
BearWorks BearWorks 

MSU Graduate Theses 

Summer 2024 

Road Extraction on Remote Sensing Imagery: Historical Mapping Road Extraction on Remote Sensing Imagery: Historical Mapping 

of the Brazilian Amazon of the Brazilian Amazon 

Jonas Paiva Botelho Jr 
Missouri State University, Jonas031@live.missouristate.edu 

As with any intellectual project, the content and views expressed in this thesis may be 

considered objectionable by some readers. However, this student-scholar’s work has been 

judged to have academic value by the student’s thesis committee members trained in the 

discipline. The content and views expressed in this thesis are those of the student-scholar and 

are not endorsed by Missouri State University, its Graduate College, or its employees. 

Follow this and additional works at: https://bearworks.missouristate.edu/theses 

 Part of the Artificial Intelligence and Robotics Commons, Data Science Commons, 

Environmental Indicators and Impact Assessment Commons, Geographic Information Sciences 

Commons, Remote Sensing Commons, and the Spatial Science Commons 

Recommended Citation Recommended Citation 
Botelho, Jonas Paiva Jr, "Road Extraction on Remote Sensing Imagery: Historical Mapping of the Brazilian 
Amazon" (2024). MSU Graduate Theses. 3984. 
https://bearworks.missouristate.edu/theses/3984 

This article or document was made available through BearWorks, the institutional repository of Missouri State 
University. The work contained in it may be protected by copyright and require permission of the copyright holder 
for reuse or redistribution. 
For more information, please contact bearworks@missouristate.edu. 

https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/theses
https://bearworks.missouristate.edu/theses?utm_source=bearworks.missouristate.edu%2Ftheses%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=bearworks.missouristate.edu%2Ftheses%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=bearworks.missouristate.edu%2Ftheses%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1015?utm_source=bearworks.missouristate.edu%2Ftheses%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=bearworks.missouristate.edu%2Ftheses%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=bearworks.missouristate.edu%2Ftheses%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1192?utm_source=bearworks.missouristate.edu%2Ftheses%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1334?utm_source=bearworks.missouristate.edu%2Ftheses%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bearworks.missouristate.edu/theses/3984?utm_source=bearworks.missouristate.edu%2Ftheses%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu


ROAD EXTRACTION ON REMOTE SENSING IMAGERY: HISTORICAL MAPPING OF 

THE BRAZILIAN AMAZON 

 

 

 

 

 

 

 

 

A Master’s Thesis  

Presented to 

The Graduate College of 

Missouri State University 

 

 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science, Computer Science 

 

 

 

By 

Jonas Paiva Botelho Junnior 

August 2024 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2024 by Jonas Paiva Botelho Junnior  



iii 
 

ROAD EXTRACTION ON REMOTE SENSING IMAGERY: HISTORICAL MAPPING OF 

THE BRAZILIAN AMAZON 

Computer Science 

Missouri State University, August 2024 

Master of Science 

Jonas Paiva Botelho Junnior 

 

ABSTRACT 

This work proposes an artificial intelligence model based on U-Net architecture to map 
road networks in the Brazilian Amazon. Over the years, the Amazon region has been 
heavily exploited, leading to increased deforestation rates, contributing to CO2 
emissions, amplifying global warming, and causing a disturbance in local fauna and 
flora. The expansion into the forest by illegal miners, loggers, and land grabbers can be 
tracked down by the construction of roads, which we can refer to as the arteries of 
deforestation. Previous works on the matter proposed algorithms that use high-
resolution imagery to map roads precisely. However, this work approach goes a step 
further and proposes the usage of medium-resolution imagery from Landsat satellite to 
map the roads of the Amazon, spatially and temporally. By taking advantage of years of 
data acquired by the Landsat satellite family, I was able to create a historical map of 
roads in the Amazon from 1985 to 2020, which provides information on the process of 
expansion of roads into the Amazon region. The model was trained on Landsat 8 
imagery using more than 3 million kilometers of roads as its dataset, reaching 0.6577, 
0.6237l, and 0.6401 for precision, recall, and f1-score metrics. These results are 
important for predictive models of high-risk areas of deforestation, allowing for more 
precise estimation of roadless forests, having been made publicly available. 
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1. Introduction 

In recent years, several developments have occurred in computer vision, with 

modern artificial intelligence architectures greatly influencing various aspects of our 

daily lives, including data generation, utilization, and storage. In remote sensing, it has 

enabled researchers, governments, and entrepreneurs to assess project needs, 

address societal issues, and monitor environmental concerns [1]. The use of artificial 

intelligence has also improved the mapping and monitoring of one important variable: 

roads. Roads are one of the most critical aspects when considering any form of 

transportation, being the main pathways for people, goods, and services [2,3]. However, 

their use also poses negative consequences, particularly regarding environmental 

preservation [4]. Over the years, roads have penetrated previously untouched forested 

areas, most notably in the Amazon Rainforest, where opening pathways through the 

forest for illegal logging and mining has significantly increased deforestation rates [5,6]. 

To mitigate and reduce this alarming trend, researchers and government agencies have 

increasingly turned to deep-learning solutions [7,8] for detecting and proactively 

managing road construction. 

Monitoring the Amazon Rainforest presents a unique challenge due to its vast 

proportions. Until recently, analysts have manually mapped roads in the region by 

analyzing remote sensing imagery. Not only was it a time-consuming task, but it was 

also prone to human bias. In [9], the authors devised a protocol to minimize errors by 

enhancing the linear characteristics of roads, enabling analysts to identify their structure 

and reduce the misclassification of rivers, property lines, power lines, and bodies of 

water. The protocol uses image bands from Landsat TM and ETM+ sensors [10], 
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namely Bands 3 (Red), 4 (NIR), and 5 (SWIR1), which facilitated visualization of 

exposed soil and differentiation from other linear features. Using this protocol, 

researchers and analysts could gather valuable information on the regional dynamics 

and store data that would subsequently be utilized to automate the mapping process. 

Building upon this work, Botelho et al [8] proposed implementing a U-Net model 

to speed up the mapping process. The authors opted to apply the protocol to Sentinel-2 

imagery (10m resolution) to obtain high-quality samples for model training. Their 

proposed model achieved a precision of 72% and successfully identified 3 million 

kilometers of roads across 5 million square kilometers of land, enabling faster and more 

up-to-date monitoring of the Amazon rainforest. The model was further utilized in the 

Previsia project [11] to incorporate road information into a statistical model of 

deforestation risk, facilitating the assessment of the impact of roads on deforestation 

dynamics and recent developments. However, the model was trained on Sentinel-2 

imagery, which is restricted by the satellite's resolution and time constraints, thereby 

limiting the analysis to very recent data (2016 to the present). 

