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ABSTRACT 

Voice-controlled smart assistants have received widespread popularity. It plays a pivotal role in 
smart homes by providing a natural and convenient interface for interacting with smart devices. 
However, these assistants are unable to serve persons with physical disabilities and speech 
impairments. Therefore, non-verbal communication methods, such as eye tracking, gesture 
recognition, and context awareness can complement and overcome some of these limitations 
to enhance user experience in smart homes. To address this issue, I am investigating non-verbal 
communication methods to make smart home technology more accessible and intuitive. In this 
research, I focus on proxemics, i.e., the study of distance between smart home users and 
surrounding objects, to enable spatial awareness and intuitive automation in smart homes. I 
apply scene graphs to provide a structured representation, such as positions, relationships, and 
properties, of the static and moving objects in indoor home environments. The novelty of this 
approach lies in the application of proxemics via scene graph generation for extracting 
contextual information and scene understanding to automate smart home actions. This work 
adds a distance attribute to the scene graph predicate for quantifying human and object 
relationships. The key contribution lies in leveraging proxemics through scene graph generation 
to extract contextual information, facilitating the automation of intelligent actions. 
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1. INTRODUCTION 

Voice assistants like Apple's Siri, Google Assistant, and Amazon's Alexa have become 

widely popular for controlling various smart devices using voice commands [1]. While verbal 

communication is popular and easier to process, there are some limitations, such as people 

with speech impairment or people who do not want to use verbal commands finding it difficult, 

if not impossible, to interact with these voice assistants. Therefore, I am interested in non-

verbal communication techniques for smart home setups. There are several existing 

techniques, such as Kinesics, Oculesics, and Environment, which have previously been applied 

in smart home contexts. I will elaborate on non-verbal communication and its types in the 

‘Background & Related Works’ chapter.  

Kinesics, the study of body movements, has been explored exhaustively. Works such as 

[2], [3], [4], [5], [6], [7], attempt to use facial expressions, body gestures, sign language, hand 

movements, and body postures to control certain forms of IoT devices in smart environments. 

Researchers have also considered Oculesics, the study of eye movement, as a non-verbal 

method to control smart devices. Works by many researchers [8], [9], [10], [11] use eye 

movements, blinks, and iris tracking to generate commands to control smart devices. 

Using sensors to identify human activity within a smart environment has also been 

explored extensively. Researchers in the work [12] offer an autonomous in-home healthcare 

monitoring system for a variety of applications. They leverage multiple sensors that provide the 

system with multi-modal data such as geriatric physiological and behavioral data, auditory data, 

environmental factors, and medical information. This multimodal fusion improves overall 

system dependability by recognizing many distress conditions. In another work [13], 
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researchers utilized an actual apartment (Health Smart Home) outfitted with cameras, infrared 

sensors, door contact sensors, temperature and humidity sensors, and a microphone to identify 

Activities of Daily Life (ADL). The study's subjects also wore a wearable kinematic sensor. They 

utilized the data from these sensors to classify each temporal frame into one of seven ADLs 

(hygiene, toilet use, eating, resting, sleeping, communication, dressing). Infrared sensors 

identify the presence of a person within the apartment. Door contacts are used to monitor 

refrigerator, cupboard, and drawer usage. For voice recognition, microphones are utilized. The 

kinematic sensor detects and categorizes postures and walk times (using frequency 

parameters). Wide-angle web cameras are solely used to date the different ADLs for supervised 

machine learning. The Health Smart Home is served by four computers. The first computer 

oversees sound and voice analysis, the second three-webcam data and the controller area 

network, the third other two webcams, temperature, and humidity, and the fourth kitchen and 

bedroom door contact sensors. 

Incorporating sensors in smart environments makes it easy to monitor the surroundings. 

However, such sensors are sometimes pervasive. Setting up the sensor systems to effectively 

monitor ADL such as in [12] and [13] is not cost-effective. Using eye behavior such as blinks to 

control devices is intriguing, yet the generation of commands using eye blinks is challenging. As 

the number of commands increases, the number of eye blinks required also increases. This is 

evident from the works in [10], [11], and [6]. Also, to track eye gazes accurately, an expensive 

multi-camera system is required. 

To reduce the cost and complexity of using multimodal sensors and multiple cameras 

and to avoid pervasive sensing, I decided to work with visual data captured from camera inputs.  
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Another type of non-verbal communication viz. proxemics refers to the study of how 

humans use and perceive personal space in various social situations. Proxemics was first 

introduced by American anthropologist Edward T. Hall. Hall defines proxemics broadly as “the 

study of how man unconsciously structures microspace – the distance between men in the 

conduct of daily transactions, the organization of space in his houses and buildings, and 

ultimately the layout of his towns” [14]. In the context of smart environments, it involves 

understanding how users interact with the space around them and how technology can 

respond to these interactions. Researchers have previously demonstrated the capability of 

proxemics to regulate both implicit and explicit interactions. Researchers have shown that 

proxemics can regulate implicit and explicit interactions by the movement of individuals in and 

out of specific zones. It also mediates interactions among multiple people and interprets their 

directed attention to others and objects [15]. In another research [16], authors examine four 

dimensions: position, locality, identity, and movement—in Kitchen-as-a-pal, an interactive 

smart kitchen equipped with a sonar network and Radio Frequency Identification (RFID) 

technology to sense and model proxemics between humans and objects. It is evident from 

these research works that proxemics offer a promising solution by leveraging physical proximity 

and movement to facilitate interactions. However, proxemics in smart settings remain under-

explored and not widely applied in mainstream technology. I plan to investigate a novel 

approach for non-verbal communication in smart homes by employing a scene graph enhanced 

with the infrequently explored non-verbal communication method, proxemics, to represent 

and understand the context of indoor home environments. 
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A scene graph represents objects in a scene as nodes and the relationships between 

them as edges. Each node in the graph typically corresponds to an object, and the edges 

represent relationships like “on”, “next to”, “inside”, etc. [17]. Therefore, scene graph 

generation is the problem of detecting a collection of objects and predicting the relationship or 

predicate among every pair of objects.  

The application of scene graphs together with proxemics offers new avenues for smart 

home automation. Contextual information retrieved through this approach might allow for the 

automatic adaptation of day-to-day operational policies and settings based on user presence 

and surrounding objects. For example, a user can control smart home devices simply by moving 

closer or farther away from them. Additionally, by defining specific movements or gestures 

within proxemic zones, users can perform tasks such as adjusting the thermostat or playing 

music. Moreover, proxemics allows the creation of personalized interaction zones for different 

users within the household. A user with limited mobility can have a defined zone near their bed 

or chair where simple gestures can control multiple devices, improving their comfort, 

independence, and safety. Another example is recognizing a child close to a knife or an 

individual approaching a firearm signifies dangerous contexts triggering an alarm, whereas a 

person walking past a bookshelf reflects a normal scenario. Effectively inferring or classifying 

context from such visual data necessitates a profound understanding of the scene, 

encompassing the identification of objects, discernment of object relationships, and analysis of 

spatial arrangements. Therefore, I focus on capturing structured information, such as objects, 

their positions, and relationships. The process entails extracting higher-level contextual 
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information from images or videos by harnessing the distance as a relationship between 

depicted objects.  

By integrating scene graphs with quantified distance attributes, my research strives to 

unlock a deeper understanding of contextual nuances present in smart home environments. 

The core objective is to enable robust non-verbal communication within these environments by 

facilitating the identification of contexts as dangerous, normal, or concerning. Therefore, in this 

research, I try to answer the following research questions: 

1. Can proxemics and scene graphs be combined as a method of non-verbal 
communication in smart home environments? 

 
2. Will introducing a quantifying attribute (distance between objects) enrich the 

predicate in a scene graph triplet? 
 
This research has an Institutional Review Board (IRB) approval with review type as 

‘Exempt’. The decision is shown in Appendix A. The following peer-reviewed paper has been 

accepted for publication which is based on the work performed in this thesis research: 

• Debaleen Das Spandan and Razib Iqbal, “ProxeGraph: Scene Graph Generation 

Utilizing Proxemics for Smart Homes”, in 2024 IEEE 7th International Conference 

on Multimedia Information Processing and Retrieval (MIPR), San Jose, CA, USA, 

August 7-9, 2024. 

The rest of the document is arranged in the following format: In the ‘2. Background & 

Related Works’ chapter, I familiarize the reader with non-verbal communication, distance 

estimation using camera, object detection and its scope in this research, scene graph and its 

related works and scope in this research. In the ‘3. Proposed Method: ProxeGraph’ chapter I 

elaborate on the proposed methodology and architecture. In the ‘4. Implementation’ chapter I 
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discuss the experimental setup and deployment of the proposed architecture. In the ‘5. 

Performance Evaluation’ chapter I discuss the performance of the deployment and the 

proposed architecture in details. In the ‘6. Conclusion’ chapter I summarize the entirety of the 

research, discusses the limitations, and suggests directions for future work.  
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2. BACKGROUND & RELATED WORKS 

In this chapter, I will discuss non-verbal communication and its different types. 

Following that, I will explain the experiments I conducted to estimate distance using a camera. 

Since distance estimation is an integral part of my research but is not the primary focus, I am 

including these experiments in this background chapter. After the experiments on distance 

estimation, I will give a brief introduction to object detection, and lastly, I will introduce the 

scene graph and its related works. 

2.1. Non-verbal Communication 

According to [18], non-verbal communication is the process of transmitting messages or 

information through means other than words. It includes various forms of body language, facial 

expressions, gestures, posture, and other physical behaviors that convey meaning. Non-verbal 

communication can complement, enhance, or even contradict verbal messages. Understanding 

non-verbal communication is crucial as it often provides more context and emotional insight 

than words alone [19]. Based on the information obtained from [18], [20], [21] and [22], I reach 

the conclusion that non-verbal communication can be broadly classified in to at least 8 different 

types. These types are explained in the following paragraphs.  

Oculesics: As per [23], the study of the communicative role of the eyes in nonverbal 

communication is known as Oculesics. The primary behaviors in Oculesics include eye-

contact/eye gaze and eye blinks. According to [18] and [20], eye contact helps build rapport and 

connection and signals when turn-taking or engagement in cognitive activities. Eye contact is 

utilized to convey information, regulate dialogue, and monitor interactions by observing 

feedback and other nonverbal cues. For instance, eye contact signals readiness to speak or 
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prompts others to talk, demonstrating the use of Oculesics in controlling communication. 

