90.6% on Dataset III. It makes CNN the

second-best model after BERT. Then LSTM did almost as good as CNN and then the ML

algorithms were the ones to fall behind in detecting hate speech. Table 4 shows the evaluation

results from the nine models on the original Dataset I, Dataset II, and Dataset III.

After the results, I gathered six posts from the Internet where three of them were hateful

comments (‘You deserve to die.’, ‘You’re a girl, you should know better.’, ‘Let’s Kill Jews, and

let’s kill them for fun. #killjews’) and three of them were non-hateful comments (‘It was a fun

day.’, ‘I think you have a lot of potential, and if you work on your public speaking skills, you could

really excel in your career.’, ‘How was your weekend? Did you do anything fun?’). Then gave the

BERT model to detect hate speech after training and testing from the three datasets.

49

Figure 6: Tokens and Attention Masks of a Sample

Figure 7 shows that after training on the Dataset I, even though BERT has gotten a good

result, it was not able to detect one of the comments as hateful. Figure 8 shows that after using the

Dataset II, only one hateful sentence was not detected correctly. Figure 9 shows Dataset III which

also has given the best result to detect the correct label using BERT. It was able to detect all the

sample comments correctly. BERT may not be able to give 100% accuracy and F1-score, but it

shows the capability of BERT after using the six random samples. For all the datasets, I know that

I had more data on the non-hateful posts and that helped the model learn non-hateful posts with

the knowledge of context.

50

Figure 7: Predicting Hate Speech from Dataset I

Figure 8: Predicting Hate Speech from Dataset II

Figure 9: Predicting Hate Speech from Dataset III

51

COMPARISON OF THE MODELS

In the previous section, BERT demonstrated promising results in detecting hate speech

within the online texts. It is essential to compare BERT with traditional ML algorithms,

specifically SVM, as SVM provided the best results among traditional ML methods. This

comparison aims to assess whether BERT excels at understanding context, as it yielded

approximately 20% higher F1 results than SVM. Furthermore, in this section, I also conducted a

comparison with another pretrained model, RoBERTa. The goal was to determine if BERT's

performance in detecting hate speech is unique or if other models, such as RoBERTa, can achieve

similar results.

SVM Comparison

After testing the datasets with an SVM model, I collected the tweets that the model

predicted incorrectly. I then applied these data to the BERT model. Interestingly, I found that

even the tweets incorrectly predicted by the SVM model had context, and BERT was able to

predict them correctly as shown in Figure 10, Figure 11, and Figure 12. It's worth noting that not

all the tweets predicted wrongly by SVM had context. Some of the tweets were lengthy in

Dataset II, but BERT still predicted them accurately. It appears that traditional ML algorithms

like SVM tend to perform well in predicting the majority class but struggle with the minority

class.

52

Figure 10: Sample of Dataset I Used in BERT Model to Predict the Class which SVM couldn’t

Predict Correctly

Figure 11: Sample of Dataset II Used in BERT Model to Predict the Class which SVM couldn’t

Predict Correctly

Figure 12: Sample of Dataset III Used in BERT Model to Predict the Class which SVM couldn’t

Predict Correctly

53

As we can see in the examples that I used in the written thesis, both Dataset I and Dataset

II had more incorrect predictions in the minority class, which was the Hateful class as shown in

Figure 10, 11. However, BERT performed significantly better. In Dataset III, the minority class

was the Non-Hateful class, and SVM often made incorrect predictions for this class as shown in

Figure 12. Yet again, BERT outperformed SVM in these cases.

RoBERTa Comparison

I used RoBERTa, another pretrained model, for comparison with BERT. Additionally,

RoBERTa is pretrained on a larger and more diverse corpus, including 160GB of text from the

Internet, encompassing sources like BookCorpus, English Wikipedia, Common Crawl, and other

web data. In contrast, BERT's training data includes a mix of BooksCorpus (800 million words)

and English Wikipedia (2.5 billion words).

While BERT was trained for 1 million steps with a batch size of 256, RoBERTa was

trained for 500,000 steps with a substantially larger batch size of 8,000. Notably, RoBERTa

diverges from BERT by solely employing the MLM objective, omitting the NSP objective used

in BERT.

In my thesis, I employed the RoBERTa and the results were consistently close to those

obtained with BERT, as detailed in Table 5. Notably, Dataset I produced relatively worse results

when using RoBERTa, but Dataset II showed an improvement compared to BERT. These

variations can be attributed to several factors, including the quality and representativeness of the

training data. For Dataset I, it's possible that the NSP training objective was better suited, leading

54

to improved results with BERT. Nevertheless, the overarching observation is that pretrained

models excel in understanding context and predicting hate speech.