Nevertheless, key questions remain unanswered regarding the historical evolution of 

road dynamics, particularly considering that the expansion of roads in the Brazilian 

Amazon gained momentum relatively recently, in the 1960-70s, with the Trans-Amazon 

highway construction plan [12]. How does the expansion of roads happen? Was it an 

organized process, or did the construction of new pathways happen haphazardly? What 

drove roads in a certain direction, and what can we observe regarding environmental 

preservation? The data presented in this thesis can provide insight into answering these 

questions. 
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Obtaining historical road data for the region is challenging, as it is either scarce or 

incomplete. The goal of the work presented here is to apply road extraction techniques 

developed for Sentinel 2 (10-meter) imagery to the medium resolution (30-meter) 

imagery provided by the Landsat program [10]. Such a model would enable the study of 

road expansion in the Amazon from 1985 to the present day. To that end, this study 

proposes an approach that utilizes deep learning techniques, recent road data, and 

Landsat imagery to train a model capable of detecting roads in lower-resolution data 

spanning over 30 years and applying time-series inference over 5-year snapshots to 

account for meaningful changes. The proposed approach leverages the data resources 

offered by Google Earth Engine [13] and Google Colaboratory [14] to acquire data, pre-

process, and train an inference model capable of identifying roads throughout the 

Amazon rainforest. The subsequent sections describe the step-by-step process 

employed to obtain the data, pre-process it, feed it to the neural network, and utilize it to 

generate a historical road vector map. 
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2. Literature Review 

2.1. Deep Learning in Image Segmentation 

The field of image segmentation has grown significantly throughout the years, going 

from methods such as threshold [15] and clustering [16] to more complex structures like 

Generative Adversarial Networks (GANs) [17], autoencoders [18,19], and more recently, 

multi-model architecture that allows for the generating of masks from user-generated 

prompts [20]. These algorithms aim to create a pixel-wise classification map of an 

image. Autoencoders, in particular, are the most popular network structures used for 

image segmentation, given their feature extraction performance [19]. It reconstructs the 

image’s structure from the extracted features by encoding the input features into a 

feature space and decoding it to predict desired classes, maintaining the same format 

between input and output. 

Ronnebeger, et al [21] proposed a variation of autoencoders named U-Net that 

extracted semantic information through an encoder path and precisely mapped pixel 

classes through a symmetrical decoder path. It was awarded the 2015 ESBI cell 

tracking challenge in the field of medical image segmentation and was deemed a state-

of-the-art model for image segmentation. From there, variation of its structure expanded 

to other disciplines like remote sensing, where building and road extraction algorithms 

[22–24] took advantage of its ability to learn an expressive number of features from very 

few examples. 

2.2. Road Extraction Approaches 

The extraction of roads from images has been a longstanding and relevant topic in 

the literature. Numerous works addressing this issue can be traced back several 
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decades [1] and are of significant interest. The approaches proposed to tackle this 

problem encompass various techniques, from manual labeling to classical and modern 

machine learning. Earlier methods involved knowledge-based algorithms and 

mathematical solutions for classification that focused on spectral and contextual 

information present in the images [1]. 

In recent years, deep learning architectures have revolutionized image 

segmentation. A recent contribution in this field was made by the novel proposal in [21], 

which established the U-Net auto-encoder network as the state-of-the-art approach, 

delivering highly accurate results for image segmentation. Building upon this foundation, 

subsequent works, such as [22,24], have explored various modifications to the U-Net 

architecture to address specific challenges in road segmentation. For instance, 

recurrent units were incorporated to facilitate information propagation within the 

networks, and adjustments were made to the dimensionality of input and output data. 

Additionally, some approaches have relied on a combination of models. For 

instance, the UU-Net [25] model proposed utilizing diverse data formats during training. 

This approach improved feature extraction capabilities and yielded promising results in 

road segmentation. Furthermore, the proposed approach used two distinct data 

resources, taking advantage of Sentinel 1 and Sentinel 2 imagery. Combining both 

databases allowed for a cleaner visualization of roads using optical and radar 

information.  

2.3. Road Extraction on Moderate-Resolution Imagery 

When employing deep learning algorithms for road extraction, it is essential to 

consider the quality of the input data, including both the labeling accuracy and the 
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resolution of the images used to train the model. The resolution of the images 

significantly affects the model's ability to perceive and identify roads accurately. While 

there have been few attempts to develop models capable of identifying roads in medium 

and high-resolution images, some notable works have addressed this challenge. 

For instance, in [7], Gao, et al. utilized aerial datasets such as the Massachusetts 

Roads Dataset, which offers a resolution of less than 1 meter. On the other hand, other 

works [8,25,26] have attempted to bridge the gap between moderate and high-

resolution imagery, ranging from 30 meters to 1 meter [27]. The issue is not only related 

to the data quality but also its availability. Higher-resolution imagery is often limited to 

private data providers and comes at a high cost, while moderate and low-resolution 

imagery are more accessible for research. Moreover, lower-resolution imagery usually 

offers broader coverage, increasing its appeal for road extraction tasks in locations far 

from city centers. 

Against this backdrop, Kearney, et al. [26] employed RapidEye satellite data in 

mapping roads in rural areas of Canada, augmenting the process with on-ground GPS 

trackers to establish more robust labels, achieving high recall and precision, 0.89 and 

0.87, respectively. Lin, et al. [25], utilized both Sentinel-1 and Sentinel-2 data to train a 

unified UU-Net model, leveraging the combined information to improve road extraction 

accuracy and mitigate issues related to cloud noise, reaching a F1-Score value of 0.56. 

Botelho, et al. [8], the proposed approach combined remote sensing techniques to 

enhance linear features in Sentinel-2 images and introduced a variant of the U-Net 

model to identify roads in the Brazilian Amazon, generating a model with 0.71 of 

precision and recall of 0.65. 
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It is worth noting that early attempts to automate road mapping relied on Landsat 

imagery, which offered a resolution of 30 meters, utilizing knowledge-based systems 

and image processing techniques [9]. However, these earlier approaches did not fully 

exploit the potential of deep learning and were limited by the coarser resolution of the 

data. 

2.4. Data pre-processing and post-processing 

As noted earlier, much of the existing work in road detection has predominantly 

relied on using very high-resolution imagery. Several well-known datasets, such as the 

Massachusetts Roads Dataset [28], OpenStreetMap [29], and GF-2 Road Dataset [13], 

have served as valuable resources for these studies. In each case, pre-processing and 

post-processing techniques were employed to enhance the accuracy of the results. 

The pre-processing stage can be categorized into two main aspects: image data 

pre-processing and label data pre-processing. Image data pre-processing involved 

subdividing the input image into smaller samples for feeding into the training process. 

Also, image normalization techniques were commonly employed to ensure consistent 

pixel values across the dataset. For instance, Chen, et al. [31], used a 37949 × 35341 

image of a central part of New York to train their neural network. They cut the original 

image into 1368 images of 1000 × 1000 pixels to ease the training process and divided 

them into three sets of data (e.g., training, validation, and test).  

In their post-processing phase, Kearney, et al. [26], took measures to enhance the 

accuracy of the road detection results. This was achieved by connecting segments and 

removing misclassified data. Botelho, et al. [8] adopted a different approach by 

generating a binary mask through thresholding to distinguish between road and non-
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road areas. The predicted patches were combined to form a comprehensive study area 

map. Subsequently, the raster information was converted to vector format to extract 

statistical data, such as length, quantity, and density of roads. By employing these pre-

processing and post-processing techniques, researchers have improved the accuracy 

and reliability of road detection algorithms, enabling more effective road mapping and 

analysis. 

2.5. Model Tuning and Accuracy Assessment 

Hyperparameter tuning plays a crucial role in AI training, as it involves adjusting the 

model's variables to optimize accuracy measurements. The tuning process involves 

modifying parameters such as learning rate, loss functions, activation functions, 

optimizers, dropout rates, and model size (length and depth). By fine-tuning these 

characteristics, models can achieve varying levels of performance. 