Through eye contact, hand gestures, facial expressions, and appearance can be interpreted. A 

speaker can evaluate the audience's eye contact to determine if they are confused, engaged, or 

bored, and adjust their message accordingly. 

Vocalics: As per [20], the study of nonverbal voice cues is known as vocalics or 

paralanguage. Rather than focusing on the content of what we say, it examines how we express 

it. Unlike the verbal aspect of speech, which involves words and their meanings, vocalics is 

concerned with the vocal elements of speech. These elements include components such as 

intensity, pace, tone, fluency, and vocal patterns. 

Haptics: According to [18], the study of touch in communication is known as Haptics. It 

refers to the touch behaviors that convey message during interactions. Depending on the 

nature of the contact and the relationship between individuals, touch can communicate 

support, comfort, control, or aggression.  

Chronemics: According to [24], the study of the communicative role of time in nonverbal 

behavior is called chronemics. Chronemics also explores cultural differences in how individuals 

perceive time as either fixed and unchanging (monochronic) or flexible and adaptable 

(polychronic). Factors such as punctuality, speech speed, and the duration of conversations can 

convey messages about importance, interest, and respect.  

Kinesics: According to [20], kinesics is the study and interpretation of human body 

movements that can be taken as metaphorical or symbolic in social interaction. It was coined by 

Anthropologist Ray Birdwhistell in 1952. Kinesics can be further classified into body 

movements, which include deliberate movements such as gestures and involuntary movements 
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like shifts in body position that convey messages about a person's feelings or intentions; 

gestures which are hand and arm movements that are used to express ideas, indicate direction, 

or emphasize verbal communication, such as waving, pointing, and using hand signs; facial 

expressions or the movement of the facial muscles that convey emotions such as sadness , 

happiness, surprise, and anger, often universal and recognized across different cultures; head 

movement, such as nodding in agreement or denial; and posture, or the way an individual 

positions their body while sitting or standing, which can indicate attitudes, emotions, and levels 

of engagement or interest. 

Appearance: Personal appearance, artifacts, and objects are types of nonverbal 

communication used to adorn our bodies and surroundings to communicate meaning to others. 

Aside from clothes, artifacts like visible body art, hairstyles, jewelry, and other social, political, 

and cultural symbols convey messages to others about who we are [18]. 

Environment: According to [18], our verbal and nonverbal communication are 

influenced by the environment in which we interact. The location of furniture and objects in 

physical space can contribute to the creation of a formal, distant, friendly, or intimate 

atmosphere. For example, a room with a small fountain creating soothing water sounds, soft 

lighting, and a comfortable chair can enhance the interaction between therapists and patients. 

Therefore, environmental cues are a form of non-verbal communication. 

Proxemics: According to [20], the study of intrepersonal distance and space in 

communication is called proxemics. This includes studying personal space, territoriality, 

crowding, and density.  

Figure 1 gives a diagrammatic representation of various types of non-verbal communication.  
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Figure 1 Different Types of Non-verbal Communication. 

 

As discussed in the ‘1. Introduction’ chapter, most of the different types of non-verbal 

communication that are mentioned earlier in this section have been widely explored in the field 

of smart-home communication or human-computer interaction. Proxemics is one of the 

intriguing and under-explored non-verbal communication methods with good potential. Since, 

proxemics is the study of distance, and since this research is focused on using a camera to 

extract contextual information from a smart-home environment, a suitable method for 

estimating the distance between smart-home elements is necessary. This research also requires 

being able to detect objects present in a smart home from the captured camera frames. In the 

next part of this chapter, I will explain different methods for estimating distance using vision 

explored in this research which will be followed by a brief introduction to object detection and 

literature review on scene graph. 
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2.2. Distance Estimation 

To accurately estimate distances between objects, I first explored the efficacy of 

different methods which utilize mono-vision cameras, and then focused on stereo-vision 

cameras. Techniques utilizing mono-vision cameras estimate the distance of an object from the 

camera using a single image captured by a single-lens camera, whereas stereo-vision 

techniques use two images captured by two lenses to calculate the depth of a point object from 

the camera. 

In this research work, I have explored various methods of depth estimation and distance 

calculation using mono-vision and stereo-vision cameras as described in the following 

subsections.  

2.2.1. Method 1: Using a Reference Object 

The approach presented in [25] uses a reference object present in each scene to 

calculate the distance between objects in the given scene. The reference object must meet two 

primary criteria – i) its real-world dimensions need to be known in units like inches, millimeters, 

or centimeters, and ii) it should be easily identifiable within the image based on appearance or 

location or size. For example, the only square object or the left-most object or the smallest 

object can be easily identified in an image. 

To find the real-world distances among the objects present in the images/video, the 

author applied 2 steps. In the first step the author calculates a pixel-per-metric ratio as given in 

Equation 1 where, PPM = pixel-per-matric ratio, Wp = width of the reference object in pixels and 

Wr = width of the reference object in real-world. This ratio helps to determine the pixels that 

are needed to represent a specific real-world distance in metric units.  
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𝑃𝑃𝑀 =
𝑊𝑝

𝑊𝑟

(1) 

In the second step, bounding boxes are created for the objects and the pixel distance between 

these objects is calculated by computing the Euclidean distance between either the corners of 

these bounding boxes or their midpoint. Then the real-world distance between these objects is 

calculated by dividing the pixel distance by the pixel-per-metric ratio, as shown in Equation 2 

where, Dr = real-world-distance, PD1,2 = (Pixel distance between object 1 and object 2, and PPM 

= pixel-per-metric ratio.  

𝐷𝑟 =
𝑃𝐷1,2

𝑃𝑃𝑀
(2) 

 

Figure 2 shows a successful experiment using this method to estimate the distance 

between a watch (target object) and a ring (reference object). Figure 3 shows an unsuccessful 

experiment where this method was unable to identify the target object because of a noisy 

background. While this method is computationally simple and does not require depth 

information, it relies on a reference object in the image which requires prior knowledge of the 

real-world dimensions of that reference object. Also, the orientation of the camera can 

introduce pixel distortion which may potentially lead to inaccuracies in the computed Euclidean 

distance. Therefore, my verdict is that this method is not suitable for smart-home environments 

as it is unable to give accurate results in complex scenarios.  
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Figure 2 Experiment Using Method 1 with Accurate Results. 

 

 
Figure 3 Experiment Using Method 1 with Inaccurate Results. 

 

2.2.2. Method 2: Using Polynomial Equations 

In this method [26], the authors proposed a method for distance estimation using a 

mono-vision approach using a polynomial equation (Equation 3) which is most suitable for 

rectangular objects. In this equation, δ represents the depth of the object, and ρ denotes the 

pixel height. The authors also proposed Equation 4 to estimate the 'physical-pixel lateral 

distance ratio'. Finally, to determine the actual distance of an object from the camera, the 

Pythagoras formula as given in Equation 5 and illustrated in Figure 4a, is applied, where Do = 

Depth of the object from the camera and, L = lateral distance of the object from the camera. 

δ =  0.0033 × ρ2  − 1.9918 × ρ +  372.83 (3) 
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𝑅𝑎𝑡𝑖𝑜 = 0.0004 × 𝛿2 − 0.1469 × 𝛿 + 18.119 (4) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √𝐷𝑜
2 + 𝐿2 (5) 

 

 
Figure 4 Method 2. a) Theory; b) & c) Adaptation. 

I adapted this method as shown in Figure 4b and Figure 4c to estimate the distance 

between objects. If there are 2 objects, the depth between the objects will be the difference 

between the depth of object 2 and the depth of object 1. The lateral distance between the 

objects will be either the sum of the lateral distances of the objects (Figure 4b) or the difference 

between the lateral distances between the objects (Figure 4c). However, in my experiment 

using this adapted method, as shown in Figure 5, it failed to correctly estimate the distance 

between a ring and a watch. Despite both objects being positioned at the same distance from 

the camera (40 cm), the calculated depths deviated significantly. The watch's distance from the 

camera was determined as 74.1 cm, while the ring's distance unexpectedly measured 133.1 cm. 

This discrepancy reveals a limitation in this method's precision for distance estimation in this 

experimental scenario. Also, the original method assumes the use of a rigid geometrical shape 

such as a rectangle, cylinder, triangular or circular objects only. This is a constraint that may 
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impact its adaptability to scenarios involving more complex or deformable objects present in 

smart-home environments. 

 
Figure 5 Method 2 Experiment Inaccurate Result. 

 

2.2.3. Method 3: Using Real-World Dimensions 

In [27] and [28], the authors use a mono-vision camera and OpenCV to estimate 

distances of objects from the camera. Both approaches consist of 5 steps - They mention a 

series of 5 key steps for precise distance estimation as given below: i) Capturing a reference 

image with a reference object – in this case a human face, ii) Measuring the distance of the 

reference object from the camera (KD) along with the width of the reference object (rw), iii) 

Calculation of pixel width (fw) of the reference object in the reference image, iv) Calculation of 

focal length of the camera, and v) Calculation of distance of other objects from the camera.  

Using the measured (KD, rw) and calculated (fw) dimensions, the authors employ a 

mathematical formula to calculate the focal length of the camera. The equation is given in 

Equation 6. With the focal length established, the authors compute the actual distance of the 

object from the camera using the following formula given in Equation 7. 

𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ =
𝑓𝑤 ∗ 𝐾𝐷

𝑟𝑤

(6) 
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𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑟𝑤 ∗ 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ)/𝑓𝑤 (7) 

Figure 6 shows a sample from my experiments using this method where the distance of my face 

from the camera is calculated. The distance is calculated to be 21.93 cm while the actual 

distance was 40 cm.  

 
Figure 6 Distance Estimation Using Method 3. 

 

While this approach offers several advantages, including its mathematical simplicity, 

efficiency, and independence from the need for depth information, its dependence on the 

presence of a reference image and a reference object introduces a potential limitation. 

Additionally, practical application of the method requires prior knowledge of the real-world 

dimensions of the reference object, presenting a potential challenge. Therefore, I conclude that 

this method is not suitable for my work.  
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Mono-vision approaches provide good estimation of distance with less computational 

complexity. However, these approaches require some prior knowledge such as a reference 

object and reference real-world dimensions. To overcome this drawback, I explored stereo 

vision approaches for distance estimation. The foundation of stereo vision is analogous to 3D 

perception in human vision, relying on the triangulation of rays from multiple viewpoints. 