Table 5: F1-score of BERT and RoBERTa Models using the Datasets

 BERT RoBERTa

DATASET I 89.7% 86.4%

DATASET II 88.2% 88.6%

DATASET III 90.6% 89.1%

55

CONCLUSION

I developed and evaluated multiple ML and deep learning models for hate speech

identification on social media. My approach involved utilizing text from three distinct datasets and

deploying a range of models, including BERT, CNN with GloVe, LSTM with GloVe, and six

traditional ML algorithms with TF-IDF and n-grams. Additionally, for the traditional ML

algorithms, I employed both oversampling and undersampling techniques on the datasets.

The traditional ML algorithms exhibited satisfactory performance, achieving F1-scores of

approximately 70%. Notably, Dataset I yielded the best results among them. SVM stood out as the

top-performing algorithm, with an F1-score of 75.6%.

Upon applying undersampling to the datasets, I observed improvements in F1-scores across

all datasets. Naïve Bayes excelled with an impressive F1-score of 81.3% on Dataset II. The most

outstanding results were obtained by oversampling the datasets, with F1-scores surpassing 90%

for almost all traditional ML algorithms. Among them, Random Forests achieved the highest F1-

score of 98.2% on Dataset III. Notably, the combination of n-grams consistently provided superior

results, especially after oversampling, where TF-IDF proved most effective. As a result, I conclude

that imbalanced datasets significantly impact the performance of traditional ML algorithms.

In real-world scenarios, where datasets are often imbalanced, deep learning techniques

become essential to achieve optimal results. All my deep learning models achieved F1-scores

exceeding 80%. Notably, CNN and LSTM outperformed traditional ML algorithms, but BERT

consistently delivered the highest F1-scores across all datasets, with a remarkable F1-score of

90.6% on Dataset III and close to 90% on the other datasets.

56

In the comparative analysis, I observed that BERT and RoBERTa consistently

outperformed traditional machine learning algorithms. While SVM emerged as the top-performing

traditional model, BERT and RoBERTa exhibited F1 scores that were approximately 20% higher.

Moreover, it was intriguing to note that RoBERTa, with its enhanced training strategies, came

remarkably close to the performance of BERT, indicating that substantial modifications can refine

the robustness of pretrained models.

The results also highlighted the sensitivity of the outcomes to the dataset used. Different

datasets presented unique challenges, emphasizing the importance of dataset selection and

diversity. The role of NSP training objectives, as seen in BERT, contributed to differences in

performance across datasets.

In conclusion, this research underscores the transformative impact of deep learning and

pretrained models on hate speech detection. The advancements in deep learning models, coupled

with the richness of pre-training data, have elevated the field, enabling better understanding of

context and more effective hate speech prediction. The results also indicate that larger datasets

with more hate speech samples improve the performance of the deep learning models. While the

performance of these models can vary depending on the dataset characteristics, the overall trend

indicates a promising future for leveraging deep learning in addressing the critical issue of online

hate speech.

57

REFERENCES

[1] Fortuna, P., & Nunes, S. (2019). A Survey on Automatic Detection of Hate Speech in Text.

ACM Computing Surveys, 51(4), Article 85, 30 pages.

[2] Wulczyn, E., Thain, N., & Dixon, L. (2017). Ex Machina: Personal Attacks Seen at Scale.

doi:10.1145/3038912.3052591.

[3] Agrawal, S., & Awekar, A. (2018). Deep Learning for Detecting Cyberbullying Across

Multiple Social Media Platforms. In G. Pasi, B. Piwowarski, L. Azzopardi, & A. Hanbury (Eds.),

Advances in Information Retrieval. ECIR 2018 (Vol. 10772, Lecture Notes in Computer Science,

pp. 139-153). Springer. https://doi.org/10.1007/978-3-319-76941-7_11.

[4] Yin, D., Xue, Z., Hong, L., Kontostathis, A., Davison, B. D., & Edwards, L. (2009). Detection

of Harassment on Web 2.0.

[5] MacAvaney, S., Yao, H.-R., Yang, E., Russell, K., Goharian, N., & Frieder, O. (2019). Hate

speech detection: Challenges and solutions. PLoS ONE, 14(8), 1–16.

https://doi.org/10.1371/journal.pone.0221152.

[6] Kumar, R., Ojha, A. K., Malmasi, S., & Zampieri, M. (2018). Benchmarking Aggression

Identification in Social Media. TRAC@COLING 2018, 1–11.

[7] Waseem, Z., & Hovy, D. (2016). Hateful Symbols or Hateful People? Predictive Features for

Hate Speech Detection on Twitter, 88-93. https://doi.org/10.18653/v1/N16-2013.

[8] Rezayi, S., Balakrishnan, V., Arabnia, S., & Arabnia, H. R. (2018). Fake News and

Cyberbullying in the Modern Era. 2018 International Conference on Computational Science and

Computational Intelligence (CSCI), 7–12. https://doi.org/10.1109/CSCI46756.2018.00010.