Different loss and activation functions have been explored to address specific 

challenges. Zhang, et al. [24], used mean squared error to minimize loss, while the 

Rectified Linear Unit (ReLU) was applied to the residual layer as the activation function 

to filter ≤ 0 values. Havaei, et al. [32] employed the generalized dice loss to handle 

unbalanced data and a maxout non-linearity function to model features. Moreover, in the 

original U-Net publication [21], Ronnenberg introduced an asymmetrical input and 

output correlation, whereas Botelho, et al. [8], made modifications to preserve edge 

pixels and ensure input and output shapes were the same. 

Once these models are trained, several well-known accuracy metrics are employed 

to evaluate their performance, particularly for unbalanced data such as roads. Sun, et 

al. [33] employed precision, recall, and F1-Score, along with other metrics such as mIoU 
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and IoU, to assess the quality of their results. Detailed explanations of these metrics will 

be provided in the subsequent chapters. 
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3. Methodology 

The methodology for training an AI model capable of identifying roads in the Amazon 

region consists of three steps, outlined in Figure 1. The first step involves acquiring and 

preparing the training data for input into the neural network training process. The 

second step focuses on the actual training of the model and the analysis of its accuracy 

parameters. Lastly, the third step encompasses the post-processing phase, which 

involves cleaning and filling any gaps in the output. Each of these steps will be 

described in detail in the following sections. 

 
Figure 1. Workflow describes data preprocessing, model training, and post-processing. 
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3.1. Study Area 

The study area encompasses the entire Legal Brazilian Amazon [34], which includes 

the nine states that contain parts of the Amazon biome and serve as the location for 

collecting training samples for the proposed AI model, as illustrated in Figure 2. The 

vast area covers approximately 5 million square kilometers and contains different road 

formations and Land use scenarios, such as pastureland, mining, and logging. The 

diversity facilitates the training process in effectively generalizing the characteristics 

distinguishing roads from non-roads. Moreover, the dataset generated by Botelho, et al. 

[8] was used to divide the region into smaller samples to train the neural network. These 

training samples are rectangular structures of 256 × 256 pixels in size that define the 

geolocation where the data pre-process will clip the Landsat RGB composite and the 

rasterized binary road data. 

 
Figure 2.Map of the Brazilian Legal Amazon (study area). 
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3.2. Amazon Road Dataset 2020 (ARD) 

The training process of the proposed AI model utilized the dataset generated 

automatically by the U-Net model presented in [8] as reference data. This dataset 

encompasses a comprehensive collection of roads spanning 3 million kilometers within 

the Brazilian Legal Amazon region, specifically from 2020. The original data format is a 

vector file in .shp format, which underwent two fundamental processes: sample location 

and binary mask conversion. The sample location process involved the selection of 

relevant tiles from a grid that covers the entire study area. This process used the vector 

file to identify samples intersecting with road vectors, as illustrated in Figure 3. 

Simultaneously, the vector data was converted into a raster file with a resolution of 

30 meters to align with Landsat’s specifications. Prior to rasterization, the vector data 

was buffered to twice its original size to better represent the roads and their surrounding 

context. The dataset is heavily unbalanced due to the nature of roads as a rare class in 

the Brazilian Amazon's overall context, with road pixels representing only 258 million 

pixels (13%). In contrast, non-road pixels represent 1.8 billion pixels (88%). To deal with 

the imbalance, checkpoints, performance metrics, and calculation functions were set to 

ensure minimal negative impact on the learning process. 

3.3. Landsat Composites 

This work utilized two satellites from the Landsat family to create the yearly mosaics: 

Landsat 5 and 8, each covering 1985-2010 and 2013-present, respectively. I applied a 

pre-processing routine that included the following steps: selecting specific bands to 

enhance the linear features of roads, defining the temporal constraint to retrieve the 

desired images, adjusting the brightness and gain values, and applying standard 
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deviation stretch to sharpen the imagery. Depending on the satellite that generated the 

imagery, the parameters of the steps were slightly modified to achieve similar results. 

For the training dataset, the image mosaic for the year 2020 was generated by 

filtering image tiles corresponding to August and October, thus avoiding cloud 

interference [35]. Additionally, the images were filtered based on their cloud cover score, 

which was set to ≤30%, reducing noise in the dataset. The mosaics were then combined 

by calculating the median value for each pixel from the specified timeframe. A histogram 

stretch applying 2 standard deviations was employed to mitigate the bright spikes 

present in the images. Furthermore, gain values were adjusted for each band (0.08, 

0.06, and 0.2), and a gamma value of 0.75 was applied to enhance visualization of road 

features. The pre-processing result is represented by Figure 3. Similarly, the image 

mosaics for 1985, 1990, 1995, 2000, 2005, 2010, and 2015 underwent pre-processing 

to conform to the training data format. 

 
Figure 3. Visual representation of image RGB composite after pre-processing. (a) 

displays Landsat 8 2020 composite. Visualization of each band that composes pre-
processed Landsat images: (b) Shortwave Infrared 1 Band (Swir 1), (c) Near-Infrared 

(NIR), and (d) Red. 
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While accessing images from the Google Earth Engine database was 

straightforward, yearly mosaics often lacked completeness, particularly in older images. 

These gaps resulted from the cloud cover filter, compounded by the absence of satellite 

imagery in those regions. The most significant gaps were observed in the northern part 

of the Amazon, characterized by prevalent year-round cloud cover. The years 1985 and 

2010 had the most missing tiles, representing 8.76% and 7.79% of the entire study 

area, respectively. Several alternatives were available to address this issue, including 

incorporating pixels from different years into the mosaic process and generating multi-

year mosaics. However, I kept data from a single year in the Amazon yearly mosaics to 

preserve year-by-year information. Table 1 delineates the Landsat scenes absent from 

the inventory and their corresponding missing areas. 

Table 1. Missing Tiles in Landsat Mosaic by Year. 

Year Nº of missing tiles Missing area (km2) Missing Area (%) 

1985 14 439,448 8.76 
1990 7 177,738 3.54 
1995 10 254,841 5.08 
2000 5 158,700 3.16 
2005 1 31,510 0.62 
2010 13 391,219 7.79 
2015 0 0 0.0 
2020 0 0 0.0 

 

3.4. Sample Processing 

Training samples involved systematically selecting relevant areas characterized by 

roads within the specific regions. These samples were standardized to 256 × 256 pixels 

and extracted based on a grid system encompassing the entirety of the Brazilian Legal 

Amazon. Approximately 40,000 samples were selected based on the presence of roads 

from the reference data, covering an estimated 2.3 million square kilometers. To 
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facilitate computational operations, the samples were extracted in batches following the 

structure of the International Millionth Map of the World sheets [36], as visually 

represented in Figure 4. 

 
Figure 4. Batch processing and sample extraction locations. 

 

Each iteration of the process utilized the geometry of the sheets to create a 

corresponding grid. Subsequently, the grid was filtered based on its intersection with 

road vectors, resulting in the selection of sample locations. Once the locations were 

determined, the binary and Landsat images were cropped and combined to construct 

the dataset structure, consisting of Input/Image data and Label Data. These structures 

were converted from .tiff format to numpy arrays to facilitate data management. 

Furthermore, the numpy arrays were organized by bands and stored in TFRecord files 

to streamline the data ingestion process within the TensorFlow [37] framework. In total, 

334 TFRecord files were created based on the International Millionth Map of the World 

Sheets that covers the training area. 
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The files were randomly split into training, validation, and test datasets. This 

allocation designated 80% of the data for training, with the remaining 20% evenly 

distributed between validation and test sets. Data augmentation techniques were 

applied to the training set to augment sample diversity and enhance the model's 

generalization. Each training sample underwent rotations of 90, 180, and 270 degrees 

and horizontal and vertical flips, increasing the sample count from 32,000 to 160,000. 