Researchers in [29] introduced a novel approach to distance estimation for pedestrian 

identification utilizing a stereo camera (Intel RealSense D435). This approach creates a mapping 

of the pixels of the point object (i.e., a pedestrian) from the normal image frame with a depth 

map. This pixel-to-depth map mapping enables the computation of a median distance for each 

pedestrian. Depth maps are computed from the stereo images captured by the stereo camera’s 

left and right lenses and then aligned with the corresponding RGB image. Considering the 

accuracy and precision of stereo vision cameras, this approach is a good candidate for my 

research. A comparison between distance estimation using the mono-vision approach and the 

stereo-vision approach is shown in Table 1. While the advantages of the stereo-vision approach 

are evident, the cost of a specialized camera is considered as a drawback. Therefore, to select a 

suitable stereo camera for my research, I have carefully examined 3 different stereo cameras, 

and the advantages and disadvantages are discussed below and also summarized in Table 2. 

2.2.4. Stereo Camera-1: Intel RealSense Depth Camera D435 

The Intel RealSense D435 is a depth camera powered by USB which consists of a pair of 

depth sensors, an RGB sensor, and an infrared projector [30]. The image sensors in this camera 

offer an excellent 1280 x 720 depth stream resolution along with 1920 x 1080 RGB resolution. 

The active infrared projector helps in illuminating objects to enhance depth data. The on-board 
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powerful vision processor enables this camera to run advanced stereo depth algorithms 

enhancing computation of real-time depth data and accelerating output. The camera can be 

programmed by an open-source SDK provided by the manufacturer. This camera was also used 

in the work by authors of [29]. However, with a $349 cost, this camera becomes too expensive 

for a smart-home implementation. 

Table 1 Comparison Between Mono and Stereo Vision Approach for Distance Calculation. 

Attribute Mono-vision Approach Stereo Vision Approach 

Reference Object Reference object required. No reference object required. 

Real-world 

Dimensions 

Real world dimensions required. No real-world dimensions required. 

Special Camera No special camera required. Camera with stereo vision 

capabilities required. 

Cost Comparatively cheaper as no 

specialized hardware is 

necessary. 

Since specialized hardware is 

required, the cost can be higher than 

its counterpart.  

Accuracy Less accurate than stereo vision. More accurate than mono-vision. 

Pixel Distortion More prone to pixel distortion. Less prone to pixel distortion.  

Computational 

Complexity 

Comparatively less complex.  Requires calculating the disparity 

between frames captured by each 

lens in the stereo setup and 

therefore increasing complexity 

more than the counterpart. 
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2.2.5. Stereo Camera-2: E-Con Systems’ Tara Stereo Camera 

According to [31], Tara is a UVC-compliant 3D stereo camera that uses the MT9V024 

stereo sensor. It supports Wide Video Graphics Array (WVGA) resolution at 60 frames per 

second (fps) in an uncompressed format. It delivers two synchronized sensor frame data 

streams to the host machine though a USB 3.0 interface. While stereo camera algorithms can 

be developed using Tara, the proprietary Software Development Kit (SDK) causes inconvenience 

due to the lack of implementation of object detection algorithm. Although such an algorithm 

can be implemented by a user application, the inability of the camera to provide a color image 

introduces further obstacles for object detection. The Figure 7 shows an experiment using their 

SDK. We can see that the camera can successfully calculate the distance of the subject from the 

camera as shown in the middle bottom subfigure of Figure 7. Since the actual color frame was 

not available, object detection could not be performed. Therefore, this camera is not suitable 

for my research.  

 
Figure 7 Using Tara Stereo Camera by E-con Systems. 



20 

 

2.2.6. Stereo Camera-3: Oak-D Lite Camera by Luxonis 

The Oak-D lite Camera [32] is a specialized machine vision stereo camera with 4K color 

lens. It supports offloading of computer vision algorithms into the built-in Intel Myriad-X Visual 

Processing Unit. The SDK is an open-source DepthAI Application Programming Interface (API) 

with support for Python programming language. The camera is available for $149, which makes 

it cheaper than the previously mentioned stereo cameras. I experimented with this camera and 

concluded that I could successfully detect objects using the RGB image and an object detection 

neural network and then use the depth information from stereo lenses to calculate the distance 

between the objects. An experimental result of using Oak-D Lite camera is shown in Figure 8 

which depicts an indoor scene where two chairs have been detected and labeled with bounding 

boxes, including their spatial coordinates (x, y, z) in millimeters. The image also shows the 

calculated distance between the two chairs, marked by a red line and labeled as 77.36 mm. 

 
Figure 8 Using Oak-D Lite Camera by Luxonis. 
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As evident by the experiments and explorations conducted, a stereo camera is the most 

precise and accurate when it comes to estimating depth. However, there are a lot of stereo 

cameras available in the market and thus picking a suitable stereo camera for my research is 

crucial. Since smart home environments demand affordable, real-time, and fast inference 

systems, it is important to find a balance between cost and efficiency of the camera being 

selected. In Table 2, I provide a comparison of the 3 cameras I explored for my research. 

Among the three stereo cameras, the Intel D435 is the costliest. Even if this research 

was to create an algorithm for real-world distance measurement with this camera, the cost 

would prevent it from being widely used. Conversely, the most affordable choice is the OAK-D 

Lite camera. In addition to being cost effective, it offers stereo vision and the extra flexibility to 

offload computer vision models to its hardware, possibly proving helpful for real-world 

implementations of my method. Although the Tara Stereo camera from the E-Con System is a 

good substitute, it is limited since it does not have the color frames that this research needs for 

object detection. Further, developing a flexible system is hampered by the SDK's proprietary 

nature. By comparison, the OAK-D Lite camera proves to be a more affordable option, including 

not just a color camera but also an in-built vision processing module. Therefore, for this 

research work, I decided to work with the OAK-D Lite camera.  

Along with estimating distance between objects using a camera, this research work also 

requires detecting objects from a given camera input. In the next part of this chapter, I will 

briefly introduce object detection and establish the scope of object detection in this research 

work.  
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Table 2 Stereo-camera Comparison. 

Device Intel RealSense Depth 

D435 

Tara E-Con Stereo 

Camera 

OAK-D Lite 

Cost $314 $299 $149 

Highlight Specialized stereo camera 

with IR projector and 4K 

color lens 

Stereo camera. Specialized machine 

vision stereo camera 

with 4K color lens. 

SDK Open-source Intel® 

RealSense™ SDK  

Proprietary SDK by 

E-Con systems 

Open source DepthAI 

API 

Color Camera 

Resolution 

1920 × 1080 No color camera 4208 x 3120 

Stereo 

camera 

Resolution 

Up to 1280 × 720 1504x480  480P (640x480) 

ML/AI 

capabilities 

No custom model 

supported. 

No hardware 

support 

Image (Computer Vision) 

processing is offloaded 

to the camera hardware 

allowing us to use it on 

low-capability machines. 

Supports custom AI 

models. 

  



23 

 

Table 2 continued 

Device Intel RealSense 

Depth D435 

Tara E-Con Stereo 

Camera 

OAK-D Lite 

Vision Processor Built-in Intel 

RealSense Vision 

Processor D4.  

No built-in processor Built-in Intel Myriad-X 

Visual Processing Unit 

capable of pre-built 

Artificial Intelligence 

(AI) algorithms such as 

object detection. Can 

also be modified to 

run custom AI models. 

 
2.3. Object Detection 

Object detection is a computer vision method used to recognize and locate objects 

within an image or video frame. This process typically includes two main tasks: classification, 

where the type of object is identified, and localization, where the object's position is 

determined using bounding boxes. Object detection is an ongoing and elaborate area of 

research, encompassing a wide range of techniques and methodologies aimed at accurately 

identifying and localizing objects within images or video frames. Over the years, numerous 

advancements have been made in this field, including the creation of various deep learning 

models such as R-CNN [33], Fast R-CNN [34], Faster R-CNN [35], YOLO [36], SSD [37], RetinaNet 

[38], EfficientDet [39], MobileNet [40], and the Detectron2 platform [41].  
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Evaluating object detection models involves various metrics to measure their 

performance. Precision and recall are fundamental metrics, where precision is the ratio of true 

positive detections to the total number of positive detections, and recall is the ratio of true 

positive detections to the total number of actual positives. The F1 score, a harmonic mean of 

precision and recall, is often used to balance these metrics. IoU in object detection is a metric 

which evaluates the degree of overlap among the bounding box ground truth (gt) and predicted 

bounding box (pd). The bounding box can be any shape – rectangular, circular or irregular 

shape. IoU ranges between 0 to 1 where 0 indicates no overlap and 1 indicates complete 

overlap. A diagrammatic representation of IoU is shown in Figure 9. IoU at 0.5 means that the 

predicted bounding box overlaps the bounding box  ground truth by at least 50%. Similarly, for 

IoU at 0.95 means the overlap is at least 95%.  

 
Figure 9 Intersection Over Union (IoU) Depiction. 

 

Another important metric in evaluating object detection models is mean Average 

Precision at alpha or mAP@α. The formal definition of Average Precision (AP) is given in 

Equation 8. 

𝐴𝑃@𝛼 =  ∫ 𝑝(𝑟)𝑑𝑟
1

0

 (8) 
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In Equation 8, α is the IoU threshold at which the precision and recall are being measured, p 

refers to the precision which measures the model's exactness in identifying only the relevant 

objects and r is recall which is the ability of the model to detect all ground truths.  

For object detection, precision (p) is given by the Equation 9. And recall (r) is given by 

Equation 10. 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
(9) 

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

 𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑡𝑟𝑢𝑡ℎ𝑠
(10) 

In the above formulas, TP denotes true positive, and FN denotes false negatives.  

The mean Average Precision is the average of AP values over all classes. It is given by 

Equation 11. 

𝑚𝐴𝑃@𝛼 =
1

𝑛
∑ 𝐴𝑃𝑖

𝑛

𝑖=1

 𝑓𝑜𝑟 𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (11) 

A higher mAP value at a given threshold for IoU means the model can predict the bounding 

boxes and the class label for a given object more precisely and more accurately.  

Despite the critical importance and rapid advancements in object detection, my 

research work does not aim to contribute to this particular domain directly. Instead, object 

detection is utilized as an intermediate process within a broader framework. The focus of my 

work lies in exploring novel methods of non-verbal communication in smart home 

environments by integrating proxemics and scene graph generation. While object detection 

provides the necessary foundational capability to identify and localize objects within a scene, 

the primary objective of my research is to leverage this information to infer context based on 
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spatial relationships and proximity. Thus, improving or enhancing object detection algorithms is 

beyond the scope of this research. In this research work, I have employed an existing state-of-

the-art object detection model, YOLOv8 [42] to detect the objects from a given camera input. 