[9] Cook, S. (2022, January 29). Cyberbullying facts and statistics for 2018-2022.

https://www.comparitech.com/Internet-providers/cyberbullying-statistics.

[10] Korte, L. (2017, May 30). Youth suicide rates are rising. School and the Internet may be to

blame. https://www.usatoday.com/story/news/nationnow/2017/05/30/youth-suicide-rates-rising-

school-and-Internet-mayblame/356539001.

[11] Rosenblatt, K. (2017, August 1). Cyberbullying tragedy: New Jersey family to sue after 12-

year-old daughter’s suicide. https://www.nbcnews.com/news/us-news/new-jersey-family-sue-

schooldistrict-after-12-year-old-n788506.

[12] Hinduja, S., & Patchin, J. W. (2010). Bullying, cyberbullying, and suicide. Archives of

Suicide Research, 14(3), 206–221. https://doi.org/10.1080/13811118.2010.494133.

[13] Giumetti, G. W., & Kowalski, R. M. (2022). Cyberbullying via social media and well-being.

Current Opinion in Psychology, 45. https://doi.org/10.1016/j.copsyc.2022.101314.

[14] Impermium. (2012). Detecting insults in social commentary dataset.

https://www.kaggle.com/c/detecting-insults-in-social-commentary.

58

[15] Davidson, T., Warmsley, D., Macy, M. W., & Weber, I. (2017). Automated Hate Speech

Detection and the Problem of Offensive Language. ICWSM.

[16] Hang, O. C., & Dahlan, H. M. (2019). Cyberbullying Lexicon for Social Media. 2019 6th

International Conference on Research and Innovation in Information Systems (ICRIIS), 1–6.

https://doi.org/10.1109/ICRIIS48246.2019.9073679.

[17] Simpson, J., & Saquer, J. (n.d.). Case Study Analyzing the Effectiveness of Machine Learning

and Genetic Programming for Detecting Cyberbullying.

[18] Solitana, N. T., & Cheng, C. K. (2021). Analyses of Hate and Non-Hate Expressions during

Election using NLP. 2021 International Conference on Asian Language Processing (IALP), 385–

390. https://doi.org/10.1109/IALP54817.2021.9675186.

[19] Chandra, M., Pailla, D., Bhatia, H., Sanchawala, A., Gupta, M., Shrivastava, M., &

Kumaraguru, P. (2021). Subverting the Jewtocracy: Online Antisemitism Detection Using

Multimodal Deep Learning. In 13th ACM Web Science Conference 2021 (Virtual Event, United

Kingdom) (pp. 148–157). https://doi.org/10.1145/3447535.3462502.

[20] Chandra, M., Reddy, M., Sehgal, S., Gupta, S., Buduru, A. B., & Kumaraguru, P. (2021). "A

Virus Has No Religion": Analyzing Islamophobia on Twitter During the COVID-19 Outbreak. In

Proceedings of the 32nd ACM Conference on Hypertext and Social Media (pp. 67–77).

[21] ElSherief, M., Kulkarni, V., Nguyen, D., Wang, W. Y., & Belding, E. (2018). Hate lingo: A

target-based linguistic analysis of hate speech in social media. In Proceedings of the International

AAAI Conference on Web and Social Media, Vol. 12. California, USA.

[22] Cambria, E., & White, B. (2014). Jumping NLP curves: A review of natural language

processing research. IEEE Computational intelligence magazine, 9(2), 48-57.

[23] Khan, H., & Phillips, J. L. (2021). Language agnostic model: Detecting islamophobic content

on social media. In Proceedings of the 2021 ACM Southeast Conference (pp. 229–233). Virtual.

[24] Schmidt, A., & Wiegand, M. (2017). A survey on hate speech detection using natural language

processing. In Proceedings of the fifth international workshop on natural language processing for

social media (pp. 1–10). Valencia, Spain.

[25] Acheampong, F. A., Nunoo-Mensah, H., & Chen, W. (2021). Transformer models for text-

based emotion detection: A review of BERT-based approaches. Artificial Intelligence Review, 54,

5789–5829.

[26] How It Works. Accessed on: February 17, 2023. [Online]. Available:

https://www.liwc.app/help/howitworks.

[27] De la Pena Sarracén, G. L., Pons, R. G., Cuza, C. E. M., & Rosso, P. (2018). Hate speech

detection using attention-based lstm. EVALITA evaluation of NLP and speech tools for Italian,

12, 235.

[28] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep

bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT), 4171–4186.

59

[29] Mutanga, R. T., Naicker, N., & Olugbara, O. O. (2020). Hate speech detection in twitter using

transformer methods. International Journal of Advanced Computer Science and Applications,

11(9).