3.5. Post-Processing 

The model generates a 256 × 256 × 1 image array containing class probability 

values for each pixel. An empirical decision was made to set the confidence threshold at 

0.5, effectively filtering out pixel values with less than a 50% probability of representing 

a road. In addition to the thresholding process, several post-processing steps were 

implemented to enhance the model's results and to convert the output from an image 

format into georeferenced raster and vector data. 

Following the elimination of low-probability pixels, the array values are 

georeferenced using the coordinates of the original input image. Georeferencing the 

image is essential for pinpointing the precise location of roads and applying 

geoprocessing tools for further data analysis. Additionally, a water mask [38] is applied 

over the image to remove residual artifacts resembling linear structures that may occur 

between bodies of water and land, such as sand bodies. 

The post-processing algorithm closes gaps between segments separated by as few 

as 2 pixels before thinning the structures to a 1-pixel length. This gap-closing operation 

involves applying a geometric structure buffer, rectangles of size 2 × 1, to search for 

connections between nearby segments before undergoing thinning. Once the segments 
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are interconnected and thinned, the post-processing algorithm leverages the Python 

library GRASS GIS [39] to execute geoprocessing operations, including Vectorization, 

Generalization, Border Cleaning, and Density Cleaning. 

The vectorization process plays a crucial role in transforming the output data from 

raster to vector format, leveraging the location of single-pixel-width segments. These 

segments adhere to a pixel-squared format while constituting the road vector 

representation. Subsequently, this representation undergoes a generalization process to 

smooth out lines, ensuring a more accurate portrayal of roads. The vector data enables 

the analysis of segment lengths, facilitating mapping the road network's extent. 

Despite the effectiveness of vectorization, misclassified border pixels, often resulting 

from tilted scenes and distorted images, posed challenges. To address this issue, a 

border-cleaning process was implemented. This involved utilizing auxiliary vector files 

representing these borders to identify and remove road segments aligned with them. 

Once the borders were cleaned, the entire dataset was divided into patches of 10 

kilometers. This segmentation allowed for the examination of road density, aiming to 

eliminate small false positives introduced by factors such as clouds, unmapped rivers, 

and bodies of sand. 

3.6. U-Net Model 

I opted to use a U-Net architecture as it is considered state-of-the-art for image 

segmentation and because of its past performances in segmenting roads from medium-

resolution remote sensing imagery (10 meters). The modified U-Net architecture 

proposed for road mapping in the Amazon region was developed based on previous 

work of Botelho, et al. [8]. It has undergone further refinements to adapt to differences in 
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the input data. This modified architecture has increased depth to enhance the feature 

extraction process by allowing the model to acquire more high-level data due to 

Landsat’s low resolution. The architecture comprises five layers of encoder and decoder 

blocks, with a total of ≈3.1 million parameters, organized into four primary block steps: 

Encoder Convolutional Block, Bottleneck Convolutional Block, Decoder Convolutional 

Block, and Dropout Convolutional Block, illustrated in Figure 5. 

 

Figure 5. Proposed neural network architecture. 
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The Encoder Convolutional Block plays a pivotal role in extracting high and low-

level features by applying a sequence of 2-dimensional convolutional layers coupled 

with batch normalization. The Maxpooling layer is also employed in this block. Given the 

high data imbalance in the dataset, the Leaky ReLU activation function (ɑ = 0.3) [40] 

was chosen to mitigate the issue of dying neurons. Notably, the results from each block 

are preserved before the max-pooling operation to facilitate data reconstruction by the 

subsequent decoder convolutional blocks. In contrast, the Decoder Convolutional 

Blocks utilize transposed convolution operations to fill gaps in the image and reconstruct 

its information while adapting their weights based on reference data. The Bottleneck 

and Dropout Convolutional Blocks are intermediate steps for extracting low-level 

features and introducing variation and regularization into the training process. 

Additionally, the model employed the Nadam optimization algorithm with a 

learning rate of 0.001 and the soft dice loss function [41], as described in equation 1, to 

adjust its weights during backpropagation. This function computes the Dice Coefficient 

by measuring the overlap between the model's output probabilities and the reference 

data. The numerator represents the doubled count of positive activations, while the 

denominator denotes the total number of activations. The coefficient is then subtracted 

from 1 to facilitate minimization of the results, effectively mitigating the impact of class 

imbalances. 

(1) 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
|2 ∗  ∑ 𝑦𝑡𝑟𝑢𝑒 ∗  𝑦𝑝𝑟𝑒𝑑 |

|∑ 𝑦𝑡𝑟𝑢𝑒
2 +  ∑ 𝑦𝑝𝑟𝑒𝑑

2 + 1|
 

𝑆𝑜𝑓𝑡 𝐷𝑖𝑐𝑒 = 1 − 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

Regarding training parameters, the dataset was input into the model in batches 

of 32 samples over 200 epochs. Additionally, checkpoints, early stopping, and learning 
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rate reduction mechanisms were implemented to ensure optimal convergence and 

efficient utilization of computing resources. These three mechanisms are triggered 

based on the stability of the validation loss function, which is evaluated after a series of 

non-improvement iterations. 

 The implementation of the model can be accessed through the following link 

https://colab.research.google.com/drive/19FQCRnzJezmqY5S9tgVcvdT3tSZLL9Ho?us

p=sharing 

3.7. Model Assessment 

Additionally, alongside the loss function value, the training process computed other 

performance metrics to gauge the learning progress of the neural network. Precision, 

recall, and F1-score metrics were selected for their reliability in assessing the quality of 

the model's outcomes. These metrics leverage fundamental variables such as true 

positives, false positives, and false negatives to quantify the accuracy of predictions. 

Precision assesses the model's accuracy by considering true and false positives, as 

defined by Eq 2. It evaluates the model's ability to predict positive outcomes. 

(2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

Furthermore, Recall evaluates the model's completeness using true positives and 

false negatives. Including false negatives allows for assessing the model's accuracy in 

predicting positive outcomes. 

(3)𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

Lastly, the F1-score calculates the harmonic mean between the precision and 

recall rates, offering a balanced evaluation of the model's performance. 
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(4) 𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

In addition to the statistical metrics, I analyzed the data from two additional 

perspectives. First, the model’s performance in large-scale inference allows for 

assessing the model’s ability to identify roads in the entire study area. Areas not used 

during the model’s training might present different contexts that can potentially generate 

more data. The large-scale inference was compared with Sentinel’s model map of 2020 

to compare data statistical information (e.g., length and presence). Second, I applied 

the model over the time series and analyzed how the roads changed over time against 

one another. These analyses are presented in chapters five and six, respectively. 
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4. Results 

The model underwent training in the Google Colab environment, utilizing a 

configured NVIDIA V100 GPU and a system equipped with 50GB of RAM. The training 

process was completed in approximately ~8 hours, yielding the trained model's archive 

and a log file encompassing crucial performance metrics. These metrics include the loss 

function value, precision, recall, and F1-score for the training and validation sets. 

Despite being set to train for 200 epochs, the model demonstrated early 

convergence and negligible improvement after reaching a plateau. Consequently, the 

early stopping parameter intervened at epoch 102. Upon concluding the training 

process, the checkpoint parameter ensured that the model's weights were set to those 

of the best epoch, determined based on the validation loss value—precisely, epoch 77. 