2.4. Scene Graph 

Researchers in [17] describes scene graph as a graphical depiction of a given scene 

where the nodes of the graph represent the objects present in the scene and the edges are the 

relationship between those objects. A more detailed definition of scene graph is provided in the 

‘Proposed Method: ProxeGraph’ chapter. Recognizing context or describing a scenario from 

visual data such as images and videos has been an intriguing field of research. Previously, 

researchers developed a neural network to determine the hidden alignment between sentence 

segments and the corresponding regions in the image they describe [43] . This neural network 

takes an image as input and produces a textual description of it. Researchers have also 

investigated the extent to which scene graphs can enhance image captioning [44]. Scene 

Graphs are often regarded as an input for scene understanding [45]. The investigation of 

physical relations between objects to aid in scene understanding has been explored in [46], 

[47], [48]. Researchers in [49] introduced a Spatiality-Context-Appearance module designed to 

capture spatially aware contextual feature representations. Another research [45] proposed a 

novel method where the authors used a Convolutional Neural Network (CNN) on a red, green, 

blue color image with depth information (RGB-D) image for object detection and object 

segmentation. A super pixel image is created from object segmentation from the depth image. 

Bounding boxes of the detected objects, along with the super pixel map, are utilized to segment 

the objects. Surface normal is calculated in parallel to this process and it is used to generate the 
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scene graph. Using their framework, it is possible to create semantic scene graphs which 

consider the spatial relations between objects. Researchers in [50] proposes a novel model 

designed to learn features at different semantic levels by simultaneously addressing three 

vision tasks: object detection, scene graph generation, and region captioning. This approach 

includes a dynamic graph construction layer within the CNN to create a semantic graph. The 

semantic graph is built on semantic and spatial relationships among Regions of Interests (ROIs). 

The scene graph is defined as G (V, E) where each node in V represents specialized features of a 

ROI. The edge set E consists of undirected edges connecting captions and phrases. Researchers 

in [51] uses distance relation as a spatial information for scene graphs. However, their work 

uses overlap ration and union ration between two regions to calculate the distance. But this 

approach is not applicable to scenes with no overlapping regions between the subject and 

object. In another research, [52] researchers propose the use of depth maps for visual relation 

detection. The authors use the CNN trained on a depth map to improve the detection of spatial 

relations such as “holding”, “behind”, “above” etc. Although they use spatial relations, a 

quantifying attribute for the relationship labels is lacking.  

The current works [17] in Scene Graph and Scene Graph generation uses labels like 

“has”, “is”, “contains”, “wearing” etc. Although, there are labels in the current works which 

specifies the spatial relationship between objects (labels such as “in-front of”, “behind”, 

“along”, “near”, “on” etc.), there is no attribute which can successfully quantify the relationship 

between the objects. The research works in scene understanding which considers spatial 

information [53], [54], [55], [56] have gained traction in the recent years. However, they mainly 

process spatial information in a way which is computationally expensive.  
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Previous works in this field have either neglected depth information, employed complex 

methods for processing depth data, or failed to utilize depth information to quantify spatial 

relationships effectively. To address these deficits, my research aims to reduce computational 

complexity by considering only the distance between objects, rather than identifying the spatial 

relationship labels as performed in other research works. This approach includes depth 

information between objects and simplifies computation by incorporating distance as a 

quantifying attribute in the predicates of a scene graph. The inclusion of distance attributes 

allows for a more accurate capture of spatial relationships between objects and subjects, 

thereby enhancing the reliability of contextual interpretation. For instance, consider the 

example of a knife in proximity to a child: while "Knife in front of child" conveys a certain level 

of concern, appending distance information such as "Knife 10 meters in front of child" 

introduces an added layer of contextual significance. By using distance as a quantifiable 

component in a scene graph, this work introduces proxemics as a mode of non-verbal 

communication in smart home settings. My research leverages scene graphs to incorporate 

proxemics, utilizing spatial relationships for contextual inference in smart environments. While 

extensive research exists on scene graph generation methodologies, my objective is to adapt 

the existing concept of scene graphs to use proxemics. In the next chapter, I will elaborate on 

my proposed methodology – ProxeGraph. 
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3. PROPOSED METHOD: PROXEGRAPH 

In my proposed approach, I have employed scene graph enhanced with infrequently 

explored non-verbal communication method, proxemics, to represent and understand the 

scene and spatial arrangements of humans and objects in indoor home environments. In the 

next subsection, I elaborate on my proposed modification in scene graph definition to introduce 

proxemics. Following that, I propose a novel architecture to generate proxemics-enhanced 

scene graphs.  

3.1. ProxeGraph Definition 

In this research, I aimed to introduce proxemics as a non-verbal communication in smart 

homes with the help of scene graphs. To achieve my goal, I modified the scene graph definition 

to include a quantifying attribute as the predicate in a scene graph. To explain my approach, I 

first present the definition of scene graphs in the next paragraph. 

As per [57], a scene graph for a visual scene S ∈ S, such as an image or 3D mesh, is a set 

of visual triplets Rs ⊆ Os x Ps x (Os ∪ As), where Os is the set of objects. The attribute set is 

denoted by As and the relation set is denoted by Ps.  Each object oS,k ∈ OS holds a semantic label 

lS,k ∈ OL (The semantic label set is denoted OL) and is grounded by a bounding box (BB) bS,k in 

scene S, where k ∈ {1, . . . , |OS|}. Each relation pS,i→j ∈ PS ⊆ P is the primary form of a visual 

relationship triplet rS,i→j = (oS,i, pS,i→j , oS,j) ∈ RS and i ≠ j, where the third element oS,j could be an 

attribute aS,j ⊆ AS if pS,i→j is pS,is. For one-way relationship, it is expressed rS,i→j as (sS,i, pS,i→j , oS,j) 

to retain semantic accuracy where sS,i, oS,j ∈ OS, sS,i is subject and oS,j is object. In the perspective 

of graph theory, a scene graph is a directed graph consisting of three distinct types of nodes - 

object, attributes, and relation. However, for semantic convenience, a node of a scene graph 
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refers to an object along with all its attributes, while the relation is represented as the edge 

between the nodes. 

In this research work, I propose a modification of the relation set Ps, where the relation 

between the objects and subjects in a scene graph is depicted as a quantifiable label. Therefore, 

the modified visual relationship triplet becomes rS,i→j = (oS,i, pS,i→j , oS,j) ∈ RS and i ≠ j, where sS,i, 

oS,j ∈ OS, sS,i is subject and oS,j is object and pS,i→j is a label derived from Hall’s proxemics zones 

[14] as shown in Figure 10 which illustrates the zones, categorizing personal space into four 

distinct areas: Intimate (0-50 cm), Personal (0.5-1 m), Social (1-4 m), and Public (4 m or more). 

In terms of graph theory, the above-mentioned modification results in a scene graph where the 

nodes of the graph are detected objects in the scene and the edges between the nodes are a 

relation derived from Hall’s proxemics zone division. I name this proxemics-enhanced scene 

graph as ProxeGraph. Generating a ProxeGraph involves object detection and the capture and 

processing of spatial information from a given scene. Figure 11 illustrates the steps in 

ProxeGraph generation. The process begins with capturing spatial information in the form of 

Cartesian coordinates and detecting the objects within the scene. In the next step, the spatial 

information is processed to calculate the distances between the detected objects. These 

calculated distances are then used to apply Hall’s proxemics zones, which determine the labels 

and relationships between the objects based on their spatial proximity. In the next subsection, I 

discuss the proposed novel architecture for ProxeGraph generation in smart-home 

environments. 
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Figure 10 Hall's Proxemics Zones. 

 

 
Figure 11 ProxeGraph Generation Steps. 
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3.2. Proposed Architecture 

The proposed system architecture, as shown in Figure 12, accepts input from a stereo 

vision camera – the RGB frame and the stereo information. The object detection module uses 

the RGB frame to detect and calculate the bounding boxes of the objects present in the scene. 

The stereo information along with the detected object information is passed to the distance 

calculation module. The distance calculation module uses the stereo information to produce 

the depth map and then uses the depth map along with the object detections to calculate the 

distance between person and object pairs using Euclidean geometry. The object detection 

module consists of a neural network trained on smart home objects dataset. The neural 

network analyzes the image and gives the bounding boxes of detected images and their 

corresponding labels. Along with this information and the depth information from stereo 

camera, I calculate the distance between the corresponding subjects and objects. Finally, Hall’s 

proxemics zone separations are applied on the distance information to get the label for the 

relation predicate between all possible pairs of subjects and objects. Since my focus is on 

smart-home environments, and humans play a significant role in a smart-home environment, 

the object is always a person, and the subject is a smart home device or object. The final output 

of my proposed approach is a scene graph with quantifiable predicate. I use this proxemics-

enhanced scene graph to understand and analyze the spatial arrangements of humans and 

objects in smart homes. In the following paragraphs, I give more details about the various 

processes involved in the proposed architecture. 
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Figure 12 Proposed Architecture. 

 

3.2.1. Object Detection 

The object detection module is responsible for detecting the smart-home objects and 

persons from a given video input. As mentioned earlier, the object detection module consists of 

a neural network that is trained on a smart-home object dataset. I used transfer learning on a 

YOLO architecture [42] trained on the MS-COCO [58] dataset with 53 curated classes for smart 

home environments which is further detailed in the ‘Implementation’ chapter. This neural 

network calculates the bounding boxes of the detected objects and persons along with the 

detected object categories. Finally, this information is passed to the distance calculation 

module. 

3.2.2. Distance Calculation 

This module is responsible for calculating the distances between the detected objects 

and persons. As discussed in the ‘2. Background & Related Works’ chapter, I explored 2 

approaches for distance estimation. The first one is a mono-vision approach, and the second 
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one is a stereo-vision approach. I have experimented with 3 different methods that use the 

mono-vision approach and 3 different methods that use the stereo-vision approach. These 

experiments are detailed in ‘2. Background & Related Works’ chapter. Based on these 

experiments, I concluded that stereo-vision approaches are better suited for distance 

estimation from images or videos. In the proposed framework, I use a stereo-vision camera to 

estimate the distance between the detected objects and persons received from the previous 

module. The stereo-vision approach calculates the depth of an object from the camera using 

the formula given in Equation 12. 