[30] i Orts, Ò. G. (2019, June). Multilingual detection of hate speech against immigrants and

women in Twitter at SemEval-2019 task 5: Frequency analysis interpolation for hate in speech

detection. In Proceedings of the 13th International Workshop on Semantic Evaluation (pp. 460-

463).

[31] Jacobs, C., Rakotonirina, N. C., Chimoto, E. A., Bassett, B. A., & Kamper, H. (2023).

Towards hate speech detection in low-resource languages: Comparing ASR to acoustic word

embeddings on Wolof and Swahili. arXiv preprint arXiv:2306.00410.

[32] Pennebaker, J. W., Booth, R. J., & Francis, M. E. (2007). LIWC: Linguistic Inquiry and Word

Count. Erlbaum.

[33] Sap, M., Card, D., Gabriel, S., Choi, Y., & Smith, N. A. (2019, July). The risk of racial bias

in hate speech detection. In Proceedings of the 57th annual meeting of the association for

computational linguistics (pp. 1668-1678).

[34] Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated hate speech detection

and the problem of offensive language. Proceedings of the 11th International AAAI Conference

on Web and Social Media (ICWSM), 512–515.

[35] Van Rossum, G., & Drake Jr, F. L. (2009). Python 3 Reference Manual. CreateSpace.

[36] Wiegand, M., Siegel, M., Ruppenhofer, J., & Kuhn, J. (2018). Overview of the GermEval

2018 shared task on the identification of offensive language. Proceedings of the 13th International

Workshop on Semantic Evaluation (SemEval), 1–17.

[37] Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P., Karadzhov, G., Mubarak, H., ... &

Çöltekin, Ç. (2020). SemEval-2020 task 12: Multilingual offensive language identification in

social media (OffensEval 2020). arXiv preprint arXiv:2006.07235.

[38] Dixon, L., Li, J., Sorensen, J., Thain, N., & Vasserman, L. (2018, December). Measuring and

mitigating unintended bias in text classification. In Proceedings of the 2018 AAAI/ACM

Conference on AI, Ethics, and Society (pp. 67-73).

[39] Sap, M., Gabriel, S., Qin, L., Jurafsky, D., Smith, N. A., & Choi, Y. (2019). Social bias

frames: Reasoning about social and power implications of language. arXiv preprint

arXiv:1911.03891.

[40] Jain, S., & Wallace, B. C. (2019). Attention is not explanation. arXiv preprint

arXiv:1902.10186.

[41] Yadav, S., Kaushik, A., & McDaid, K. (2023, July). Understanding Interpretability:

Explainable AI Approaches for Hate Speech Classifiers. In World Conference on Explainable

Artificial Intelligence (pp. 47-70). Cham: Springer Nature Switzerland.

60

[42] Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., & Bhamidipati, N. (2015,

May). Hate speech detection with comment embeddings. In Proceedings of the 24th international

conference on world wide web (pp. 29-30).

[43] Perifanos, K., & Goutsos, D. (2021). Multimodal hate speech detection in greek social media.

Multimodal Technologies and Interaction, 5(7), 34.

[44] Peng, M., Zhang, Q., Jiang, Y. G., & Huang, X. J. (2018, July). Cross-domain sentiment

classification with target domain specific information. In Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 2505-2513).

[45] Xue, J., Li, Y., Li, Z., Cui, Y., Zhang, S., & Wang, S. (2023). A Cross-Domain Generative

Data Augmentation Framework for Aspect-Based Sentiment Analysis. Electronics, 12(13), 2949.

[46] Kim, Y. (2014). Convolutional neural networks for sentence classification. Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1746–

1751.

[47] Zhang, W., Yoshida, T., & Tang, X. (2008). Text classification based on multi-word with

support vector machine. Knowledge-Based Systems, 21(8), 879-886.

[48] Raschka, S. (2014). Naive bayes and text classification i-introduction and theory. arXiv

preprint arXiv:1410.5329.

[49] Aseervatham, Sujeevan & Gaussier, Eric & Antoniadis, Anestis & Burlet, Michel &

Denneulin, Yves. (2012). Logistic Regression and Text Classification.

10.1002/9781118562796.ch3.

[50] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

http://www.deeplearningbook.org.

[51] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction

with LSTM. Neural computation, 12(10), 2451-2471.

[52] Wang, S., & Jiang, J. (2015). Learning natural language inference with LSTM. arXiv preprint

arXiv:1512.08849.

[53] Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow.

O'Reilly Media.

[54] Hugging Face. (2023). Transformers Documentation. URL:

https://huggingface.co/docs/transformers/model_doc/bert.

[55] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta:

A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

[56] Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word

Representation. URL: https://nlp.stanford.edu/projects/glove/.

http://www.deeplearningbook.org/

	Evaluation of Different Machine Learning, Deep Learning and Text Processing Techniques for Hate Speech Detection
	Recommended Citation

	tmp.1701447010.pdf.piScr