Furthermore, as previously detailed, a distinct test set was employed to assess the 

model's generalization capability, evaluating its proficiency in discerning the presence of 

roads in previously unseen image data. Comprehensive details of these results are 

explained in the following sections. 

4.1. Metrics 

Three key aspects were scrutinized to assess the model's effectiveness: the 

convergence of the training and validation sets and the performance on the test set. 

Throughout training and validation, the model's primary indicator of convergence was 

the minimization of the soft dice loss function, as shown in Figure 6. This metric, starting 

at 25.11 and 2.42 for training and validation, respectively, steadily decreased until 

reaching its lowest point at epoch 77—0.3321 for training and 0.3286 for validation. 

Concurrently, the loss function value during the test evaluation returned as 0.3070. 
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These values, all derived from epoch 77, were selected as the best epoch based on the 

parameters considering the lowest validation loss function value. The loss function 

value was chosen due to its non-interfering nature during training and its representation 

of the complete model without applying the dropout layer. 

 
Figure 6. Loss function minimization graph for training and validation sets. 

 

In addition to the loss function, precision, recall, and F1-score metrics were 

employed to validate the completeness and correctness of the results by comparing the 

model's output to the reference data pixel-wise. The precision metric reached a 

maximum of 0.6341 during training and 0.6408 during validation, while recall values 

were 0.5867 and 0.5934, respectively. The F1-score, representing a harmonic balance 

between precision and recall, achieved values of 0.6085 for training and 0.6156 for 

validation. These metrics indicate that compared to the reference data, the model 

completed a match of approximately 60% during training and validation, as shown in 

Figure 7. Moreover, the test set demonstrated model performance in new data, 
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returning metrics values of 0.6577 for precision, 0.6237 for recall, and 0.6401 for the F1-

score. 

 
Figure 7. Performance metrics development during model training. (a) Precision metric; 

(b) Recall metric; (c) F1 score metric. 

The metrics mentioned above were calculated directly from the model’s output and 

represent the model’s performance without any external interference. However, as 

mentioned previously, a post-process is applied to the results to improve segment 

connectivity and clean possible false positives. To grasp the performance of the entire 

workflow, the metrics were also calculated for the post-processed data over the test set, 

which indicates a slightly lower precision (0.6388), recall (0.5700), and f1-score (0.6024), 

described in Table 2. Despite lower metrics, the results still hold good quality, affected by 

small distortion caused by dilation and inflation processes applied to connect segments, 

as shown in Figure 8. 
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Table 2. Performance metrics for pre and post-processing model’s inference over 
testset. 
 

 Precision Recall F1-Score 

Testset raw output 0.6577 0.6237 0.6401 
Testset post-

processed output 
0.6388 0.5700 0.6024 

 

4.2. Visualization 

To evaluate the quality of the results, various examples generated by the model are 

analyzed, as in Figure 8. The examples illustrate different road contexts and formations, 

organized in rows, with varying inference stages displayed in columns. Column A shows 

the input data, Column B depicts the reference data, and Columns C and D show the 

model's output and the results after the post-processing steps. 

Comparing the reference data to the model's output reveals that the reference data, 

sourced from higher-resolution images, contains more roads. However, the proposed 

model maintains prominent roads and visible structures in the Landsat imagery. More 

minor roads, particularly those near exposed soil, are more challenging to identify, 

resulting in fragmented segments in the output. Roads surrounded by forests are easier 

to identify due to their distinct linear features, as observed in row 4. Additionally, their 

organized context makes geometric road networks more easily identifiable. Overall, the 

model's outputs provide meaningful results, capturing most road network information 

despite missing some segments due to resolution limitations and mixed class signals. 

The post-processing steps applied to the results enhance road sharpness, close 

gaps between fragmented segments, and reduce noise. However, these steps also 

slightly modify the structure of some segments, mainly due to inflation and dilation 

processes. Some squared-shaped road patches become more spherical, and bordering 
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road segments may merge. Despite these changes, they maintain connectivity and 

effectively represent dynamics in the regions. 

 
Figure 8. Visual examples of the model’s results on the test-set: (a) Input image, (b) 

reference data, (c) model’s raw output, and (d) model’s output after raster post-
processing 
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5. Large-scale inference and reference comparison 

5.1. Brazilian Legal Amazon 2020 Landsat Road Network Map 

The proposed model generated results for the entire study area, mapping its road 

networks in medium-resolution satellite imagery, facilitating broader spatial and temporal 

analysis of road dynamics. The entire Brazilian Legal Amazon region was utilized to 

validate this claim, employing the 2020 Landsat mosaic composite to produce a 

comprehensive road map. This process, conducted following the established protocol 

for acquiring training tiles, took approximately 8 hours to complete. The model mapped 

approximately 3 million roads across 5 million square kilometers, with a concentration 

primarily observed in the southern part of the study area, as depicted in Figure 9. 

 
Figure 9. Brazilian Legal Amazon’s 2020 road network map produced by the proposed 

model. 
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Two additional post-processing steps were implemented to refine the results. 

Firstly, a manual verification consisted of visually inspecting areas close to rivers, image 

borders, and areas with clouds to clean residual false positives, such as irregular cloud 

formations, drought areas, and exposed soil close to image borders, as shown in Figure 

10. Once identified, those features were manually excluded from the overall road map, 

reducing the number of roads mapped to approximately 2.8 million kilometers. 

 
Figure 10. Three examples of false positive residues. The (I) represents the false 
positives generated at the border of the charts. Images (II) showcase roads wrongly 
mapped in areas of drought. (III) false positives mapped at odd cloud formations. 

 
The second step involves consolidating connected segments in the .shp file to 

reduce complexity. Although the vectorization process effectively produced road line 

strings, it fragmented connected segments, increasing file size. The 2020 vectorized 
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output contained over 12 million features stored in a 1.7 GB .shp file, resulting in slow 

loading times in geospatial software like QGIS and Google Earth Engine. To address 

this issue, I employed the PostGIS database query function st_clusterdbscan [42] to 

identify connected segments within a pixel distance of 30 meters or ≈0.000269 degrees. 

Once clustered, segments were merged using the st_union function, resulting in a ≈1 

GB file with approximately 164 thousand rows, simplifying the dataset. 

5.2. Landsat model vs. Sentinel model 

Benchmarking against the ARD map of the Brazilian Legal Amazon was crucial to 

assess the model's performance comprehensively. Despite being trained using ARD, 

the proposed model's inference across the entire study area could unveil new insights, 

especially in unmapped regions. Given the challenge of comparing road-by-road 

similarities, a spatial distribution analysis was conducted instead to ascertain whether 

the proposed model's data aligned spatially with the reference data, indicating its 

usability. 

To address potential oversights in hotspots, deforestation data from [43] was utilized 

to categorize roads into two categories: Roads in Deforested Areas (RDA) and Roads in 

Forested Areas (RFA). This categorization enabled separate analysis of high and low-

density regions, enhancing the accuracy of the spatial distribution assessment. 

Moreover, the spatial distribution analysis was confined to the limits of the Brazilian 

Amazon Biome to maintain geographical consistency and relevance, as shown in Figure 

11. 
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Figure 11. Map displaying the sub-area representing the Brazilian Amazon Biome 

borders. 
 