𝑍 = 𝑓. 𝐵/(𝑥 − 𝑥′) (12) 

 

In the given Equation 12, Z is the depth between a point P in the real world and the 

camera. f is the focal length of the cameras. B is the distance between the two lenses of the 

stereo-vision camera and (x-x’) is the disparity. After the depth of each object is calculated, the 

objects are given spatial coordinates (x, y, z). Using these spatial coordinates, the distance 

between the objects and persons is calculated using Euclidean geometry. The formula is given 

in Equation 13. 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (13) 

 

In the given Equation 13, d is the distance between a pair of subject and object with 

spatial coordinates (x1, y1, z1) and (x2, y2, z2) respectively. This distance information is passed to 

the ‘Hall’s Proxemics Label Generation’ module to generate a predicate for the scene graph.  
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3.2.3. Hall’s Proxemics Label Generation 

This module is responsible for generating the label based on the distance calculated 

from the previous module. The proxemics zones as specified by Hall and as shown in Figure 10 

are divided into 4 categories. Let us assume a living room scene where the detected objects are 

a chair and a Television (TV), and the subject is a person. Let us say that the distance between 

the person and the TV is 1.1 meters and the distance between the person and the chair is 2.6 

meters. Therefore, in this scenario, the label between the person and the TV would be 

“personal” and the label between the person and the chair would be “social” as shown in Figure 

13. Algorithm 1 given below is used to determine Hall’s Proxemics label between a person and 

a detected object. 

Algorithm 1 Hall's Proxemics Label Generation. 

 Input: distance between object and person in meters 
 Output: Hall’s Proxemics Label 
1. if distance > 0 and distance <= 0.5 then 
2.  label ← “intimate” 
3. else if distance > 0.5 and distance <= 1 then 
4.  label ← “personal” 
5. else if distance > 1 and distance <= 4 then 
6.  label ← “social” 
7. else if distance > 4 then 
8.  label ← “public” 
9. else 

10.  label ← “invalid” 
11. end if 
12. return label 

 

The final output from the proposed architecture is a scene graph with a quantifiable 

predicate, which consists of the detected objects and persons, the distances between them, 

and the corresponding Hall’s proxemics label.  
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To summarize, I propose a modified definition of a scene graph by introducing a 

quantifiable predicate in the triplet relations. The predicate is quantified using distance and 

labeled according to Hall's proxemics zones. Based on this definition, I propose an architecture 

capable of generating proxemics-enhanced scene graphs, or ProxeGraphs, in smart indoor 

environments. The ProxeGraph and the proposed architecture highlight my research 

contributions in integrating proxemics into smart indoor environments, thereby enhancing 

scene understanding and spatial analysis of humans and objects in smart home settings. In the 

next chapter, I will discuss the implementation of the proposed architecture. 

 

 
Figure 13 Example of Proxemics-enhanced Scene Graph. 
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4. IMPLEMENTATION 

In this chapter, I will describe the implementation of the proposed approach using the 

Oak-D Lite camera. This camera is fully customizable using DepthAI’s open-source API and SDK. 

According to the documentation provided by DepthAI [59], to set up an Oak-D Lite camera, a 

pipeline is required. To upload a custom pipeline to the Oak-D Lite camera, it needs to be 

connected to a host computer using a Universal Serial Bus (USB) cable. In this thesis work, the 

Oak-D Lite camera works as the input for the proposed architecture. The onboard Neural 

Network inferencing capability of this camera is used to detect objects and the depth capability 

of this camera is used to spatially locate the detected objects. As shown in Figure 14, the 

pipeline designed by me using Python and DepthAI’s open-source Python API for the Oak 

Camera consists of the following classes: i) ColorCamera, ii) 2 MonoCamera, iii) StereoDepth, iv) 

SpatialDetectionNetwork, v) 3 XLinkOut.  

I elaborate on the classes used in the pipeline in the following manner: In the ‘Object 

Detection Module in Oak-D Lite Camera’ paragraph of the ‘Object Detection’ subsection, I 

explain the usage of the 'ColorCamera' and 'SpatialDetectionNetwork' classes. In the ‘Distance 

Estimation’ subsection, I explain the usage of the 'MonoCamera' class, the 'StereoDepth' class, 

and the 'XLinkOut' class. The usage of the 'XLinkOut' class also extends to the ‘ProxeGraph 

Generation Using Hall’s Proxemics Label Generator’ subsection.  

The rest of this chapter is organized as: the first sub-section, ‘Object Detection’ 

describes the dataset curation, model training and model deployment in Oak-D Lite pipeline for 

object detection. The second sub-section, ‘Distance Estimation’ is dedicated to distance 

estimation and the third sub-section, ‘ProxeGraph generation using Hall’s Proxemics label 
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Generator’ describes the implementation of the Hall’s Proxemics label generation and scene 

graph generation with quantifiable predicates. 

 
Figure 14 Oak-D Lite Camera Pipeline. 

 

4.1. Implementing Object Detection 

The object detection module of my proposed architecture is a crucial component, 

responsible for detecting, localizing, and classifying the various objects present in a given scene. 

In the following paragraphs, I will describe the formation of a dataset suitable for smart indoor 

environments, the training of an object detection model on this curated dataset, and finally, the 

deployment of the trained model on the Oak-D Lite camera pipeline. 

4.1.1. Curating Dataset for Smart-home Environment 

In this subsection, I will describe how I curated the MS-COCO [58] object detection 

dataset for smart-home environments. The MS-COCO dataset is a large-scale object detection, 

segmentation, and captioning dataset. The paper [58] defines 91 object categories; however, 

the actual dataset uses 80 object categories. The 80 object categories are classified into 12 

superclasses as mentioned in Table 3. Out of these 12 superclasses, 8 superclasses are suitable 
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for smart home or indoor settings as the remaining superclasses contain objects typically not 

found in indoor environments, such as cars, airplanes, boats, traffic lights, and fire hydrants. 

Therefore, I included all the object categories from those 8 superclasses. Also, considering the 

most common pets and sports materials, I decided to include 2 classes from the “Animal” 

superclass and 4 classes from the “Sports” superclass. The selected object categories from the 

"Animal" superclass are “Dog” and “Cat” and the selected object categories from the "Sports” 

superclass are “Baseball bat”, “Baseball glove”, “Sports ball”, “Skateboard”. Thus, I have a smart 

indoor environment dataset with 53 object categories belonging to 10 superclasses. The 

curated dataset is shown in Table 4. 

Table 3 MS-COCO Object Categories. 

Superclass Object Categories 

Person Person 

Vehicle Car, Airplane, Motorcycle, Bus, Train, Bicycle, Boat, Truck 

Outdoor Fire hydrant, Traffic light, Stop sign, Bench, Parking meter 

Animal Giraffe, Cat, Sheep, Horse, Cow, Elephant, Bird, Dog, Bear, Zebra 

Accessory Suitcase, Umbrella, Tie, Backpack, Handbag 

Sports Skateboard, Frisbee, Tennis racket, Sports ball, Surfboard, Baseball glove, 

Skis, Snowboard, Kite, Baseball bat 

Kitchen Bottle, Cup, Wine glass, Fork, Spoon, Knife, Bowl 

Food Orange, Donut, Broccoli, Hot dog, Cake, Banana, Sandwich, Carrot, Apple, 

Pizza 
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Table 3 continued 

Superclass Object Categories 

Appliance Toaster, Sink, Refrigerator, Oven, Microwave 

Electronics Keyboard, TV, Cell phone, Mouse, Remote, Laptop 

Furniture Potted plant, Chair, Toilet, Couch, Dining table, Bed 

Indoor Toothbrush, Teddy bear, Clock, Hair drier, Vase, Scissors, Book 

 

Table 4 Smart-indoor Environment Dataset. 

Superclass Object Categories 

Person Person 

Animal Cat, Dog 

Accessory Tie, Suitcase, Umbrella, Backpack, Handbag 

Sports Baseball bat, Skateboard, Baseball glove, Sports ball 

Kitchen Bottle, Cup, Wine glass, Fork, Spoon, Knife, Bowl 

Food Orange, Donut, Broccoli, Hot dog, Cake, Banana, Sandwich, Carrot, Apple, 

Pizza 

Furniture Potted plant, Chair, Toilet, Couch, Dining table, Bed 

Electronics Keyboard, TV, Cell phone, Mouse, Remote, Laptop 

Appliance Toaster, Sink, Refrigerator, Oven, Microwave 

Indoor Toothbrush, Teddy bear, Clock, Hair drier, Vase, Scissors, Book 
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4.1.2. Training an Object Detection Model 

In smart-home environments, real-time inference is crucial for ensuring swift and 

accurate responses to changing conditions. To meet this demand, deploying a real-time object 

detector is essential. Recent research [42] highlights YOLOv8 as the fastest and most accurate 

one-shot real-time object detector available, making it an ideal choice for efficient and effective 

smart-home systems. Its rapid processing capabilities enable timely recognition of objects, 

enhancing the overall performance and responsiveness of smart-home applications. 

To optimize the functionality of smart home systems in real-time scenarios, I 

incorporated transfer learning into a pre-trained YOLOv8 architecture. Integrating transfer 

learning ensures a tailored and adaptive approach to object detection for the smart-home 

environment. The model was fine-tuned with a specific set of 53 object categories relevant to 

smart-home applications. These categories were curated from the MS-COCO dataset, ensuring 

that the selected objects are pertinent to the smart-home context. The selection process, 

detailed in the previous subsection, is crucial as the number of trainable parameters in a model 

is directly proportional to the number of classes selected. With more trainable parameters, the 

training time and the size of the trained model increase. 

By leveraging transfer learning and focusing on a curated set of classes, the re-trained 

YOLOv8 achieved faster training and inference times, which are essential for real-time 

applications. Additionally, concentrating on specific object categories resulted in higher 

accuracy and better generalization. The curated selection from MS-COCO ensures that the 

model is not only efficient but also highly relevant to practical smart-home scenarios. 
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I used Ultralytics Hub [60]  for model training as it provides cloud training support, 

which significantly enhances the training process. In the Ultralytics Hub’s cloud training 

platform I used a single NVIDIA T4 16 GB GDDR6 Graphics Processing Unit (GPU) to train a pre-

trained YOLOv8 model on my curated smart indoor dataset for 100 epochs with image size as 

640x640 pixels, patience of 100 with RAM caching policy and automatic batch sizing. The 

training took a runtime of 26 hours 44 mins in the cloud. The results of the model training are 

discussed in the chapter ‘5. Performance Evaluation’. I have provided screenshots of the 

Ultralytics Hub dashboard and other training steps in Appendix B. In the next subsection, I 

describe how I deployed the YOLOv8 model trained on the curated indoor dataset in the Oak-D 

camera pipeline. 