The analysis focused on a subarea spanning 4.26 million km2, revealing 1.73 million 

km of roads identified by the proposed model and 2.15 million km by the ARD. For 

Roads in Deforested Areas (RDAs), the Landsat analysis returned 1.4 million kilometers 

of roads, representing an 11% reduction compared to the ARD, distributed across 63.7 

Mha of deforested areas. Differences were expected due to the lower spatial resolution 

of Landsat relative to Sentinel. Both results exhibited similar road structures and 

pathways, as illustrated in Figure 12. 
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Figure 12. Visual representation of road detection between the Sentinel-2 and Landsat 

models for RFAs and RDAs. 
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The disparities primarily arise from smaller segments, which are particularly 

challenging to discern in Landsat imagery, such as those within areas of exposed soil 

and dense vegetation cover. Roads in Forested Areas (RFAs) are notably affected by 

the latter, often located in regions with minimal forest loss. As a result, the proposed 

model identified only 337 thousand kilometers of RFAs, contrasting with the 571 

thousand kilometers detected by the ARD. Figure 13 illustrates the comparative 

proportions of both results, indicating that while the Landsat model can adequately map 

general roads, it struggles to detect roads visible only in higher resolutions. 

 
     Figure 13. Comparison between satellites’ road network map. 
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6. Time-Series data 

Proposing a model capable of road inference in Landsat 8 imagery enables analysis 

of images from other satellites within the Landsat family, exploiting their spectral 

wavelength and resolution similarities. With over 30 years of Landsat satellite data 

available, the model facilitates mapping Brazil's road evolution. The Landsat imagery 

data spanning a 5-year cycle was utilized to assess its capabilities, focusing on road 

dynamics in the study area. Additionally, road network growth was analyzed concerning 

deforestation and forested area reduction, topics discussed further ahead. Figure 14 

showcases the changes that happened in the municipality of Novo Progresso between 

1985 and 2020. 
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Figure 14. Visual representation of road development in the municipality of Novo 
Progresso, along BR-163. (a) Showcase the status of the area in 1985 while (b) 

displays its configuration in 2020. 

6.1. Road development 

The model produced eight vector files spanning road network data from 1985 to 

2020. Following the protocol outlined for the Landsat 8 2020 composite, the files were 

generated with a 5-year interval to highlight perceptible differences. Notably, Figure 14 

demonstrates significant variations in mapped roads for each year, reflecting consistent 

growth. Results revealed an average 25% increase in the road network every five years, 
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with peaks observed during 2000-2005 and 2010-2015 – showing growth rates of 44% 

and 41%, respectively. However, the slow growth between 2005 and 2010 may be 

attributed to heightened cloud cover, reducing road mapping and causing discrepancies. 

Additionally, road expansion, albeit steady, shows regional disparities, with faster growth 

observed in the southern regions of the Brazilian legal Amazon, as depicted in Figure 

15. 

 

Figure 15. Road network growth over time. 

 

6.2. Roads x Deforestation x Forest 

Going further, I analyzed the time series results concerning deforestation. Historical 

data enables an examination of how the relationship between roads and deforestation 

has evolved. I conducted a comparative analysis between the results of the porposed 

Landsat model and those of [8] that used Sentinel-2. The road network was categorized 

into Roads in Deforested Areas (RDAs) and Roads in Forested Areas (RFAs). This 
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allowed for a year-by-year comparison to assess growth and correlation, detailed in 

Figure 16. 

 
 

Figure 16. Graph encompassing total roads, RDAs, and RFAs data growth in the time 
series in comparison to deforestation growth. 

 

The deforestation data indicates 63.7 Mha were deforested between 1985 and 

2020, with a corresponding growth of 1.7 million kilometers in road data. Both 

experienced similar growth rates, with the road network expanding by an average of 

31% over 35 years, paralleling the 30% increase in forest loss area, as illustrated in 

Graph 13. In 1985, approximately 1.28 ×10^5 kilometers of roads traversed 1.13×10^5 

km2 of deforested areas, while 1.43 × 10^5 km extended into the forest. Over 35 years, 

RDAs grew by 1095%, reaching over 1.4 × 10^6 km in 2020. Notably, RDAs exhibited 

two significant spikes: between 1985 and 1990, with a 61% increase from 1.28 ×10^5 
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km to 2.07 ×10^5 km, and between 1995 and 2000, with a 62% growth from 3.24 ×10^5 

to 5.27 ×10^5 kilometers. The entire time-series data is described in Table 3. 

Table 3. Timeseries road’s statistics by year. 
 

 
Roads in Deforested 

Areas (RDAs) 
Roads in Forested 

Areas (RFAs) 
Total Roads 

Years 
Length 

(106 x km) 
Growth 

(%) 
Length 

(106 x km) 
Growth 

(%) 
Length 

(106 x km) 
Growth 

(%) 

1985 0.12 - 0.14 - 0.27 - 
1990 0.20 61.19 0.13 -2.95 0.34 27.33 
1995 0.32 56.80 0.15 7.84 0.47 37.09 
2000 0.52 62.40 0.19 30.27 0.72 52.23 
2005 0.77 46.46 0.23 18.75 1.00 38.84 
2010 0.83 7.66 0.20 -12.29 1.03 3.12 
2015 1.20 45.14 0.31 53.46 1.52 46.76 
2020 1.40 16.64 0.33 7.71 1.74 14.79 

 

In contrast, RFAs provide discrete information on the state of roads within the 

forest each year, potentially transitioning into RDAs as surrounding land loses forest 

cover and is classified as deforested. Therefore, I compared RFAs based on their yearly 

extents rather than considering the data as incremental. This approach revealed 

fluctuations in RFAs, with reductions of -2% and -12% observed between 1985-1990 

and 2005-2010, respectively, and from 2010 to 2015, the period witnessed a notable 

53% increase in RFAs. However, missing Landsat scenes notably influenced this growth 

in 2010. Conversely, the second-highest growth rate occurred from 1990 to 1995, at 

30%. Figure 17 visually represents the time-series of both deforestation and road 

networks, in which it is possible to notice that the older the deforestation is, the older the 

roads around it are. The same can be stated about newer deforested areas and roads. 
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Figure 17. Representation of roads and deforestation growth over time. 
 

In conclusion, RDAs exhibited an average growth rate of 42%, while RFAs averaged 

approximately 14%. This suggests a more significant surge of roads in already 

deforested areas, indicating a more substantial influence on deforestation expansion 

into RDAs. However, it's important to note the temporal gap of 5 years in the analyzed 

data, limiting the ability to assess the impact of RFAs on deforestation directly. Further 

detailed analysis is needed to infer the specific effect of RFAs, which falls beyond the 

scope of this study. 
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7. Future Work 

The development of road detection models for high-resolution imagery has 

accelerated data generation compared to manual mapping. This trend supports further 

study using high-resolution imagery and the creation of models focusing on broader 

coverage and higher temporal resolutions. Our Landsat Road detection model evolved 

from manual mapping to an automated AI detection model using medium-resolution 

imagery. This model enables retrospective analysis of roads in the Brazilian Legal 

Amazon over 35 years, revealing growth from 628 thousand to 2.89 million kilometers. 

Benchmarking the model's performance from 1985 to 2015 relied on visual 

comparison with Landsat imagery composites. A direct comparison with the ARD wasn't 

feasible due to resolution differences, but an indirect comparison using deforestation 

data suggested comparable inference rates. The proposed AI model identified 1.74 

million kilometers of roads in the Brazilian Amazon Biome, compared to 2.15 million by 

the ARD, primarily explained by resolution discrepancies. RDA represented 80% and 

73% of the datasets, while RFA accounted for 19% and 25%. 

The reliability of the data enables various research analyses, including deforestation 

evolution and human trafficking pathway changes. Historical datasets facilitate 

prediction systems' implementation, enhancing capabilities like the deforestation risk 

model [44]. Moreover, deforested areas have been growing rapidly throughout the 

years, except in protected lands, such as Indigenous Lands and Conservation Units, 

which play an essential role in environmental preservation. Visual analysis of road time-

series data displays the effectiveness of these areas in reducing the expansion of 

networks and, consequently, deforestation, as shown in Figure 18. Further analysis can 
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be made to assess in detail how policy changes and monitoring of these lands interact 

with the progress of roads into forested territory. In addition, the correlation between 

roads and deforestation also opens the door to other subjects with overlapping issues, 

such as modern slavery [45], which necessitate further analysis to understand its impact 

and identify patterns for illegal site tracking. 

 
Figure 18. Representation of road network growth from (a) 1985 to (b) 2020 around the 

Indigenous Land Mãe Maria. 
 

Improvements to the model input and post-processing are possible. Using multiyear 

mosaics instead of yearly ones could address missing data issues. However, this raises 

challenges in analyzing road growth and classifying representative data. Addressing 

topology arrangement and segment connectivity challenges requires manual 

adjustments, as automated solutions only partially resolve these issues. 
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8. Conclusion 

The accumulation of decade-long manual mapping combined with AI algorithms 

enriched the overall data pool on roads, culminating in the Landsat Road detection 

model presented in this work. Also, by consolidating a pipeline that can consistently 

predict roads using new data, I created a time-series data for roads in the Brazilian 

Amazon, spanning over 30 years. The ever-evolving landscape and dynamics of the 

region, such as deforestation, fires, transportation of commodities, and trafficking, can 

be traced back in time and analyzed to answer questions regarding how we got to 

today’s regional configuration. Over 30 years of road data can be used to improve 

predictive models to identify areas with higher deforestation risk, allowing for a more 

precise estimate of roadless forests. Furthermore, the data could be used to track the 

development of trafficking routes and their ramifications through time. Also, initial 

assessments of the correlation between deforestation and roads indicate a heavier 

influence in deforestation from roads in already deforested areas. Furthermore, 

improvements can still be made to ensure more complete results, targeting better 

topological representation, image composition, and segment connectivity. In addition, 

the model showcased its capability to generate high-quality results in low spatial and 

high temporal resolutions, which created a historical dataset for roads, opening the 

possibility for a diverse range of research and applications that can enrich how issues 

are tackled in the Amazon region. 

 

 

 



51 
 

9. Reference 

1.  Wang, W.; Yang, N.; Zhang, Y.; Wang, F.; Cao, T.; Eklund, P. A Review of Road 

Extraction from Remote Sensing Images. Journal of Traffic and Transportation 

Engineering (English Edition) 2016, 3, 271–282, doi:10.1016/J.JTTE.2016.05.005. 

2.  Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks 

for Volumetric Medical Image Segmentation. In Proceedings of the Proceedings - 

2016 4th International Conference on 3D Vision, 3DV 2016; 2016. 

3.  Xu, Y.; Xie, Z.; Feng, Y.; Chen, Z. Road Extraction from High-Resolution Remote 

Sensing Imagery Using Deep Learning. Remote Sensing 2018, Vol. 10, Page 

1461 2018, 10, 1461, doi:10.3390/RS10091461. 

4.  Engert, J.E.; Campbell, M.J.; Cinner, J.E.; Ishida, Y.; Sloan, S.; Supriatna, J.; 

Alamgir, M.; Cislowski, J.; Laurance, W.F. Ghost Roads and the Destruction of 

Asia-Pacific Tropical Forests. Nature 2024 629:8011 2024, 629, 370–375, 

doi:10.1038/s41586-024-07303-5. 

5.  Perz, S.; Brilhante, S.; Brown, F.; Caldas, M.; Ikeda, S.; Mendoza, E.; Overdevest, 

C.; Reis, V.; Reyes, J.F.; Rojas, D.; et al. Road Building, Land Use and Climate 

Change: Prospects for Environmental Governance in the Amazon. Philosophical 

Transactions of the Royal Society B: Biological Sciences 2008, 363, 1889–1895, 

doi:10.1098/RSTB.2007.0017. 

6.  Southworth, J.; Marsik, M.; Qiu, Y.; Perz, S.; Cumming, G.; Stevens, F.; Rocha, K.; 

Duchelle, A.; Barnes, G. Roads as Drivers of Change: Trajectories across the Tri-

National Frontier in MAP, the Southwestern Amazon. Remote Sens (Basel) 2011, 

3, 1047–1066, doi:10.3390/rs3051047. 

7.  Gao, L.; Song, W.; Dai, J.; Chen, Y. Road Extraction from High-Resolution 

Remote Sensing Imagery Using Refined Deep Residual Convolutional Neural 

Network. Remote Sens (Basel) 2019, 11, 1–16, doi:10.3390/rs11050552. 

8.  Botelho, J.; Costa, S.C.P.; Ribeiro, J.G.; Souza, C.M. Mapping Roads in the 

Brazilian Amazon with Artificial Intelligence and Sentinel-2. Remote Sensing 2022, 

Vol. 14, Page 3625 2022, 14, 3625, doi:10.3390/RS14153625. 

9.  Brandão, A.O.; Souza, C.M. Mapping Unofficial Roads with Landsat Images: A 

New Tool to Improve the Monitoring of the Brazilian Amazon Rainforest. Int J 

Remote Sens 2006, doi:10.1080/01431160500353841. 

10.  Landsat Missions | U.S. Geological Survey Available online: 

https://www.usgs.gov/landsat-missions (accessed on 8 July 2024). 

11.  PrevisIA I Fazer Do Futuro Sustentável a Nossa Única Previsão. Available online: 

https://previsia.org.br/ (accessed on 17 July 2024). 



52 
 

12.  Walker, R.; Perz, S.; Arima, E.; Simmons, C. The Transamazon Highway: Past, 

Present, Future. Engineering Earth 2011, 569–599, doi:10.1007/978-90-481-

9920-4_33. 

13.  Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. 

Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote 

Sens Environ 2017, doi:10.1016/j.rse.2017.06.031. 

14.  Bisong, E.; Bisong, E. Google Colaboratory. In Building Machine Learning and 

Deep Learning Models on Google Cloud Platform; 2019. 

15.  Jardim, S.; António, J.; Mora, C. Image Thresholding Approaches for Medical 

Image Segmentation - Short Literature Review. Procedia Comput Sci 2023, 219, 

1485–1492, doi:10.1016/J.PROCS.2023.01.439. 

16.  Chen, Z.; Qi, Z.; Meng, F.; Cui, L.; Shi, Y. Image Segmentation via Improving 

Clustering Algorithms with Density and Distance. Procedia Comput Sci 2015, 55, 

1015–1022, doi:10.1016/J.PROCS.2015.07.096. 

17.  Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; 

Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun ACM 2020, 

63, 139–144, doi:10.1145/3422622. 

18.  Augustauskas, R.; Lipnickas, A. Improved Pixel-Level Pavement-Defect 

Segmentation Using a Deep Autoencoder. Sensors 2020, Vol. 20, Page 2557 

2020, 20, 2557, doi:10.3390/S20092557. 

19.  Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. 