4.1.3. Object Detection Module in Oak-D Lite Camera 

To deploy the trained model in the Oak-D Lite camera, I exported the trained model in 

ONNX format using Ultralytics Hub’s export tool. During the export process, I used an image 

size of 640x640 pixels, applied FP16 quantization, and enabled model simplification. FP16 

quantization ensures that the model works with 16-bit floating points, which helps scale the 

model size for the Oak-D Lite camera. A screenshot of the Ultralytics export tool is shown in 

Appendix B. 

Next, I used Luxonis’s Blob Converter tool [61] to convert the trained model into a 

supported format (.blob) for the Oak-D Lite camera. For model optimization, I used mean 

values of 127.5 and scale values of 255 for normalization of input values. These normalization 

values ensure that the input data is scaled appropriately, improving model accuracy. 

Screenshots of the Blob Converter tool is shown in Appendix C. After the conversion process, 
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the size of the trained model was reduced from 11.6 MB to 5.87 MB marking a 50% reduction in 

the model size. This significant reduction makes the model more lightweight and suitable for 

deployment on the Oak-D Lite camera. These steps were chosen to ensure that the model could 

run efficiently on the Vision Processing Unit (VPU) of the Oak-D Lite camera while maintaining 

high accuracy.  

The custom model obtained through the training process described above is utilized by 

the 'SpatialDetectionNetwork' class in the Oak-D pipeline, as depicted in Figure 14 to detect 

objects from a given scene. The 'SpatialDetectionNetwork' class receives inputs from both the 

'ColorCamera' and the 'StereoDepth' classes. It uses the RGB input frame from the 

'ColorCamera' class to detect and classify the objects present in the scene.  

Subsequently, it processes these detections by mapping the RGB frame to the depth 

frame provided by the 'StereoDepth' class. This mapping allows the 'SpatialDetectionNetwork' 

class to spatially localize the detected objects. The bounding boxes of the detected objects are 

mapped to the depth frame, providing spatial (x, y, z) coordinates for each detected object. This 

spatial information is crucial as these coordinates are used by the ‘Distance Calculation’ module 

in the proposed architecture. An output of the object detection and spatial mapping is shown in 

Figure 15. The figure shows an indoor scene where multiple objects, including a person, laptop, 

and chairs, have been detected and labeled using bounding boxes with their spatial coordinates 

(x, y, z) in millimeters. The labels provide detailed distance information for each object relative 

to the camera. In the next subsection, I describe the implementation of the ‘Distance 

Calculation’ module.  
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Figure 15 Output of Object Detection and Spatial Mapping. 

 

4.2. Implementing Distance Calculation 

As discussed in the ‘Background & Related Works’ and ‘Proposed Method: ProxeGraph’ 

chapters, I have used a stereo vision approach for estimating depth using cameras and I have 

selected Oak-D Lite stereo camera because of its stereo vision capabilities. In this subsection, I 

explain the working of the Oak-D Lite camera’s stereo depth capability and discuss the method 

of calculating distance between each pair of detected objects.  

According to the DepthAI API documentation [59], the two 'MonoCamera' classes (2 and 

3) shown in Figure 14 correspond to the left and right lenses of the Oak-D Lite camera and are 

responsible for capturing the frames and passing them to the 'StereoDepth' class. The 

'StereoDepth' class accepts the frames captured by the left and right lenses as input. It then 
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performs rectification of the frame using a homography matrix. The rectified frames are then 

passed through a stereo matching algorithm and finally, post-processing filtering is applied to 

the frame. I have used default values for all the algorithms used in this class. The Oak-D Lite 

camera uses a left-handed coordinate system for all spatial coordinates. The output of this class 

is a disparity/depth map which is aligned with the RGB frame. This depth map is passed as an 

input to the 'SpatialDetectionNetwork'. The bounding box coordinates of the detected objects 

from the object detection neural network are mapped to the depth map, generating the spatial 

coordinates (x, y, z) for each detected object. A depth frame with detected objects and mapped 

spatial coordinates is shown in Figure 16. The figure depicts the same scene as in Figure 15, but 

with the addition of a depth image. The depth image includes the same bounding boxes and 

spatial coordinates of the detected objects as seen in the color image. 

The 'XLinkOut' classes in the pipeline are responsible for transmitting these spatial 

coordinates, along with the captured frames and the list of detections, to the host computer to 

which the camera is connected. The host computer uses the list of detections and the 

corresponding spatial coordinates to calculate the distance between each pair of detected 

persons and objects using Euclidean geometry, as discussed in the ‘Distance Calculation’ 

module of the ‘Proposed Method: ProxeGraph’ chapter. The calculated distances are then 

passed to the ‘Hall’s Proxemics Label Generator’ module to label the distances between objects 

based on Hall’s proxemics zones using Algorithm 1.  
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Figure 16 Depth Map (right) from Oak-D Lite with Corresponding RGB Frame (left). 

 

4.3. ProxeGraph Generation Using Hall’s Proxemics Label Generator 

As discussed in the ‘Proposed Architecture’ section of the ‘Proposed Method: 

ProxeGraph’ chapter, I use the list of detections and distance information received from the 

'Object Detection' module and the 'Distance Calculation' module to form proxemics labels 

based on Hall's proxemics zones. This process generates a proxemics-enhanced scene graph. In 

this section, I will discuss the implementation of the generation of proxemics-enhanced scene 

graphs.  

In my implementation using the Oak-D Lite camera, I receive the detected objects and 

their spatial information as a list of 'ImgDetection' objects. 'ImgDetection' is a class from 

DepthAI’s Python library that contains the detected object label, its bounding box coordinates, 

and its spatial coordinates. The 'XLinkOut' class, numbered (6) in Figure 14, is responsible for 

transmitting this information from the camera to the host computer. 
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Using this list, I form pairs of person-object combinations according to Algorithm 2. 

Upon receiving the list of 'ImgDetection' objects from the Oak-D Lite camera, Algorithm 2 

iterates over the list and modifies the label of each item by adding a count representing the 

quantity of that particular label present in the list. During the same iteration, it also separates 

the 'ImgDetection' objects with the ‘person’ class from other object classes, forming two 

separate lists—one containing only ‘person’ objects and the other containing non-person 

objects. At the end of the iteration, a Cartesian product of the list containing only ‘person’ 

objects with the list of non-person objects is taken. The output of Algorithm 2 is a list of pairs of 

person-object combinations present in the list of 'ImgDetection' objects obtained from the Oak-

D Lite camera. For each of these pairs, I apply Algorithm 3 to calculate the distance between the 

subject and the object in the pair. Algorithm 3, upon receiving the list of person-object pairs 

from Algorithm 2, iterates over the list to calculate the Euclidean distance using the spatial 

coordinates of the person and the object. In the same iteration, this distance is used to create a 

proxemics label for the person-object pair using Algorithm 1. Following proxemics label 

generation, Algorithm 3 forms an instance of the ‘Triplet’ class, which I developed, where the 

attributes of the class are a subject, a predicate, and an object. The output of Algorithm 3 is a 

list of instances of the ‘Triplet’ class, where the subject is one of the detected persons, the 

object is one of the detected objects, and the predicate is a combination of the distance and a 

proxemics label representing each person-object pair. This list of triplets constitutes the 

proxemics-enhanced scene graph for a given scene. 

The final output of the Hall's Proxemics Label Generator is a scene graph with 

quantifiable predicates, as described in the 'proposed architecture' section. This scene graph is 
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stored in the host computer's secondary memory encoded as a JavaScript Object Notation 

(JSON) file. A graphical representation of the list of triplets is shown in Figure 17. The figure 

depicts the same scene as in Figure 15, but with the addition of a graphical representation of 

the proxemics-enhanced scene graph. The right side of the figure shows the ProxeGraph, with 

the detected objects as nodes of the graph and the proxemic relationships as edges, illustrating 

their spatial relationships within the scene. A JSON representation is shown in Figure 18. The 

figure depicts the structure of a ProxeGraph in JSON encoding on the left side and a sample 

snippet of the ProxeGraph illustrated Figure 17. The JSON is structured as an object with ‘time’ 

as a string representing the timestamp of the data, ‘triplets’ as a list of containing multiple 

‘Triplet’ objects, where each triplet represents a relationship between an object and a subject 

with a specific predicate. Each triplet contains an ‘object’, which is a detected object with a 

label (a string for the object's label), a ‘bbox’ (an object for the bounding box coordinates with 

four numbers: x1, y1, x2, y2), and ‘spatialCoordinates’ (an object for spatial coordinates with 

three numbers: x, y, z). The predicate is an object with distance - a number representing the 

distance in millimeters between the object and the subject and hall's label - a string 

representing Hall's proxemics label for the relationship. The subject is another object with the 

same structure as the triplet ‘object’. 

By integrating the object detection and depth estimation capabilities of the Oak-D Lite 

camera, this implementation of the proposed methodology applies proxemics in smart homes 

to offer a more intuitive and accessible way of interacting with smart home devices. This 

approach improves the overall user experience and makes smart homes more accommodating 

to a diverse range of users. To summarize, in this chapter I explained the implementation of the 
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proposed architecture as follows: the ‘Object Detection’ module is implemented by training a 

YOLOv8 architecture on a curated indoor environment and deploying it in the Oak-D Lite 

camera with the help of the 'ColorCamera' and 'SpatialDetectionNetwork' classes. The ‘Distance 

Calculation’ module is implemented using the 'MonoCamera' and 'StereoDepth' classes in the 

Oak-D Lite camera. The ‘Hall’s Proxemics Label Generation’ module is implemented on the host 

computer using Python code based on Algorithm 1, Algorithm 2, and Algorithm 3. The 

'XLinkOut' classes in the Oak-D Lite camera are responsible for data transfer between the host 

computer and the camera. In the next chapter, I evaluate the performance of my 

implementation of the proposed architecture. 

Algorithm 2 Form Person-Object Combinations. 

 Input: list of ImgDetection objects from Oak camera 
 Output: list of Person-Object combinations 
1. counts ← empty mapping 
2. personList ← empty list 
3. objectList ← empty list 
4. for each item in ImgDetection list do: 
5.  counts[item.label] ← counts[item.label] + 1 
6.  item.label ← concatenate(item.label, counts[item.label]) 
7.  if item.label == ‘person’ then: 
8.   add item to personList 
9.  else 

10.   add item to objectList 
  end if 

11. end for 
12. combined_list ← cartesian_product(personList, objectList) 
12. return combined_list 
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Algorithm 3 ProxeGraph Generation. 

 Input: list of combined person-object pairs 
 Output: ProxeGraph 
1. proxeGraph ← empty list 
2. for each pair in combined_list do: 
3.  distance ← calculate_euclidean_distance(pair.person.spatialCoordinate, 

pair.object.spatialCoordinate) 

4.  hall_label ← Hall’s Label Generator(distance) 
5.  triplet ← Triplet(pair.person, (distance, hall_label), pair.object) 
6.  add triplet to proxeGraph 
7. end for 
8. return proxeGraph 

 

 
Figure 17 ProxeGraph - Proxemics-enhanced Scene Graph. 
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Figure 18 ProxeGraph JSON Representation. 
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5. PERFORMANCE EVALUATION 

In this section, I will explain the results and performances of the different submodules of 

the proposed architecture and its implementation in this thesis work. This section is divided 

into 4 subsections – the first subsection describes the object detection training performance, 

the second subsection describes the proxemics-enhanced scene graph generation, the third 

subsection describes the impact of viewpoint in ProxeGraph and the final subsection describes 

the application of ProxeGraph towards pre-defined context detection in smart homes. 

5.1. Evaluation of Object Detection 

As described in ‘Proposed Method: ProxeGraph’ chapter, I used a YOLOv8 model trained 

on a dataset curated for indoor smart-environments object detection in the implementation of 

my proposed architecture. The curated dataset containing 53 classes, as detailed in ‘Proposed 

Method: ProxeGraph’ chapter, plays a significant role in finetuning the proposed architecture 

for indoor environments. I trained the model for 100 epochs. I measured 3 losses: box loss, 

classification loss and the deformable convolutional layer loss. The box loss (box_loss) is the 

bounding box regression loss measuring the error in predicted bounding box compared to the 

ground truth. Lower box loss means the predicted bounding boxes are more accurate. The error 

between predicted class probabilities and the ground truth classed for each detected object in 

the image is measured by classification loss (cls_loss). A model with lower classification loss 

means it is predicting the class of an object more accurately. The deformable convolutional 

layer loss (dfl_loss) measures the error in deformable convolutional layers which improves 

model’s capability to detect objects across different scales and aspect ratios. A lower dfl_loss 

indicates that the model is better at handling object deformations and variations in 
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appearance. At the end of 100th epoch, the training loss for box (box_loss) is 1.11, for 

classification (cls_loss) is 1.175 and for deformable convolutional layer (dfl_loss) is 1.179. In 

case of validation, the losses are 1.125, 1.227 and 1.166 respectively. All three losses showed a 

trend of decreasing over epochs, which is a good sign indicating that the model is learning. 

There was a significant drop early in training (before epoch 5), followed by a plateau, which is 

common as the model starts to converge. The patterns for the validation loss are similar to the 

training losses, but it is important to note that the losses here are generally higher than the 

training losses. This is expected since the validation set consists of unseen data and serves as a 

good indicator of how well the model might perform on new, unseen data. Along with the 

losses, I also monitored metrices such as mAP, mAP50-95, precision and recall. After training for 

100 epochs, I found that the mAP50 metrics is at 0.469. This means that the model is correctly 

identifying and localizing the objects about 46.9% of the time when a 50% overlap with the 

ground truth bounding boxes is considered a correct detection. At the same time, since the 

mAP50-95, which is the average measure of model’s performance across IoU thresholds from 

0.50 to 0.95 is at 0.331, it can be inferred that the performance of the model drops when a 

stricter localization criterion is applied. This is a common issue because it is more challenging to 

have a high degree of overlap for correct detections, but it shows that the model has room for 

improvement in terms of precision of bounding box predictions. In object detection, especially 

with a large number of classes (53 in this case), achieving high mAP values can be challenging. 

The mAP at IoU=0.5 is decent, suggesting that the model can detect objects with a fair amount 

of accuracy when a lower threshold for overlap is set. However, the mAP for IoU thresholds 

from 0.5 to 0.95 is lower, which is expected as it is a more stringent measure. This indicates 
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that while the model can detect objects, the exactness of the bounding boxes could be 

improved. The graphs for training and validation loss are given in Figure 19a and Figure 19b 

respectively and the graph for metrices is given in Figure 19c.  

From Figure 19, it can be noticed that the model has improved over the epochs. 

Although a crucial part of the proposed architecture, improving object detection is not my 

primary goal. Therefore, I decided to use this decently trained model for carrying out further 

experiments which are described in the following subsections.  

 
Figure 19 Object Detection Model Training on Curated Smart-indoor Dataset Using GPU for 
100 Epochs Using Ultralytics Hub. 

 

5.2. ProxeGraph Generation 

I implemented the proposed ProxeGraph architecture in four different environments: 

my apartment kitchen, living room, my office, and a lounge area. The generated proxemics-

enhanced scene graphs for these environments are shown in Figure 20- Figure 23. In Figure 20, 

a kitchen environment features a person, microwave, bottle, and oven. Figure 21 presents a 

living room with a person, TV, laptop, and chair. Figure 22 showcases an office setting with a 

person, multiple chairs, and TV screens. Figure 23 displays an indoor lounge area with several 

individuals, a chair, and a laptop. For each of these figures, the ProxeGraph shown on the right 
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subfigure of each figure, visualizes the relationships among the individuals and objects, 

conveying the spatial dynamics within the scene. These experimental environments contained 

furniture such as chairs and desks, electronics such as monitors and laptops, appliances such as 

microwaves and ovens, and accessories such as bottles. The lounge area also contained 

multiple people, providing a diverse set of proxemics zones between persons and objects. Each 

environment serves different functions and presents unique challenges for the proposed 

architecture.  

The proposed architecture successfully detected most of the objects present in a frame 

and generated corresponding proxemics-enhanced scene graphs. The variety of these 

environments showcases the architecture’s adaptability to different scenarios, object 

arrangements, types of objects, and the presence of multiple objects of the same kind. This 

variety implies robustness, enabling the system to maintain performance across different 

settings. 

 
Figure 20 Kitchen Environment.  
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Figure 21 Living Room Environment. 

 

 
Figure 22 Office Environment. 

 

These environments, with their complex and varying layouts, add to the diverse settings 

in which the ProxeGraph architecture has been observed to function effectively. This 

underscores the system's adaptability to various interior designs and its potential utility. The 
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architecture's ability to identify different objects and people, gather spatial information, 

localize detected objects in 3D space, calculate distances between pairs of persons and objects, 

and classify these distances to provide proxemics labels demonstrates its complexity, 

adaptability, and versatility. 

 
Figure 23 Lounge Environment. 

 

To further evaluate the ProxeGraph architecture, I timed the deployed system by 

running the architecture on a host computer with 8 GB RAM and Intel i7 processor and 

recorded the time required to generate a scene graph corresponding to an input frame. The 

results of this evaluation are shown in Figure 24, which shows the mean time required to 

process varying numbers of triplets. The number of triplets is a combination of the number of 

persons detected in the scene multiplied by the number of objects detected in the scene. 

The average processing time exhibits variability across different numbers of triplets. It is 

apparent that the processing time increases as the number of triplets grows, reflecting the 

expected computational load associated with handling more complex scenes. There is a 
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noticeable upward trend in the mean processing time with an increasing number of triplets. 

This trend suggests that the architecture may face scalability challenges, as more triplets result 

in longer processing times. The weighted average time required to generate a proxemics-

enhanced scene graph across varying numbers of triplets was 0.000344 seconds, depicted by a 

red dashed line on the graph. This weighted average time indicates that, on average, the 

ProxeGraph architecture performs consistently.  

 
Figure 24 ProxeGraph Generation Timing. 

 

The system's consistent performance, as indicated by the weighted average time, 

suggests robustness in various smart home scenarios. This reliability is crucial for practical 

applications, where consistent and predictable performance is necessary to maintain user 

satisfaction and system dependability. Additionally, the low weighted average time required 

suggests that the proposed ProxeGraph architecture is well-suited for real-time applications, 

which is crucial for smart home contexts. 
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5.3. Viewpoint Impacts on ProxeGraph 

To evaluate the change in ProxeGraph and determine whether it remained consistent 

when the same scene was viewed from different perspectives, I deployed the ProxeGraph 

architecture using two different Oak-D Lite cameras positioned in two different corners of a 

living room environment. Figure 25 shows a sample of detected objects from the first camera 

perspective, which include ‘person 1’, ‘couch 1’, and ‘chair 1’. The corresponding ProxeGraph 

indicates that ‘person 1’ is at a ‘personal’ distance from ‘chair 1’ and at a ‘social’ distance from 

‘couch 1’. Similarly, Figure 26, taken from the second camera perspective, detects ‘person 1’, ‘tv 

1’, ‘chair 1’, and ‘chair 2’. The corresponding ProxeGraph shows that ‘person 1’ is at a ‘personal’ 

distance from ‘chair 1’ and at ‘social’ distances from both ‘chair 2’ and ‘tv 1’. Both images were 

captured simultaneously from different perspectives. Observations of the generated  

 
Figure 25 Viewpoint of a Living Room Environment from Oak-D Lite Camera 1. 

 

ProxeGraphs revealed that while the detected objects varied based on the camera 

locations, the common objects in both perspectives maintained the same relationships derived 
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from Hall's proxemics zones. This indicates that the ProxeGraph architecture can maintain 

consistent spatial relationships for common objects across different viewpoints. However, it is 

evident that depending on the field of view and the position of the cameras, as well as the size 

of the environment, multiple cameras may be required to generate a comprehensive 

ProxeGraph. The observations of the generated ProxeGraphs also confirmed that the common 

objects across different perspectives had consistent relationships. The absolute distance 

variation between the detected objects was within the bounds of a 2% error margin, as 

specified in the Oak-D Lite camera's documentation [32]. The consistency across different 

perspectives, where common objects like 'person 1' and 'chair 1' maintain the same proxemics 

relationships as shown in Figure 25 and Figure 26, indicates the robustness of the ProxeGraph 

architecture in preserving spatial relationships despite changes in viewpoint. Although initial 

observations show promising results, an elaborate evaluation of this problem requires a more 

comprehensive study of object identification and scene regeneration, which is outside the 

scope of this research. 

 
Figure 26 Viewpoint of a Living Room Environment from Oak-D Lite Camera 2. 
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5.4. Proof-of-Concept: Application of ProxeGraph towards Context Detection in Smart Home 

Environments    

To evaluate the efficacy of ProxeGraph towards context detection in smart-home 

environments, I deployed the ProxeGraph architecture in two distinct indoor environments: a 

kitchen and a multi-person environment. I created separate context policies manually for these 

environments to define three contexts in decreasing order of importance: dangerous, 

concerning, and normal. 