Image Segmentation Using Deep Learning: A Survey. IEEE Trans Pattern Anal 

Mach Intell 2022, 44, 3523–3542, doi:10.1109/TPAMI.2021.3059968. 

20.  Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; 

Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. Proceedings of the 

IEEE International Conference on Computer Vision 2023, 3992–4003, 

doi:10.1109/ICCV51070.2023.00371. 

21.  Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for 

Biomedical Image Segmentation. In Proceedings of the Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics); 2015. 

22.  Wang, H.; Miao, F. Building Extraction from Remote Sensing Images Using Deep 

Residual U-Net. Eur J Remote Sens 2022, 55, 71–85, 

doi:10.1080/22797254.2021.2018944/FORMAT/EPUB. 

23.  Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building 

Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Transactions 



53 
 

on Geoscience and Remote Sensing 2019, 57, 574–586, 

doi:10.1109/TGRS.2018.2858817. 

24.  Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE 

Geoscience and Remote Sensing Letters 2017, 15, 749–753, 

doi:10.1109/lgrs.2018.2802944. 

25.  Lin, Y.; Wan, L.; Zhang, H.; Wei, S.; Ma, P.; Li, Y.; Zhao, Z. Leveraging Optical and 

SAR Data with a UU-Net for Large-Scale Road Extraction. International Journal of 

Applied Earth Observation and Geoinformation 2021, 103, 102498, 

doi:10.1016/j.jag.2021.102498. 

26.  Kearney, S.P.; Coops, N.C.; Sethi, S.; Stenhouse, G.B. Maintaining Accurate, 

Current, Rural Road Network Data: An Extraction and Updating Routine Using 

RapidEye, Participatory GIS and Deep Learning. International Journal of Applied 

Earth Observation and Geoinformation 2020, 87, 

doi:10.1016/J.JAG.2019.102031. 

27.  Friedl, M.A.; Woodcock, C.E.; Olofsson, P.; Zhu, Z.; Loveland, T.; Stanimirova, R.; 

Arevalo, P.; Bullock, E.; Hu, K.T.; Zhang, Y.; et al. Medium Spatial Resolution 

Mapping of Global Land Cover and Land Cover Change Across Multiple Decades 

From Landsat. Frontiers in Remote Sensing 2022, 3, 894571, 

doi:10.3389/FRSEN.2022.894571/BIBTEX. 

28.  Bandara, W.G.C.; Valanarasu, J.M.J.; Patel, V.M. SPIN Road Mapper: Extracting 

Roads from Aerial Images via Spatial and Interaction Space Graph Reasoning for 

Autonomous Driving. Proc IEEE Int Conf Robot Autom 2022, 343–350, 

doi:10.1109/ICRA46639.2022.9812134. 

29.  Grinberger, A.Y.; Minghini, M.; Juhász, L.; Yeboah, G.; Mooney, P. OSM 

Science—The Academic Study of the OpenStreetMap Project, Data, Contributors, 

Community, and Applications. ISPRS International Journal of Geo-Information 

2022, Vol. 11, Page 230 2022, 11, 230, doi:10.3390/IJGI11040230. 

30.  Segmentation on Gaofen Satellite Image Available online: 

https://www.kaggle.com/datasets/yaroslavnaychuk/satelliteimagesegmentation 

(accessed on 7 March 2024). 

31.  Chen, Z.; Wang, C.; Li, J.; Xie, N.; Han, Y.; Du, J. Reconstruction Bias U-Net for 

Road Extraction from Optical Remote Sensing Images. IEEE J Sel Top Appl Earth 

Obs Remote Sens 2021, 14, 2284–2294, doi:10.1109/JSTARS.2021.3053603. 

32.  Ranjbarzadeh, R.; Bagherian Kasgari, A.; Jafarzadeh Ghoushchi, S.; Anari, S.; 

Naseri, M.; Bendechache, M. Brain Tumor Segmentation Based on Deep 

Learning and an Attention Mechanism Using MRI Multi-Modalities Brain Images. 

Scientific Reports 2021 11:1 2021, 11, 1–17, doi:10.1038/s41598-021-90428-8. 



54 
 

33.  Sun, Z.; Zhou, W.; Ding, C.; Xia, M. Multi-Resolution Transformer Network for 

Building and Road Segmentation of Remote Sensing Image. ISPRS International 

Journal of Geo-Information 2022, Vol. 11, Page 165 2022, 11, 165, 

doi:10.3390/IJGI11030165. 

34.  Legal Amazon | IBGE Available online: 

https://www.ibge.gov.br/en/geosciences/maps/regional-maps/17927-legal-

amazon.html?edicao=18047 (accessed on 30 April 2024). 

35.  Wang, J.; Chagnon, F.J.F.; Williams, E.R.; Betts, A.K.; Renno, N.O.; Machado, 

L.A.T.; Bisht, G.; Knox, R.; Bras, R.L. Impact of Deforestation in the Amazon 

Basin on Cloud Climatology. Proc Natl Acad Sci U S A 2009, 106, 3670–3674, 

doi:10.1073/pnas.0810156106. 

36.  Fundação Instituto Brasileiro de Geografia e Estatística. Biblioteca Central.; 

Fundação Instituto Brasileiro de Geografia e Estatística. Gerência de 

Documentação e Biblioteca. Mapas e Outros Materiais Cartográficas Na 

Biblioteca Central Do IBGE. 1983. 

37.  Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; 

Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale 

Machine Learning. In Proceedings of the Proceedings of the 12th USENIX 

Symposium on Operating Systems Design and Implementation, OSDI 2016; 

2016. 

38.  Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of 

Global Surface Water and Its Long-Term Changes. Nature 2016 540:7633 2016, 

540, 418–422, doi:10.1038/nature20584. 

39.  Neteler, M.; Bowman, M.H.; Landa, M.; Metz, M. GRASS GIS: A Multi-Purpose 

Open Source GIS. Environmental Modelling and Software 2012, 31, 124–130, 

doi:10.1016/j.envsoft.2011.11.014. 

40.  Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural 

Network Acoustic Models. in ICML Workshop on Deep Learning for Audio, 

Speech and Language Processing 2013, 28. 

41.  Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised 

Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced 

Segmentations. In Proceedings of the Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics); 2017. 

42.  Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for 

Discovering Clusters in Large Spatial Databases with Noise. 1996. 

43.  Souza, C.M.; Oliveira, L.A.; de Souza Filho, J.S.; Ferreira, B.G.; Fonseca, A. V.; 

Siqueira, J. V. Landsat Sub-Pixel Land Cover Dynamics in the Brazilian Amazon. 



55 
 

Frontiers in Forests and Global Change 2023, 6, 

doi:10.3389/FFGC.2023.1294552. 

44.  Sales, M.; de Bruin, S.; Herold, M.; Kyriakidis, P.; Souza, C. A Spatiotemporal 

Geostatistical Hurdle Model Approach for Short-Term Deforestation Prediction. 

Spat Stat 2017, 21, 304–318, doi:10.1016/J.SPASTA.2017.06.003. 

45.  Stanford Researchers Investigate Human Trafficking Alongside Brazilian Partners 

in the Amazon Rainforest | FSI Available online: 

https://healthpolicy.fsi.stanford.edu/news/stanford-researchers-investigate-human-

trafficking-alongside-brazilian-partners-amazon (accessed on 8 July 2024). 

  


	Road Extraction on Remote Sensing Imagery: Historical Mapping of the Brazilian Amazon
	Recommended Citation

	tmp.1721416950.pdf.Z2aJO