5.4.1. Kitchen Environment Deployment 

For the kitchen environment, I defined the following policies:  

1. If person is in intimate zone with an oven, it is a dangerous context. 
2. If person is in intimate zone with a refrigerator, it is a dangerous context. 
3. If person is in personal zone with a microwave, it is a normal context. 

 

In the kitchen environment, as shown in Figure 27 and Figure 28, the ProxeGraph 

framework is correctly able to identify the dangerous and normal contexts as highlighted by red 

and blue colored nodes respectively. In Figure 27, ‘person 1’ is detected in close proximity to 

‘oven 1’. The generated proxemics-enhanced scene graph identifies the distance as 389.16 mm, 

falling within the ‘intimate’ zone. However, the distance between the ‘person 1’ and the 

‘microwave 1’ is 973.36 mm which falls within the ‘personal’ zone thereby making it a normal 

context between the person and the microwave. Similarly, in Figure 28, 'Person 1' is detected 

near ‘refrigerator 1’, with a measured distance of 435.33 mm, also within the ‘intimate’ zone 

and thereby making it a dangerous context.  



62 

 

5.4.2. Multi-Person Environment Deployment 

For the multi-person environment, I defined the following policies: 

1.If person is in intimate zone with a cup, it is a dangerous context. 
2.If person is in personal zone with a chair, it is a concerning context. 
3.If person is in social zone with a chair, it is a concerning context. 
4.If person is in any zone with a television monitor, it is a normal context. 
5.If person is in any zone with a bottle, it is a normal context. 

 
In the multi-person environment, as shown in Figure 29, the ProxeGraph framework 

successfully identified the various contexts, despite the complex layout and the presence of 

multiple people and objects. 

 
Figure 27 Kitchen Environment Deployment: Oven Interaction. 

 

Additionally, ‘Person 1’ is in the ‘social’ zone with ‘Chair 1’, ‘Person 2’ is in the ‘social’ 

zone with ‘Chair 2’, and ‘Person 4’ is in the ‘public’ zone with ‘TV 1’, creating normal and 

concerning contexts as per the defined policies. 

To further evaluate the architecture, I timed the context detection by the system based 

on the generated ProxeGraph. The timing graph is given in Figure 30. Although the average 
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context detection time depicted by the blue dotted line shows an increasing trend, the 

weighted average time of 0.00314 seconds depicted by the dotted red line, indicates consistent 

performance, underscoring the system’s capability for real-time applications.  

 
Figure 28 Kitchen Environment Deployment: Refrigerator Interaction. 

 

 
Figure 29 Multi-person Environment Deployment. 
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Figure 30 Context Recognition Timing. 

 

The ProxeGraph architecture's deployment in both kitchen and multi-person 

environments demonstrates its adaptability and robustness in detecting simple pre-defined 

context such as ‘dangerous’, ‘concerning’ and ‘normal’. By accurately identifying objects, 

measuring proxemic distances, and applying predefined context policies, the system ensures 

safety and efficiency. The consistent performance and low policy generation time further 

emphasize its practicality for real-time applications in indoor-smart environments. This proof of 

concept highlights the potential of proxemics-enhanced scene graphs to enhance human-

computer interactions, making the ProxeGraph architecture a valuable asset in diverse indoor-

smart environments.  

The results presented in this chapter demonstrate that combining proxemics with scene 

graphs is not only feasible but also effective for non-verbal communication in smart home 

environments. The proposed architecture effectively utilizes the spatial relationships between 
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users and objects to generate proxemics-enhanced scene graphs. By leveraging proxemic zones 

defined by anthropologist Edward T. Hall, the system can interpret predefined contexts based 

on users’ physical proximity to various smart home devices. This novel integration provides a 

robust framework for enabling non-verbal interactions, particularly beneficial for individuals 

with speech impairments or those who prefer not to use verbal commands, thereby answering 

my first research question. From the proof of concept discussed earlier, it is evident that 

introducing a quantifiable distance attribute enriches the predicate in scene graph triplets. This 

addition allows for a more precise and detailed representation of spatial relationships, thereby 

improving scene understanding and spatial analysis in smart homes. 
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6. CONCLUSION 

In this research, I attempted to find the feasibility of combining the non-verbal 

communication method proxemics with scene graphs to introduce a passive avenue of 

interaction between users and devices in smart homes, and to explore the application of this 

combination for context inference in smart-home environments. Additionally, I investigated 

whether introducing a quantifying attribute would enrich the scene-graph triplet. To this end, I 

proposed the ProxeGraph architecture, which generates proxemics-enhanced scene graphs by 

utilizing Hall’s Proxemics Zones as relationship labels between smart home users and objects.  

The primary goal was to determine if proxemics could be integrated with scene graphs 

to enhance non-verbal communication within smart homes. This integration aimed to provide a 

structured representation of spatial relationships between users and objects, enabling intuitive 

and automated interactions. The performance evaluations conducted across various smart 

home scenarios confirmed that this combination is not only feasible but also highly effective.  

In the kitchen environment, the ProxeGraph architecture accurately detected and 

labeled interactions with appliances and utensils, which can enable context-aware automation 

such as adjusting cooking settings or turning off devices when not in use. In the living room, the 

system demonstrated its ability to generate proxemics-enhanced scene graph by correctly 

labelling the interaction zone between a user and the devices present. This can potentially be 

used to manage entertainment and relaxation settings by detecting user proximity to furniture 

and electronic devices, thereby facilitating automated adjustments like changing TV channels or 

dimming lights. The lounge environment, characterized by multiple users and social 
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interactions, further highlighted the architecture's robustness in generating proxemics-

enhanced scene graph across different environmental layouts and varying number of users.  

The inclusion of distance as a quantifying attribute in the scene graph triplets enriched 

the predicates by allowing for more precise spatial analysis and improved interaction labeling. 

For example, detecting a person near the oven in the kitchen as an "intimate" proxemics zone 

indicates potential interaction with cooking activities. The ProxeGraph system successfully 

generated proxemics-enhanced scene graphs across diverse settings, demonstrating robustness 

and adaptability. The average time to process and generate a scene graph was 0.000344 

seconds, which indicates that the system is well-suited for real-time applications. 

The applicability of the proxemics-enhanced scene graph in simple pre-defined context 

detection such as ‘dangerous’, ‘concerning’ or ‘normal’ was demonstrated by the proof-of-

concept work provided in this research. These ProxeGraphs provided a comprehensive 

understanding of user interactions within the smart home, enabling the system to maintain 

spatial awareness and infer contexts. The ability to detect potentially hazardous situations, such 

as a person near an oven showcases the practical applications of the context detection 

capabilities. Using this proxemics-enhanced scene graph it is therefore possible to adapt 

settings based on user presence, such as turning devices on and off, adjusting room 

temperature or lighting or changing the operating mode of various devices based on the 

proxemics zone of the user to those devices. The average time required to detect context from 

a given proxemics-enhanced scene graph was 0.00314 seconds, which indicates that the system 

is fast and well-suited for real-time applications. 
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While this research has laid a foundation in integrating proxemics in smart home 

environments, several areas warrant further exploration. Deployment of the ProxeGraph 

architecture across two distinct viewpoints revealed that although the architecture is consistent 

in maintaining relationships between commonly detected objects, multiple cameras are 

required to capture a comprehensive scene, depending on the room size and camera 

viewpoints. In-depth evaluation of ProxeGraphs generated from different viewpoints in the 

same environment requires further exploration in object identification and scene regeneration. 

Future work could also focus on integrating the ProxeGraph architecture with traditional scene 

graph generation architectures, thereby enhancing the richness of spatial understanding in 

smart environments. Additionally, customizing the proxemics-based interactions to cater to 

individual user preferences and behaviors can further personalize the smart home experience 

such as adjusting the thermostat settings based on the proximity of users to heating or cooking 

stations, or automatically locking doors when children move towards unsafe zones. Combining 

proxemics with other non-verbal communication methods like gesture recognition could create 

a more comprehensive and intuitive interaction system. For example, a user with limited 

mobility can have a defined zone near their bed or chair where simple gestures can control 

multiple devices, improving their comfort, independence, and safety. A user can control smart 

home devices simply by moving closer or farther away from them. Moreover, by defining 

specific movements or gestures within proxemic zones, users can perform tasks such as 

adjusting the thermostat or playing music. Improving the performance of ProxeGraph 

generation is another future direction.  
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Despite its promising outcomes, this research has some limitations. The reliance on 

stereo vision cameras for distance estimation may limit the system's applicability in 

environments where such equipment is not feasible. Future research could explore alternative, 

cost-effective distance estimation methods such as Light Detection And Ranging (LIDAR) 

cameras or cameras with Infrared (IR) sensors.  As the number of objects and interactions 

increases, the computational load for generating and processing scene graphs also grows. 

Ensuring scalability while maintaining real-time performance is a significant challenge that 

needs to be addressed. The current implementation uses a fixed set of proxemic zones as 

defined by Hall. Expanding and refining these zones to better capture the nuances of human-

object interactions in diverse settings could enhance the system's accuracy and usability. 

In conclusion, my research provides a novel approach to enhancing human-computer 

interactions in smart homes through the integration of proxemics and scene graphs. The 

ProxeGraph system demonstrates the potential of non-verbal communication method 

proxemics to create more intuitive, accessible, and responsive smart environments. Future 

advancements and refinements in ProxeGraph can further bridge the gap between technology 

and user needs, making smart homes smarter. 
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8. APPENDICES 

8.1. Appendix A: IRB Approval 

 
Appendix A 1 IRB Exemption 
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8.2. Appendix B: Ultralytics Hub Screenshots 

 
Appendix B 1 Ultralytics Hub - dashboard. 

 

 
Appendix B 2 Ultralytics Hub - Datasets dashboard with the curated indoor dataset 
highlighted. 
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Appendix B 3 Ultralytics Hub - Training a YOLOv8 model step 1. 

 

 
Appendix B 4 Ultralytics Hub - Model training parameters. 
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Appendix B 5 Ultralytics Hub - Cloud GPU selection and final step to start training. 

 

 
Appendix B 6 Ultralytics Hub - Model export dashboard. 
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Appendix B 7 Ultralytics Hub - Model export parameters. 
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8.3. Appendix C: Luxonis Blob Converter Tool Screenshots 

 

 
Appendix C 1 Luxonis Blob Converter Tool dashboard. 

 

 
Appendix C 2 Luxonis Blob Converter – model conversion parameters. 
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